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Abstract

This report is a definition of, and partial rationale for, the WM family of computer
architectures.

The primary objective behind the WM design was concurrency -- concurrency at
several levels. Since no single style of concurrency is suitable for all applications,
several styles coexist and complement each other in the design. First, WM supports
micro-concurrency at the instruction level; that is, it facilitates the execution of
several scalar instructions concurrently. Second, WM supports vector processing; that
is, it has single instructions that apply the same operation to a collection of data items.
Finally, WM was designed to be a node in a multiprocessor, a "multi-computer”, and
facilities are provided for extremely low overhead communication and coordination
among cooperating processors.

A secondary, but important objective of WM was to permit a wider variety of
implementations than is normally considered in machine designs. To this end, WM was
designed as a "family of architectures” parameterized by the size of the data manipulated
by a family member. This approach permits members of the WM family to span the
spectrum from 16-bit, integer only mini-computers through 64-bit supercomputers.
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Chapter 1. General Features

WM is a family of computer architectures designed to support rapid execution and
compact representation of programs written in high-level languages. It is a combination
of innovative computer architecture and fast, modern machine features. Its elements
support each other quite synergistically. The net result is an architecture with (a)
roughly the hardware complexity associated with RISC machines, (b) roughly the code
densities associated with CISC machines, and (c) roughly the performance associated
with "mini-supercomputers". Members of the family differ from each other in the size
(width) of their data manipulation operations, as well as in the type of operations
supported -- members of the family span the spectrum from 16-bit, integer only
microcomputers to vector supercomputers with 64-bit virtual addresses.

The notion of a "family of architectures" is, to our knowledge, a new one. The more
familiar notion is that of a family of computers with a common architecture; such a
family is a collection of implementations that execute the same instruction set. By way of
contrast, members of the WM family implement conceptually similar, but not
necessarily identical instruction semantics, and not all instructions are supported on all
family members.

Arithmetic operations are examples of the “"similar but not identical"
instructions: all members of the WM family support an "integer add" operation,
but their semantics differ; on the 16-bit versions of the family this is a 16-bit
add, while on 64-bit versions it is a 64-bit add.

Load and store instructions are examples of ones not supported on all family
members: on 32-bit versions of the machine, 8-, 16-, and 32-bit integer data
types are supported in memory, and operations are provided to load these data
types into the registers. On a 16-bit version of the family, only 8- and 16-bit
integer data types are supported, and the operation to load a 32-bit integer is
illegal.
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The most important contributions of the WM family are related to their
performance, which principly arise from three features:

Concurrent

Operations A primary objective of the WM designs was to allow many
operations to occur concurrently. This has several aspects.
First, the control, integer, floating point, and vector units
are separated so that an instruction can be dispatched to
each simultaneously. Second, many instructions may
specify two operations, and the ALUs that implement these
operations are pipelined so that two operations to be
dispatched per cycle. Third, many instructions specify a
large set of operations; this is obviously true of the vector
instructions, but is also true of "streamed" load/store
operations, discussed below. Finally, WM provides
facilities that enhance its use as a node in a
multiprocessor.

Streaming A mechanism is provided for asynchronous loads and stores
of "vector-like" data, that is, data with a known
displacement between successive items. A single
instruction can be executed to cause a "stream" of such data
items to be delivered to WM's execution units, which can
then be processed at the speed of the consuming algorithm.
This facility applies to WM's scalar as well as its vector
execution units, and has the effect of potentially executing
many load/store operations concurrent with the execution
of other instructions.

Fast Conditionals A new approach to conditional jumps is taken that allows
their execution to be completely overlapped with that of
other instructions and the "prefetch" of subsequent
instructions to begin well ahead of the need for them.

The net effect of these three features is a peak performance of many operations per
cycle; the exact number depends upon parameters of the architecture and
implementation, as will be described later. Other important architecture features that
further enhance the performance and applicability of WM include:

Micro-concurrency The ability to dispatch multiple operations per cycle is
significantly enhanced by a careful decoupling of
independent execution units, and synchronizing their
actions through FIFOs.

32-bit Instructions All instructions are 32-bits. This aids in numerous ways,
such as by expanding the relative jump distance, providing
quicker decoding, eliminating awkward page-fault
situations, and simplifying the prefetch requirements.
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Load Prefetch

Large Register Set

Parameter Passing

Ada Influence

Operating System
Support

WM is a load/store machine, but loads can be started well
before a memory data item is needed. This reduces the
effect of cache misses and a long memory access latency.

In the largest members of the WM family, 96 register
names are provided -- of which 27 are integer/logical
"general" registers, 29 are floating-point registers, 29
are vector registers, and 11 are functionally specific (see
section 2.3 concerning the WM memory/processor
interface).

A parameter passing mechanism is incorporated that is
faster and more convenient than previous methods.

WM was designed with the needs of high-level languages, as
well as the capabilities of modern optimizing compilers, in
mind. Of particular interest was rapid execution of Ada
programs -- both because of the growing importance of
Ada and because it provided a good "stress test" on the
success of this aspect of the design. In particular,
constructs that are awkward on other modern computers,
such as proper loop control, exceptions, constraint
checking, and tasking, are smoothly supported on WM.

WM provides a number of features to support operating
systems; the general philosophy being to move as much
functionality as possible safely into ordinary, unprivileged
"user level" code. The result is that it is possible to

- directly handle 10 devices from user programs

- have user programs act as a scheduler for a set of
other user tasks

- build a compartmented, multi-level military
security system easily

- communicate with other processors in a large
multicomputer

Each of these provides the possibility of significant
reductions in operating system overheads. A primary
objective of the philosophy was to support the use of WM
as nodes in a large "multi-computer”, where performance
of applications depends critically upon such overheads.
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Chapter 2. Logical Machine Structure

This chapter describes the basic framework of the WM family, such as its data types,
logical memory interface, and implied stack structure. Those familiar with modern
computer architectures may wish only to skim the material on data and addressing.
However, there are several unusual aspects of the WM design covered in the sections
"Execution Units" and "Memory Reads & Writes"; these should be read carefully.

As noted in the last Chapter, WM is a family of computer architectures. A member of
the family in denoted by three parameters, and is denoted WM; ;. The parameters
denote the size, and implicitly the existence, of the nteger, floating, and yvector data
manipulation operations of the family member. The parameters are constrained such
that:

L € {16, 32, 64}
f ¢ {0, 32, 64}
y € {0, 32, 64}

Thus, WM1g,0,0 is a 16-bit, integer-only architecture -- such as one might use
for micro-computer (controller) applications. WM32 32 o is an architecture with
32-bit integer and floating point operations, but no vector operations -- such as one
might use for workstation applications. WMg4,64,64 is an architecture with 64-bit
integer (and virtual addresses), floating point and vector operations -- such as one
might use for supercomputer applications.

As noted in the last Chapter, (machine language) programs that utilize the features
of more capable members of the WM family are invalid for less capable members of the
family. In many cases, such as using a vector instruction on a machine without a vector
unit, will be caught by the hardware (i.e., an exception will be raised). In other cases,
such as a program that depends upon 32-bit addressing may appear to execute properly
on less capable machines, such as ones with only a 16-bit integer unit, or may raise an
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apparently unrelated exception such as overflow. In general, programs should be
compiled for the member of the family on which they are intended to execute.

To simplify the discussion in the following sections, we will often refer explicitly
or implicitly to the "WM architecture", actually meaning a member of the architectural
family, and generally a member with all of the integer, floating, and vector capabilities,
The reader should be able to easily infer the implications for less capable members of
the family.

2.1. Addresses & Data

2.1.1. Addresses

Addresses on the WM architecture are j-bit signed values and memory is 8-bit byte
addressed. Note that addresses are signed; valid addresses lie in the range -231 ..

(231-1).‘ WM systems are "paged”, and addresses are translated and protected as
described in Chapter 4.

2.1.2. Data Sizes

Data elements in memory may be stored in 8-bit byte, 16-bit halfword, 32-bit
word, or 64-bit doubleword sizes. Data elements are assumed to be aligned. For
example, addresses of halfword data elements are assumed to have a zero least significant
bit, thus specifying a halfword boundary. In fact, this least significant address bit is
ignored when accessing such data elements. All instructions are 32-bits in length, and
the Program Counter (PC) always specifies a word-aligned address. Default instruction
sequencing is linear and increasing (i.e., the execution of the instruction at address
XXX+4 follows the execution of the instruction at address XXX).

2.1.3. Data Types
These data types are supported by the WM architecture:

Boolean

Values No explicit instructions exist to support operations on boolean
values. However, the available operations were created with such
support in mind. In particular, any bit in an integer register may
be set, tested, or selected in one instruction, and any bit may be
cleared in 2 instructions. These macro functions are synthesized
by the proper operation combination. Vectors of boolean values
may be loaded from and stored to memory as bytes, halfwords,
words, or doublewords. j-bit boolean vectors may be logically
manipulated with register/register instructions. Shorter boolean
fields may also be extracted from larger vectors with a single
instruction.
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Signed Integer

Values Arithmetic on 2's-complement j-bit signed integers is supported
by individual operations. While, on appropriate family members,
signed integers may be loaded and stored as doublewords, words,
halfwords, or bytes, all integer arithmetic is performed on j-bit
register quantities. Unsigned integers are not supported by the
machine; they are viewed as a subset of the signed integers (as Ada
defines NATURAL). Explicit underflow checking is required when
synthesizing unsigned arithmetic with this architecture.

Floating Point
Values Arithmetic is performed using the f-bit IEEE floating point
standard.

2.1.4. Data Numbering

The architecture is "big-endian". Bits within bytes, halfwords, words, and
doublewords are numbered from left to right starting with 0. The lefthand side is the
most significant. Bytes within larger entities, such as words, are also numbered from
left to right starting with 0. The last byte (number 3) in word 327 is just before the
first byte (number 0) in word 328.

2.1.5. Register Names

WM is a "load/store architecture", that is, data manipulation can only be performed
on (between) registers. Separate instructions are required to move data between the
registers and memory. There are 32 general register names that may be specified in an
instruction -- however integer, floating point, and vector registers are distinct,
providing 96 total register names. As an aid in computation, register 31 in all three
units are defined to be identically zero. Although it is possible to write to these
registers, stores have no effect. In addition, four register names in the integer unit and
two in the floating point and vector units are reserved for special meanings, as will be
discussed in sections 2.3 and 2.4.

For purposes of this manual, the registers in the various execution units are given
distinct nemonic names:

r0, ..., r31 refer to the integer/logical registers in the IEU,
fo, ..., 31 refer to the floating point registers in the FEU, and
v0, ..., v31 refer to the registers in the VEU.

In addition rZ, fZ, and vZ refer to register 31 (the "always zero" register) in the IEU,

FEU, and VEU respectively. Capital "R" is used to denote the contents of a register field
of an instruction, independent of the type of instruction.
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2.1.6. Literals in Instructions

Certain instructions may specify unsigned, 5-bit literals as operands. These
literals are the integers 1-32 and are encoded in the obvious way, except that 32 is
encoded as zero. Since r31 is "always zero", in effect all the literals in 0..32 may be
represented in these instructions.

2.2. The Execution Units

As noted earlier, a primary objective of the WM design was to support concurrency
at several levels, including concurrent execution of several instructions. To support
this, the instruction set has been partitioned so that the proper conceptual model of WM
is one with three execution units under common control of the "instruction fetch unit",
IFU.

IFU
Execution
1Unit

Figure 1: WM System Components

1/10/90 WM Computer Architectures (version 3) 8




As shown in figure 11, at least conceptually, the IFU can be thought of as enqueuing
instructions for execution by each of the other execution units in a set of FIFOs, as well
as executing certain instructions itself (notably control instructions). The other
execution units dequeue instructions and execute them as rapidly as their respective
implementations permit. Thus, on any given cycle as many as four instructions may be
dispatched.

Depending on the relative speed of the implementations of the various execution
units, the actual execution of instructions may be "out of order" with respect to the
original program text; as will be seen, however, that the semantics of the instruction set
is such that the the semantics of the program are preserved under such reorderings.

2.2.1. The Scalar Execution Units

The scalar data manipulation instructions of WM are implemented by the Integer and
Floating Point Execution Units; they specify 3 source operands, 2 operators, and a
destination register, and evaluate an assignment of the form:

RO := (R1 op1 R2) op2 R3

The source operand of integer/logical instructions may be the contents of a register,
the contents of an input FIFO (see the next section), or an unsigned literal; the
destination may be either a register or an output FIFO. The source operands of a floating
point instruction may be either a register or an input FIFO, and the destination may be
either a register or an output FIFO (floating literals, other than zero, are not supported
as source operands).

The integer and floating point execution units of WM are implemented as a pair of
pipelined ALUs, as shown in the following figure. In general, while the second (outer,
op?2) operation of one instruction is being executed in ALU2, the first (inner, op1)
operation of the successor instruction is being executed in ALU1. Thus one instruction
(two operations) can be dispatched to each of the scalar execution units each cycle.

