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ABSTRACT development of fastesooling schedules [1, 15, 23, 24,

We propose a method for determining the starting tem29], alternative move generation/acceptance strategies
perature in two-stage simulated annealing systems utiliz[8]: noisy cost evaluation [9], and optimal finite-time
ing traditional monotonically cooling temperature temperature schedules [3, 12, 13, 37]. Another approach,
schedules. While most previous work in this area ha@nd the one we consider here tim-stage simulated
focused on ad hoc experimentally-derived constant starannealing (TSSA) [10, 16, 33, 34]. Assuming a tradi-
ing temperatures for the low temperature annea”n!tional monotonically cooling temperature schedule, a
phase, this paper presents a more formal method for gefaster heuristic algorithm is used to replace the SA
eralized starting temperature determination for the aforeactions occurring at the highest temperatures in a TSSA
mentioned class of two-stage simulated annealinSystem. The heuristic is then followed by a conventional
systems. W have tested our method on three NP-har<SA approach initiated at a lowtran-normal tempera-
optimization problems using both classic and adaptivdure in an attempt to improve the heuristic solution.
cooling schedules. The experimental results have beel SSA is especially beneficial for problems in which SA
consistently very good—on average the running time iproduces solutions of quality competitive with the most
halved when using an adaptive cooling schedule ansuccessful tailored heuristics, such as VLSI network par-
reduced by a third in the case of the classic scheditioning [7, 16, 19, 22] and standard-cell placement [9,
ule—with no average loss in solution quality 33, 35, 39]. As will be seen in Section Ben heuristics
that produce mediocre solutions in comparison to SA can
result in significant TSSA time savings over SA.

The principal consideration in the design of a tradi-
tional TSSA system is the determination of the starting
temperature for the SA phase. If the chosen temperature
is too low TSSA can become prematurely trapped in
some local optimum resulting in lower solution quality
. than standard SA. If the chosen temperature is too high,
research [2.’ 49,1118, 22, .24’ 29 35, 39]: This stems much of the structure of the first-stage heuristic solution
I genergl appllc.abnllty to a wide range O.fcan be wasted because of too much algorithmic
NP-hard combinatorial optimization problems and that ”hill—climbing. Early TSSA approaches [10, 16, 33] were
consistently produces high quality app_ro>.<i.mate S.Oluuon:based on finding a reasonable constant s,tarti1ng tempera-
to thesg prob_lems. SA has only one S|.gn|f|.cant dlsadVarture for the SA phase. They require a significant amount
tage—its typically very Ior_lg computat_|on times. of experimentation with both the chosen heuristic and

~ There has been considerabifosfaimed at acceler-  the specific SA implementation being used. The primary
ating SA. Most of this work has concentrated on theagyantage of a constant starting temperature is that once
_ _ _ the temperature has been determined and incorporated
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. INTRODUCTION

The simulated annealing (SA) algorithm [4, 20] has
proven to be an fdctive optimization tool in the field of
VLSI computeraided design (CAD) as well as other
diverse fields such as image processing and operatio




alized method for determining the starting temperature it 2.1. The Algorithm
traditional monotonically cooling TSSA systems. Their
method is based on Markov equilibrium dynamics. An The SA algorithm was first introduced by Kirk-
approximate  probability  distribution  for the patrick, Gelatt, and &chi [20] and independently by
change-in-cost functioR(AC) is found by generating a Cerny [4] as a problem-independent combinatorial opti-
large number of random moves from the first-stage heumization technique. It is a generalization of the Metrop-
ristic solution. This approximation is used to locate theolis Monte Carlo simulation [27]. It combines the
corresponding SA temperature in a binary-search proc@dvantages of iterative improvement techniques with
dure over the range [€)], wheret, is the initial temper- randomizing techniques to yield a powerful optimization
ature of standard SA starting from a random solution t€ng!ne. - _ .
the given problem. At each trial temperature, the approx | ne traditional SA process typically starts with a
imate P(AC) distribution is used to calculate the total random solution to the opt|m|z§1t|on problt_em In question.
expected cost of all positive moves and the total expecteThrough the use of_songeneraﬂon mechanism, a copy

. . of the current solution is randomly perturbed to form a
cost of all negative moves. When the magnitudes of th

N | found to b | th t trial t new solution. This new solution is subjected to the
Wo values are found to be equal, tne current na empeMetropoIis acceptance criterion. The Metropolis crite-
ature is returned as the starting temperature for the S

] ] J = ) rion always accepts the perturbed solution as the next
phase, sinCB(AC) = 0 in SA equilibrium. Their method ¢ \rrent solution if its cost—as defined by the given prob-
is shown to produce good results for the standard cejemys cost function—is lower than that of the current
placement problem. Howevethere is no attempt to gojyution (assuming minimization). It also allows for the
apply the method to other problems. Additionallyere  probabilistic acceptance of highewst perturbed solu-
are both problem- and formulation-dependent contions as the next current solution, enabling the SA algo-
straints on the choice of first-stage heuristic and a higrithm to climb out of local optima. This probabilistic
computational cost that have discouraged its widesprezacceptance is a function of the SA temperature and the
adoption [34]. difference in cost between the current and perturbed

