On the Primer Selection Problem
in Polymerase Chain Reaction Experiments

Gabriel Robins, Dallas E. Wrege, Tongtong Zhang, and William R. Pearson!

Department of Computer Science, University of Virginia, Charlottesville, VA 22903-2442
]L Department of Biochemistry, University of Virginia, Charlottesville, VA 22903-2442

Abstract

In this paper we address the problem of primer selection in polymerase chain reaction
(PCR) experiments. We prove that the problem of minimizing the number of primers required
to amplify a set of DNA sequences is NP-complete. Moreover, we show that it is also
intractable to approximate solutions to this problem to within a constant times optimal.
On the practical side, we give a simple branch-and-bound algorithm that solves the primers
minimization problem within reasonable time for typical instances. Moreover, we present an
efficient approximation scheme for this problem, and prove that our heuristic always produces
solutions with cost no worse than a logarithmic factor times optimal. Finally, we analyze
a weighted variant, where both the number of primers as well as the sum of their “costs”
is optimized simultaneously. We conclude by addressing the empirical performance of our
methods on biological data.

1 Introduction

The polymerase chain reaction (PCR) has revolutionized the practice of molecular biology, making
it routine to synthesize millions of copies of a single gene or other portion of a genome (for a recent
review, see [5]). PCR has been used to synthesize nanogram quantities of a gene from a single
sperm (and thus a single DNA molecule), a 10'4-fold amplification [1]. The remarkable power of
this technique and its importance for biological research was recognized with the selection of Kary

Mullis, the inventor of PCR, to share the Nobel Prize in Chemistry in October, 1993.

Computer programs [8] [11] [12] are used extensively to design PCR primers (i.e., short stretches
of DNA, 15 to 20 nucleotides long, that are used to establish the ends of the PCR reaction). In

general, these programs have focused on optimizing the nucleotide sequence for selecting a single

primer binding site in a complex mammalian genome (which contains up to 3 - 10° such sites)
and avoiding various artifacts that can be encountered with PCR. Thus, the computer program is
given a single DNA sequence, which might contain 100 potential primer sites, and the sites that

optimize some relatively simple sequence composition properties are selected.

In this paper, we describe an approach to the solution of a related problem - the amplification
of previously undiscovered members of a multigene family by designing primers that will function
on the largest possible set of known members of the family. Large families of related genes have
become surprisingly common over the past 5 years. Currently the largest known family is believed
to contain as many as 1000 related genes that encode proteins called G-protein-coupled receptors
[7]. However, there are many other such families that encode a large range of proteins with essential
roles; PCR amplification is often the only technically feasible method for characterizing members
of such large families of genes. Here the problem is quite different from the typical primer selection
problem. We are given a set of 5 to 50 (or more) members of a family of genes, each of which has
20 to 100 potential primer sites, and we must select a set of primers that would function on the
largest possible number of family members, with the hope that such primers will also allow new

members of the family to be amplified.

We offer both theoretical and practical contributions. On the negative side, we prove that
it is computationally intractable to minimize the number of primers required to amplify a given
set of sequences; in particular, we use a reduction from the set cover problem to establish that
primer number minimization is A'P-complete, which implies that no polynomial-time algorithm
is likely to exist for this problem. Moreover, we show that one can not even hope to solve this
problem approximately very well: there does not exist an approximation algorithm that yields
solutions with cost bounded by a constant times optimal, unless a longstanding open problem
in computational complexity theory is resolved. On the positive side, we give a straightforward
branch-and-bound algorithm that solves the primer minimization problem within reasonable time
for typical instances. We also construct an efficient approximation scheme for this problem, and
prove that our heuristic always produces solutions that are guaranteed to have cost no worse than
a logarithmic factor times optimal. Finally, we analyze a weighted variant, where both the number
of primers as well as the sum of their “costs” must be minimized simultaneously. We conclude by

discussing the empirical performance of our methods on biological data.

The rest of the paper is organized as follows. In Section 2 we develop notation and formulate
the problem. Section 3 establishes the NP-completeness of the primers number minimization
problem. In Section 4 we present an exact branch-and-bound algorithm, and in Section 5 we
develop a provably-good heuristic and analyze its performance in terms of solution quality. Section
6 introduces the weighted formulation and discusses the simultaneous optimization of solution cost
as well as cardinality. In Section 7 we discuss the empirical performance of our algorithms on actual
DNA data, and present our experimental results. We conclude in Section 8 with future research

directions.

2 Notation and Problem Formulation

Before we formulate the problem of minimizing the number of primers required to synthesize a
given set of DNA sequences, we first develop the necessary notation. We use small lowercase italic
letters (e.g. “a”) to denote characters and strings, uppercase letters (e.g. “A”) to denote sets, and

uppercase calligraphic letters (e.g. “A”) to denote collections of sets.

Let S = {s1,...,s,} be a finite set of strings over a finite alphabet X (of nucleotides). The
concatenation of two strings v and v, denoted by wv or u - v, is defined as the string formed
by all the symbols of u followed by all the symbols of v. For any finite set of symbols X, we
define ¥* to be the set of all finite strings of symbols from . For example, if ¥ = {a,b}, then
¥* = {e,a,b,aa,ab, ba,bb, aaa,aab, ...}, where ¢ denotes the unique empty string of length 0. For
two strings u,v € ¥*, u is a substring of v if u is a contiguous subsequence of v, and we denote
this as u < v; 1.e., u < v implies that there exist z,y € ¥* such that zuy = v. The length of a

string u is denoted by |u]. For a collection of sets C, we denote the union of all of its members as

Ue=Uc

CcecC

A set of strings 1s said to be a string group of order k if all the strings have a common substring
of length k or more; in other words, given a string set S = {s1, ..., s,}, if there exists a u € ¥* with
|u| > k, such that u <'s; for all 1 <7 < n, then S is a string group of order k, and u is their (not
necessarily unique) common substring of length at least k. We then say that u induces the string
group S, and that S is the string group associated with u. The size of S i1s the number of strings

in S, denoted by |S|. Tf a subset S’ of S satisfies the string group definition with order k, then

we say that S’ C S is a string subgroup of S with order k, denoted S’ Cj S. A string subgroup
18 mazimal if it is not a proper subset of any other string subgroup of the same order. We denote
the collection of all string subgroups of S of order k as S = {5’ | S’ Cr S}. If for some C C Sy,
we have S C | JC, then we say that C is a cover for S of order k and size |C|. An optimal cover of
order k is a cover of order k having minimum size. In Section 6 below we extend the definition of

“optimal” cover to take into account inexact string matching.