The integer/logical registers are distinct from the floating point registers.
Integer/logical instructions refer to the integer registers; floating point instructions
refer to the floating point registers. Conversion instructions (e.g., “convert integer to
floating") refer to one register of each type as appropriate. Integer instructions are
used for address computation, and to specify data transfers between memory and
registers of both types.

1This figure and the several that follow it are intended to provide an intuitive, model
implementation to explicate the semantics of the WM instruction set. Actual
implementations may or, more likely, may not have a similar structure.
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The pipelined structure of the WM scalar execution units induces the data dependency
rule:
The result of an instruction is not available as an operand of the
inner operation of the following instruction for the same
execution wunit. The value of an inner operand is specifically
independent of the effect of the previous instruction.

Valid programs must obey this rule. Clever programs will exploit it.

Note that data dependencies are defined with respect to instructions for the same
execution unit! Thus, there can be data dependencies that are not immediately obvious
from a cursory examination of the source code. Consider an integer instruction followed
by a long series of floating point instructions, followed by another integer instruction.
The two integer instructions are adjacent with respect to execution by the IEU, and thus
have a data dependency. As suggested by the figure in Section 2.2, the second integer
instruction will be enqueued and executed immediately after the first; the textually
intervening floating instructions have no impact on the execution of the integer
instructions.

Register
File

Figure 2: Scalar Execution Unit Structure

2.2.1. The Vector Execution Unit
The vector instructions of WM contain only one operation, but may specify a "mask"

of boolean values that determine whether components of the result vector are affected by
the operation. In general, the form of a vector instruction is
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RO := (R1 op R2) if R3

Each vector register contains N y-bit components, where N is a parameter of the
implementation; each instruction performs the computation

forall k, Osk<N, ROk := If R3k = 0 then (Rik op R2k) else ROk fi  culiliana] oyecity,
At least conceptually all of these operations are performed simultaneously; an

implementation may choose to perform them serially (as with a single pipelined ALU),
but this is not visible to the program.

32xN Vector Register
File

Figure 3: Vector Execution Unit

2.3. Memory Reads & Writes

The method of accessing memory in WM is somewhat unusual:

1. WM interposes FIFOs ("first in, first out queues") between the register sets
and the memory. Load and store instructions are operations on these FIFOs,
and are executed by the IEU.

In most machines, memory reads and writes require specifying two
quantities: a register name and a memory address -- e.g., "load the contents
of location 42 into register 13". In WM, by contrast, loads and stores specify
only an address, because

- aload is a request to enqueue data from memory into an input FIFO, and
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- a store is a request to dequeue data from an output FIFO and store it to
memory.
In both cases, only the memory address is required.

2. Data manipulation instructions (executed by the IEU, FEU, or VEU), which
can only name registers (or literals) as operands, use "register 0" to name
the input and output FIFOs.

To dequeue data from an input FIFO, an instruction need only reference
register 0 as a source operand. To enqueue data in an output FIFO, an
instruction need only specify register 0 as the destination of a computation.
Note that "register 0" is interpreted differently when used as a source and
destination operand; as a source operand it refers to an input FIFO of the
execution unit, and as a destination operand it refers to an output FIFO of the
execution unit.

3. LOAD and STORE instructions are executed by the Integer Execution Unit, but
may imply that the data to be loaded or stored is destined for either the
Integer or Floating execution Unit FIFOs; memory operations for the Vector
Execution Unit are handled by another mechanism (streaming) that is
discussed later in this section.

To read a value from memory, a LOAD instruction is first used to compute a memory
address. This is passed to the memory system and the data transfer is initiated. Multiple
LOAD instructions may be executed; the data is enqueued in an input FIFO in the order of
the LOAD instructions. The execution units access the queued data by referencing register
0. When register 0 is read as part of a computation, the next value is dequeued from the
FIFO and used.

To write a value to memory, that value may first be written (or computed) into
register 0; as a consequence it is enqueued in an output FIFO. Then, at some later time, a
STORE instruction may be issued which computes a memory address. Once both actions
have been completed, a copy of the value that was written into register 0 is written to
memory at the computed address. Because "register 0" is a FIFO, several values can be
computed into it before a STORE instruction is executed.

The write to a memory location also may be accomplished in the other order -- the
STORE instruction may be executed before the instruction that computes the value to be
stored; the action of writing to memory is taken only when an appropriate pair of
instructions have both been executed. And again, several STORE instructions could have
been executed before the first value to be stored is computed into register 0; the
addresses are queued until the value to be stored is computed.

Note that register name 0 specifies different things when read and when written.
Reading register 0 takes a value from the memory input FIFO. Writing register 0
prepares a value to be written to memory.

The LOAD and STORE instructions are executed by the integer/logical unit. The
addresses they compute are directed to the FIFO in the proper execution unit; thus, for
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example, the address computed by a "load floating" instruction is directed to the FIFO in
the FEU, and the data read as a result will be enqueued in that FIFO.

The size of the input and output FIFOs are implementation defined, although the
architecture requires at least:

- 3 |-bit entries in the integer unit's input FIFOs

- 1 j-bit entry in the integer unit's output FIFO

- 3 f-bit entries in the floating unit's input FIFOs,

- 1 f-bit entry in the floating unit's output FIFO,

- 3 N-component blocks of y-bit entries in the vector unit's input FIFO, and
- 1 N-component block of y-bit entries in the vector unit's input FIFO.

These minimums are adequate to ensure that any single instruction can execute, even
if it names all its source operands and it's destination operand as FIFOs. Generally,
implementations should provide more entries in each of the FIFOs in order to allow
software to perform better.

For any particular implementation, hence specific FIFO sizes, it is possible to
construct a program that will deadlock -- for example, by trying to enqueue more than a
particular FIFO can hold. Such programs are invalid. See appendix A for a more
complete discussion of invalid programs.

2.3.1 Parameter Bypass

Register 1 in each of the execution units is also a FIFO, albeit with somewhat
different properties than that of register 0. Specifically, a value stored (computed) into
the register 1 output FIFO is immediately enqueued in the register 1 input FIFO. As with
register 0, items are dequeued simply by using register 1 as a source operand.

Thus, register 1 is a buffer that might be used, for example, to hold a short queue of
temporary values. The primary intent of this mechanism, however, is to hold
parameters during a subroutine call -- the caller enqueues actual parameters, and the
called routine dequeues formals. See Appendix F for a discussion of the suggested WM
calling sequence.

2.3.2 Streaming

The memory interface also supports the reading and writing of "streams" of data. A
data stream is an linear sequence of memory items, all of the same size and type, that
start at a known address and are spaced a constant distance (stride) from each other.

Either register 0 or register 1 in each of the execution units may be used in stream
mode, and indeed, this is the only mode for the VEU; each of these registers supports two
modes of operation in the IEU and FEU, normal and streaming mode respectively. Normal
mode for register 0 is the LOAD/STORE mode described at the beginning of section 2.3.
Normal mode for register 1 is the parameter bypass mode described in section 2.3.1.
Stream mode is identical for both registers in all execution units, and is described here.
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When in streaming mode, no load or store instructions need to be issued in order to
initiate the next data transfer; a single "start streaming" instruction initiates the
transfer of the entire stream. Asynchronous "stream control units" compute the
addresses of the "next" data item(s) and initiate the transfer.

When streaming, data is removed from the input FIFOs in the same manner as in
non-streaming mode -- that is, by instructions that reference register 0 or register 1.
Similarly, by designating register 0 or register 1 as the destination of an instruction,
data is inserted into the output FIFO (same as the normal mode for register 0 but
different from register 1's normal mode.) If streaming is performed only with register
0, programs that exploit streaming are functionally identical to those that do not, except
that no LOAD/STORE instructions appear in the streaming programs. If register 1 is
involved in a stream, however, the parameter bypass capability is not available.

Streaming provides functionality and performance similar to that of vector
load/store operations, but

- it is more general in the sense that it applies to the scalar execution units
as well as the vector execution unit. Computations on streamed data are
arbitrary software combinations of WM's "scalar" or "block" (vector)
instructions. In particular, this allows streaming of computations
involving recurrences (which cannot be vectorized) in the IEU and FEU.

- much simpler and more complete compiler algorithms can be used to detect
streaming opportunities than to detect vectorization opportunities.

Streaming to/from the VEU is similar to that to/from the IEU or FEU, except
that:

- data is moved in "blocks" of N entities, and
- there are boundary conditions when the stream count is not a multiple of N.

When the stream count, that is the number of entities to be streamed, is not a
multiple of N, there will be some number n<N of entities that do not participate
in the "last" load/store operation performed by the streaming hardware. An
implementation of WM must treat this odd-sized block as though it were full
from the VEU's perspective, but only load/store the valid elements.

2.4. Stack Structure

The WM architecture has Stack Limit and Stack Index registers defined to be
registers 2 and 3 of the integer execution unit, respectively. The Stack Limit register is
guaranteed by software to lie on a page boundary, thus having its lower bits be zero
accordingly. (The page size is implementation-dependent, so the number of zeroed lower
bits is not specified by the architecture.) The Stack Index contains an integer such that
the address of the top of stack is computed as follows:

TOS :=SL + Sl
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The Stack Index normally has a negative value. The stack grows towards the positive
addresses, and a transition from negative to positive Stack Index is the overflow
condition. This condition is checked by hardware whenever the Stack Index is written;
an exception is generated if it is met. The Stack Limit may only be written by programs
with proper privileges. No push or pops are supported, nor needed, on this machine. The
stack is not for expression evaluation, but merely for procedure interface. As such,
being able to adjust the effective top of stack is sufficient, given that most parameters
are passed via the input FIFO associated with register 1.

The hardware support for the stack, together with the general instruction set
facilities of WM, encourage an overall stack layout such as shown in figure 4. The
various areas of the stack are:

- stack expansion area: this area is normally unused -- but provides
temporary stack expansion while, for example, a exception is taken and
the program stack was near its limit (this implies that exception
handlers must be careful about the amount of stack they use, but allows
graceful handling of otherwise awkward situations).

own variables
A constant pool
»n
0 3
4 display
2
=
= sw tcb
o .
£ stack expansion
§ ¢ €4— SL (Stack Limit)
= )~ SI (Stack Index)
£ typical <— top of stack
stack
area <+— FP (Frame Pointer)
<+ base of stack

Figure 4: Suggested Stack Structure
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- -~ software task control block: this is a software-defined area for recording
task status. There is also a hardware-defined task save area that has
special protection associated with it (see chapter 4 for further detail.).

- display: this area is, by software convention, used to hold the display
(note, the display is somewhat different than the usual; see Appendix F).

- constant pool: this area, by software convention, is used for storing
constants larger than those that can be synthesized in normal
instructions.

- own variables: this area is, again, by software convention, used for
statically allocated variables and the constant pool for the task.

Note that, in general, Ada requires a "cactus stack"; only one branch of this stack is
shown here. In general, the display elements may point into lower branches of the stack.

Besides registers 0, 1, 2, 3 and 31, all other register names specify truly general
purpose registers. Note, however, that the hardware uses some of the general registers
(e.g., the PC is stored in register 4 by a CALL instruction), and that software may
impose additional conventions -- thus not all 27 general registers are available for
computation. Appendix F discusses this in more detail.

Other aspects of the machine state, such as the Program Counter (PC), the Cycle
Counter (CC), the Program Control Word (PCW), and the Program Status Word (PSW)
cannot be directly accessed by instruction (other than certain bits of the PSW which
may be set as a side effect of another instruction -- e.g., condition codes); these
registers are only (re)set as a consequence of a context-swap.

2.5 10

Control of input/output devices is "memory mapped"; that is, there is a portion of
the physical address space reserved for "device registers”. This, together with the
address translation and protection mechanism discussed in Chapter 4, provides great
flexibility -- it even allows one to safely permit unprivileged applications programs to
directly access 10 devices, thus eliminating operating system overhead from them.

At least three devices are required of all implementations:

- "the CPU", control and status registers for the processor itself. Chapter
4 contains more details, but, for example this allows one processor to
start/stop another, allows diagnostic probing of the processor, and
replaces a number of instructions (such as HALT) with bit set/reset
operations on this device register.

- one or more "timers", which are 32-bit counters that decrement each

100ns and, if enabled, interrupt when they become negative (but
continue counting until reset), and,
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- a "calendar" which is a 64-bit counter that is incremented each 100ns,
runs continuously when power is enabled, and will interrupt when it
overflows.
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Chapter 3. Instruction Descriptions

The WM instructions are grouped by function and decoding into the following six
categories:

- Integer Arithmetic & Logical
- Load & Store

- Floating Point Arithmetic
- Vector

- Control Flow

- Special

The following sections describe each set of instructions in some detail. It should be
noted, however, that these different classes of instructions are executed by different
components of WM. Specifically, refering back to Figure 1 in Section 2.2,

- the integer/logical and load/store instructions are executed by the IEU,

- the floating instructions are executed by the FEU,

- the vector instructions are executed by the VEU, and

- the the control and special instructions are executed under control of the IFU.

