
1

Application Intrusion Detection using Language Library Calls

Anita K. Jones Yu Lin
jones@virginia.edu yl9e@cs.virginia.edu

University of Virginia

Abstract

Traditionally, intrusion detection systems detect
intrusions at the operating system (OS) level. In this
paper we explore the possibility of detecting intrusion at
the application level by using rich application semantics.
We use short sequences of language library calls as
signatures. We consider library call signatures to be more
application-oriented than system call signatures because
they are a more direct reflection of application code.
Most applications are written in a higher-level language
with an associated support library, such as C or C++.
We hypothesize that library call signatures can be used to
detect attacks that cause perturbation in the application
code. We are hopeful that this technique will be
amenable to detecting attacks that are carried out by
internal intruders, who are viewed as legitimate users by
an operating system.

1. Introduction

An intrusion can be defined as any set of actions that
attempt to compromise the integrity, confidentiality or
availability of a resource [3]. There are two types of
intruders, internal and external. External intruders do not
have any authorized access to the system they attack.
Internal intruders have some authority and therefore some
legitimate access, but seek to gain additional ability to
take action without legitimate authorization.

We can improve security through the use of tools such
as Intrusion Detection Systems. An intrusion detection
system, or IDS for short, detects either attempted
intrusions into a system or activities of intruders after
breaking in. Traditionally, intrusion detection systems
detect intrusions at the OS level by comparing expected
and observed system resource usage. Unfortunately, OS
intrusion detection systems are typically insufficient to
catch internal intruders because they are already
legitimate users of the system. Their activities neither
significantly deviate from expected behavior, nor exhibit
the anticipated actions of first entry into the operating
system from the outside.

One reason for the insufficiency of OS intrusion
detection systems is that they depend only on resource
usage as seen by the OS. Our approach is to detect
intrusions at the application level using sequences of
language library calls as signatures for program behavior.
We regard an application as a black box that can emit
some observable events (library call invocations) when
executing. Thus our technique does not require analysis of
the semantics of the application.

2. Related Work

Stephanie Forrest at the University of New Mexico
proposed a method of intrusion detection using sequences
of system calls [1][2][4]. This method uses short
sequences of system call invocations as being descriptive
of the execution of privileged processes in Unix systems.
The method used to build a signature database is to trace
system calls generated by a particular program, slide a
window of size k across the trace, and record each unique
sequence of length k that is encountered in the window.
This method for enumerating sequences is called
sequence time-delay embedding (stide). Intrusion
detection experiments show that short sequences of
system calls can be a remarkably good discriminator
between normal and abnormal operating characteristics of
common Unix programs. In other words, sequences of
system calls are highly likely to be perturbed by intrusive
activities.

The increasing trend towards distributed platforms,
exemplified by CORBA, presents new challenges for
intrusion detection. Researchers at Odyssey Research
Associates have applied similar techniques to CORBA-
based applications to detect intrusion in distributed object
applications at the application level [8].

3. Library call signatures

Our library call signatures are defined to be sequences
of library call invocations. For simplicity, only the
identity of library calls and their sequence are preserved.
All other aspects of a library call invocation, such as
arguments, are ignored. Then we build a signature

2

database for an application by enumerating an “adequate”
number of unique short sequences in a way that is similar
to the technique used by the New Mexico researchers.
Finally, we monitor the execution of the specific
application for significant deviations. If “enough” of the
observed sequences are different from those in the
signature database, there may be intrusions.

3.1 Signature database definition

We use the term robust to describe a signature
database that contains sufficient sequences to characterize
the application in a substantial way. The algorithm used
to build a robust signature database is to scan traces of
library calls generated by the target application. We slide
a window of size k across the trace and record each
unique sequence of length k that is encountered. When
monitoring multiple processes that execute the target
application, we restrict sequences to library calls from one
process, i.e. we don’t mix library calls from multiple
processes in one sequence.

Each application is characterized by its signature
database. This means that, in practice, each application
has a different signature database. That signature
database is specific to application code, hardware
architecture, software version and configuration, local
administrative policies, and usage patterns of the user
community. Once a robust signature database is
constructed for a given application, it can be used to
monitor the ongoing behavior of the processes that result
from invoking that application.