For example, the set S = {cabaca, acabab, bbacaba} C {a,b,c}* is a string group of order 4,

since caba is also a common substring of length 4 for each string in .S’ (we use the underline notation
to highlight common substrings). Note that S = {cabaca, acabab, bbacaba} is also a string group
of size 3 and order 2, since all strings in S have the common substring ac of length 2. On the
other hand, S is not a string group of order 5, since there exists no substring of length 5 common
to all strings of S. We observe that S contains a maximal string subgroup of order 5 and size 2,
namely {acabab, bbacaba}, associated with the common substring acaba of length 5. Finally, the

two string subgroups contained in C = {{acabab, bbacaba} , {cabaca}} form an optimal cover for

S of order 5 and size |C| = 2, although the single string subgroup {cabaca, acabab, bbacaba} (i.e.,

S itself) forms an optimal cover for S of order 4 and size 1.

In our formulation, a string corresponds to a DNA sequence, a substring corresponds to a
primer or a portion of a primer, and a string (sub)group corresponds to a primer group; we
shall therefore use these terms interchangeably in what follows, depending on context. Also note
that although above we did not restrict the alphabet size, in biological applications the alphabet
typically consists of the four nucleotide bases adenine, cytosine, guanine, and thymine, abbreviated

as ¥ ={a,c g,t}.

Given a set of DNA sequences (strings), there are many choices as to which primers (i.e.,
common substrings) can synthesize to amplify (i.e., cover) different sequence subsets (i.e., string
subgroups). Moreover, to keep the problem realistic, we insist that all primers have length & or
more, otherwise we could trivially use a single primer of length zero (i.e., the empty string) to
cover all of the DNA sequences, which would not be useful biologically. Yet, even if we set an a
priori lower limit on the primer length (not greater than the shortest DNA sequence), any set of

DNA sequences can be covered by using a single distinct primer for every DNA sequence (e.g.,

the DNA sequence itself). However, such a solution would be wasteful due to the large number of
primers necessary to carry out the PCR experiment and would be unlikely to allow us to discover
new genes. With this in mind, we seek to minimize the number of primers of a specified order

necessary to cover a given set of DNA stands:

Optimal Primer Set (OPC) Problem: Given a finite set .S of DNA sequences and an integer

k, find an optimal cover for S of order k.

In the next section we analyze the complexity of the OPC problem and prove its computational
intractability'. In subsequent sections we will present and analyze a provably-good heuristic for

the OPC problem.

3 Complexity of the OPC Problem

In analyzing the computational complexity of combinatorial problems, one often seeks a known
intractable problem that reduces to the problem at hand. If this transformation can be achieved
“efficiently”, then the problem at hand is intractable also. Indeed this is a fundamental technique
in the theory of N'P-completeness [6], which defines and characterizes the class NP of problems
that are solvable in non-deterministic polynomial time. The “hardest” problems in A"P, namely
the collection of A"P-complete problems (NPC), all transform (or reduce) to one another within
polynomial time, yet none are currently known to be solvable within deterministic polynomial
time. Thus, a polynomial-time solution to one of the problems in A"PC would immediately yield
polynomial-time algorithms to all problems in N'PC. Since N'PC is also known to contain hundreds
of well-known difficult problems that for decades have resisted polynomial-time solutions, it is
thought unlikely that any problem in A"PC is solvable within polynomial time. Therefore, a proof
that a given problem is in N"PC serves as strong evidence of its intractability, and justifies the use

of efficient but inexact heuristic solutions (as opposed to exact but inefficient ones).

We stated the OPC problem in Section 2 as an optimization problem; i.e. given an instance

< S,k > of the OPC problem, we seek a cover for S of order & with minimum size. The theory

1 As usual, “efficient” in this context means “solvable within time polynomial in the input size”, and “intractable”
implies the contrary.

of N'P-completeness usually considers the decision versions of problems, where the output is
restricted to be simply either “yes” or “no”. This convenience is undertaken without loss of
generality because the optimization version of a problem is “not any easier” than the corresponding
decision version (since if we knew what the optimal answer was, we could then trivially determine
whether it satisfies a given size/cost bound). Thus, for a given optimization problem in NP, if

the decision version is A"P-complete, then so is the optimization version.

For the purpose of the intractability results below, we therefore recast the OPC problem
as a decision problem as follows: given a finite set S of DNA sequences and integers k and
l, does there exist a cover for S of order k£ and of size [or less? Our first theoretical result
establishes the intractability of the decision version of the optimal primer cover problem; it is
clear from the discussion above that the intractability of the optimization version of the OPC

problem immediately follows.

Theorem 3.1 The OPC problem with unrestricted alphabet is N'P-complete.

Proof: Clearly the OPC problem is in the class AP, since given an instance < S, k,I > of
OPC and a primer cover C, we can easily verify within polynomial time that C has order k£ and
cardinality /, and moreover that C covers S. To verify that C is of order k, we check that each of
its constituent string sets C; € C is of order k, which in turn is accomplished by considering all
substrings of length k in each sequence in C; and verifying that at least one of them is a substring

of all other sequences in C;. To see if C covers S, we simply check whether S C | JC.

To complete the proof that OPC is N"P-complete, we must next transform a known problem
in N"PC to the OPC problem. Toward this end we choose the well-known A'P-complete minimum
set cover (MSC) problem, which is defined as follows: given a collection M of subsets of a finite
set T and a positive integer h, does there exist in M a cover for T of size at most h? (i.e., is there
a M’ C M such that |M’| < hand T C |JM’ 7). We now show how to transform an arbitrary
instance < T, M, h > of MSC into an instance < Sk, > of OPC, in such a way that < S, %k, >

has a solution if and only if < 7T, M, h > has a solution.

Given an arbitrary instance < 7', M, h > of the MSC problem, set I = h, ¥ = {0,1,b1,bs,..., b7},

and k = [log, |M]] (the b;’s will be used as “seperators” to delineate substrings in the encoding

described below). We will construct a set S of strings over ¥ where each string s; € S represents a
distinct element ¢; € T, with s; encoding the subset membership information of its corresponding
t; (i.e., the encoding s; reflects which M; in M contain t;). Thus, for every M; € M, the construc-
tion places some common substring u; in all strings in .S that correspond to the elements in A;.
We encode each M; € M by a unique? string u; over {0,1} C ¥ with |u;| = k, and concatenate
u; and the unique “separator” symbol b; to every s; € S that corresponds to each t; € M;. In
other words, if the subsets M, , M;,,..., M; are exactly those that contain an element ¢;, we
construct s; = u;,b;u;,b; - - -u;, b;j. This scheme (see Figure 1 and Figure 2) will clearly induce a

string subgroup .S; Cj, S corresponding to M;, since u; < s; for all 5; corresponding to t; € M;.

Transformation of the MSC problem to the OPC problem
Input: An arbitrary instance < 7, M, h > of MSC

Output: A Corresponding instance < S, k,! > of OPC

1. For each t; € T Do Create s; € S with s; — ¢

2. Fori—1to |M|Do

3. Let u; = a unique string of length [log, |[M|] over {0, 1}

4

5

For each t; € M; Do s; «— s; - u; - b;
Output < S, k, 1> — < {s1,. ~~75|T|}7 [log, IM]], h}

Figure 1: Polynomial-time transformation of an instance of MSC into an instance of

OPC, using the alphabet ¥ = {0,1,b1,bo,..., b7} for the encoding.