Analysis of th [ thods for starting t solutions.
nalysis of these previous methods for starting tem- o jisia) temperature ty is chosen high enough

perature determinationfefs insight into desirable prop-  g,c that nearly all Metropolis trials result in acceptance.
erties for a new method. The method should be generalatier 5 certain number of Metropolis trials, the tempera-
applicable with respect to problems and traditional SAre is lowered according to sordecrement rule. This
implementations; it should be relatively insensitive to thEprocess continues until sonseop criterion is met, at
given starting solution so as to avoid constraints on thwhich point thebest-so-far or BSF [3, 36] solution is
choice of the first-stage heuristic; and it should be areturned and the algorithm is terminated. If instead the
computationally inexpensive as possible. This paper prelast solution visited is returned at termination, the algo-
sents a method for starting temperature determination irithm is calledwhere-you-are or WYA-SA. Pseudo-code
traditional monotonically cooling TSSA systems thatfor the BSF-SA algorithm using the Metropolis criterion
meets these goals. The SA algorithm is described in Seis shown in Fig. 1.

tion I1; Section Il presents the derivation of the proposec ~ The sequence of solutions generated at a fixed tem-
method; Section IV presents the experimental results fcPerature can be mathematically modeled &sreoge-
three diferent NP-hard combinatorial optimization neous Markov chain, due to the fact that the outcome of
problems, namely the VLS| network partitioning Y given Metropolis trial depends only upon the out-

(VLSI-NPP), rectilinear Steiner minimal tree (RSMT), COMe of the previous Metropolis trial [32]. Using the

; . .~ _homogeneous Markov chain model, several sets of
and traveling salesperson (TSP) problems; and Section ) '
discusses rc?bustnepss issu(es )P authors [22, 26, 29, 32] independently show that the SA

algorithm as described above will conyerasymptoti-
cally to a globally optimal solution given an infinite
I1. SMULATED ANNEALING number of state transitions at each temperature and an
infinite number of monotonically decreasing temperature
values that in the limit approach zero. According to the
In this section we first describe the SA algorithm intheory the temporal distribution Of Solutions W|”
general. & then present behavior characteristics of théhecomestationary for the Markov chain executing at the
traditional SA algorithm that will be used in the deriva- current temperature, known as tBeltzmann distribu-
tion of our method of starting temperature determinatiortion, after an infinite number of Metropolis trials. At this
for traditional TSSA systems given in Section |ll. point, the Markov chain is iequilibriumand the temper-



Simulated_Annealing()

initialize(i, t);
iBsE=1;
do{
do{
j = perturb(i);
Ac;; = c(j) - c(i);
if _((Ac_:ij <0) || (random() < exp(-Ac;;/1))) {
i=j;
if (c(i) < c(igsp) ipsF=1;

} while (equilibrium has not beereached:;
decrement(t);
} while (stop criterion has not been et
return(igsp;

Fig. 1: Thetraditional BSF-SA agorithm using the
Metropolis acceptance criterion.

ature is lowered. Equilibrium must be regained at each
new temperatureif the optimal solutionsare to be found.

Obvioudly, asymptotic convergence can only be
approximated by any SA implementation. The majority
of SA implementations proposed in the literature attempt
to follow the theoretical model shown to converge
asymptoticaly to the set of optimal solutions [1, 4, 15,
20, 23, 29, 35, 39]. The main point of commonality in
these approaches is the use of monotonically decreasing
temperature schedules. The differences can be traced to
the way the authors choose to approximate Markov equi-
librium, called quasi-equilibrium The choices made in
defining quasi-equilibrium for the given schedule have a
direct impact on how the temperature is lowered. There
are many open issues regarding the concept of
quasi-equilibrium that are beyond the scope of this paper.

Recent work with optimal finite-time temperature
schedules [3, 12, 13, 37] points to the possibility of
non-monotone or even warming or periodic temperature
schedules outperforming traditional monaotonically cool-
ing SA schedules given a finite amount of computation
time. This preliminary work is encouraging, but optimal
temperature scheduling lacks the wealth of theoretical
and empirical results available for traditional SA. For
this reason we choose not to focus on optimal finite-time
temperature schedules. We instead focus on traditional
SA cooling schedules that attempt to approximate the
theoretical model. These types of schedules will con-
tinue to be important for many types of combinatorial
applications. The automatic determination of the starting
temperature in TSSA systems utilizing non-monotone
optimal finite-time temperature schedules remains an
open problem.

Traditional SA cooling schedules tend to fall into
one of two classes depending upon the employed decre-
ment rule—fixedor adaptive Fixed schedules typically
have decrement rulesof theform t, = t, [k, wherethe
temperature decrement size is kept proportionately con-
stant with 0<a <1. Adaptive schedules dynamically
vary the size of the temperature decrements according to
various aggregate statistics of each Markov chain, such
asthe mean and variance of the cost. The seminal papers
[4, 20] both introduced fixed decrement rules, so wetend
to refer to this type of schedule as the classic schedule
The majority of SA applications present in the literature
use some variation of the classic schedule. Adaptive
schedulestend to produce better quality solutionsthan do
classic schedules at the cost of increased computation
time. This can limit their practical applicability.