The structure of the signature database is best
illustrated with a concrete example. Suppose we have the
following trace of library calls:

fopen, fread, strcmp, strcmp, fopen, fread, strcmp
We slide a window of size k across the trace and record
each unique sequence of length k that is encountered. For
example, if k = 3, then the result is the four unique
sequences of length 3 depicted in Figure 1.

For efficiency, these sequences can be stored as trees
in the database. Each tree is rooted at the first library call
in its sequence. Two sequences with initial identical
segments will share the same initial tree structure in the

database. The advantage of trees is that the storage
requirements are lower and that comparison of monitored
sequences to sequences in the database is efficient.

3.2 Synthetic and real signature databases

There are two approaches to building a robust
signature database. The synthetic signature database is
built by exercising as many normal modes of usage of an
application as possible. The real signature database
derives from tracing the actual execution of the program
in a live user environment. Usually it takes more time and
facilities to build a real signature database than a synthetic
signature database.

A real signature database may not be as robust as a
synthetically built signature database. When building a
signature database in a real, open environment, it is
difficult to ensure that no intrusion occurred during
database generation. Also, in a real execution
environment, there is no mechanism to force execution of
a majority of paths through the application code.

Two signature databases collected for the identical
program and operating system in different real
environments may differ significantly both in size, and in
content. Unlike real signature databases, synthetic
signature databases tend to be more similar because
experimenters use a similar strategy to stimulate
application execution. Therefore, synthetic databases are
useful for replicating results, comparing performance in
different settings, and performing different kinds of
controlled experiments. For those reasons, we chose to
experiment with synthetic signature databases.

3.3 Different Anomaly Measures

Once a signature database has been built, monitoring
for deviant behavior uses essentially the same method that
is used to build the signature database. Sequences of
length k from the monitored behavior are compared to
those in the signature database. If monitored sequences
deviate significantly from those in the signature database,
the application behavior is considered to be anomalistic.

We next define several different anomaly measures to
express the strength of an anomalous signal. In this paper,

fopen

fread

strcmp

fread

strcmp

strcmp

strcmp

strcmp

fopen

fopen

fread

Figure 1. An example of library call sequence trees

3

 we discuss three anomaly measures: the mismatch count,
the locality frame count, and the normalized anomaly
signal.

Monitored sequences that are not in the signature
database are defined to be mismatches. The mismatch
count records the number of mismatches. In experiments,
we use not only the raw mismatch count, but also the
percentage of mismatches (mismatch count divided by the
total number of monitored sequences).
 To determine that a new sequence of length k is a
mismatch requires at most k comparisons, because the
sequences in the signature database are stored as a forest
of trees, where the root of each tree corresponds to a
different library call. Similarly, it takes k comparisons to
determine a match.
 How many mismatches does it take to indicate truly
anomalous behavior? Recall that the signature database is
not guaranteed to contain all possible legitimate
sequences. One answer is to count the number of
mismatches occurring in the monitored behavior, and only
consider that behavior to be anomalous when a mismatch
threshold is reached. Even this solution is problematic
because the mismatch count is dependent on trace length
and some processes execute endlessly. Another answer is
to compute the percentage of mismatches once “enough”
sequences have been encountered to assure reasonable
initialization.

The second measure is the locality frame count. It is
based on the assumption that anomalous sequences due to
intrusions will occur in local bursts. When a process is
exploited, there may be a short period of time – a locality
– when the percentage of anomalous sequences is much
higher. For example, ten anomalies over the course of a
long run may not be cause for concern. But ten anomalies
within thirty overlapping sequences might be. Thus, it can
be useful to observe how many anomalies occur during a
limited interval. The number of sequences that are
considered to be local to one another is called the size of
the locality frame. In our experiments, we arbitrarily
choose 20 as a (reasonable) size for the locality frame.
We report the largest number of anomalies found within
each locality frame. One advantage of the locality frame
count is that it provides a real-time measure. Because the
locality frame count is calculated locally, a system
administrator can immediately be notified when an
intrusion may be occurring.

The third measure, widely used to detect intrusions, is

called the normalized anomaly signal,
∧

AS [4]. It
characterizes how much one sequence differs from
existing sequences in the signature database. The
difference between two sequences s1 and s2 is the
Hamming distance d(s1, s2) between them, that is the
number of calls by which they differ. For a monitored
sequence s1, the minimal Hamming distance d min (s1) is

defined as the minimum of all Hamming distance measure
between s1 and the sequences in the database, i.e.,

dmin (s1) = min { d(s1, s) for all sequences s in the
signature database }.