Although it is clear from the construction that each subset M; € M has a corresponding
string subgroup S;, it is not obvious that our construction avoids introducing maximal® subgroups
of order k that do not correspond to any subset M; € M. We therefore now argue that the

transformation does not induce such spurious maximal subgroups.

Assume towards contradiction that a spurious maximal string subgroup S’ of order k exists,
and consider the string/primer u associated with S” Ty S. Since by assumption S’ is not associated
with any subset M; € M, u cannot be equal to any u; formed strictly from elements in {0, 1}
by the construction (otherwise S’ would ezactly correspond to some subset in AM). But the size
of u is at least as large as the size of the w;’s (namely k symbols long), so if u is not equal to

any of the u;’s, then u must contain some separator symbol b;. However, the symbol b; occurs

20bserve that using the alphabet {0,1}, we can form 2% = 201982 IMI1 > | Af| unique strings of length k which
are sufficient to uniquely encode all | M| subsets.

3Since the objective of the OPC problem is to minimize the cardinality of the cover, it suffices to consider only
maximal string subgroups.

MSC Instance OPC Construction OPC Instance

M, M, M, M,
S1 = u1 b1
S1 = u1 b1

S2 = uih2 uz2b2
S2 = uih2 uz2b2

S3 = Uz2bs uzbs

S3 = uz bz uzbs
S4 = Uz ba
S4 = us bs
Ss = Usbs usbs
S5 = usbs usbs
_ Se = U4 bs
Se = Us be

Figure 2: The construction of an instance of OPC from an arbitrary instance of MSC.
A unique string wu; is used to encode each subset M; (i.e., here the unique strings uq,
ua, uz, and uy are created to represent My, Ma, M3, and My, respectively). Also, each
string s; uses its own unique separator b; in between the u;’s. Note that each string s;
is formed according to the construction above; for example, {5 is a member of both M3
and M4, and thus the corresponding string ss is set to ugbs - usbs.

only in the string s;, and thus the size of the string subgroup S’ is at most 1 (i.e., 5" = {s;}).
The fact that s; is not the empty string (since it contains u) implies that the element ¢t; € T
corresponding to s; must be contained in some M;; € M, and moreover |M;/| = 1, otherwise
there would be some substring u;: < s; that would induce a string subgroup of order k strictly
containing S’, contradicting the assumed maximality of S’. Tt follows that if S’ is maximal, then

it 18 not spurious.

In summary, our construction puts the maximal string subgroups over S into a one-to-one
correspondence with the subsets in M therefore, a minimum set cover in < T, M, h > corresponds

to a minimum primer cover in < S, k, [>. 0

Note that in Theorem 3.1, the alphabet size of the OPC instance i1s dependent on the MSC
instance (i.e. |X| is a function of |T|). Tn biological applications however, the alphabet is of
constant size, independent of the input (i.e., ¥ = {a,¢,g,1}, so |X| = 4). We therefore need to
show that the OPC problem with alphabet . = {a, ¢, g,t} remains A"P-complete, and this will be
accomplished using an argument similar to that used in the proof of Theorem 3.1. As we will see,
{a,c} and {g,t} can be used to encode {0,1} and {b1,bs,...,bp|} of the unrestricted alphabet,

respectively; we next outline a scheme that enforces a one-to-one correspondence between the

subsets M; € M and the maximal string subgroups S; Cj S, using only the restricted alphabet

¥ = {a,c,g,t} for the encoding.

Theorem 3.2 The OPC problem with restricted alphabet 3. = {a, ¢, g,t} is N'P-complete.

Proof: Since this problem is a special case of the more general OPC problem that was shown
to be in NP in Theorem 3.1, this restricted version is clearly also contained in A"P. We now
show that the restricted problem is indeed N"P-complete as well, using a transformation from the

minimum set cover problem.

Let < T, M,h > be an arbitrary instance of MSC, and set [= h. As before, we would like to
create an instance < S, k,I > of OPC that will encode elements of T as strings in S. As in the
proof of Theorem 3.1, we encode subsets of M using a unique binary representation over {a,c}.
However, due to the restricted alphabet size, we no longer have the freedom to use |T'| distinct
symbols to separate the u;’s, but rather we must now also encode the separators b; themselves
using a binary representation over the remaining alphabet symbols {g,¢}. This is indeed what we
do, but the only problem is that pieces of the encodings of the u;’s may inadvertently combine with
fragments of the encodings for the b;’s to form spurious primers and thereby induce unintentional

matches with other strings of S.

This problem is avoided by duplicating the encoding of each M; € M twice in the appropriate

strings in S. In other words, if the sets M; , M;, contain an element ¢; € T, we construct

IR PRI
55 = Ui, U bjusui,by - - -ug ug by, where the u;’s are unique binary encodings of the M;’s, and the
b;’s are unique binary encodings of the separators. We then set the order of the string subgroups

that we wish to find in S to twice the length of the minimum unique encoding length, i.e., set

k =2 [max{log, |M|,log, |T'|}]. The encodings of the u;’s and b;’s are all of length k/2.

To see that this transformation works, note that in s; = w;, u;, bjuz,u,b; - - -u; u; by, any
length-£ common substring u associated with a maximal substring group can not completely
contain any separator b; in its entirety, because otherwise the string subgroup induced by u will
have cardinality 1 (since the separators are unique among strings). On the other hand, since
the length of u is twice the length of each w; which in turn appear as identical adjacent pairs in

55, u must necessarily contain at least one whole copy of one of the u;’s, and therefore can not

match any other string that does not contain the same w;. It follows that no spurious matches
can occur across strings due to “unintentional” combinations of symbols from both the u;’s and
the b;’s. Thus, we preserves the one-to-one correspondence between the string subgroups 5; Cj, S
and the subsets M; € M, and therefore < S, k,l > has a solution if and only if < T, M, h > does.
This polynomial-time transformation implies the N“P-completeness of the OPC problem with a

restricted alphabet of 4 symbols. 0

4 An Exact Branch-and-Bound Algorithm

We saw above that the MSC problem reduces to the OPC problem, which indicates that there
exists a similarity between the two problems. Thus if we can achieve a reduction in the opposite
direction (i.e., a transformation of the OPC problem to the MSC problem), this will enable the
application of well-known techniques for the MSC problem in order to solve the OPC problem.
In this section we outline a branch-and-bound exact algorithm for the OPC problem (the next

section will outline a more efficient heuristic solution).