For the purpose of testing our proposed TSSA
method, we implement one classic and one adaptive
schedule for each of the problems in our test suite. The
classic schedule is the one proposed by Kirkpatrick,
Gelatt, and Vecchi [20]. The adaptive schedule is that of
Aarts and van Laarhoven [1]. Results for the six prob-
lem/schedule combinations are presented in Section V.

2.2. Characteristic Behavior

One way of ensuring general applicability of the
proposed TSSA methodology is to base the determina-
tion of the starting temperature on some characteristic
behavior of the traditional SA algorithm. Large-scale
numerical studies examining solution densities at vary-
ing SA temperatures have been conducted for different
pseudo-random combinatorial problems by four differ-
ent sets of authors[2, 11, 28, 38]. All four independently
present evidence that supports a typical behavior of the
expected cost E, and standard deviation o, with respect
to SA temperature t, given a traditional SA cooling
schedule. Specifically, theinvestigations conclude that at
all temperatures except those very close to the tempera-
ture corresponding to the optimal value of the cost func-
tion, the following behaviors can be noted:

E, ~E,- Bo2/t,5; and (1)
0,=0,, @)

where E,, and o,, respectively represent the expected
cost and the standard deviation of the cost over the solu-
tion space. Additionaly, the investigations indepen-
dently show that for this same range of temperatures, the
probability distribution of the cost values can be closely
approximated by anormal distribution.

If we assume that the first-stage heuristic solution
for aTSSA systemisin equilibrium for the SA phase at
some temperature, then we could use the equation shown
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Fig. 2: Normalized BSF cost C, o m(ips) VS. normalized
SA temperature tpom.

in (1) as a reasonable temperature approximation
method. However, as pointed out by Rose, Klebsch, and
Wolf [34], thisis almost never the case. This assumption
isstrictly valid only for first-stage solutions produced by
the same SA algorithm while in equilibrium, a very
unlikely TSSA scenario. Under this assumption, approx-
imation accuracy would be highly problem-dependent,
and could result in a degradation of solution quality for
TSSA as compared to standard SA. For this reason, we
assume that the first-stage heuristic solution is the BSF
solution at some SA temperature, rather than the equilib-
rium solution.

The characteristic behavior of the BSF cost over the
course of the traditional SA algorithm has not been well
documented in the literature. Sibani, Pedersen, Hoffman
and Salamon [36] present a scaling method to estimate
the global minima of NP-hard combinatorial problems
during a SA run based on the Egg- distribution, but make
no attempt to describe the evolutionary behavior of the
BSF cost with respect to decreasing temperature. Fig. 2
illustrates the characteristic SA BSF curve that results
from plotting the evolution of the normalized BSF cost
Crorm(iBse) @gainst normalized temperature t,om, Using
the normalizations ¢ (i)=(E,- c(i))/o, and
torm = L/ ty. Similar plots from actual SA runs can be
seeninFigs. 3, 5, and 6.

Fig. 3 shows a comparison of BSF cost evolution
against expected cost evolution from an actual SA run.
As can be seen in the figure, the BSF curve is shifted to
the right of the expected cost curve, indicating that the
expected cost E, a temperature t, is some number of
standard deviation units o, greater than the BSF cost. In
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Fig. 3: Plotsof normalized SA expected cost E, and BSF
Cost Crormlipse) VS. normalized SA temperature t,o,,, Pro-
duced by an actual SA run for the 318-city TSP instance.

the next section, we present amethod to probabilistically
calculate this difference in expected and BSF cost, to be
used in our method of associating a SA temperature with
agiven solution assumed to be the BSF solution.

I11. DERIVATIONS

Given the behaviora information presented in the
previous section, we now present the following two
propositions that describe the derivation of our TSSA
starting temperature determination methodol ogy.
Proposition 1: Given asolution i for some combinatorial
optimization problem, the following function can be
used to closely approximate the SA temperature t, (i) at
which i would be found as the BSF solution:

02

t () :Em—c(io)o—ymooo' @

Proof: We will use the behavior of the expected cost E,
represented by (1) as a starting point. Solving (1) with

respect to absolute temperature t, gives:

0.2

t,= E—E, (4)
Since we are assuming that the given solution i corre-
sponds to the SA BSF solution as described in the previ-
ous section, we cannot reliably use (4) as a temperature
approximation. A function relating E, and c(igg) is nec-
essary to complete the derivation. If we assume iy, IS
the minimum-cost solution seen during the KN Markov
chain executing at temperature t,, then we know that the
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Fig. 4: Evolution of the offset y, for the 100-city TSP
instance.

following relation holds:
B 2¢(iymin) - ©)

This implies that E, is some number of standard devia-
tion units o, greater than c(i,,) a temperature t,. We
call thisnumber the offset and denote it by the symbol v.
In this context, (5) can be expressed as:

B, = Cliymin) * YOy (6)
We can replace the o, term in (6) with o,, as described by
(2). We can aso approximate i, With ig to give:

E =c(igg) +V O, - @)
Using the behavior of the standard deviation oy
described by (2), combined with the assumption that the
solution density is nearly normally distributed, we
expect the offset yj to remain approximately constant at
the higher temperatures while converging quickly
towards zero close to the temperature corresponding to
the optimal value of the cost function. Our experimental
evidence indeed supports this behavior. This can be seen
graphically in Fig. 4, showing the evolution of the offset
over the course of the SA algorithm for anumber of runs.
This behavior alows us to closely approximate the v
term in (7) with y,,. Replacing the E, term in (4) by the
updated version of (7) gives us the following:

0.2

ty(igse) = — : 8
k1 BSE Ew—C(IBSF) _yooooo

Finally, instantiating (8) with the first-stage heuristic
solutioni for igg gives (3).