In general, an instruction of each type may be dispatched to its respective unit each
cycle.

3.1. Integer Arithmetic & Logical Instructions

The integer arithmetic and logical instructions all take the form?:

RO := (R1 op1 RL2) op2 RL3

THere and in the following, we observe the convention that capital "R" denotes a
register field of an instruction. "RL" denotes an instruction field that may be either a
register or a literal.
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There are three source specifiers (R1, RL2, and RL3), two operation specifiers
(ep1 and op2), and a destination specifier, R0. R0, R1, RL2, and RL3 may specify one

of 32 register names. Alternatively, RL2, and RL3 may specify a 5-bit literall; the RL
field determines this interpretation. The operands are either j-bit signed integers or a
vector of | boolean values, depending on the operation specified. The instruction format
is:

0123 4 7 8 1112 1617 21 22 2627 31

00|RL | OP1 OoP2 RO R1 RL2 RL3

The operation fields, op1 and op2, are encoded identically. The 16 functions they can
specify are:

+ addition
- subtraction
- reverse subtraction: (a-b)==(b-'a)

and bitwise AND

or bitwise OR

eqv bitwise EQUIVALENCE

& multiplication

/ division

/' reverse division: (a/b)==(b/'a)

asl arithmetically shift (to the left) the left operand by the amount of
the right operand (performs scaling)

= equal

<> not equal

< less than

<= less than or equal

>= greater than or equal

>’ greater than

Note that there are no unary (monadic) operators in this collection; this is because
the monadic operations can be synthesized from the dyadic ones and literals. Specifically,

-x == (0-x), and
not (x) == (x eqv 0)

The last six operations are relationals and have somewhat unusual properties. They
produce two results: their left operand as a numeric result, and a boolean ("condition
code") value. If two relationals exist in the same instruction, their boolean values are
either AND'd or OR'd together, determined by a bit in the Program Control Word. In
either case, if the boolean result is False, then the condition bit is set, but the

1As explained in section 2.1.6, the possible literals are integers in the range 1..32,
encoded in the obvious way except that 32 is encoded as zero. Such literals are
zero-extended to j bits.
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instruction's register write and exception conditions are nullified. As will be discussed
later, valid programs must adhere to the rule that exactly one instruction with
relational operations is executed (dynamically) for each conditional jump instruction
executed.

Such relationals support general conditional branching for loops and if-then-else
constructs found in high-level languages. In particular, note that because relationals
produce their left operand as their result, instructions such as

r8 := (r8 < r10) + 1

have the effect of both testing the value in r8, and incrementing that value. This is the
"increment and test" portion of the familiar "increment, test and jump" needed for loop
control.

The semantics of the relationals also allow for efficient Ada looping and range
checking. An Ada loop may use Integer'Last as its upper bound. In such cases, a
comparison of the bound and the loop counter must be made before the counter is
incremented. Otherwise, an overflow would result, which it shouldn't. The instructions:

r10 := Integer'Last
r8 ;= (r8 < rt0) + 1

provides this function efficiently. Assuming the PCW indicates that relationals should be
OR'd, Ada range checking can be accomplished in a single instruction. The instruction:

8 = (r8 > 12) < 1
JumpIT OutOfRange

checks to see if the value in register 8 is in the range [1..12], since the result of the two
relationals is OR'd together.

3.1.1. Exceptions

The following arithmetic conditions result in exceptions unless masked off in the
PSW:

- In;;ut FIFO 0/1 Empty: an attempt to read rO or r1 was made when no
value is present in the FIFO, nor is any value scheduled to be loaded.

- Output FIFO 0/1 Full (Data Capacity Exceeded): an attempt to write r0 or
ri was made when the associated output FIFO was already full, and no
value is scheduled to be stored.

- Overflow/Underflow: an arithmetic operation overflowed or underflowed

- Divide by 0: an attempt to divide by zero was made

3.2. Load & Store Instructions

The LOAD and STORE instructions specify two things: (1) the address of the data to be
read or written, and (2) the size/type of the data (e.g., byte vs. halfword vs. double-

1/10/90 WM Computer Architectures (version 3) 20




precision floating point). The type specified implicitly determines the execution unit

involved.

(1)

(2)

The address computation is formally and semantically identical to the
assignments of the integer/logical instructions:

RO := (R1 op1 RL2) op2 RL3

The only differences are that the set of operators is smaller and the result
of the computation is sent to the memory system in addition to being sent to
the destination register. The permitted operations are:

+ addition

- subtraction

3 multiplication

asl arithmetical shift left
The definition of each of these is the same as it's integer/logical
counterpart.!

The type/size of the data to be read or written is specified by the LOAD or
STORE instruction. Thus, for example, a request to load a 64-bit floating
point value is sent to the FIFO associated with register 0 in the FEU.

Once a load instruction has been issued, a following instruction may attempt to read
the associated input FIFO (by referencing register 0). This instruction will not be
issued until a value from memory is available. In fact, a single instruction may
reference register 0 three times as a source operand, and thus read up to three values
from the input FIFO, so long as a LOAD has been performed for each such reference.

The memory system is responsible for ensuring that certain sequences of load/store
operations are performed properly, as specified below. However, these sequences are
guaranteed to function properly only with respect to the IEU and FEU separately; loads
and stores from one execution unit are not synchronized with those of the otherl!

STORE (to address X)
LOAD (from address X)

loads the same value as was stored. Conversely, the sequence:

LOAD (from address X)
STORE (to address X)

reads the "previous value" of location X. Finally, the sequence:

Mm:=Y
STORE (to address X)
0 =2
STORE (to address X)

must result with the value Z at location X in memory.

TNote: prepending these operator codes with "00" produces the integer/logical
encodings of the same operators.
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The format of load and store instructions is:

0123 4 7 8 1112 1617 21 22 2627 31

op op
O1|RL | LSOP| 1 2 RO R1 RL2 RL3

As with the integer instructions, the RL field specifies whether RL2 and RL3,
respectively, are 5-bit literals (bit equal 1) or register names (bit equal 0). R1 must
name a register. The LSOP field encodes the load/store function, which may be one of:

exec sign
L8i load 8-bit integer IEU no
L8ix load 8-bit integer IEU yes
L16i load 16-bit integer IEU no
L16ix load 16-bit integer IEU yes
L32i load 32-bit integer IEU no
L32ix load 32-bit integer IEU yes
L64i load 64-bit integer IEU n/a
L32f load 32-bit floating FEU n/a
L64f load 64-bit floating FEU n/a
S8i store 8-bit integer IEU n/a
S16i store 16-bit integer IEU n/a
S32i store 32-bit integer IEU n/a
S64i store 64-bit integer IEU n/a
S32f store 32-bit floating FEU n/a
S64f store 64-bit floating FEU n/a

There are 15 LSOP operations; the other opcode is illegal and will produce an illegal
instruction trap if used.

Other instructions that are related to the loads and stores, but are discussed in the
Special Instruction section, include:

- Context Save and Restore
- Streaming Instructions

Note, in particular, that there are no load/store instructions for the Vector
Execution Unit. All memory-VEU transfers are done with streaming instructions.

3.2.1. Exceptions

The following exceptions may occur as a result of a load or store instruction:

- Input FIFO 0/1 Empty: as per integer instructions when used as a source
operand in the address calculation.
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- Input FIFO 0 Full: an attempt was made to perform a load when the input
FIFO was already full, or will be full after some pending loads complete.

- Output FIFO 0 Full (Address Capacity Exceeded): an attempt has been made
to perform a store when the output FIFO is empty and no further address
can be buffered.

- Output FIFO 0/1 Full (Data Capacity Exceeded): as per integer
instructions when specified as the destination register for the address
calculation.

- Overflow/Underflow: an arithmetic operation overflowed or underflowed.

- Memory Protection Violation: an attempt to read, write, or execute
from/to a memory location without proper access privilege (see Chapter
4 for a more complete discussion).

- Load While Input Streaming: a load instruction while register 0 is in
input streaming mode.

- Store While Output Streaming: a store instruction while register 0 is in
output streaming mode.

3.3. Control Flow Instructions

The set of control flow instructions include Jumps and Calls. These instructions
replace the Program Counter with a new value, the target address. In all but one case,
this is a PC-relative address, and is formed by concatenating two zeros to the bottom of
the sign-extended offset and adding this value to the current Program Counter!.

There -are eight conditional jumps associated with the two condition FIFOs: "Jump
True" and "Jump False" for each of the integer and floating conditions; each jump may
predict whether the jump will be taken or not. Conditional Jumps “consume" a condition
bit generated by a relational operation. Valid programs must guarantee that exactly one
instruction containing a relational operation is executed for each conditional jump.

There are twelve conditional jumps associated with the streaming facility of the
machine (see Section 3.6.1); these support jumps on the on "stream count not zero" for
each of the input and output streams.

1The exception is ECall, whose target address is determined indirectly from the PC-
relative address described above.
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There are two call instructions: Call and ECall. Call simply stores the current PC in
register 4 and jumps to the specified destination. ECall performs the function of a
"supervisor call", and will be discussed in detail in Chapter 4. The format of control
instructions is:

0123 4 1112 31

11|01 OoP OFFSET

The opcode may specify one of the following operations:
Jump the basic unconditional jump.

JumplTy jumps only if the Integer condition bit is True; assume jump will be taken.

JumplFy jumps only if the Integer condition bit is False; assume jump will be taken.
JumpFTy jumps only if the Floating condition bit is True; assume jump will be taken.
JumpFFy jumps only if the Floating condition bit is False; assume jump will be taken.

JumplTn jumps only if the Integer condition bit is True; assume jump will not be taken.

JumplFn jumps only if the Integer condition bit is False; assume jump will not be taken.
JumpFTn jumps only if the Floating condition bit is True; assume jump will not be taken.
JumpFFn jumps only if the Floating condition bit is False; assume jump will not be taken.

JNI r0 "Jump on Stream Count Not Zero; Integer Input FIFO 0".
JNI 1 "Jump on Stream Count Not Zero; Integer Input FIFO 1".
JNO r0  "Jump on Stream Count Not Zero; Integer Output FIFO 0".
JNO r1 "Jump on Stream Count Not Zero; Integer Output FIFO 1".
JNI f0 "Jump on Stream Count Not Zero; Floating Input FIFO 0".
JNI f1 "Jump on Stream Count Not Zero; Floating Input FIFO 1".
JNO f0 "Jump on Stream Count Not Zero; Floating Output FIFO 0".
JNO f1 "Jump on Stream Count Not Zero; Floating Output FIFO 1".
JNI vO "Jump on Stream Count Not Zero; Vector Input FIFO 0".
JNI v "Jump on Stream Count Not Zero; Vector Input FIFO 1".
JNOvVO  "Jump on Stream Count Not Zero; Vector Output FIFO 0".
JNO v1 "Jump on Stream Count Not Zero; Vector Output FIFO 1".

Call Store PC of the next instruction in r4; jump to specified address.
ECall Entry Call; see below

ECall provides the functionality of "supervisor call" in other architectures; it has
three effects:

(1) it changes the protection table pointer to that contained in the entry
page (note, the map table pointer is not changed),

(2) it jumps indirectly through the specified PC-relative location, and

(3) it saves the prior protection table pointer and program counter in a
special protected stack area.
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The rationale for each of these actions will become clearer in Chapter 4. Note, however,
that the address specified in by the PC-relative target address must be that of an "Entry
Page", and that the task executing the ECall must have "call rights" to this page.

Three instructions that affect control flow are encoded among the "special"
instructions since they do not need to specify a PC-relative address (see section 3.6 for
the format of special instructions). Nonetheless, we will discuss them here; they are
Jumpl (Jump Indirect), Calll (Call Indirect) and EReturn (Return from ECall).

Jumpl Jump Indirect. An unconditional jump that gets its
target address from the register named in the R1
field. This instruction can be used for "case table"
jumps in order to branch more than 220 instructions
and to return from procedure calls.

Calll Call Indirect stores the current PC in register 4 and
gets its target address from the register named in the
R1 field.

EReturn Entry Return. This is the complementary instruction

to ECall; it restores the protection table pointer and
PC from the protected stack.

3.3.1. Exceptions

The following exceptions may be raised as the result of a control flow instruction:

- Condition FIFO Empty: A JumplT(JumpFT) or JumplF(JumpFF)
instruction is being executed, and the condition bit has not been set (and
is not in the process of being set) by a previous relational operator.

- Memory Protection Violation: An attempt was made to transfer control to a
page without proper access privileges (see Chapter 4 for a more complete
discussion).