Recall that at the heart of the reduction from MSC to OPC (Theorem 3.1) was a one-to-one
correspondence between the subsets of the MSC instance and the string subgroups of the OPC
instance. With this in mind, we transform the OPC problem to the MSC problem as follows: for
each maximal string subgroup in the OPC instance, exactly one subset in the MSC instance is
created. This enables us to think of the optimal primer cover problem as a “special case” of the
minimum set cover problem. In particular, given an instance of < S, k, 1 > of the OPC problem, for
each string s; € S we find all length-k substrings s; < s;, and for each one of these s; we form the
maximal string subgroup in S associated with s;; these become the subsets of our corresponding
MSC instance. Clearly, a good solution to the resulting MSC instance would constitute a good
solution to the OPC instance. We therefore now turn our attention to strategies for solving the

minimum set cover problem.

One straightforward scheme to solve the MSC problem optimally is to exhaustively enumerate
all 2M| subset combinations, and select the one containing the smallest number of subsets that
covers T (see Figure 3). This algorithm considers all possible solutions, and is therefore guaranteed

to find the optimal one; however, this brute-force approach runs in time exponential in the number

10

of subsets | M]|. We can greatly improve the performance of this exhaustive algorithm in practice by
eliminating large portions of the search space using a branch-and-bound technique. In particular,
we use a tree-structured search scheme in which we keep information about partial covers during
our search, so that we may recognize certain partial covers that cannot possibly lead to solutions
better than the best solution seen so far. Using this information, we prune the search tree and

thus avoid examining large portions of the search space.

Simple Exact Algorithm for Minimal Set Cover

Input: A set T of elements, and a collection M of subsets M; C T
Output: A collection M’ C M of minimum size such that M’ covers T'
1. Fori—=1To |[M| Do

2. For each M’ C M, |M'| =i Do

3. If T C UM Then Return M’

Figure 3: A simple optimal set cover algorithm which considers all 2l combinations
of the subsets in M in order to find the optimal cover.

The brute-force algorithm of Figure 3 can easily be modified to incorporate a branch-and-
bound optimization. First, we modify the overall structure of our algorithm to look for a maximal
cover containing at most h subsets, as shown in Figure 4. By invoking the modified algorithm with
all values of h, 1 < h < |M]|, we still consider the entire solution space as in the naive algorithm.
However, during our search, we keep track of the current best candidate solution and make use of

the following fact, which enables a branch-and-bound strategy:

Fact 4.1 Consider an instance < T, M, h > of MSC, and a “partial cover” M’ forT' C T (i.e., a

collection of subsets M’ C M, where M’ covers T' = |J M), and let the cardinality of the largest

unused subset in M be b = max |M;|. Then M’ can not be “extended” by m additional
M, e M—-M'

subsets into a cover for T of size |M'| 4+ m, unless |T'| +m-b > |T|.

Proof: The number of elements that are not covered by M’ is |T'|—|T, so therefore if we augment
M’ by m additional subsets M"” C M, |M” = m| such that M’ U {M"} covers T, then || JM”|
must be at least of size |T| — |T”|, which implies that the largest subset in M — M’ must have

cardinality b > [(|T| — |T"|)/m]. 0
Based on this observation, we can avoid trying to augment partial covers if there are no

11

remaining untried subsets which are large enough to yield a complete cover competitive with the
best cover seen so far during the search. This obviates the examination of large portions of the
search space, and leads to significant improvements in the running times. This scheme is formalized

in Figure 4, and we discuss the empirical performance of this optimization technique in Section 7.

Branch-and-Bound Exact Algorithm for Minimal Set Cover
Input: A set T of elements, a set M of subsets M; C T, and integer h.
Output: A collection M’ C M, |M’'| = h, such that || M’| is maximum.
1. Procedure Optimal Algorithm (7', M, h)
2. Sort M = {My,..., M{p} by non-increasing cardinality of M;
OPT — 0
Try_Subset(OPT, h, 1)
Return OPT
Procedure Try_Subset(M’ left next)
If |M’| > |OPT| Then OPT — A’
If left= 0 Then Return
For i —next to |[M| Do
If || M| +left-|M;| > |OPT| Then Try_Subset(M’ U {M;},left—1,7+ 1)

R E

—_
e

Figure 4: An exact set cover algorithm, using branch-and-bound to speed up the search:
out of all (lﬁfl) possible covers, the one that covers the greatest number of elements of
T is returned. Branch-and-bound occurs when it is determined that the current partial
cover can not be extended so that the number of elements it covers exceeds that of the
best cover seen so far during the search.

5 A Provably-Good Heuristic

Since the OPC problem is AP-complete, efficient exact algorithms are not likely to exist, and
we therefore seek efficient heuristics that yield near-optimal solutions. Our transformation in the
previous section of an arbitrary instance of OPC into an instance of MSC suggests that in our
search for an efficient heuristic for the OPC problem, it suffices to address the MSC problem. Lund
and Yannakakis [13] showed that no polynomial-time algorithm can approximate solutions to MSC
within less than }—1 log, |T'| times optimal, unless a longstanding open problem in complexity theory
is resolved in the negative, an unlikely situation. Thus, the best polynomial-time approximation
algorithm that we can hope to achieve would have a theoretical performance bound of O(log, |T)

times optimal.

A strategy that iteratively selects a best choice among the available choices is called greedy.

12

Greedy algorithms thus make a locally optimal choice in order to approximate a globally optimal
solution; they are often simple and can be implementated efficiently. In particular, one possible
greedy algorithm for the MSC problem will select the subset M; that covers the most remaining
uncovered elements, and iterate until all elements are covered. This greedy heuristic for set cover
is illustrated in Figure 5; it is indeed simple and can be implemented within time O(|M|log, |M|),

or with slight modifications, it can be implemented within linear time [4].

Greedy Heuristic for Minimal Set Cover
Input: A set T of elements and a set M of subsets of T’
Output: A set M’ C M such that M’ covers T

1. U<T

2. M —0Q

3. While U # 0 Do

4. Select an M; € M maximizing |M; N U|
5. U—U-M;

6. M — M'U{M;}

7. Return M’

Figure 5: A greedy heuristic for set cover selects at each stage the subset M; that covers
the greatest number of the remaining uncovered elements.

The performance of this greedy heuristic for the set cover problem has been analyzed extensively
in the literature [9] [10] [13]. Johnson presents an example in which the greedy heuristic yields a
cover of size of (log, |T])-OPT, where OPT is the size of an optimal set cover [9]. A simple example
where the greedy strategy computes a cover of size (log, |T|)-OPT is presented in Figure 6. Lovasz
and Johnson both present a (log, |[T'| + 1)-OPT upper bound on the greedy heuristic; thus, the
greedy heuristic performs as well as can be expected, given that it matches the asymptotic lower
bound on the performance of any polynomial-time approximation scheme for MSC. Although the
(log, |T|+ 1)-OPT upper bound on the performance of the greedy heuristic is already known, we
present here an argument that is considerably simpler and more concise than previously known

proofs.