Again, the dmin value indicates how much a monitored
sequence, s1, differs from the signature database. When
the execution of an application is monitored, the
maximum dmin value that was encountered in a trace
represents the strongest anomalous signal found in the
monitored trace. So the anomaly signal, AS , is defined
as:
 AS = max { d min (s) for all monitored sequences s }.

In order to compare AS values when k varies, the

anomaly signal
∧

AS is normalized by the sequence length
k, i.e.:

∧

AS = AS /k.

The normalized anomaly signal
∧

AS is more compute
intensive than other two measures. Like the mismatch
count, it takes k comparisons to determine a match, and
takes at most k comparisons to determine a mismatch. If a
mismatch exists, we compute d min. Because d min (s) is the
smallest Hamming distance between s and all sequences
in the signature database, every sequence in the database
must be checked to determine dmin (s). Assume that N is
the number of sequences in the signature database, then
the cost totals k*N comparisons. In reality mismatches are
rare, so most of time, the algorithm confirms matches at a
cost of k comparisons. If the rate of mismatches to
matches is RA, then the average complexity of computing
dmin (s) per sequence is (k*N*RA) + k*(1-RA), which is
O(k*RA*N).

The normalized anomaly signal,
∧

AS , expresses how
much a monitored sequence deviates from the signature
database in a way that is independent of sequence length.

The value of the normalized anomaly signal,
∧

AS , is
between 0 and 1.

All three anomaly measures can be used to express
thresholds, that when crossed, indicate the probability that
an intrusion has occurred.

3.4 False positives vs. false negatives

An intrusion detection system can make intrusion
detection decisions based on the observed values of the
above measures. In the simplest case, these are binary
decisions: Either a sequence is anomalous, or it is normal.
There are two types of classification errors: false positives
and false negatives [4]. A false positive, also known as a

4

false detection or false alarm, occurs when a sequence
generated by legitimate behavior is classified as
anomalous. A false negative occurs when none of the
sequences generated by an intrusion are detected as
anomalous, i.e., all sequences generated by the intrusion
appear in the signature database.

We would like to minimize both types of classification
errors. But system administrators are more willing to
tolerate false negatives than false positives because false
negatives can be reduced by adding layers of defense
while layering will not reduce overall false positives. In
some cases, layering even compounds false positives.
The reason for false positives is that in reality it is
difficult to collect signature sequences of all normal
behavior for a complex application. Therefore, we set
thresholds on the normalized anomaly signal values to
limit false positives. We regard an intrusion to be in

progress when the normalized anomaly signal,
∧

AS , is
greater than C (0 <= C <= 1) where C is chosen based on
experience. In our following experiments, we chose C as
0.5.

4. Experimental environment

We experimented with our library call approach using
a variety of applications in Unix. These programs vary
from small applications (e.g., ls and ps) to large
applications (e.g., the Apache httpd server, and Mini
SQL). The applications differ not only in size, but also in
privilege. Privileged processes perform services that
require access to system resources normally inaccessible
to ordinary users. In our experiments, some applications
run as privileged processes (e.g., wu-ftpd), while others
(e.g., finger) execute without privilege. We observed no
difference in the efficiency of our intrusion detection
method based on this difference.

All signature data reported in this paper were derived
from experiments performed under Linux, a Unix-based
operating system. We selected Linux since its source
code, which was developed under the GNU General
Public License, is freely available. We used Red Hat 5.2
version of Linux with kernel version 2.0.36. We chose
such an early kernel version because all experiment data
about intrusion detection using sequences of system calls
by the New Mexico researchers were conducted with this
version of the kernel. We wanted to compare our library
call approach with their system call approach in a similar
environment.

5. Experimental results

Our experimentation required that we build signature
databases for our selected applications. As discussed in
the previous section, we chose to build synthetic signature

databases. Next we performed experiments to determine if
it is possible to detect intrusions that exploit security
flaws in our selected applications. We needed to identify
the vulnerabilities, i.e. weakness that could be exploited,
in these applications. In a controlled experimental
environment, intrusions were performed. Then we
analyzed the intrusion detection results and compared
them with the results of other approaches.