Equation (3) serves as the basis for our proposed
method of starting temperature determination in tradi-

tional TSSA systems. However, the offset y,, is still an
unknown. It is important to note that without the offset
term, (3) generates temperature approximations that
could possibly be too low depending upon the problem
being solved, resulting in TSSA solution quality less
than that of standard SA. Thisisdiscussed in more detail
in Section 5.2. The following proposition describes the
calculation of v,

Proposition 2: Given a SA formulation for some combi-
natorial optimization problem with Markov chain length
Ly, the offset y,, can be calculated probabilistically with
the equation:

P[E, -V,0, < X<E, +y,0,] =1-[L,[" (9

Proof: Asdiscussed in the previous section, we make use
of the observation that we can use a normal distribution
to closely approximate the probability distribution of the
cost values over each Markov chain. Using this assump-
tion, the cost values seen over the course of a Markov
chain can be represented by a normally distributed ran-
dom variable X with probability distribution function:
2

115 2 )
o/ e (10)
A simple changein variable |eadsto the following cumu-
lative distribution function (CDF):

®(2) = 1_1%1 et/24t, (11)

wheret = (x - W)/o and dx = ¢ dt. This CDF can then be
used in such away asto determinethe probability of gen-
erating a solution with a given cost. Explicitly, this can
be written as

f(xu,0) =

_ [ X=pO

If welet z=(x - p)/o, theterm z,, determinesthe percen-
tile p of the norma distribution, ®(z,,) = p, to
which X = x is likely to belong. For our purposes, it is
useful to consider these normal probabilities in terms of
standard deviation unitsaway from the mean. In thiscon-
text, z,/, can be used in the following manner:

P[u—zp/20<x<u+zp/2cr] =1-p. (13

It should be clear that the z,, term in the above equation
corresponds to the offset v used in our starting tempera-
ture determination method. The problem remainsto cal-
culate appropriate p values and their corresponding z,,
values to be used in determining the expected value for
Ve Using the behavior characteristics described earlierin
this section, we can use the offset value y; for the first
Markov chain to obtain a reasonable approximation for
Y- We need now only determine the expected offset for
thefirst Markov chain.

Since virtualy all Ly, transitions will be accepted



during the first Markov chain of the SA cooling schedule,
the stationary distribution of this chain is uniform over
the state space [21]128, 38]. This implies that the mean
M and standard deviatian of the cost values seen over
the first Markov chain will approadh,, anda,, respec-
tively. Using this fact, we can assume that each generatt
solution has a probabyitvery close thM|'1 of having
the minimum cost value seen over the course of the fir
Markov chain. This will serve as the value forCon-
versely each generated solution will have a probability
very close to 1 p of having a cost greater than that of the
minimum-cost value seen over the course of the firs
Markov chain. Using these values, we can now detet
mine z,,, and hence our fsfety.,. Since we are consid-
ering the first Markov chain, we can substititefor y
andao,, for o in (13), giving us (9).
u

Given the appropriate value fprthe corresponding
Z,» value can be calculated via numerical methods or b
a table lookup. @bles I-1ll show results for approximat-
ing the ofset of each problem instance in our test suite
using table values. Results for each instance are averag
over 20 runs. As can be seen in the tables, compjted
values match very closely with observed averafgetd
V... The variance seen in thefst values generated for
any particular problem instance is generally quite high
However in practice, this did not &fct the ability of the
TSSA systems to conyge to the same average quality
solutions as the corresponding standard SA algorithm
for the same instances. This can be seen in the TSS
results presented in Section IV

In addition to being required for our starting temper-
ature determination method, thdsety,, can be used as
a gauge in the choice of first-stage heuristic. Intuitively
we know that if the normalized cost of the first-stage heu
ristic solutionCpgrm(ineyr) IS l€ss thary,, then TSSA will
most likely not be beneficial, since this is the amount o
optimization expected to occur during the Markov chain
executing at the first SA temperature. This rough guide
line can be further refined if we keep in mind that TSSA
can only be beneficial if the cost of the first-stage solu
tion is such that

0.2
00

Eoo —-C (I heur) - yoocoo
This implies that for TSSA to be beneficial, a first-stage
heuristic should return solutions of absolute cost

C(iheur) < EM_E‘%O +yooEp-oo )
0

Based on the above discussion, our method can t

t (ipeu) = <t (14)

(15)

cells L L-hul* (corip;;ited) (obsy;ved)
100 100 0.9900 2.58 2.76
500 500 0.9980 3.09 3.02
833 833 0.9988 3.24 3.13
1500 1500 0.9993 341 3.28
3014 3014 0.9995 3.59 3.64
10000 10000 0.9998 3.87 3.88