Let < T, M, h > be an arbitrary instance of minimum set cover, and define j < | M| to be the
size of the optimum cover. We denote by N; the number of elements that remain uncovered after

i iterations of the greedy heuristic for MSC, so that Ny = |T].

13

B4 || B3 B2 Bl

w4 (OO0 000 00
= [O0odo 000

/

BS

—

Figure 6: An example for which the greedy heuristic will produce a cover of size
(logy |T'])-OPT. Here the circles represent the elements to be covered, and the Al, A2,
B1, B2, B3, B4, and B5 ovals represent the various subsets. Observe that the optimal
cover consists of A1 and A2, while the greedy heuristic may select subsets B1, B2, B3,
B4, and B5, a logarithmic factor times optimal. Note that this example extends to an
arbitrary number of elements.

Lemma 5.1 Given N; uncovered elements with an optimal cover of size j, an additional single

iteration of the greedy heuristic will leave N;pq <]];1 - N; elements uncovered.

Proof: Given that there are j sets in the optimal cover, assume that j/ < j of them contain
uncovered elements. Observe that at least one of the subsets in the optimal cover must have size
at least N;/j’. Since the greedy heuristic selects the subset of greatest size, at most N; — N; /7’

elements will be left uncovered after an additional greedy iteration step. Thus, N;y1 < N;—N;/j' =

jljjl - N;. But j7 < j implies jlj_,l < j;—,, which combined with the previous inequality yields

Nip1 < j];l'Ni~ O

From Lemma 5.1 we obtain the following immediate corollary:
Corollary 5.2 N; < (]];1)Z - Ng.

We are now ready to prove the main result regarding the performance ratio of the greedy

heuristic for the MSC problem:
Theorem 5.3 The greedy heuristic produces a cover of size at most log, |T| times optimal.

Proof: Recall that the optimal cover is of size j; we will calculate Njiog |7, the number of

14

elements that remain uncovered after the greedy heuristic selects j-log, |T| subsets. Corollary 5.2
implies that N; g 7] < |7 (j];l)j'loge I = |7 (1 -]l,)j'loge ITI. Using the well known fact from
calculus that (1—]l)] < %, we see that Njioe 7] < |T|~(%)1Oge ITl = 1. Thus, Njiog, 7] < 1, which

means that after j -log, |T| greedy iterations, all elements of T' will be covered. 0

6 The Weighted OPC Problem

The discussion above thus far has been restricted to address the problem of minimizing the cardi-
nality of the cover - the number of primers that are required to amplify a set of DNA sequences.
Thus, the algorithms in Sections 4 and 5 strive to minimize the number of string subgroups. In
practice, however, the requirements for the length of a PCR primer (15 nucleotides) virtually
ensure that a reasonable number of primers (e.g. 5-8) cannot be found that match exactly to 20
or more members of a diverse gene family. Since we wish to identify new members of a family by
finding from known sequences a modest number of primers, we must consider how to construct

inexact primers.

One method is to produce degenerate oligonucleotide primers. The machines that synthesize
primers can be programmed to incorporate 2, 3, or 4 nucleotides in a single polymerization step,
thus, it 1s possible to construct a primer that is actually a mixture of many different sequences.
The disadvantage of this approach is that the concentration of each individual sequence is reduced
and the mixture of primers may no longer be specific for the gene family of interest. Alternatively,
one can construct primers that do not match each sequence exactly, but match all of the members
of a set of sequences with only one or two mismatches. In general, because of the biochemistry
of the PCR reaction, primers must have an exact match of about 5 nucleotides at one end of the
primer; degeneracies or mismatches are then allowed in the remainder of the primer molecule.
Thus primer selection becomes the problem of finding an optimal primer covering of order 5, and
then a weighted covering, where the weighting incorporates values for degeneracies or mismatches,

for the 10 adjacent nucleotides.

With this in mind, we introduce a cost function W that assigns a nonnegative weight to each
primer u; and its string subgroup S;. The cover weight is inversely proportional to the cover

“quality”: a cover with low weight is considered superior to a cover with higher weight. We define

15

the optimal cover in this new weighted version to be a cover with minimum total weight. The

weighted version of the OPC (WOPC) problem may be formally stated as follows:

Weighted Optimal Primer Cover (WOPC) Problem: Given a finite set S of DNA sequences,
a positive integer k, and a nonnegative cost function that assigns a weight to each string group

S; and its associated primer wu;, find a cover C for S of order k, which minimizes the total weight

Z W(SZ', Uz’)~

S;€C

We first analyze the complexity of the WOPC problem. Given that the OPC problem is

NP-complete, it is not surprising that the more general WOPC is also N"P-complete:
Theorem 6.1 The WOPC problem is N'P-complete.

Proof: We establish that the WOPC problem is N"P-complete using a reduction from the OPC
problem, which was shown to be A"P-complete in Section 3. As discussed above, we utilize the
decision version of WOPC problem, namely the one which asks: “given a finite set S of DNA
sequences, an integer k, a weight function W for string subgroups and their associated primers,
and a real number w, does there exist a cover for S of order k and total weight < w 77 We
transform an arbitrary instance < S, k,l > of OPC into an instance < 3‘7 /%, W,w > by setting
S = S, k= k, and w = I, and also defining W to be the constant function W(S;,u;) = 1 for all
string subgroups S; and their associated primers u;. This guarantees that the weight of a cover C

will be equal to its cardinality |C|, and thus Z W (S;i, u;) < w holds exactly when |C| < holds.

S.eC
It follows that a polynomial-time algorithm for OPC would induce a polynomial-time algorithm

for WOPC, which establishes the N"P-completeness of the WOPC problem. 0O

We next consider a weighting scheme that is tailored specifically to the primers selection prob-
lem in biology. To permit inexact matching, we need to develop a weighting scheme that quantifies
the “accuracy” of the matches between primers and sequences. Toward this end, we make the cost
function W depend on weight contributions from inexact matches between the primer u and the
individual strings s; € 57, denoted by w(s;,u), so that W (S, u) = Z w(s;,u). Given a primer

;€57

u and a string s;, we thus set w(s;, 1) to the number of positions in which s; differs from u. For

example, if u = abbab and s; = ababb, w(sy,u) = 2, since s; differs from u in positions 3 and 4.

16

The OPC problem naturally extends to the WOPC problem via the introduction of a weighting
scheme, and just as we have used techniques from the minimum set cover problem to attack the
unweighted case, we can address the weighted case using techniques from the weighted minimum
set cover (WMSC) problem. The WMSC problem is defined as follows: given a collection M of
subsets of a finite set T, each subset M; € M having a nonnegative weight w(M;), and a real
value h, does there exist in M a cover for T' of weight at most hA? (i.e. is there a M’ C M

such that 7' C U./\/l/ and Z w(M;) < h?) This weighted variant of the minimum set cover

M,emM’
problem is also well-studied, and we can therefore use known techniques developed for the WMSC

problem in solving the WOPC problem [2] [3]. An exact solution to WOPC can clearly be obtained
by performing an exhaustive search of all subset combinations. As we did in Section 4, we can
decrease the computation time of this exponential algorithm by resorting to branch-and-bound
techniques: keeping track of the weights of partial solutions will enable the pruning of numerous

branches of the search tree.