- Page Fault: In a virtual memory system, an attempt to execute from a
virtual address that does not exist in physical memory.

3.4. Floating Point Instructions

The floating point instructions are quite similar to the lnteger/loglcal instructions.
Their general computation is:

RO := (R1 op1 R2) op2 R3
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Notice, however, that literals cannot be specified; only register operands are
permitted -- these are always the "floating registers". The instruction format is:

0123 4 7 8 1112 1617 21 22 2627 31

11|00 | OP1 I OoP2 RO R1 R2 R3

The op1 and op2 fields are encoded identically. They may specify any of the
following 14 operations:

+ addition

- subtraction

- reverse subtraction
multiplication

/ division

04 reverse division

nop no operation; returns its left operand
nop' no operation; returns its right operand
= equal

< not equal

<= less than or equal

< less than

> greater than

>= greater than or equal

Note that monadic minus can be synthesized by using f31 which is defined to be
identically zero.
-x == (f31 - x)

There are, however, two monadic operations included in the floating point set -- the
"nop's"; this is due to the fact that in some implementations, the nop operation will
execute in less time than its synthesized counterpart.

The last six operations are relationals. They produce their left operand as a result.
They also produce a boolean value. If two relationals exist in the same instruction, their
boolean values are either AND'd or OR'd together and written to the conditional bit under
control of a PCW bit. Otherwise, the single boolean value sets the condition bit. In either
case, if the boolean result is False, then the instruction's register write and exception
conditions are nullified. Software must guarantee that exactly one instruction with
relational operations is specified before a conditional jump.

3.4.1. Exceptions

The following arithmetic conditions result in exceptions unless masked off in the
PCW:

- Overflow/Underflow: as per integer instructions.
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- Divide by 0: as per integer instructions.
- Condition FIFO overflow: As per the integer instructions.

Note that input/output FIFO empty/full are not exception conditions for the floating
point instructions as they were for the integer and load/store instructions. This allows
the integer and floating point units to proceed asynchronously preparing/consuming
addresses and data -- but does require a more global detection of erroneous (deadlocked)
programs.

3.5. Vector Instructions

As noted earlier, in general the vector instructions perform a single operation, but
the item-by-item operation may be conditioned by a boolean vector contained in a third
vector register.

RO := (R1 op R2) If R3

In reality, there are two forms of each vector operation -- conditional or not; for
simplicity, only the unconditional form of the vector operations are defined below.
Vector instructions have the format:

0123 4 1112 1617 21 22 2627 31

11|01 OP RO R1 R2 R3

The Vector Execution Unit supports integer, logical and floating point operations on
"blocks" of N y-bit items, where N is an implementation defined parameter.
Conceptually, all N component operations are performed simultaneously.

3.5.1 Logical Vector Operations

The logical vector operations are:

operation _meaning
and bit-wise and

or bit-wise or

eqv bit-wise equivalence

3.5.2 Integer Vector Operations

The integer vector operations are:

operation meaning
iadd integer add
isub integer subtract
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imul integer multiply

idiv integer divide

iasl integer arithmetic shift left

ieql integer "equality"

ineq integer "inequality”

igtr integer "greater than"

igeq integer "greater than or equal to"
ilss integer "less than"

ileq integer "less than or equal to"

The vector relational operations are different from their counterparts for the IEU
and FEU; they do not produce a condition code. Rather they produce a vector of boolean
values in the specified destination register -- such a vector may, for example, be used
to control a subsequent conditional vector operation. Thus, the loop:

DO 10, i=1, M
10 IF (A(i) .EQ. 0) B(i) = B(i) + 1

may be coded as follows (see Section 3.6.1.b for a definition of streaming for the VEU and
Section 3.6.3 for a definition of transfers from the IEU to the VEU):

VSin32i v0, r5, r4, 4 -- assuming r5 is base address of A, r4 holds M
VSin32i vl, r6, r4, 4 -- assuming r6 is base address of B
VSout32i vi, 16, r4, 4 -- assuming r6 is base address of B
TIV v2 =0 -- set all elements of v2 to integer zero
TIV v3 =1 -- set all elements of v3 to integer one
L: v4 := (vO ieqgl v2) -- determine whether A(i)'s are zero
vl := (v1 iadd v3) if v4 -- increment appropriate B(i)'s
JNI vO, L -- loop if not done

3.5.3 Floating Point Vector Operations

The floating point vector operations are:

operation meaning

fadd floating add

fsub floating subtract

fmul floating multiply

fdiv floating divide

feql floating "equality"

fneq floating "inequality”

fgtr floating "greater than"

foeq floating "greater than or equal to"
flss floating "less than"

fleq floating "less than or equal to"

The floating point relational operations are similar to the integer ones in the VEU;
they produce a boolean vector in the destination register.
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3.6.1 Other Vector Operations

There are a few other vector operations, namely:

operation meaning
VvCVTIF vector convert integer to floating
vCVTFI vector convert floating to integer

3.6. Special Instructions

Only a few types of instructions are encoded in this category. Each type will be
discussed separately, however the common format for these instructions is:

01234 11 12 16 17 21 22 26 27 31

10| RL OP RO R1 RL2 RL3

Responsibility for execution of the special instructions resides in the Instruction
Fetch Unit, IFU; in reality, however, one or more of the other execution units may be
involved. When more than one execution unit is involved, the IFU must ensure that the
proper synchronization of the other units occurs so that sequential semantics are
enforced!. For example, type conversion between integer values and floating point
values in the IEU and FEU registers respectively, are special instructions. One such
instruction is:

CVTIF RO :=R1

This instruction converts the integer value in the (integer) register specified by R1 to a
floating point value in the (floating) register specified by RO. This instruction must be
executed as though all preceding integer and floating point instructions had completed --
and specifically any instructions that depend upon, or set, the proper values in the
registers specified by RO and R1 must have completed.

3.6.1. Streaming

The WM computer architecture supports a feature called "streaming". Streaming is
a method of loading and storing structured data elements without having to do explicit
address computations for each element. It assumes a vector of data elements are present,
or are to be created, in memory, and that they are a constant stride (number of bytes)

1In general this may imply waiting for all previous instructions to complete and
inhibiting all subsequent instructions until the special instruction has completed. In
practice, however, many relatively simple optimizations can be detected by an
implementation.
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apart from each other. Stream instructions are used to read/write such vectors from/to
FIFOs. Streaming is conceptually identical for the IEU, FEU, and VEU, but the
implications with respect to the VEU are slightly different and will be discussed
separately.

3.6.1.a Streaming to and from the IEU and FEU

There are 15 instructions that initiate streaming operations to the IEU and FEU.
These are analogous to the 15 types of loads and stores. They specify data as integer or
floating point and size of the data items. The operands of streaming operations specify a
base address (R1), a count! (RL2), a stride? (RL3), and which FIFO to use (0 or 1);
this last parameter is taken as the least significant bit of the RO field.

Finally, there are five instructions to stop streaming operations. These instructions
stop input or output streaming and flush the relevant FIFOs.

To summarize the operations, they are:

exec sign
Sin8i load 8-bit integer IEU no
Sin8ix load 8-bit integer IEU yes
Sin16i load 16-bit integer IEU no
Sin16ix load 16-bit integer IEU yes
Sin32i load 32-bit integer IEU no
Sin32ix load 32-bit integer IEU yes
Sin64i load 64-bit integer IEU n/a
Sin32f load 32-bit floating FEU n/a
Sin64f load 64-bit floating FEU n/a
Sout8i store 8-bit integer IEU n/a
Sout16i store 16-bit integer IEU n/a
Sout32i store 32-bit integer IEU n/a
Sout64i store 64-bit integer IEU n/a
Sout32f store 32-bit floating FEU n/a
Sout64f store 64-bit floating FEU n/a
StopAll Stop all Streaming operations
Stopll Stop Integer Input Streaming operations on FIFO specified by RO
StoplO Stop Integer Output Streaming operations on FIFO specified by RO
StopFl Stop Floating Input Streaming operations on FIFO specified by R0

StopFO Stop Floating Output Streaming operations on FIFO specified by R0

1 A count of -1 is defined to be an infinitely long stream. That is, the stream will
continue until a stop streaming instruction is performed
2 |n bytes.
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An example of a valid assembly instruction is:
Sin32i r1, r9, 22, 16 -- FIFO, address, count, stride

This instruction would cause a vector of 22 words, whose base address is contained in
r9, and which are displaced 16 bytes from each other, to be streamed to FIFO "r1" in the
IEU.

A stop instruction applied to an output FIFO will complete pending memory writes
(where data is available), reset the stream count, remove any extra addresses which
have been calculated and restore the FIFO to non-streaming mode. A stop instruction
applied to an input FIFO will take the counterpart action, discarding all data currently in
the FIFO.

Only one input stream and one output stream per FIFO may coexist. This imposes a
maximum of eight (four input and four output) simultaneous streams for the integer and
floating point units.

An input FIFO is considered to be in streaming mode until all of its data has been
consumed or until the stream is halted by a stop streaming instruction. An output FIFO is
considered to be in streaming mode until all data has been written to it or until the
stream is halted by a stop streaming instruction. An exception is raised if a start
streaming instruction is executed while the specified FIFO is in streaming mode. An
exception is also raised if a LOAD/STORE instruction is executed for a FIFO in streaming
mode.

Note that unlike LOAD/STORE instructions, consistency is not guaranteed between
input and output streams. More specifically, when streaming both in and out of the same
locations, the memory system has no responsibility of maintaining the order between
memory reads and writes. For recurrences, the addition of a few registers to hold
temporary values solves this problem.

Streaming instructions may cause Page Fault exceptions. If made during a memory
read, the exception is not raised until an attempt to read register 0 or 1 unsuccessfully.
If made during a write of register 0 or 1 (to be written into memory), the exception is
raised immediately.

3.6.1.b Streaming to and from the VEU

As noted above, streaming to and from the VEU is conceptually similar to streaming
to and from the IEU and FEU; however, it differs in a few details:

- since there are no LOAD or STORE instructions for the VEU, there is only
one "mode" for the VEU FIFOs. Note specifically that v1 cannot be used as a
parameter bypass.

- since the VEU supports integer, logical, and floating operations,
appropriate streaming operations are provided to do the proper form of
operand expansion or contraction.
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- since the operations of the VEU may be controlled by 1-bit (boolean)
control vectors, the ability to stream such vectors is provided.

Vector streaming occurs in "blocks" of N items, where N is the implementation-
defined number of items per vector register. In the event that the stream count is not a
multiple of N the "last block" of items read or written will contain less than N items. On
input the block will be padded with suitable values, and any addressing violations
resulting from attempting to access these invalid values will be suppressed. Similarly,
on output, only the valid items will be written to memory, and no inappropriate
addressing violations will be raised. The implication of these rules is that the program
does not need to worry about the "boundary conditions"; examples such as that shown in
Section 3.5.2 will work properly even if the vector length is not a multiple of N.

The VEU streaming operations are:

exec sign
VSinib load 1-bit boolean VEU no
VSin8i load 8-bit integer VEU no
VSin8ix load 8-bit integer - VEU yes
VSin16i load 16-bit integer VEU no
VSin16ix load 16-bit integer VEU yes
VSin32i load 32-bit integer VEU no
VSin32ix load 32-bit integer VEU yes
VSin64i load 64-bit integer VEU n/a
VSin32f load 32-bit floating VEU n/a
VSin64f load 64-bit floating VEU n/a
VSoutib store 1-bit boolean VEU n/a
VSout8i store 8-bit integer VEU n/a
VSout16i  store 16-bit integer VEU n/a
VSout32i  store 32-bit integer VEU n/a
VSout64i  store 64-bit integer VEU n/a
VSout32f  store 32-bit floating  VEU n/a
VSout64f  store 64-bit floating VEU n/a
StopAll Stop all Streaming operations (same instruction as discussed above)
StopVI Stop Vector Input Streaming operations on FIFO specified by RO
StopVO Stop Vector Output Streaming operations on FIFO specified by RO

The following program, to copy a vector from one location to another, increments
register r9 each time through the loop. After the loop terminates, the value r8/r9 will
give the value of the implemenation determined block size N if r8 is a multiple of N.

-- r8 = count of words to copy

-- 16(r7) = address of source(sink) location
r9 = r31
VSin32i vo0, r6, r8, 4
VSout32i v0, 17, 18, 4

L: v0 = v0
r9 =19 + 1
JNIVO L
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3.6.2. State Manipulation

There are a few instructions to provide access to special state and to help save and
restore state efficiently.

LoadM R1, L2, L3
FLoadM R1, L2, L3
V0LoadM R1, L2, L3
StoreM R1, L2, L3
FStoreM R1, L2, L3
VStoreM R1, L2, L3

These instructions load and store a series of registers, from register number L2 to
register number L3, with L3 guaranteed by software to be a greater register number
than L2. Separate instructions specify IEU, FEU and VEU registers. The RL field is
ignored by this instruction and literals are always specified by RL2 and RL3. The
storage location involved is specified by R1.