Tablel: Experimental results for approximating thé

sety,, for several VLSI-NPP instances.

terminals Lw L-hul? (coripp/)ited) (obZ;ved)
13 47 0.9787 2.30 2.18
16 83 0.9880 251 2.87
20 380 0.9974 3.01 2.90
23 313 0.9968 2.95 3.01
30 695 0.9986 3.19 3.08
37 438 0.9977 3.05 3.09

Tablell: Experimental results for approximating
offsety,, for several RSMT instances.

cities L 1-hul* (coripp/)ited) (obZeo:ved)
42 861 0.9988 3.25 3.33

50 1225 0.9992 3.35 3.31

57 1596 0.9994 3.42 3.62
100 4950 0.9998 3.72 3.55
318 50403 1.0000 4.27 4.38
532 141246 1.0000 4.45 4.56

Tablelll: Experimental results for approximating t
offsety,, for several TSP instances.

* Obtain values foE,, 0, andy,,.

* UseC(ihar) Ex O, andy,, in (5) to obtain the
starting temperature approximatinp,.

* Sett =t,,, and begin the SA phase.

summarized in the following steps, assuming TSSA haAs can be seen in Figs. 5 and 6, our method produces

been judged beneficial by (15):
» Execute the heuristic to obtaifigs).

approximations that are quite close to actual SA temper-
atures associated with the BSF solution forfedént
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Fig. 5: Starting temperature approximation curvevs. SA BSF curvesfor PrimarySC1 VL SI-NPP instance concerning
(a) the adaptive schedule; and (b) the classic schedule.

problem/schedule combinations. Fig. 5 shows our
approximation curve plotted against actual SA BSF
curves for the PrimarySC1 VLSI-NPP instance. Fig. 6
shows our approximation curve plotted against actual SA
BSF curves for the 318-city TSP instance. For both fig-
ures, plots (a) and (b) concern respectively the adaptive
and classic schedules. The experimental results pre-
sented in the next section indicate that in practicethereis
a significant time reduction seen for TSSA systems
incorporating the above methodology over standard SA
with no lossin solution quality.

IV. TSSA EXPERIMENTAL RESULTS

We now present results for our TSSA method
applied to the VLSI-NPP, RSMT, and TSP. A short
description of each problem is given in the correspond-
ing subsection. All TSSA systems discussed here are
implemented in the C/C++ programming language using
the Gnu g++ compiler. All test runs were executed on a
Sun SparcServer 10/51 operating under SunOS 4.1.3
(UNIX) with 128 MB of RAM. All results are averaged
over 20 runs. Further discussion of these results can be
found in Section V.

As mentioned in Section |, each problem is solved
with two different cooling schedules—a classic schedule
[20] and an adaptive schedule [1]. There are a number
parameters particular to each schedule implementation,
as well as some that are schedule-independent. The
schedule-dependent parameters were set to their recom-
mended values as discussed in each of the origina

papers. Initial temperature for both schedulesis set equal
to o, as recommended by Otten and van Ginneken [29]
and White [38]; and the Markov chain length for both
schedules is set equal to the size of the SA neighbor-
hoods as recommended by Aarts and van Laarhoven [1].

4.1. VLS| Network Partitioning Problem

The VLSI-NPP is a generalization of the graph par-
titioning problem (GPP) referred to as hypergraph parti-
tioning [7, 16, 19]. The input to the VL SI-NPP consists
of aset of VLS| circuit elements, or cells, connected by
aset of nets. Each cell has an associated positive-valued
area. Each net is ahyperedge, and represents at |east two
cellsthat are electrically interconnected. The goal of the
VLSI-NPP isto divide the cells into two blocks so asto
minimize the number of nets that have cells in both
blocks under the constraint that the sums of the areas of
the cells in each block are approximately equal. The
specified balance tolerance for each block is the size of
thelargest cell in the circuit SMAX [7]. The differencein
area between the two blocks is used as a penalty term.
Hence, the abjective function to be minimized is

. ?
c(i) = |E|+A area(a) — area(b) g, (16
el 1Y )~ 3 w09

where E; isthe number of netswith cellsin both blocks
and A isaweighting constant. For our VL SI-NPP imple-
mentation, A = 1/ (4 [(BMAX2) .

The TSSA VLSI-NPP system incorporates the
Fiduccia and Mattheyses (F-M) heuristic [7]. The F-M
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Fig. 6: Starting temperature approximation curve vs. SA BSF curves for 318-city TSP instance concernin
adaptive schedule; and (b) the classic schedule.

heuristic is a generalization of the Kernighan-Lin graph
bipartitioning heuristic [19]. The heuristic was selected

CPUg, _ CPUrgsn

cells (00 Cer (500 Cree Bepy% due to itg fast running t.imes_ an_d qua}lity of solution. The
complexity of the algorithm is linear in the total number
100 0.20 16.0 il 15.8 45.0 of pins, where @in is an interconnection point on a cell
for a particular net. Wchose to only use one pass of the
500 290 | 1018 1.01| 1026 65.2

algorithm, since the majority of improvement takes place
833 6.56 725 2.26 76.2 65.5 during the first pass. Experimental results show that SA
improves solutions generated by one pass of F-M by an

1500 | 18.72| 289.9 595| 2873 68.2 ) ; ’
average of 15% relative 8, in terms of standard devi-

3014 | 47.38| 226.0| 16.30| 2452 65.6 ation unitso,,.