Given the analysis in Section 5 of the greedy heuristic for the MSC problem, it is not sur-
prising that a greedy heuristic for the WMSC problem also has a worst-case performance bound
of (log, |T|+ 1)-OPT [2] [3]. The only difference between the unweighted greedy heuristic (from
Figure 5) and the weighted variant of the heuristic lies in the selection criteria. At each step, we
now select the subset that covers the maximum number of yet-uncovered elements in T at the
lowest cost per element (i.e. we select the subset M; for which w(M;)/|M;| is minimum; this is
also the selection criteria that Chvatal analyzed in [3]). Thus, the extension of the unweighted

approximation algorithm to a weighted approximation algorithm is also quite straightforward.

Although the weighted version of OPC is more general than the unweighted version, the fol-
lowing trivial solution must be avoided: for each string s; € S, consider an exact-match primer
being the string itself (i.e., let u; = s; < s;), and thus we obtain a trivial solution with |S| string
subgroups having total weight 0. Although under our formulation above this solution would be
considered “optimal” (since it has 0 weight), this is not particularly useful. Tt would therefore
be more interesting to pursue an algorithm that simultaneously minimizes both the weight and
the number of string subgroups in a cover. Unfortunately, we can show that there does not exist

an algorithm that can simultaneously minimize both the weight and cardinality of a cover with

17

provable non-trivial bounds:

Theorem 6.2 There does not exist any approzimation scheme for the WMSC problem that can
stmultaneously minimize both the weight and cardinality of a cover within any nontrivial bounds

with respect to the optimal values.

Proof: We show that there does not exist an approximation algorithm with nontrivial simultane-
ous bounds because there exist instances of WMSC for which there is no smooth tradeoff between
cardinality and weight. For example, Figure 7 gives an instance where any cover will either have
infinite weight (clearly a bad bound) or cardinality |T| (which is the worst possible). Thus, in
the general case we can not hope to prove theoretical bounds for any simultaneous approximation

algorithm. 0

S ec et
UUUUUU |

Figure 7: An instance of WMSC illustrating that no algorithm can achieve nontrivial
simultaneous bounds on both weight and cardinality of a cover. The circles denote the
elements to be covered, while the ovals denote the weighted subsets. Observe that the
optimal cardinality of a cover is 1, while the optimal weight of a cover is |T|, where T is

the set of elements. Clearly there exist no cover which has both small weight and small
cardinality.

Despite this negative result, in practice we can nevertheless still construct algorithms that will
simultaneously optimize both cover size and weight, and indeed even achieve a smooth tradeoff
between these two objectives for typical instances (this does not contradict Theorem 6.2, which
states that no simultaneous theoretical performance bounds can be guaranteed in the worst case).
For example, we can easily construct a new cost function W’ that considers both the cardinality
and weight of a string subgroup S; by setting W/ (S;, u;) = t « W(S;,w;) + (1 —) * K, for some
constant K and a real parameter 0 < ¢ < 1. If we set ¢t = 0, this cost function will consider only
cardinality, while setting ¢ = 1 will make the cost function consider weight only. As ¢ varies in

the interval [0, 1], a reasonably smooth tradeoff will be observed in practice, as we show in Section

18

7 (i.e., this algorithm simultaneously minimizes both cardinality and weight empirically, but not

within any provable simultaneous bounds).

7 Experimental Results

We implemented the exact algorithm and the approximation algorithms discussed above using
the C programming language in the UNTX environment (code is available from the authors upon
request). In this section we compare the performance and running-times of three algorithms: the
efficient branch-and-bound optimal (BBOPT) algorithm (see Figure 4), the greedy (GREEDY1)
heuristic (see Figure 5), and a greedy variant (GREEDY2) that differs from GREEDY1 in that it
selects at each iteration, the pair of subsets that together constitute the best choice. These algo-
rithms were implemented for both the weighted and the unweighted cases. We also implemented

the scheme mentioned in Section 6 that simultaneously minimizes both cardinality and weight.

We evaluated the performance of these algorithms on biological data consisting of 56 DNA
sequences, each 75 nucleotides long, from one of the transmembrane domains (TM3) from 56
G-protein coupled receptors [7]; the data itself is shown in Figure 8. We have also created 30
random permutations of the codons (i.e., 3-base triplet substrings) of each sequence of the data,
and tested our method on all of the resulting instances. For each input instance, both GREEDY1
and GREEDY?2 executed within a few milliseconds, while BBOPT required anywhere from several

minutes to several hours, dependent upon the size of the optimal cover.

The performance of the unweighted versions of the algorithms on the data sets is shown in Table
1. Recall that the objective here is to minimize the cardinality of the cover. The cardinality of the
solutions produced by BBOPT, GREEDY1, and GREEDY?2 are shown in the table. Note that
GREEDY1 and GREEDY?2 produced an optimal cover for 21 out of the 30 random permutations,
and for the remaining permutations the solutions produced by GREEDY1 and GREEDY?2 are
at most 1 primer off of optimal. We conclude that the heuristics are thus quite effective in
primer number minimization. For the unweighted case GREEDY?2 often did not perform as well
as GREEDY1, so the additional complexity of GREEDY?2 is not justified. In the weighted case,
GREEDY?2 does outperform GREEDY1 on many instances.

19

Table 2 shows the performance of the various algorithms for the (weighted) WOPC problem,
where the objective is to minimize the total weight of the cover rather than its cardinality. Both
the weight and cardinality of the solutions produced by GREEDY1 and GREEDY?2 for the data

sets are shown in the table. Here GREEDY2 does outperform GREEDY1 on many instances.

Though as we saw in Section 6 that it is impossible to achieve provably-good simultaneous
bounds on both the cardinality and weight of a cover, in practice we can still design algorithms
which exhibit a smooth tradeoff between these two objectives. We implemented a greedy heuristic
with objective function W’ (u;, M;) = t« W (u;, M;)+ (1 —1)* K mentioned in Section 6 for various
values of ¢ in the interval [0, 1]. The results are presented in Figure 9. Each data point represents
the average values over the 30 runs on the random data for selected values of . As expected, we

observe a smooth tradeoff between cover cardinality and weight.