5.1 Build robust signature databases

This section explains the construction of experimental
signature databases. A signature database is described as
robust if the database records a sufficient portion of the
legitimate sequences of library calls so that the false
positive rate remains tolerable. Figure 2 shows the
incremental generation of sequences to be added to the
signature database for ps, a program to report process
status. To build the signature database, the application
was exercised extensively, i.e., in a carefully controlled
way in order to exercise as much of code as possible.
Unique sequences are added to the signature database as
encountered. Figure 2 illustrates that the database size
initially increases rapidly. Gradually, the number of new
unique sequences to be added to the database drops off.
We define the database to be sufficiently robust when the
slope of growth “flattens”, i.e., the number of unique
sequences added to the database per the total sequences
generated falls below a threshold set for the application.

Signature databases will differ greatly in size.
Typically, larger applications (measured in source lines of
code) are associated with larger databases. For example,
our signature database the Apache httpd server, the most
widely used web server, contains 1383 unique sequences
of length 10. However, signature databases can be quite
compact. For example, the signature database for ps
contains only 571 unique sequences of length 10. To put
this in context, ps contains no more than 60 different C
library calls. So, for k=10 there are 6010 possible
sequences. Thus our ps signature database contains only a
very tiny percentage of the total possible number of
sequences from the use of 60 different library functions.

5.2 Distinguish between programs

In this section we discuss comparison of the sequences
generated by one application with the signature databases
of other applications. We reasoned that if we could not
distinguish between two applications in the absence of
intrusion, then sequences of library calls do not
characterize an application. As a result, sequences of
library calls from an intrusion are unlikely to be
detectable.

We performed this comparison for varying sequence
lengths. We simply compared the sequences in one

5

database against signature databases for other
applications. When the sequence length is very low
(close to one), there are very few mismatches. When the
sequence length reaches k=30, mismatches are almost
100% against all applications. Results of comparisons of
the Apache httpd server with other Unix utilities for k=10
are presented in Table 1. The results are based on the
Apache httpd server signature database described in the
previous section. We used New Mexico STIDE tool to
compare the traces of library calls of these utilities against
the Apache httpd database.

Program Number Mismatches %Mismatches
ls 209 76
ls –l 360 84
ls –a 356 69
finger 239 100

Each program showed a significant number of
different sequences from the Apache httpd server
signature database (at least 69%). The results
demonstrated that the behavior of different programs is
distinguishable using sequences of C library calls, i.e.,
library call signatures can be used to characterize
applications.

5.3 Sequence length analysis

Next we preformed several experiments to explore the
relationship between the library call sequence length and
intrusion detection. We experimented with known attacks
that exploit the vulnerabilities [6] in the Apache httpd
server. We successfully detected intrusions using our
library call signature.

The intrusion detection results for sequence length k =
10 are reported below. Although the percentage of

mismatches is low, the normalized anomaly signal
∧

AS
indicates there may be intrusions because the most
anomalous sequence among all of monitored sequences
differs from the normal sequences in over 70 percent of
its positions.

R obust S ignature D atabase - ps

0

100

200

300

400

500

600

0 2000 4000 6000 8000 10000

Tota l S eqences Sca nned

D
at

ab
as

e
Si

ze

Figure 2. Derivation of a signature database for ps program. The x-axis indicates the total
sequences generated, and the y-axis indicates the number of unique sequences. Sequence
length is 10.

Table 1. Distinguishing Apache from other
programs. Each column reports results for an
anomaly measure: mismatches and percentage of
mismatches. Sequence length is 10.

6

Attacks against
Apache

Number
Mismatches

Percent
Mismatches

∧

AS

Phf Remote
Command
Execution

 251 1.5 % 0.7

nph-test-cgi
Vulnerability

 777 3.9 % 0.8

We varied sequence length, k, from 2 to 30. The
minimum sequence length used is 2 because k=1 will

yield
∧

AS = 0 or
∧

AS = 1, which is meaningless for
sequence analysis. The maximum sequence length used
here is 30. Note that the cost of computation increases
significantly with sequence length. We observed that
adequate detection resulted from much shorter sequences.

From Figure 3, we can conclude that varying the
sequence length makes little difference in value of the

normalized anomaly signal
∧

AS . In other words, varying
sequence length has little effect on intrusion detection
using C library call signatures. Also, we infer that the
intrusion detection result is stable if sequence length is

larger than 6. Considering that computation cost
proportional to sequence length, we can see that sequence
length 10 is sufficient for detecting phf vulnerability
attack and that sequence length 9 is sufficient for
detecting nph-test-cgi vulnerability attack. In our
experiments, we chose sequence length 10 to allow for
some margins of error while incurring acceptable
computation cost.