10000 | 324.51| 2181.6| 141.33| 2127.8 56.4 Experimental data used for evaluating the TSSA

VLSI-NPP system are the SIGDA standard cell bench-
Table1V: Results for the TSSA VLSI-NPP systen  mark circuits PrimarySC1 (833 cells, 904 nets) and

using an adaptive schedule. PrimarySC2 (3014 cells, 3029 nets) [31] as well as four
randomly generated networks with average edge degrees
CPUg, _ CPUrssn | = _ and net-size distributions similar to the benchmark cir-
cells (sec) Can (sec) Creon B cuits. The randomly generated networks range in size

from 100 nets with 100 cells to 10000 nets with 10000
cells. The results are given imfles IV and V respec-
500 0.99| 1095 0.65 103.3 34.3 tively for the adaptive and classic schedules. The follow-
ing conventions are used for the tabl@PUg, and
CPU+cn represent the average CPU times respectively
1500 482 | 3204 2.84| 3185 41.1 of SA and TSSACg, andCygp represent the average
final BSF cost respectively for SA and TSSA; and
DAcpy% represents the average percentaderdifice in
10000 | 61.45| 2121.0| 3570| 21083 41.9 CPU time between SA and TSSA for the given instance.
These results are for flat, non-clustered partitioning.
TableV: Results for a TSSA VLSI-NPP system usir ~ Many authors have demonstrated the fact that a clustered
classic schedule. partitioning phase before a flat partitioning can signifi-
cantly improve solution qualityThis was not examined

100 0.09 16.8 0.07 15.9 22.2

833 2.09 99.8 1.33 129.3 36.4

3014 12.15 396.0 5.38 414.2 55.7




here, but we expect the proposed TSSA methodology t

behave similarly in this case. As can be seen from th . CPU, -~ CPUresn | _ .
tables, significant speedup is observed in the TSSA sy] “™° | (seq) Cor (sec) Crsn | Bor%
tems incorporating our method of starting temperatur

13 11.96 | 19643 595 | 1958.4 50.3

determination over standard SA with no average loss i
solution quality The average speed-up was approxi- 16 54.10 | 30228 2345 | 30042 56.7
mately 61% and 39% respectively for the adaptive an

; 20 921.58 3045 | 669.55 304.4 27.3
classic schedules.
23 | 1144.48| 75500 71176 | 7553.4 37.8
4.2. Rectilinear Steiner Minimal Tree Problem 30 | 6863.57 350.3 | 4191.14 359.3 38.9
37 | 5720.76| 6490.0| 3648.04| 6491.0 36.2

The input to the RSMT problem consists of a set 0
n points in a plane, callettrminals. The goal of the  TableVI: Results for a TSSA RSMT system using

RSMT problem is to connect the terminals with horizon- adaptive schedule.

tal and vertical line segments such that the sum of th

lengths of the segments is minimized. The connected te _ CPUG, -~ CPUresn | B
minals should form an acyclic tree such that all of the tef ™™ | (seq) Cor (sec) | T | Do

minals serve as endpoints to various segment
Additional points, calle®einer points, can also be used

to connect the terminals. Using a result of Hanan [12] 16 3259 | 3005.6 2223 | 2998.8 31.8
we can restrict a search for an optimal solution to Steing
point locations that lie on a grid imposed by the termi-
nals. This grid defines at most @ possible Steiner 23 | 37303 | 7556.4| 264.66( 75532 29.1
locations. Hanas'result also allows us to limit the actual

13 8.67 1949.5 6.05 1953.0 30.2

20 274.38 305.4 215.50 305.0 215

‘ ] = 30 | 1512.38 360.5 | 1169.05 361.5 22.7
number of Steiner points to at mast 1. The objective
function is simply 37 1628.60 6490.0 1109.23 6494.8 31.9
c(i) = ;Iength (ej), (17) Table VII: Results for a TSSA RSMT system using
¢ classic schedule.

whereE is the set of all edges in the tree.

The heuristic chosen for the first phase of the TSS/4.3. Traveling Salesperson Problem
RSMT system is based on Kruslsathinimum-spanning
tree algorithm [21]. Kruskad algorithm is first run to
obtain the minimum-spanning tree for theerminals
using no Steiner points. Then uprte 1 Steiner points
are added in a greedy fashion from the set of possibl
Steiner locations to form the initial solution for the SA
phase. SA improves solutions produced by our variatiol
of Kruskal's algorithm by an average of 10% relative to n-1
E,, in terms of standard deviation units. c(i) = z dj,qg tdy - (18)

Experimental data used for evaluating the TSSA !