8 Conclusions and Future Directions

We investigated the problem of minimizing the number of primers in polymerase chain reaction
experiments. We proved that minimizing the number of primers necessary is intractable, as is
approximating optimal solutions within a constant factor. On the positive side, we gave a practical
branch-and-bound exact algorithm, and an efficient approximation scheme for primer number
minimization. We proved that our heuristic 1s guaranteed to produce solutions with cost no worse
than a logarithmic factor times the optimal cost. Finally, we analyzed a weighted variant, where
both the number of primers as well as the sum of their “costs” is to be optimized simultaneously.

Our algorithms are easy to implement and perform very well in practice on biological data.

Future research directions include: (1) investigating alternative heuristics for both the weighted
and the unweighted versions of the OPC problem; (2) experimenting with various weighting
schemes and criteria for primer selection; and (3) exploring additional heuristics for simultaneous

tradeoffs between subgroup cardinality and weight.

9 Acknowledgement
This research was supported by a grant (LM04961) from the National Library of Medicine.

20

hum5HT1a
hamB2
hamAla
humA2a
humM1
ratD1
humD2
bovH1
dogAdil
ratlK1
f1yNK
ratLH
musTRH
bovETA
musGRP
ratNPYY1
bovLCR1
f1yNPY
ratANG
ratBK2
dogRDC1
ratG10d
ratRBS11
ratNTR
humfMLF
humIL8
humC5a
humTHR
chkP2y
chkGPCR
humRSC
musP2u
musdelto
musEP2
gpPAF
humTXA2
bovOP
humSSR1
ratRTA
humMAS
humMRG
cmvHH2
cmvHH3
ratPOT
humEDG1
musGIR
ratCCKA
dogCCKB
ratVIa
musEP3
herpesEC
rat0DOR
ratCGPCR
musGnRH
humMSH
humACTH

ctgttcatcgccctcgacgtgetgtgetgetecctcatccatcttgecacctgtgegecatcgegetggacaggtac
ttctggacttccattgatgtgttatgegtcacageccagecattgagaccctgtgegtgatagecagtggatcgetac
gtgtgggccgeggtggacgtgetgtgetgecactgectccateccttagectctgecaccatctetgtggacceggtac
atctacctggcgctcgacgtgectcttctgecacgtcgtccatcgtgecacctgtgegecatcagectggaccgetac
ctctggectggeccctggactatgtggeccagcaacgectctgtcatgaatcttctgetcatcagetttgaccgttac
atctgggtggcctttgacatcatgtgetccactgecatccatcctcaacctetgtgtgatcagegtggacaggtat
atcttcgtcactctggacgtcatgatgtgcacggecgagcatcctgaacttgtgtgecatcagecatcgacaggtac
ttctggctttccatggactatgtggeccagcacggcatccattttcagegtcttcatcttgtgecattgaccgetac
atggtcgcctgecctgtecctcatcctcacccagagetccatectggeectgetggegattgecgtggaccgetac
tttcacaacttcttccccatcgetgetctcttcgecagtatctactccatgacagecgtggecttcgacagatac
ttgtcccagttcatcgegatgctaagecatctgegectcagtgttcaccctaatggecatctccatcgacagatac
gcagctggecttctttactgtgtttgecagtgaactctctgtctacaccctgacggttatcaccctggaaaggtgg
tgcattacatatctccagtacctaggcattaatgcatcttcatgttcaataacggectttaccattgaaaggtac
ttgttcccctttttgecagaagtcctcagtggggatcaccgtceccttaatctctgegecctaagegttgacaggtac
ctgatcccctttatacaacttacttcagtgggggtgtctgtcttcacacttacggcactgtcagetgacaggtac
ctgaatccttttgtgcaatgecgtctccattacagtatccattttctctetggttctcatcgetgtggaacgtcat
gcagtccatgtcatctacacagtcaacctctacagcagtgtcctcatcctggectttatcagtctggaccggtac
tttgtgaactactcgcaggeggtctcagttctggtcagegectatactttggtggcaattagecattgaccgetac
atcgcttcggccagegtgacgttcaacctctacgeccagtgtgttccttctcacgttgetcagecatcgaccgetac
gtggtgaataccatgatctacatgaacctctacagcagcatctgettectgatgettgtgagtatcgaccgatac
atcacgcacctcatcttctccatcaacctgttcggecagcatcttcttecctcacgtgecatgagegtggaccgetac
ttcattcattatttctaccttgccaacatgtacagcagcatcttcttcctcacctgectcagecattgaccgetac
ctcacgactgctttcttcttcattggettctttgggggcatattcttcatcaccgtcatcagecatcgaccggtac
ggctactatttcctgegtgatgectgecacctatgecacagecctcaatgtagecagectgagtgtggagegetac
ttcctctttaccatagtggacatcaacttgttcggaagtgtcttcctgatcgecctcattgetctggaccgetgt
gtggtctcgettgtgaaggaagtcaacttctacagtggaatcctgetectggectgecatcagtgtggaccgetac
atcctgccctccctcatecctgetcaacatgtacgecagecatcctgetecctggecaccatcagegecgaccgettt
ttcgtcactgcagcattttactgtaacatgtacgecctctatcttgetcatgacagtcataagecattgaccggttt
ctgcagaggttcattttccacgtgaacctctacggcagcatcctgttcctcacgtgcataagegtgecacaggtac
atctccgtcacgctgttctacaccaacatgtacgggagcattctattcctgacctgecatcagegtggatcgettce
gtctctgecgtgetcttctacgtcaacatgtacgtcagecattgtgttctttgggetcatcagetttgacaggtat
ctggtgecgtttcctcttctacaccaacctctactgecagecatcctcttectcacctgecatcagegtgecaccggtge
gctgtgectctccattgactactacaacatgttcactagecatcttcaccctcaccatgatgagegtggaccgetac
tatagcaccttcatcctacttttctteggtctgtcgggtctcagecatcatctgtgecatgagecatcgagegetac
ctggctggetgectcttcttcatcaacacctactgetctgtggecttectgggagtgatcacctataaccgette
ttcatgggecgtcgtcatgatcttctteggectgtcceccgetgetgetgggggecgecatggectcagagegetac
ctggagggcttctttgeccaccttgggeggtgaaattgcactgtggtccttggtggtcctggecatcgageggtac
tactgtctgactgtgctcagegtggaccgectacgtggecgtggtgecatcccatcaaggeggeccgetaccgeegg
gtgtcccggatcgtgggtctctgecacattcttcgecggtgtgagectecttecggecattagecatcgaacgetgt
acattatcagtgacttttctgtttggctacaacacgggecctctatctgetgacggecattagtgtggagaggtge
ttcctggccatattgtctceccttctectttgaggtgtgtctctgtctectggtggeccatcagecacagageggtgt
ggactcaacgcttgtttctacatctgtctttttgecggegtttgttttctcatcaacctgtegatggatcgetac
ttactcactgcctgtttctacgtggectatgtttgeccagtttgtgttttatcacggagattgecactcgatcgetac
ttcaaactgggtggggttacagectccttcacagettctgtgggecagectgttcectcacagecatcgacaggtac
ctgcgggaagggagtatgtttgtggecctgtcagectecgtgttcagtctcctegecatcgecattgagegetat
gtcagtcgectttgctcagtactgttctctacatgtctcagcactgactctgacagectatcgecagtggaccgecac
actaccacctacttcatgggcacttccgtgagegtttccaccttcaacctggtageccatctctctggagagatat
gcagtttcctacctcatgggggtgtctgtgagtgtgtccacactaagecttgtggecatcgecctggagegatac
gtggtgaagcacctgcaggtgtttgecatgttcgegtctgectatatgetggtggtgatgacagecgaccgetac
ttcttcgggctaaccatgacagtgttcgggectatcctegetectggtggecagegecatggecgtggagegegec
ctggaagcttttttcttaaatctcagecatttattggtctcctttcatattagtttttattagtgtcttgegttgt
acccagatatactttttcttgectctttgtagaattggacaacttcttgetgactatcatggectatgaccgttac
gtcacaattggactcattgtcgectctttctctgectctgtctgecagtttgetggetatcactgtggaccgetac
gttctcagctatctgaagctcttctctatgtatgecccagetttcatgatggtggtgattagectggaccgetec
gtcattgacgtgatcacctgcagctccatgetgtccagectctgettectggegecatcgeccgtggaccgetac
atcatcgactccctgtttgtcctctccctgettggetccatcttcagectgtectgtgattgetgeggaccgetac