LoadFifoll RO, R1
LoadFifolO RO, R1
StoreFifoll RO, R1
StoreFifolO RO, R1
LoadFifoFl RO, R1
LoadFifoFO RO, R1
StoreFifoFl RO, R1
StoreFifoFO RO, R1
LoadFifoVI RO, R1
LoadFifoVO RO, R1
StoreFifoVl RO, R1
StoreFifoVO RO, R1

These instructions load and store the specified (R0O) FIFO state from/to the address
specified in R1. The amount and format of this information is implementation dependent.
Again, separate instructions specify IEU, FEU, and VEU input and output FIFOs.

LoadCTX R1
StoreCTX
SwapCTX R1
SwaplLT

These instructions perform context load, store, and swap. LoadCTX restores context
from the a block of storage whose address is specified in R1. StoreCTX stores the current
context at a known location for the current task. SwapCTX combines the previous two
operations. SwapLT, "swap to last task", is identical to SwapCTX, except that the address
of the new TCB is implicitly the "last TCP pointer" (see Chapter 4).
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The LoadCTX and SwapCTX instructions verify that R1 contains the address of a "TCB
page" (see Chapter 4). Every piece of vital CPU state is loaded or stored by these
instructions. Consequently, if context is saved and later restored, then the next
instruction is executed as if no context save/restore had occurred.

3.6.3. Type Conversion

Instructions exist to convert between the internal numeric data types. The opcodes
and their corresponding instructions are:

CVTIF RO := RL3
CVTFl RO := RL3

There interpretation is the obvious one, ConVerT from Integer,or Floating, to another
data type. Note that these instructions reference one register in the integer execution
unit and one in the floating execution unit as appropriate. In addition, two instructions
are included for transferring data unmodified between the scalar execution units:

TIF RO
TFI RO

RL3
RL3

These have the obvious "Transfer from Integer to Floating", and "Transfer from Floating
to Integer" interpretations; these are "bit copy" instructions, no data conversion is
performed except as necessary to expand/contract their representation?.

Two instructions are also provided to move data from the IEU or FEU to the VEU:
TIV. RO := RL3

TIVx RO := RL3
TFV RO RL3

These instructions transfer N copies of the integer or floating point register specified in
RL3; all items in the destination vector register receive identical values. Thus, for
example,

TIV vb =1

will initialize all items in vector register v5 to (integer) one. TIV zero extends as
necessary while TIVx performs sign extension.

3.6.4. Constraint Checking

There are two instructions for checking arithmetic constraints in the IEU and FEU:
ASSERT (R1 >= RL2) <= RL3
FASSERT (R1 >= R2) <= R3

1 Aside from the obvious "bit hacking" these instructions allow, they may also be
used to get more streams to one of the executions units if the other has them free.
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The ASSERT and FASSERT instructions determine if a value is within certain bounds.
If it is not, a hardware Assert Fault is generated. Unlike the integer and floating point
relationals, the two boolean values are AND'd together by these instructions and no
condition code is enqueued. Note that it is possible to check only a single bound, for

example,

ASSERT (18 >=
ASSERT (18 >=

r8) <= 13 to check only the upper bound, and
13) <= r8 to check only the lower bound.

3.6.5. Field Manipulation

Fields can be moved within a word in the IEU with the following instructions:

FLDMOV RO :=

R1, RL2, RL3 -- FieLD MOVe

FLDMOVX RO := R1, RL2, RL3 -- FieLD MOVe (sign-eXtended)

These may be thought
logical shifts?:

FLDMOV RO :
FLDMOVX RO

of as being implemented using more primitive arithmetic and

(R1 Isl RL2) Isr RL3
(R1 Isl RL2) asr RL3

They may be used to perform several functions, including:

field extraction

basic shifts

an arbitrary signed or unsigned field may be taken out of a
word and placed in an aligned, signed or unsigned, format. For
example, "FLDMOVX r5 := 17,8,24" takes a signed byte from
byte 1 of register 7 and transforms it into a signed 32-bit
integer in register 5.

Isl, Isr, and asr are the basic functions within these
instructions. By using the appropriate - zero literal, each can
be synthesized. For example, "FLDMOV r5 := r7,0,7"
performs a 7-bit logical shift right. Since asl is provided in
the basic instruction set, all basic shifts are represented.

Shift amounts of greater than j perform the same function as a shift by j, namely the
clearing (or setting if asr of a negative number) of the result. Field insert is not
explicitly supported in the instruction set since it can be expressed in three
instructions with the existing instruction set.

Finally, the "find first (different) bit" is provided for the IEU:

FFB RO := R1

T s s “"logical shift right"; "Isl" is logical shift left; "asr" is arithmetic shift

right.
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This instruction finds the first bit that is different from the sign bit in the R1 value,
starting from the left. It stores into RO the bit number of the bit found. If all the bits in
the word are the same, the value 0 is stored. Taking this instruction as a function and
applying it to some short examples, we get:

3 = FFB(000101001)
1 = FFB(010000010)
4 = FFB(111100101)
0 = FFB(111111111)

3.6.6. Constant Generation

There are two instructions which can be used to generate large constants in the IEU:

LLH RO := <16 bit constant> -- Load Lower Half
SLL RO := <16 bit constant> -- Shift and Load Lower

LLH assigns a 16-bit constant to the destination register. SLL logically shifts the
destination register left by 16 bits and then assigns the 16-bit constant from the
instruction to the low order 16-bits of the destination register. In both cases the 16 bit
constants are formed by the concatenating the low order RL bit (bit 11) with the R1,
RL2 and RL3 fields.

Constants of 32-bits may be formed by a LLH, SLL pair; 64-bit constants may be

formed by a LLH followed by three SLL's. If necessary these constants can be moved to the
FEU or VEU with "transfer" instructions (see Section 3.6.3).

3.6.7. Condition Code Consumption

The instructions

ConsumeF
Consumel

consume one condition code as do conditional jump instructions. However, the value of

the code consumed is immaterial. They are semantically identical to a "conditional jump
to the next instruction”, but may be optimized by an implementation.

3.6.8. PCW Access

The instructions

ReadPCW RO
WritePCW R1
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allow the programmer to read and write the Program Control Word (see Chapter 4). The
register specified by these instruction is taken from the IEU register set.

3.6.9. Pipeline Synchronization

The instruction

SYNCH

causes the processor to synchronize the IFU, IEU, FEU, and VEU. In effect, it will inhibit
instruction dispatch until a consistent, "as though the instructions were really executed
sequentially" state is reached.

Typically the use of SYNCH is not required for the correct execution of programs;
there are, however, circumstances where it is useful. It can be used, for example, at
"break points" during debugging to ensure that the programmer is observing a program
state that corresponds to a defined point in the source program. It can also be used at
statement boundaries in Ada to ensure proper ordering of exceptions when the compiler
cannot prove that those exceptions will not be raised.
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Chapter 4. Task, Program, and System
Framework

This chapter is concerned with that collection of architectural issues that support an
operating system -- issues such as memory mapping, protection, control of input-
output devices, interrupts and traps, system calls, and the hardware notion of "process"
or "task".

WM approaches these issues in a manner that allows many of the functions normally
associated with an operating system to be safely delegated to applications programs, thus
eliminating unnecessary overhead from these functions and, perhaps more importantly,
eliminating inefficiencies due to circumlocutions when the operating system provides
the wrong facility. It is possible, for example, for an important data-base application to
be safely allocated its own disk and allowed to perform direct i/o operations on that disk;
this allows the data-base system to (1) avoid expensive operating system calls for data
transfers, and (2) format the disk in a manner appropriate to the application.

The same WM facilities that allow operating system functions to be safely handled by
applications, are also powerful structuring tools for building more conventional
operating systems. Using the WM facilities it is possible to construct a variety of novel,
secure, and highly efficient operating environments -- including an efficient multi-
level military security system. At the same time, the WM hardware does not favor one
style of operating system over another, and does not impose a performance penalty on
simple systems; it is possible to implement a traditional system such as UNIX very
efficiently.

Before starting into the details, we'll briefly introduce, and hopefully motivate, the
concepts to be discussed:

Tasks: As usually defined, a task is a "thread of control*. The WM hardware
understands the notion of a task, and supports a hardware-defined "task
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control block", TCB, to hold the state of the task when it is not executing.
There are instructions to save, restore and "swap to" tasks; for purposes of
these instructions, tasks are named by the address of their TCBs.

An ‘"interrupt” is essentially a forced context swap; in general, different
sources of interrupts may specify different tasks as their "handler tasks".

Domains: A task executes in an addressing domain. The domain consists of a flat,
paged address space; each page in this space has two independent properties:
(1) address ftranslation information, and (2) typed protection information;
these are defined by a "map table" and "protection table" respectively.
Pointers to these tables are part of the task state in the TCB. These properties
are separated so that, for example, two tasks can share the same address
space but have different access to portions of that space.

The concept of a typed protection system is especially powerful. Each page is
typed; only instructions appropriate to the type are permitted to reference a
page, and the task must have rights appropriate for the instruction. For
example, TCB is a type. The instruction to perform a context swap may be
executed only on this type of page -- and then only if the task has "swap
rights” to that particular page.

Entries: An "entry” is a type of page, and is a generalization of the "trap vector"
of some other architectures. An "entry call", ECall, instruction may
reference (only) an entry page and requires "call rights" to that page; if
executed, it has three effects:

(1) it changes the protection table pointer to that contained in the entry
page (note, the map table pointer is not changed),

(2) it transfers indirectly through the location specified in the ECall, and

(3) it saves the prior protection table pointer and program counter in a
special protected stack area in the TCB.

ECall provides the functionality of the "supervisor call" or "system call"
instruction of other architectures, but does not make a rigid N-level
distinction between "user" and "system". Instead, a particular operating
system can provide a variety of, possibly nested, entry pages with greater,
lesser, or merely different accesses. Entries in an entry page are pairs of
32-bit words specifying a protection table pointer and the location where
control is to be transferred.

The "EReturn” instruction unstacks and restores the protection state and PC
of the caller.

Traps are merely ECall's on predefined locations (in "page 0").
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Devices: A “"device" is another hardware understood page type, and corresponds
to the memory-mapped device registers in many architectures. Device-
specific operations are performed by storing bit patterns into these locations
(registers). Device status, and sometimes data, is accessed by reading these
locations.

A goal of the WM design was minimal operating system overhead in critical
applications -- such as accessing sensor data in embedded systems, and
interprocess communication in multi-computer complexes. A key to
achieving this is the ability of an application program to directly control a
device, and do so safely. The ability to map devices into an application's
address space provides the mechanism to achieve the goal.

The following sections discuss each of the above items in more detail.

4.1. Task State

Whenever a task is saved or restored, all of its processor state is transferred to or
from its hardware-defined Task Control Block. This is an area in memory with room
for:

(1) State visible to the program
- integer, floating point and vector registers.
- Program Counter, PC.
- Program Control Word, PCW.
- Program Status Word, PSW.
- Cycle Counter, CC.
- Last TCB Pointer, LTP.
- Protection Table Pointer, PTP.
- Map Table Pointer, MTP.

(2) State visible only indirectly by the program
- input/output FIFO state.
- streaming state.
- other implementation-defined state

In general, the amount and description of the state is implementation-dependent.
Only the TCB format for the state visible to the program is defined. Some of the
architecturally-defined state is discussed below.

The PCW and PSW are two architecturally-defined CPU device registers.
Implementations may add other registers (e.g., to control hardware diagnostics).

The Program Control Word collects a number of fields whose values affect the
execution of a task, such as the bit which indicates whether the results of two relational
operators in an instruction are AND'd or OR'd as well as the bits that enable/disable
certain traps. The PCW consists of:
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Bit# Meaning
0 AND/OR relationals (AND == 1)

- - Exceptions Enabled (enabled == 1):

1 Attempted Stack Limit Modification
2 Stack Index Negative

3 Assert Fault

4 Integer Divide By Zero

5 Floating Divide By Zero

6 Integer Arithmetic Overflow

7 Integer Arithmetic Underflow

8 Floating Arithmetic Overflow

9 Floating Arithmetic Underflow
10 Cycle Counter Overflow

11 Raise Address

12 Raise Call

13 Raise Jump

The Program Status Word collects a number of fields that reflect status of the task,
such as the run/halt bit, the interrupt enabling bit, the priority and the condition FIFOs.
For example, the PSW could include:

Bit # Meaning

0 Run/Halt (run == 1)

1 Interrupts Enabled

2:5 Priority[0:3]

6:8 Integer Condition FIFO Bits
9:10 integer Condition FIFO Depth

11:13 Floating Condition FIFO Bits
14:15 Floating Condition FIFO Depth

The Cycle Counter is a 32-bit register that is incremented by one every cycle that
the task executes. It may overflow (once every ~200 seconds with a 50ns cycle time),
in which case an exception may be raised.