5.4 Various intrusion detection experiments

To test the effectiveness of the library call approach in
detecting intrusions, we experimented with a variety of
applications and intrusions, including Buffer Overflow,
Trojan programs, and Denial of Service. The purpose of
this set of experiments is to prove that the library call
approach is a general and effective way to detect different
kinds of intrusions. The following sections discuss our
results for each of the three attacks.

5.4.1 Buffer overflow. Buffer overflow experiments
were conducted primarily on the Washington University
ftp daemon (wu-ftpd), a very popular Unix ftp server that
is shipped with many Unix distributions. Two
vulnerabilities [6] in wu-ftpd are exploited to cause
buffer-overflow attacks. Table 3 shows the results of
detecting the two attacks. We can conclude that two
attacks against wu-ftpd were successfully detected

because
∧

AS is at least 0.6. That indicates that the most
anomalous sequence differs from all sequences in the
signature database in over half of its positions.

Table 2. Successful detection of two attacks
against Apache. Each column reports results
for an anomaly measure: mismatches,
percentage of mismatches, and normalized
anomaly signal. Sequence length is 10.

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40
Sequence Length

N
or

m
al

iz
ed

 A
no

m
al

y
Si

gn
al

Figure 3. Detecting the same intrusion using different sequence lengths. The x-
axis is sequence length and the y-axis is the normalized anomaly signal. The
signal value remains above 0.5 for all lengths. Intrusion is detected in all cases.

7

Ftpd Buffer Overflow
Attacks

Number
Mismatches

Percent
Mismatches

∧

AS
Format String Stack
Overwrite

467 3.5 0.7

Ftpd Realpath
Vulnerability

569 2.7 0.6

The library call approach works well with buffer
overflow attacks when, as is typical, the attacker code
adds new sequences of library calls or even entirely new
library calls. If attack code does call a library call routine
not in application code or introduces new sequences of
library calls, then it can be detected clearly. If attack code,
however, makes no library calls at all, then the library call
approach will not be effective.

5.4.2 Trojan Programs. The Linux root kit includes
Trojan attack code for ps. It allows intruders to login
through a backdoor and hide their activities from system
administrators. Table 4 shows the results of detecting
Trojan code. When Trojan code runs, new sequences that
are not in the ps signature database are introduced. As a
result, the Trojan code attack is detected.

Attack Number
Mismatches

Percent
Mismatches

∧

AS
ps Trojan
Code

243 3.0 0.8

5.4.3 Denial-of-Service. We simulated a Denial-of-
Service (DOS) attack that exhausts all available memory.
Our experiment was conducted using the text editor vi.
As the attack progresses, applications, like vi, make
library calls/system calls requesting memory. These
calls return failure (or anomaly). Applications then invoke
exception handlers that introduce new call sequences.
They are not likely to be in the signature database.
 We conducted two tests to determine how effective our
library call approach is for detecting DOS attacks. Table 5
states the results. The first run was normal execution of

the vi program, i.e., without intrusion. There are no

mismatches and
∧

AS = 0.0 because all monitored
sequences were in the vi signature database. The second
run of the vi program is interrupted by the DOS attack.

The value of
∧

AS indicates this DOS attack is clearly
detected.
 The difference in these two runs of vi occurs because
memory depletion causes invocation of a new library call,
fsync. Note that fsync does not appear in either the
database or application code. This new library call is used
to synchronize a file’s complete in-core state with that on
disk. It copies all in-core parts of a file to disk. fsync is
invoked indirectly by the application to deal with
exception when all memory is not available. This
experiment illustrates that new library calls may be
introduced when intrusions occur.

Program –
vi

Number
Mismatches

Percent
Mismatches

∧

AS
Normal Run 0 0 0.0
DOS Attack 101 2.6 0.6

5.5 Library call signature vs. system call
signature

Our experiments demonstrated that the library call
signature can be used to detect a variety of intrusions
successfully. Similarly, New Mexico researchers used
system call signatures to detect intrusions. We
hypothesize that the library call approach is more
effective than the system call approach for selected
categories of applications. To test this hypothesis, we
developed the following intrusion attack against mSQL, a
lightweight relational database management system [5].