Figure 8: The biological data used to evaluate the empirical performance of our algo-
rithms; this data consists of 56 DNA sequences, each 75 nucleotides long, from one of
the transmembrane domains (TM3) from 56 G-protein coupled receptors. The names
in the left column indicate the organism from which the sequence originated. The sub-
strings underlined indicate a maximal primer group containing 24 sequences, with the
last 5 characters of the primer being an exact match of gaccg.

21

Unweighted OPC Statistics

input | BBOPT | GREEDY1

GREEDY2

sets Card. Card.
1 7 7

0 ~1 O Ok LN

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

ool N- N> P S I e N e I I = I IS IS IR N o NI S NS NI B NIP B NI P |
O IO I m m ~] IO] =]] O =] =]~ m] OO ~] =] =] =] =] 00O U0

Card.
7

O IO I~~~ IO] =]] O =] =]~] OO 00 =] =] =] =] 00O U0

Table 1: Cardinality of the covers produced by the various algorithms over 30 random
permutations of a data set consisting of biological data (56 sequences of 75 nucleotides
each). We see that GREEDY1 typically finds optimal solutions, while GREEDY?2 has

performance very similar to that of GREEDY1.

References

[1] N. ArnuEIM, H. L1, AND X. Cul, PCR Analysis of DNA Sequences in Single Cells: Single
Sperm Gene Mapping and Genetic Disease Diagnosis, Genomics, 8 (1990), pp. 415-419.

22

| Weighted OPC Statistics |

input GREEDY1 GREEDY2
sets | Weight | Card. | Weight | Card.
1 317 14 317 14
2 337 15 313 12
3 320 13 278 9
4 322 14 317 13
5 319 13 334 14
6 327 12 318 12
7 313 14 308 13
8 314 13 314 13
9 320 14 315 14
10 301 12 303 12
11 325 14 325 14
12 317 13 309 13
13 298 11 321 13
14 315 13 315 13
15 294 12 288 12
16 316 12 316 12
17 298 13 298 13
18 321 12 321 12
19 307 13 307 13
20 287 12 313 13
21 314 12 318 13
22 292 12 319 13
23 294 12 294 12
24 312 13 312 13
25 253 11 253 11
26 320 11 335 13
27 349 15 334 14
28 299 12 299 12
29 333 14 333 14
30 318 13 318 13

Table 2: Weight and cardinality statistics of the covers produced by the various al-
gorithms on 30 random permutations of a data set consisting of biological data (56
sequences of 75 nucleotides each). Here GREEDY2 does outperform GREEDY1 on

many instances.

[2] R. BAR-YEHUDA AND S. EVEN, A Linear-Time Approzimation Algorithm for the Weighted
Vertex Cover Problem, J. Algorithms, 2 (1981), pp. 199-203.

[3] V. CuvATAL, A Greedy Heuristic for the Set-Covering Problem, Mathematics of Operations
Research, 4 (1972), pp. 233-235.

[4] T. H. CorMEN, C. E. LEISERSON, AND R. RIVEST, Introduction to Algorithms, MIT Press,
1990.

23

550

500

350

300

T T T T T
10 12

8
cardinality

Figure 9: Average cardinality and weight over 30 data sets using GREEDY1 in a si-
multaneous optimization of both weight and cardinality. Different parameters are used
in the cost function to achieve a smooth tradeoff between the two objectives (e.g., the
two points (7,430) and (11,315) indicate that improved cardinality is achieved at the
expense of higher cover weight).

H. A. ErLicH, D. GELFAND, AND J. J. SNINSKY, Recent Advances in the Polymerase Chain
Reaction, Science, 252 (1991), pp. 1643-1651.

M. R. GAREY AND D. S. JouNsoN, Computers and Intractability: a Guide to the Theory
of NP Completeness, W. H. Freeman, San Francisco, 1979.

J. K. Harrison, W. R. PEARrsoN, AND K. R. LyNcH, Molecular Characterization of Alpha-
1 and Alpha-2 Adrenoceptors, Trends Pharm. Sci., 12 (1991), pp. 62-67.

L. HiLLiER AND P. GREEN, OSP: a Computer Program for Choosing PCR and DNA Se-
quencing Primers, PCR Methods and Applications, 1 (1991), pp. 124-128.

D. S. JouNsoN, On the Ratio of Optimal Integral and Fractional Covers, J. Comput. System
Sci., 9 (1974), pp. 256-278.

L. Lovasz, On the Ratio of Optimal Integral and Fractional Covers, Discrete Mathematics,
13 (1975), pp. 383-390.

24

[11] T. LowE, J. SHAREFKIN, S. Q. YANG, AND C. W. DIEFFENBACH, A Computer Program
for Selection of Oligonucleotide Primers for Polymerase Chain Reactions, Nuc. Acids Res.,

18 (1990), pp. 1757-1761.

[12] K. Lucas, M. BuscH, S. MOSSINGER, AND J. A. THOMPSON, An Improved Microcomputer
Program for Finding Gene- or Gene Family-Specific Oligonucleotides Suitable as Primers for
Polymerase Chain Reactions or as Probes, Comp. Appl. Biosci., 7 (1991), pp. 525-9.

[13] C. LuND AND M. YANNAKAKIS, On the Hardness of Approzimating Minimization Problems,
Proc. ACM Symp. the Theory of Computing, 25 (1993), pp. 286-293.

25