The Last TCB Pointer, LTP, in general points to a TCB. When an interrupt occurs, a
forced context swap is performed and the LTP of the new task is set to point to the TCB of
the task that was running at the time of the interrupt. Thus, in the case of nested
interrupts, the LTPs form a chained "stack" of the suspended handlers; the SwaplLT
instruction (see Sec. 3.6.2) will resume the previous task.

The MTP and PTP are discussed in the next two subsections. Note first, however, that
a task's virtual address space is divided into "pages” in the conventional manner. An
address is divided into two parts, the virtual page number, and the byte within page
address. The boundary between these parts is implementation-dependent, as is the
structure of the tables (one-level, two-level, etc.). Pages must, however, be at least
512 bytes.
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Yirtual Page Number ... Byte Within Page

A

boundary somewhere

Assume K bits of virtual page number and j-K bits that specify the byte within the
page. Associated with every virtual page number is a protection table and map table
entry, as described below.

4.2. Protection Table

Each task has a Protection Table that defines its memory access rights on a page-by-
page basis. The Protection Table Pointer (PTP) in the TCB is either null (zero), or the
physical address of the base of this table and virtual address page numbers are used to
index into it. If the PTP is null no type or rights checking is performed, otherwise
protection is checked as specified below!.

A Protection Entry is a byte, with the following format:

type rights
| | 1

The first four bits define the page type. This field is interpreted as:

0000 Memory

0001 TCB

0010 Entry

0011 Device

0100-0111 reserved for hardware
1000-1111 reserved for software

Only the first four are hardware defined. Accesses to pages with reserved protection
types raise a memory protection exception.

An access to "Memory" pages may either be reads, writes, or executes. The
rights bits are R, W, and X, and determine if such operations are allowed, or if
they result in memory protection exceptions.

1The PTP may be null because protection is not implemented on a certain model of
WM. In addition, however, PTP is null when the processor is first "booted" -- this
corresponds to the "most privileged state".
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Accesses to a TCB page may be reads, writes, or context save/restore/swap; the
protection bits are correspondingly, R, W, and S. Note that saving context is not a
privileged operation.

Accesses to an Entry page may be reads, writes, or ECalls; the protection bits are
correspondingly, R, W, and C.

Accesses to Device pages may be only reads and writes, and the corresponding
rights bits are R and W.

It should be noted that W-rights (write-rights) to TCB and Entry pages are very
potent rights since they allow changing PTPs; normally these rights would be granted
only to the most trusted portion of a system.

4.3. Map Table

Each task has a Map Table that defines its virtual-to-physical address translation.
The Map Table Pointer (MTP) in the TCB is either null (zero), or the physical address
of the base of this table and virtual address page numbers are used to index into it. If the
MTP is null, no translation is performed; otherwise translation proceeds as specified
below’.

Map table entries have the following format:

Y 1am
111 |sw physical page number

and their bits are interpreted as follows:
0 Valid - this page exists in physical memory
Locked --this page is locked into memory2
Accessed - this page has been read
Modified - this page has been written

:5 Software usable/defined

231 Physical Page Number - 26 bits

DA WN =

The 26-bit physical page number is catenated with the Byte Within Page field to
form the physical address. This limits the physical memory (without bank-switching)
to an address space of 26 plus size(Byte Within Page) bits.

Note: the WM architecture does not define the number of levels in the structure of
the Map or Protection tables.

1The MTP may be null because virtual memory is not implemented on a certain
model of WM. In addition, however, MTP is null when the processor is first "booted" --
this corresponds to the "unmapped processor state".

2 The "locked bit" is a software convention; it is, however, checked by hardware
when DMA IO transfers are specified. See Section 4.5.
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4.4. Traps (Exceptions) and Interrupts

Non-programmed control flow changes can occur through two types of events:

interrupts these are asynchronous with respect to instruction execution and
may not be associated with the currently executing task.

traps these are hardware-defined and are the direct result of an
instruction just executed.

Interrupts are implemented as context-swaps to a handler task; traps are
implemented as ECall's to handler entries. The terms "trap" and "exception" are used
interchangeably.

4.4.1. Interrupts

Interrupts are best viewed as communication (messages) from asynchronous
cooperating processes that happen to be implemented in hardware -- and as such, the
task mechanism is the proper one for handling them. Thus, the effect of an interrupt is
almost identical to a SwapCTX instruction; the only difference is that, on interrupts, the
LTP (last TCB pointer) of the new task is set to point to the TCB of the task that was
running at the time of the interrupt. A SwapCTX or SwapLT instruction does not set this
register, and the LTP is loaded from the new TCB, just like all its other state.

The minor difference in behavior of interrupts and the SwapCTX/SwapLT
instructions provides the functionality of "stacking" nested interrupts -- but leaves
software free to use the LTP in clever ways (such as for a "run queue").

Note that each device capable of interrupting the processor must retain one or more
addresses of the TCBs for the handlers of the interrupts it generates, and present this
address to the processor along with the priority of the interrupt.

An interrupt (context swap) will be performed to the handler task if the priority of

the interrupt is higher than that of the processor, and indeed, is the highest of all
outstanding interrupts.
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4.4.2. Traps

The page zero of a program's virtual memory (starting at address 0) must contain
an Entry Page. A trap is implemented as an ECall on a hardware-understood location
within this page. The hardware-defined locations are:

Location

16
24
32
40
48
56
64
72
80
88
96
104
112
120
128
136
144
152
160
168
176
184
192
200
208
216
224
232
240
248

Exception

(reserved)

Load While Input Streaming

Store While Output Streaming
Input FIFO Full

Input FIFO Empty

Output FIFO Full (Data Capacity Exceeded)
Output FIFO Full (Address Capacity Exceeded)
Condition FIFO Full

Condition FIFO Empty

(reserved)

Undefined Instruction

Memory Protection Violation
Attempted Stack Limit Modification
Stack Index Negative

Jump On Stream Count while not streaming
Double Stream

(reserved)

Assert Fault

Integer Divide By Zero

Floating Divide By Zero

Integer Arithmetic Overflow
Integer Arithmetic Underflow
Floating Arithmetic Overflow
Floating Arithmetic Underflow
(reserved)

Cycle Counter Overflow

Raise Address

Raise Call

Raise Jump

(reserved)

Page Fault

(reserved)

The exceptions are ordered. If an instruction produces more than one exception, the
one that vectors to the lowest memory location is selected. The other exceptions related
to that instruction are nullified. An exception handling routine may itself cause an

exception.

The EReturn instruction is used to return from an exception, just as from an ECall.
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4.4.3. Initialization of the Machine

Machine implementation determines initialization.

4.5. Devices

Any of a wide variety of devices may be connected to WM and, mostly, each will be
idiosyncratic with respect to its definition of its own control registers; each device,
however, must conform to a few conventions:

1.

The device must "know" the physical TCB address to which it is to interrupt.
This may be wired-in for certain devices, or may be a settable register --
the latter being the preferred approach.

DMA devices must use "the zero-th register", the zero-th location relative to
the device page, as the memory address register; non-DMA devices are
advised not to use this location at all. The memory translation hardware
recognizes stores into the zero-th location of device pages, and assumes the
value to be stored is a virtual address; it then

- verifies that the specified page is both valid and locked, and
- stores the translated (physical) address rather than the virtual one.

DMA transfers may not cross a page boundary, thus the maximum size block
that can be transferred is a page.
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Appendix A. Summary of Restrictions on

Valid Software

Programs to be executed by this architecture must have certain properties to

guarantee correct operation; these conditions are summarized here.

Also, some

recommendations about program structure to improve performance are given.

Requirements

47

A register being written is available as the outer operand in the next
instruction and as an inner operand in the instruction after that. If
specified as the inner operand in the instruction after it is to be written,
the value before it was written is used.

All data items must be aligned. Lower-order bits that should be zero will
not be checked nor used.

The L2 specified by a LoadM or a StoreM instruction must be less than the
L3 specified.

No LOAD (STORE) may be performed on an input (output) FIFO that is
streaming.

Instructions containing relational operations must be properly paired
(dynamically) with conditional jumps or consume instructions. The
number of instructions containing relationals preceding the associated
conditional jump or consume instruction must not exceed the size of the
condition bit FIFO.

Certain Sequences of operations may lead to a deadlock situation (each of
the IFU, IEU and FEU unable to make progress). Such programs are
invalid (see discussion below).
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Since the various FIFOs that couple WM's components are finite, deadlocks are possible -
- for example a simple sequence of LOAD instructions longer than the input FIFO will
deadlock. Although the hardware will detect a deadlock and trap, the compiler (or
assembly language programmer) is responsible for ensuring that they do not occur.

The minimum sizes of the various FIFOs are specified in such a way that it is always
possible to construct a valid WM program. For example, the minimum size of the input
FIFOs are 3 so that, at worst, an instruction requiring 3 source operands from memory
can be emitted, and consume, its operands without blocking. A conservative compiler
algorithm can delay loading FIFOs as long as possible and consume FIFO operands as soon
as possible; it can be shown that such an algorithm always works. This conservative
algorithm will not produce optimal performance; an algorithm that does will be
discussed in a separate report.

Recommendations

- It is strongly encouraged that LOAD instructions be scheduled as early in
the program code as possible.

- Itis strongly encouraged that instructions containing relational operators
be scheduled as early in the program code as possible.
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Appendix B. Instruction Formats and

Encodings

B.1. Integer Format and Operation Encodings

0123 4 7 8 1112 1617 21 22 31
00|RL | OP1 | OP2 RO R1 RL2 RL3

+ 0010: addition

- 0000: subtraction

- 0100: reverse subtraction

* 0001: multiplication

/ 1000: division

/' 1100: reverse division

asl 0011: arithmetically shift left

eqv 0101: bitwise EQUIVALENCE

or 0110: bitwise OR

and 0111: bitwise AND

= 1010: equal

< 1110: not equal

< 1011: less than

<= 1101: less than or equal

= 1001: greater than or equal

> 1111: greater than

49 WM Computer Architectures (version 3) 1/10/90




B.2. Load/Store Format and Operation Encodings

0123 4 7 8 1112 1617 21 22 2627 31
op op
O1|RL | LSOP| 1 2 RO R1 RL2 RL3
L8i 0000: LoadByte
L16i 0001: Load Halfword
L32i 0010: Load Word
L64i 0011: Load Doubleword
L8ix 0100: Load Byte sign-eXtended
L16ix 0101: Load Halfword sign-eXtended
L32ix 0110: Load Word sign-eXtended
S8i 1000: Store Byte
S16i 1001: Store Halfword
S32i 1010: Store Word
S64i 1011: Store Doubleword
L32f 1100: Load Floating
L64f 1101: Load Doubleword Floating
S32f 1110: Store Floating
S64f 1111: Store Doubleword Floating
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B.3. Floating Point Format and Encodings
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0123 4 7 8 1112 1617 21 22 2627 31
11|00 | OP1 I OoP2 RO R1 R2 R3

+ 0010: addition
- 0000: subtraction
- 0100: reverse subtraction
* 0001: multiplication
/ 1000: division
/" 1100: reverse division
nop 0011: pass the left operand
nop' 0111: pass the right operand

0110: reserved

0101: reserved
= 1010: equal
= 1110: not equal
< 1011: less than
<= 1101: less than or equal
>= 1001: greater than or equal
> 1111: greater than
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B.4. Control Format and Operation Encodings

0123 4 11 12 31
11] 11 OoP OFFSET
Jump 0000 0000: unconditional Jump

-- jumps that predict the branch will be taken

JumplTy
JumplFy
JumpFTy
JumpFFy

0000
0000
0000
0000

Jump if Integer condition bit is True

1100 Jump if Integer condition bit is False

Jump if Floating condition bit is True

1110: Jump if Floating condition bit is False

-- jumps that predict the branch will pot be taken

JumplITn
JumplFn
JumpFTn
JumpFFn

-- jumps on stream

JNI r0
JNI ri
JNO r0
JNO 1
JNI fO
JNI f1
JNO f0
JNO f1
JNI vO
JNI v1
JNO v0
JNO v1

0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001

0000
0000
0000
0000

0000:
0001:
0010:
0011:
0100:
0101:
0110:
0111:
1000:
1001:
1010:
1011:

Jump if Integer condition bit is True

1000 Jump if Integer condition bit is False

Jump if Floating condition bit is True

1010: Jump if Floating condition bit is False

count non-zero

Jump on stream count Not zero; Input FIFO r0
Jump on stream count Not zero; Input FIFO r1
Jump on stream count Not zero; Output FIFO r0
Jump on stream count Not zero; Output FIFO r1
Jump on stream count Not zero; Input FIFO f0
Jump on stream count Not zero; Input FIFO f1
Jump on stream count Not zero; Output FIFO f0
Jump on stream count Not zero; Output FIFO f1
Jump on stream count Not zero; Input FIFO v0
Jump on stream count Not zero; Input FIFO v1
Jump on stream count Not zero; Output FIFO v0
Jump on stream count Not zero; Output FIFO v1

-- special jump instructions

Call

1/10/90

0010 0000:
ECall 0010 0001:

subroutine Call
Entry Call
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B.5. Vector Operation Encodings
0123 4 1112 1617 21 22 2627 3f

11]01 OP RO R1 R2 R3

Note: The suffix 'C' on the following operation codes denotes the conditional form of
the operation.