The attack against mSQL is a Trojan code attack that
allows an intruder to illegally access the password file,
group file, and host file. Table 6 shows the results of
attempting to detect this Trojan code attack using both the
system call and library call approaches. Two anomaly
measures are cited. Recall that the locality frame count
reports the largest number of anomalies found within a
locality frame. Both measures indicate that the library call
approach successfully detects the attack while the system
call approach is less effective.

Table 3. Successful detection of two buffer
overflow attacks against wu-ftpd. Each column
reports results for an anomaly measure:
mismatches, percentage of mismatches, and
normalized anomaly signal. Sequence length is
10.

Table 4. Successful detection of Trojan code
for ps. Each column reports results for an
anomaly measure: mismatches, percentage
of mismatches, and normalized anomaly
signal. Sequence length is 10.

Table 5. Successful detection of DOS attack.
Each column reports results for an anomaly
measure: mismatches, percentage of
mismatches, and normalized anomaly signal.
Sequence length is 10.

8

mSQL Trojan Code
Attack

∧

AS
Max Locality
Frame Count

Library Call Approach 0.5 20
System Call Approach 0.4 9

We speculate that the difference is related to the fact
that system call sequences have too little variation.
Because mSQL is a lightweight relational database
management system, most operations for mSQL relate to
disk I/O access. As a result, almost every combination of
I/O system calls is likely recorded in the system call
signature database. Our Trojan attack also relates to
illegal access to disks. Unfortunately, the monitored
sequences of system calls that reflect intrusion behavior
also characterize normal behavior. Therefore, they are in
the signature database or perhaps do not differ
significantly from sequences in the signature database.
Thus, the system call signature is unable to detect
significant deviations. In this situation, we need to depend
on library calls that don’t generate system calls to detect
anomalistic behavior.

6. Conclusions

We have presented an approach for intrusion detection
at the application level based on the application’s use of
language libraries. We believe that library call signatures
are more application-oriented than system call signatures
since they permit one to tap the rich application
semantics. From an application’s view, library call
signatures are not OS specific. We use three anomaly
measures (mismatch count, locality frame count and
normalized anomaly signal) to determine the strength of
an anomalous behavior.

We performed experiments with a variety of
applications based on C library calls. Our experiments
performed using Linux demonstrated that sequences of C
library calls can be used to characterize different
applications. We build robust signature databases for our
selected applications. Our experiments involved attacks
such as buffer overflow, Trojan code and denial of
service, which are among the most serious security
problems on the Internet today. The library call approach
appears to be very promising.

Also, we compared our library call approach with the
system call approach in a specific situation and found that
it performed better.

Acknowledgements

We thank the referees for this conference. They made
some sage and very helpful suggestions for improvement.

References

[1] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.
Longstaff. A Sense of Self for Unix Processes. In
Proceedings of 1996 IEEE Symposium on Computer
Security and Privacy, 1996
[2] S. Forrest, S. Hofmeyr, and A. Somayaji. Computer
Immunology. In Communications of the ACM, Vol. 40,
No. 10, pp. 88-96, 1997
[3] R. Heady, G. Luger, A. Maccabe, and M. Servilla. The
Architecture of a Network Level Intrusion Detection
System. Technical Report CS90-20, Dept. of Computer
Science, Univ. of New Mexico, August 1990.
[4] S. A. Hofmeyr, A. Somayaji, and S. Forrest. Intrusion
Detection using Sequences of System Calls. In Journal of
Computer Security, Vol. 6, pp. 151-180, 1998
[5] Hughes Technologies home page, http://www.
hughes.com.au/
[6] Y. Lin and A. Jones. Application Intrusion Detection
using Language Library Call. Technical Report,
Department of Computer Science, Univ. of Virginia, June
2001
[7] Debian ltrace home page, http://packages.debian.org/
stable/utils/ltrace.html
[8] Matthew Stillerman, Carla Marceau and Mareen
Stillman. Intrusion Detection for Distributed
Applications. In Communications of ACM, 1999

Table 6. Successful detection of mSQL Trojan
code attack by the library call approach. Each
column reports results for an anomaly
measure: normalized anomaly signal and
maximum locality frame count. Sequence
length is 10. Locality frame size is 20.

http://www/

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