RSMT system consists of four of thedar nets from the For the first stage of the TSSA TSP system, a variation
SIGDA benchmark circuit PrimarySC2 as well as ran-of the Croes heuristic [5] is used. SA improves solutions
domly generated 20 and 30 terminal networks. The neiproduced by our variation of the Croes algorithm by an
taken from PrimarySC2 range in size from 13 to 37 teraverage of 10% relative &, in terms of standard devi-
minals. The placements of the nets from PrimarySC2 aration unitso.,.

intermediate solutions generated by a local placemer Experimental data used for evaluating the TSSA
and routing package. The results are showrabi€g VI TSP system consists of the following instances: the 42
and VII. Again, significant speedup is noted for thecity problem of Dantzig, Fulkerson, and Johnson [6]; a
TSSA RSMT system over standard SA with no loss irrandomly generated 50 city problem; the 57 city problem
solution quality The average speedup was approxi-of Karg and Thompson [18]; a randomly generated 100
mately 41% and 30% respectively for the adaptive ancity problem; the 318 city problem of Lin and Kernighan
classic schedules. [25]; and the 532 city problem of Padpeand Rinaldi

The input to the TSP consists of a symmatricn
distance matrixd, representing distances betweeait-
ies. The goal is to find a minimum-length tour that visits
each city exactly once while terminating at the city of
origin. The objective function to be minimized is



[30]. Theresultsaregivenin Tables VIl and I X. Aswith
the previous two problems, significant speedup is noted
for the TSSA TSP system over standard SA with no loss
in solution quality. The average speedup was approxi-
mately 48% and 35% respectively for the adaptive and
classic schedules.

In summary, the average running time speedup for
TSSA over SA for all problem instances in the test suite
is approximately 50% when using an adaptive cooling
schedule and approximately 35% when using a classic
cooling schedule. Both figures are clearly significant.
Equally important is the fact that the TSSA systems are
on average able to produce the same quality solutions as
the corresponding single-stage SA approaches.

V. ROBUSTNESSOF METHODOLOGY

Animportant aspect of the methodol ogy that has not
been addressed is that of robustness. Specificaly, are
there any constraints on the choice of the first-stage heu-
ristic? Also, what happens if we assume that the
first-stage heuristic solution corresponds to the equilib-
rium solution at some temperature t,, as opposed to the
BSF solution? Additionally, what happens in the case of
schedule abbreviation, where the highest temperatures
are found to be superfluous and a lower SA initial tem-
perature is used? These issues are examined in the fol-
lowing three subsections.

5.1. First-stage Heuristics with Good Solution Quality

The experiments of Section 1V focus on the use of
first-stage heuristics that have low computational cost
and mediocre solution quality as compared to SA. This
was done to illustrate the fact that even these types of
simple heuristics can produce a significant time savings
for TSSA over standard SA while maintaining equiva-
lent solution quality. The quality of these first-stage solu-
tions corresponds to the middle section of the
characteristic BSF curve shown in Figs. 5 and 6. How-

cities C(::)S“ Ca CF(’:S“ Crea Bepu%
42 4.46 704.4 3.14 703.4 29.6
50 7.02 2429 2.98 236.4 515
57 11.40 13086.4 4.73 13133.0 53.7
100 51.23 313.2 21.53 307.3 54.9
318 1722.98 42869.6 703.22 42835.0 59.0
532 10104.39 88105.5 6044.17 88162.1 40.2

TableVIII: Resultsfor the TSSA TSP system using an

adaptive schedule.
dties | PV Ca CPUrss Crem Bepy%
(sec) (sec)
42 0.90 705.2 0.63 704.6 30.0
50 1.23 245.2 0.85 2434 30.9
57 1.92 13140.7 1.29 13106.5 328
100 6.71 324.9 4.23 322.3 37.0
318 125.98 43295.2 87.63 43375.1 304
532 651.70 89555.9 345.49 89648.6 47.0

Table 1 X: Resultsfor a TSSA TSP system using a clas-
sic schedule.

ever, what happens in the case of a first-stage heuristic
that produces solutions near the tail of the BSF curve, in
the regime of good solutions?

In an attempt to address this question, we examined
one instance of each problem from our test suite with a
TSSA system incorporating a first-stage heuristic that
produces high-quality solutionsin relation to SA. For the
TSSA VLSI-NPP, we use a full-pass F-M implementa-
tioninstead of asingle pass asthe first stage followed by

, _ CPU, _ _ CPU _

instance Copt Crar Bopo (Sec)‘” Cresa B (Se;“ JN

3014-cell 160 473.2 195.8 13.97 247.4 409 19.48 58.9

VLSI-NPP

30-terminal 359 366 19 52.60 361.2 0.6 452,91 70.1
RSMT

318-city 41345 | 433898 49 12333 | 428424 37 933.11 458
TSP

Table X: TSSA results with good first-stage heuristic solution quality.
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adaptive SA. For the TSSA RSMT, we use the iterative
1-Steiner heuristic of Kahng and Robins[17] asthe first
stagefollowed by classic SA. Finaly for the TSP, we use
classic SA as the first stage followed by adaptive SA.
Each of these TSSA systems was executed 20 times for
the given instance. These results are presented in Table
X. The optimal cost for each instance is used as a
control . As can be seen in the table, the proposed meth-
odology performs just as well with heuristics that pro-
duce high-quality solutions. However, these results are
not surprising in light of the fact that the approximation
curve produced by our methodology overestimates tem-
perature in the regime of good solutions, as can be seen
inFigs. 5and 6.