0000 0001 0010 0011 0100 0101
0000 isub isubC fsub fsubC VCVTIF VCVTIFC
0001 ]|imul imulC fmul fmulC VCVTFI VCVTFIC
0010] iadd iaddC fadd faddC
0011]iasl iasiC
0100
0101|iegv ieqvC
0110]ior iorC
0111]iand iandC
1000]idiv idivC fdiv fdivC
1001 |igeq igeqC fgeq fgeaC
1010]ieql ieqlC feql feqlC
1011]ilss ilssC flss flssC
1100
1101]ileqg ileqC fleq fleqC
1110] ineq ineqC fneq fnegC
1111]igtr igtrC fgtr fgtrC
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B.6. Special Format and Operation Encodings

0 12 34 1112 1617 21 22 26 27 31
10| RL OP RO R1 RL2 RL3
0000 0001 0010 0011 0100 0101

0000{ Sin8i VSin8i Stopll LoadFifoll | CVTIF Jumpl
0001|Sin16i VSin16i | StoplO LoadFifolO | CVTFI Calll
0010 Sin32i VSin32i | StopFli LoadFifoFl | TFI EReturn
0010]| Sin64i VSin64i | StopFO LoadFifoFO | TFV
0100]| Sin8x VSin8x | StopVi LoadFifoVl | TIF SYNCH
0101|Sin1i6x | VSin8x | StopVO LoadFifoVO | TIV Consumel
0110|Sin32x | VSin32x TIVx ConsumeF
0111 VSinib | StopAll

1000| Sout8i VSout8i | LoadM StoreFifoll | Assert LoadCTX
1001 ]| Sout16i | VSout16i| StoreM StoreFifolO| FAssert | StoreCTX
1010| Sout32i | VSout32i | FLoadM | StoreFifoFI|LLH SwapCTX
1011]| Sout64i | VSout64i| FStoreM | StoreFifoFO| SSL SwaplLT

1100]| Sin32f vSin32f | VLoadM StoreFifoVl| FLDMOV | ReadPCW

1101]| Sin64f VSin64f | VStoreM | StoreFifoVO| FLDMOVX | WritePCW
1110]| Sout32f | VSout32f FFB
1111]| Sout64f | VSout64f
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Appendix C. WM Assembly Language

There are two varieties of assembler that might be written for the WM machine. The
first accepts fully defined instructions, such as a compiler might produce, and converts
them to machine code quite rotely. The second type of assembler is geared toward human
readers and writers of WM code. The assembler would expand abbreviated instructions,
check validity of statements, and rearrange the result to minimize NOPs and optimize
conditional jumps. What we define here is somewhere between these extremes -- but
probably closer to the first. We expect that the current specification will be a proper
subset of the more humane assembler specification.

C.1. Lexical Structure

A WM assembly "module" consists of one or more blank lines, instructions, or
directives; it must begin with the directive

.module <identifier>
and must be terminated by the directive
.end

Instructions and directives must be wholly contained on a single "line", and either
may be "labeled". Instructions or directives are labeled by prefixing them with

<identifier>:

Comments begin with the characters "--" and continue to the end of the line on which
they appear.

Identifiers, which are used for labels, obey the Ada syntax, except that the special

symbols ".", "$", "%", and "?" may be used anywhere that a letter is permitted in Ada.
Letters appearing in an identifier are case-jnsensitive.
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The only reserved identifiers are: (1) the instruction mnemonics, (2) the register
names "r0", "rt", ..., "r81", "f0", ..., "31", "v0", ... , "v31" , rZ, fZ, and vZ, and (3)
the directive names mentioned later.

Numbers, both integer and floating point, also obey the Ada syntax. Specifically,
based numbers are written

<base>#<value>#

where <base> is the base (in decimal) and must be in the range 2..16. The letters "a".."f"
may be used in the <value> to represent the digits 10..15 when the base exceeds 10.

C.2. Instructions
Integer/logical, floating point, and vector instructions are written in the form:

int RO := (R1 op1 RL2) op2 RL3,

flt RO := (R1 op1 R2) op2 R3, and
vec RO := (R1 op R2) if R3

respectively. ":=" is always the assignment symbol and the parentheses are required.
Various abbreviations are allowed as defined below.

(1) Since the type of an instruction may be inferred from the register names
used, the prefix "int", "flt", and "vec" may be dropped.

(2) Right-hand-side expressions may be abbreviated, and appropriate NOPs!
will be inserted by the assembler; for example

int RO := (RL2) op2 RL3 -- op1 defaults to a nop
int RO := (R1 op1 RL2) -- op2 defaults to a nop
int RO :=RL3 -- both are nops, RL3 is the outer operand
int RO := (RL2) -- both are nops, RL2 is an inner operand

(3) Simple expressions involving only constants and the machine's
integer/logical operations may be included in the place of a literal. Such
expressions must evaluate to a valid literal (0..31) and may include square
brackets for parentheses.

(4) Statements may also be written in the commuted form
int RO := RL3 op2 (RL1 opi RL2)

In the event that op2 is non-commutative and its "reverse form" exists; the
assembler will make the proper substitution. That is, one may write

int 8 := r7 - (r4 asl 7)

1 In the case of the integer instructions, OR with literal zero is a fine NOP.
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and achieve the same effect as
int r8 := (r4 asl 7) -' 17

(5) The literal zero, "0", may be used instead of the name of the "always zero"
register (r31 or rZ, etc.).

(6) The left-hand-side of an assignment, i.e., "R0 :=", may be omitted; in such
cases the assembler will insert an assignment to the proper "always zero"
register. Thus, for example, a relational whose only intended effect is to
generate a condition code may be written as

int (R1 relop RL2)
Load and store instructions are similar to integer/logical instructions. The
differences are:

- only +, -, *, and asl are valid operators
- the instruction is preceded by an instruction code, such as L32i.

Specifically, all of the abbreviations listed above are valid. Thus, the following are valid
load/store instructions:

L8ix r31 := (r7 asl 2) + r12
S64f rd = (r0 + r1) - 14

L32i (r5 asl 2) + r3

L32f (r6)

Jumps and calls also begin by specifying an instruction code and continue with a
target specification. The branch-prediction suffix may be deleted; in such cases the
assembler will assume that the branch will be taken. The PC-relative target may be
specified with a simple label combined in an expression with constants. Jumpl specifies
a register which contains its target's address. The following are all valid control flow
instructions:

JUMP exit
JumplFn case+7
JumpFT somewhere
Call DiskHandler
jumpi ra1

The special instructions start with instruction code, and have a comma separated list

of operands (in the order RO,...,R3); only as many operands as are required for a
particular instruction need be written.
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C.3. Directives

Directives specify assembly-time information of various kinds; each is discussed
separately.

C.3.1. Modules

A module is a linkable-unit. As noted in the introduction, a module begins with
.module <identifier>
and ends with
.end
A module must be wholly contained within a single file, however a file may contain
several modules. Module definitions may not be nested.

C.3.2. Sections

Instructions or data may be placed in any one of a number of "sections". Any code or
data following the directive

. section <identifier>

will be placed in the named section until another ".section" directive is encountered.
Each named section is distinct. Loader directives must be supplied to control the
relocation of sections into the virtual address space. Sections, however, always will
begin on a page boundary.

C.3.3. Alignment

The directive
.align <number>

will force enough zero bytes to be inserted so that the following instructions or data will
be inserted at a byte address that is a multiple of <numbers>; thus ".align 2" forces half-
word alignment and ".align 8" forces double-word alignment.

C.3.4. Data Definitions

Four directives are provided for allocating (static) data space and initializing it
(each of the "list of" items below refers to a comma-separated list):

.block <integer number>

.byte <list of <integer number> or <character>>
.half <list of <integer number>>

.word <list of <integer number>>

float <list of <floating number>>

.double <list of <floating number>>
.string <list of <string>>

where
".block" allocates the specified number of bytes without initializing it.
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".byte” allocates a sequence of bytes and initializes them to the specified values.

".half" allocates a sequence of half-words, and initializes them to the specified
values.

".word" allocates a sequence of words, and initializes them to the specified values.

".float" allocates a sequence of words, and initializes them to the specified values.

".double" allocates a sequence of double-words, and initializes them to the specified
values.

".string" allocates a sequence of variable sized chunks, where the length of the
chunks is that of the specified strings, and initializes them to the
specified values.

C.3.5 Equivalence
The ".equ" directive is used to assign assembly-time values to labels; specifically,
<label>: .equ <assembly time expression>

will assign the value of the expression to the label.

C.3.6. Global and External Labels

Labels are, by default, local to the current module. Two directives are provided to
override the default:

.global <identifier list>
and
.external <identifier list>

Identifiers appearing in a ".global" directive must be defined in the current module.
These identifiers become visible to the linker and may appear in a ".external" directive
of another module.

Identifiers appearing in a ".external" directive must NOT be defined in the current

module. They must, however, be defined in another module and appear in a ".global"
directive of that module.
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Appendix D. Rationale Behind Chosen

Operation Sets

D.1. Integer & Logical

This set was chosen to contain the most frequently needed operations that could be
combined with elegance. With the exceptions of asl, the integer/logical operators are
commutative. This was a goal, so that a code generator would be able to encode both (A op
(B op C)) and ((A op B) op C) in single instructions. It is believed that code density
benefits as well. The one exception was made following thoughtful justification (given

below).

The chosen 16 integer/logical operations, and their rationale, follow.

+

and

or

eqv

1/10/90

Addition is the most frequently needed operation. This is the only
way is synthesized, short of painfully long boolean operations.

Subtraction also is quite common.
Reverse subtract exists so that Rd := (R1 op R2) - R3 could be
performed. Without it, this computation would require two

instructions.

A common boolean operator, useful also for bit clearing and
testing.

A common boolean operator, useful also for bit setting.
This is is a non-traditional choice and represents considerable

exploration among options. Besides AND and OR, the boolean
operations of most concern are NOT and XOR. (These also happen
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to be those specified in Ada.) XOR is relatively uncommon, but
provides hard to synthesize functionality. The EQV (equivalence)
function easily synthesizes NOT Z as 0 EQV Z. It also provides XOR
in a single instruction since A XOR B is NOT(A EQV B), or (A EQV
B) EQV 0. Because encoding space was tight, it seemed that EQV
provided the required functionality in a single operator.

Al These operators are included because of their importance.

asl This function is vital for efficient scaling by a power of two.
Since this is so common, (especially in address arithmetic), it
was included. Its commuted form (asl') is not included, however.
This is partially due to lack of encoding space.

<>,=,<,<=,>=,> |f two relationals appear in the same instruction, their
condition bits are AND'd or OR'd as indicated by a bit in the PCW.
This allows Ada's "in <range>" operation to be performed in a
single instruction when the relationals are being OR'd.

The '"result" of a relational is its left operand. Since the
relationals can be "commuted"” by substituting the appropriate
operator (e.g., ">" => "<=") this may seem arbitrary. However,
using this convention allows the result of the inner computation
by op1 to be the result of the instruction.

Other shifts are not explicitly included, but field extract (signed and unsigned) can
synthesize any shift desired. Also not included were abs, rem, rem’, mod, and mod'.

D.2. Floating Point and Vector Instructions

The floating point operations are the basic arithmetics and relationals. The only
"unusual" choices involve the two monadic NOP operations. There is room for two
additional operations, but they have not yet been selected.

The vector operations are also basic arithmetic and relational operations. They have
been defined as "block" operations; that is, conceptually all elements are evaluated
simultaneously and independently. This permits an implementation to use one or more
pipelines. It also permits "chaining" of operations.

The streaming of operations to/from the vector unit, and specifically the handling of
vectors whose size is not a multiple of N, provides automatic "strip mining" of vector
loops.

D.3. Load/Store Instructions

Data is manipulated in WM's registers as 16-, 32- or 64-bit quantities; it is
therefore necessary to provide a full complement of load/store operations to map
smaller byte and halfword data to/from memory.
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The four integer operations provided as part of the load/store operations are
statistically the most frequent operations used in performing address arithmetic.

D.4. Control Instructions

The rationale for the various control instructions should be fairly obvious. Note,
however, that the existence of both true and false conditional branches is closely related
to the choice of the relational operators in the integer and floating point instructions.
Specifically, the "reverse" form of the relationals (ones that would produce their right
operand) were not included since, for example, "a > b" could be transformed into "b<=a"
so long as the sense of the branch was also inverted. Branch prediction was included to
assist prefetching the target instruction.

The Jumpl, jump indirect, instruction was included primarily for case-table and
subroutine-return jumps; it can, however, be used as well when the distance of a jump

may exceed 22 1 bytes.

As noted several timeés, the ECall and EReturn instructions provide the functionality
of "supervisor call" on other architectures. By setting up a single entry page, and
associating an "all rights to everything" protection table with that entry, one gets the
same effect as a "user/kernel mode" system at about the same cost. By setting up a series
of nested, each more privileged than the last, entries, one gets the effect of a "ring"
system. The most general use of entries, however, will involve non-hierarchical
protection, as for example, in a compartmentalized military security system.

D.5. Special Instructions

The special instructions will be discussed in groups: streaming, state manipulation,
type conversion, constraint checking, field manipulation, and SYNCH.

D.5.1. Streaming Instructions
Streaming was included in the machine to achieve several related effects:

- eliminate load and store instructions from loop bodies,

- eliminate loop counting instructions from loop bodies,

- allow the memory system to exploit the regularity of the memory reference
pattern

All of these apply, of course, just in the case of vector-like data; however this form
of data is sufficiently common to be of substantial interest. It is interesting to speculate
whether, given the streaming mechanism, it would be worthwhile to reorganize data
structures to exploit it -- e.g., use a polish representation of syntax trees so that
linear traversals are possible.
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The "start streaming" instructions mirror the load/store instructions and are
included for the same reason. The "stop streaming” instructions are included primarily
to permit indefinite-length streaming operations. Consider, for example, a loop to find
the first instance of the character "z" in a string; the string can be streamed through a
compare-and-count loop, but once the position of the "z" has been determined, the
streaming stops.

D.5.2. State Manipulation Instructions

WM has a lot of state. It also has a fairly sophisticated notion of a task, and a rich set
of state-manipulation instructions. A larger state speeds processing of individual
programs at the expense of increased context-switching overhead between programs; we
opted to accept the additional context-switch overhead, but to ameliorate it by providing
instructions for saving and restoring state as rapidly as possible.

The purpose of most of these instructions should be obvious. Note, however, those for
saving and restoring FIFO state. In a sense, these are the obvious analogs of those for
saving and restoring registers; there are two important differences, however:

- register save/restore could be done with explicit load/store instructions. FIFO
save/restore cannot because portions of the state are not accessible, and

- at certain points, e.g. at entry to a trap handler, the state of the FIFOs is not
known

D.5.3. Type Conversion Instructions

The rationale for these instructions is the obvious one.

D.5.4. Constraint Checking Instructions

The only difference between these instructions and the obvious range-checking
integer and floating-point instructions, is that they trap rather than setting the
condition code.: This provides a certain consistency between hardware- and software-
detected range violations.

D.5.5. Field Manipulation instructions

These instruction provide both field extraction and shift functions. Given that there
wasn't adequate encoding space in the integer instruction format for these shifts, and that
they are relatively less common, this appeared to be a reasonable solution.

D.5.6. The SYNCH Instruction

In general, WM has what have been called "imprecise interrupts", which is actually
a misnomer -- "imprecise traps" would be more accurate. In any case, because of the
potential for asynchronous execution of the IEU, FEU, and IFU, at the time of a trap from
one unit (say a floating-divide-by-zero) the other units may be executing in quite
another portion of the program; there is no guarantee of a simple mapping of the
processor state to a place in the user's program. Often this does not matter, since
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- the trap is a fatal error, or
- the trap can be handled locally without such a mapping (e.g., page faults)

However, in the case it does matter, the SYNCH instruction can be used to force
synchronization. It can, for example, be used by Ada programs to ensure that
programmer-visible side-effects are synchronous with constraint checks. Liberal use
of this instruction may, however, have an adverse effect on performance -- possibly a
significant one -- since it blocks execution of multiple instructions per cycle.

D.6. Instructions Specifically Not Included

A few instructions typically found in other machines are not present in WM. Trivial
examples of this are NOP and HALT.

There are no integer/logical NOPs; they can be synthesized. There do exist floating
NOPs. Note that both the normal and reverse form exist in order to permit one operator
assignments in the face of the data dependency rule?.

Note that integer (floating) NOPs affect only the IEU (FEU) -- not the whole
machine, and in principle may not consume any extra cycles. Thus the are useful for
simple expressions (0 or 1 operators) or data dependency synchronization. They are
not useful for delaying the machine. If that's what your goal is, use SYNCH.

There is no machine HALT instruction. However, the machine itself is an accessible
device. The machine can be halted by writing the appropriate bit in the Program Status
Word. The other aspects of machine state are set in the same fashion.

There are no operations to support unsigned arithmetic or (often related) multi-
precision arithmetic (e.g. operations such as "add with carry"). These were omitted in
part because there wasn't enough encoding space for a complete set, but also because they
are logically unnecessary and often provided (only) for historical reasons.

Since unsigned operations are often used for address arithmetic, WM's addresses are
signed. That is, each of the signed integers -2-31_4+(231.1) names a byte in memory.
Among other things, this eliminates the schizophrenia in most machines regarding signed
arithmetic (e.g. indexing is usually (and incorrectly) a signed operation).

It should also be noted that there are no instructions to support memory-based
synchronization, e.g., "test-and-set". This functionality will be provided by specialized
devices accessed through "device pages". There are several reasons for this decision.
First, it simplifies the memory system since there is no need to support "read-modify-
write" operations. Since WM's memory system will be strained just to supply data and
instructions at the rate that the processor consumes them, this simplification is
important. Second, it provides the opportunity to create high-performance application-

1 Note: (a nop' b) nop ¢ does not compute the same value as (c nop a) nop' b due to
the data dependency rule.
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specific synchronization and/or communication mechanisms. For a critical real-time
application, for example, one could implement an entire message system in hardware.
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Appendix E. Constructing WM Software

Suggestions and Rationale

E.1. Calling Sequence and Register Conventions

The following is a proposed set of register conventions and calling sequence. Consider
it a strawman to test feasibility, and not the final/official one.

The conventions with respect to register usage are:

ro
ri

fo
f1

v0
vi
r2
r3
r4
r5
ré
r3i
f31
v31

1/10/90

input integer FIFO; always assumed empty at calls

input integer FIFO; contains 1st N parameters on calls, and the result(s)
on returns

input floating FIFO; always assumed empty at calls

input floating FIFO; contains 1st N parameters on calls and the result(s)
on returns -

input vector FIFO; always assumed empty at calls
input vector FIFO; always assumed empty at calls

SL; not modifiable

Si

PC saved here by the call instruction

FP (frame-pointer; software convention)

HP (exception-handler pointer; software convention)
identically zero; writes to this register have no effect.
identically zero; writes to this register have no effect.
identically zero; writes to this register have no effect.
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This leaves r7-r30, f2-f30, and v2-v30 available for any use the compiler wants
to make of them. Note that with this many registers, it probably makes sense to have a
software convention that certain registers are not saved/restored across a call; this can
save significant call overhead in some cases; such a convention is not defined here.

A call consists of:
ri ;= p1 -- 1st parameter

r1 := pn -- Nth parameter
call subr -- implicitly, r4 = PC

A routine body consists of the following (assuming that a display does not need to be
saved):

subr: r7 .= (SL+Sl) -- address of save area (TOS)
StoreM r7, r3, r# -- r# = highest reg used in this rtn
Sl := (k1 + k2) + SI -- k1 = #regs to save,
-- k2 = # stack locals

r5 := (SL+Sl) - k2 -- set the frame pointer

6 = errXit -- exception unwind

<> -- the actual body

r7 := (SL+Sl) - [k1+k2]
LoadM r7, r3, r# -- restore the regs, incl caller's FP
Jumpl r4 -- normal return to the caller

errXit: r7 = (SL+Sl) - [k1+k2]

LoadM r7, r3, r# -- restore the regs, incl caller's FP
Jumpl r6 -- return to the caller's handler

Note: the issue of exception handling are discussed in the next section.

Also Note: The code at "errXit" can be shared between subroutines under some
circumstances. Notably, with the large register set of WM, we expect relatively few
cases where locals are allocated to the stack. In this case, all routines saving N registers
will have the same epilogue and only one copy is required.

E.2. Ada Exceptions

Ada requires nested exception handlers; they are statically nested within a
subroutine and dynamically nested as routines are called. Several schemes are well
known for handling this structure, but one seems most natural for the WM architecture.

Register r6, by software convention, always holds the address of the current
handler. It is saved/restored by the normal prologue/epilogue of subroutines, and either
points to a specific handler or the "unwind" handler for the current routine ("errXit" in
the previous discussion of the calling conventions). Thus,

- routine prologs are responsible for setting r6 to its default value (i.e.,
the current routine's "unwind" handler,
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- entry to a block with an exception handler is responsible for setting r6 to
the address of the handler; note that this is a static, compile-time known
address,

- exit from a block with an exception handler is responsible for setting r6
to the address of the enclosing handler (or unwind handler if there is no
enclosing block with a handler); again, this is a static, compile-time
known address.

This scheme implies two instructions of "overhead" per block (that has a handler)
and avoids any "searching" overhead when an exception is raised. It also allows full
optimization to be applied within the block in contrast to schemes involving a "map”.

Note that hardware-detected exceptions, such as overflow and divide-by-zero, will
"trap"” to the run-time system. Except for this, however, they can be handled just as a
software-defined exception since r6 will point to the correct handler.

E.3. Parameter Passing

It is proposed that FIFO 1 should be used to hold parameters passed between
procedures. This is a significantly different mechanism than those traditionally used.
The simplest method used is to pass parameters of the procedure via a stack in memory.
In most cases this results in 2N memory accesses for N parameters passed, N to write
the parameters onto the stack and another N to access them for computation.

Parameters may be passed in registers on machines with a sufficient number of
them. In such cases, the compiler enforces a convention about which registers will be
maintained for parameters between procedures. If a number of procedure calls are
made, then the parameter-passing registers must be saved. This is to make room for the
next set of parameters for the procedure to be called. A procedure call can cost up to 2N
memory references with this scheme as well.

A more recent parameter passing mechanism is the use of overlapping multiple
register sets. With such a scheme, both incoming and outgoing parameters are "seen" by
a procedure. Hence, 2N registers are filled just for passing N parameters. Such
multiple register schemes are also deemed less-attractive; in recent machine
implementations the large register arrays slow down basic machine cycle times.

Passing parameters via a FIFO, as proposed for this architecture, offers advantages
over these other methods. Computed parameters need not displace existing register
values and parameters used once need not consume a register space. A procedure must
empty its incoming parameters before calling another procedure, but this overhead
never appears for "leaf" procedures.

E.4. Loop Control

The semantics of the Ada 'for' statement poses a problem for many computer
architectures; happily it is a non-problem for WM. Consider
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N: integer;

%.c;r i in 1..N loop
<body>
end loop;

In such a case, it is possible that N assumes the value integer'last, (the largest
positive number). The value of i must be compared to N before being incremented at the
bottom of the loop -- if it were incremented first, there would be an overflow an raise
an exception; this is not Ada. This consideration precludes the use of the "add one and
branch" class of instructions on most computers. On WM, however, the instruction

i==(<N)+1
has exactly the right semantics.

E.5. The Display

It was noted earlier that a natural use of the area above the Stack Limit register was
for stack expansion, software TCB, etc. In effect, the SL acts as a natural base register
for the static storage of the task, e.g., the constant pool, own variables, and display. The
"display” mentioned here is perhaps a bit richer than the word typically connotes.
Specifically, it is suggested that it contains two parts:

- the procedure-frame display, as is common. This portion needs to be
updated as part of the normal procedure prolog/epilog in order to support
"up-level" addressing of locals and formals of enclosing procedure
declarations.

- the SL display. This portion would be created (only) at task creation, would

contain the SL values for statically enclosing tasks, and can be used to access the static
storage of those inclusion tasks.

E.6. Absolute Addresses

As is obvious from a quick scan of the WM instruction formats (Appendix B), there
is no way to include a full address in an instruction, and hence, no convenient way to use
absolute addresses. If such addresses are desired, they will have to be placed in the
constant pool and loaded (SL-relative) into a register before being used or constructed
using LLH and SLH.

The preferred style of addressing on WM, however, is to avoid absolute addresses
wherever possible. Specifically,
- the large, 20-bit, jump displacements should be adequate for all
programs of practical concern,
- task-specific static variables can be addressed SL-relative, and
- the SL-display discussed in the previous section can be used for inherited
static variables of parent tasks.

Programs which utilize these facilities, can be easily made "position independent”.
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