5.2. Expected Cost vs. BSF Cost

Aswasmentioned in Section 2.2, we assumethat the
solution returned by the first-stage heuristic corresponds
to the BSF solution at some SA temperature t,. What
happens if we change this assumption such that the
first-stage heuristic solution instead corresponds to the
expected cost at some SA temperature t,? A dlight
decrease in computation time can be expected due to the
lower temperature approximations generated by the
expected cost model. However, isthere any differencein
TSSA solution quality between the two models?

As was pointed out in Section 2.2, using the
expected cost assumption could result in varying TSSA
model approximation accuracy under different problems.
We did not attempt to answer the question in the general
case, but instead focused on the PrimarySCl and
PrimarySC2 instances of the VLSI-NPP using the two
different TSSA modelsto examinethe effect of changing
the cost assumption. Using the classic SA schedule, we

IThe optimal cut value for the PrimarySC2 VLSI-NPP
instance does not appear in the literature and is most likely not
known. The given value is the best result we've obtained over
thousands of runs with the adaptive SA schedule. Thisisfor flat,
non-clustered partitioning with a balance tolerance of the size of
the largest cell in the circuit, or +/- 0.34% in the case of
PrimarySC2. The figure is consistent with similar partitioning
results presented in the literature.

ran 1000 trials each of full-regime SA, TSSA with our
proposed methodology under the BSF cost model, and
TSSA under the expected cost model for the two
instances. These results are summarized in Table X1. As
can be seenin thetable, TSSA under the BSF mode! pro-
duces solutions almost indistinguishable in cost from
standard SA solutions. However, TSSA under the
expected cost model generates solutions slightly greater
than both standard SA and TSSA under the BSF model.
Although as expected there is a slight decrease in com-
putation time over TSSA under the BSF model, for this
problem it appears that TSSA under the expected cost
model resultsin premature freezing.

5.3. Lowering the Initial SA Temperature

As was demonstrated by Johnson, Aragon,
McGeoch and Schevon [16], traditional SA cooling
schedules could be wasting time at the highest tempera-
tures. Their experiments concluded that for the GPP, an
abbreviated version of the classic SA schedule with
one-half the usual number of temperature steps could
produce solutions of equal quality to those produced by
afull SA temperature regimein roughly half the compu-
tation time. How does this type of situation impact the
performance of the proposed TSSA model?

We examined this question with the PrimarySC1
and PrimarySC2 instances of the VL SI-NPP. Our exper-
iments show that we can start abbreviated SA at approx-
imately one-third the original initial temperature and still
achieve solution quality similar to full-regime SA. We
ran 1000 trials of abbreviated classic SA for PrimarySC1
and PrimarySC2 with average final costs of 99.0 and
396.4 respectively, as compared to 99.8 and 396.0 for
full-regime SA. The BSF curve for the abbreviated SA
quickly regains the expected behavior pattern exhibited
for full-regime SA as described in Section 2.2. This can
be seen graphically in Fig. 7.

This would indicate that the proposed TSSA meth-
odology will be effective with abbreviated SA if the
first-stage heuristic is able to generate solutions that cor-
respond to the remaining part of the abbreviated BSF
curve. Since the chosen first-stage TSSA VLSI-NPP

Sandard SA TSSA w/ BSF model TSSA w/ expected cost model
instance
C Choest CPU C Chest CPU C Chest CPU
PrsC1 99.8 72 213 100.6 73 1.30 104.1 75 1.27
PsSC2 395.4 344 12.09 410.9 344 5.36 4222 348 5.02

Table X1: Comparison of two TSSA models on PrimarySC1 VL SI-NPP instance.
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abbreviated SA BSF curve for PrimarySC1.

heuristic generates solutions well past this point on th‘[5]
BSF curve, our experiments show that the proposeig
TSSA methodology performance for abbreviated SA is
consistent with that for full-regime SA, although the per-
centage decrease in CPU times is lower in the abbrev
ated case. As is the case with full-regime TSSA, ¢
candidate first-stage heuristic for abbreviated TSSA ca[s]
be evaluated using (15) by simply replacing tieerm
with the starting temperature for the abbreviated schec
ule. For this VLSI-NPP example, we replace
t, = o,—the initial starting temperature of SA—with
t, = 0.33 b to get the first-stage heuristic criterion [10]
c(i,.,) <E.—(3+y,) o, for TSSA to be beneficial.

(11]

[0

heur

VI. CONCLUSIONS
(12]

We propose a TSSA method with a more formal;3;
basis for determining the temperature at which to begil
the low temperature SA phase. The method is compatib[14]
with TSSA systems utilizing a traditional monotonically (15]
cooling temperature schedule.eWhave tested our
method on three important optimization problems using
both classic and adaptive schedules. The results haf16]
been consistently very good. On average for a SA algc
rithm using an adaptive cooling schedule the running
time is cut in half; while for a SA algorithm using a clas-[17)
sic schedule, the running time is reduced by one-thirc
Equally important is that there is on average no loss il
solution quality The TSSA methodology is also shown [18
to be robust with respect to fdifent first-stage heuristics
and traditional SA formulations. [19]
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