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ABSTRACT
We propose a method for determining the starting tem-
perature in two-stage simulated annealing systems utiliz-
ing traditional monotonically cooling temperature
schedules. While most previous work in this area has
focused on ad hoc experimentally-derived constant start-
ing temperatures for the low temperature annealing
phase, this paper presents a more formal method for gen-
eralized starting temperature determination for the afore-
mentioned class of two-stage simulated annealing
systems. We have tested our method on three NP-hard
optimization problems using both classic and adaptive
cooling schedules. The experimental results have been
consistently very good—on average the running time is
halved when using an adaptive cooling schedule and
reduced by a third in the case of the classic sched-
ule—with no average loss in solution quality.

I.  INTRODUCTION

The simulated annealing (SA) algorithm [4, 20] has
proven to be an effective optimization tool in the field of
VLSI computer-aided design (CAD) as well as other
diverse fields such as image processing and operations
research [2, 4, 9, 11, 16, 22, 24, 29, 35, 39]. This stems
from both its general applicability to a wide range of
NP-hard combinatorial optimization problems and that it
consistently produces high quality approximate solutions
to these problems. SA has only one significant disadvan-
tage—its typically very long computation times.

There has been considerable effort aimed at acceler-
ating SA. Most of this work has concentrated on the
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development of fastercooling schedules [1, 15, 23, 24,
29], alternative move generation/acceptance strategies
[8], noisy cost evaluation [9], and optimal finite-time
temperature schedules [3, 12, 13, 37]. Another approach,
and the one we consider here, istwo-stage simulated
annealing (TSSA) [10, 16, 33, 34]. Assuming a tradi-
tional monotonically cooling temperature schedule, a
faster heuristic algorithm is used to replace the SA
actions occurring at the highest temperatures in a TSSA
system. The heuristic is then followed by a conventional
SA approach initiated at a lower-than-normal tempera-
ture in an attempt to improve the heuristic solution.
TSSA is especially beneficial for problems in which SA
produces solutions of quality competitive with the most
successful tailored heuristics, such as VLSI network par-
titioning [7, 16, 19, 22] and standard-cell placement [9,
33, 35, 39]. As will be seen in Section IV, even heuristics
that produce mediocre solutions in comparison to SA can
result in significant TSSA time savings over SA.

The principal consideration in the design of a tradi-
tional TSSA system is the determination of the starting
temperature for the SA phase. If the chosen temperature
is too low, TSSA can become prematurely trapped in
some local optimum resulting in lower solution quality
than standard SA. If the chosen temperature is too high,
much of the structure of the first-stage heuristic solution
can be wasted because of too much algorithmic
hill-climbing. Early TSSA approaches [10, 16, 33] were
based on finding a reasonable constant starting tempera-
ture for the SA phase. They require a significant amount
of experimentation with both the chosen heuristic and
the specific SA implementation being used. The primary
advantage of a constant starting temperature is that once
the temperature has been determined and incorporated
into the TSSA system, computational overhead is very
low. The obvious disadvantage is that if any of the heu-
ristic, the SA implementation, or the problem itself
changes, a new starting temperature must be found.

Rose, Klebsch, and Wolf [34] present a more gener-
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alized method for determining the starting temperature in
traditional monotonically cooling TSSA systems. Their
method is based on Markov equilibrium dynamics. An
approximate probability distribution for the
change-in-cost functionP(∆C) is found by generating a
large number of random moves from the first-stage heu-
ristic solution. This approximation is used to locate the
corresponding SA temperature in a binary-search proce-
dure over the range [0,t0], wheret0 is the initial temper-
ature of standard SA starting from a random solution to
the given problem. At each trial temperature, the approx-
imate P(∆C) distribution is used to calculate the total
expected cost of all positive moves and the total expected
cost of all negative moves. When the magnitudes of the
two values are found to be equal, the current trial temper-
ature is returned as the starting temperature for the SA
phase, sinceE(∆C) = 0 in SA equilibrium. Their method
is shown to produce good results for the standard cell
placement problem. However, there is no attempt to
apply the method to other problems. Additionally, there
are both problem- and formulation-dependent con-
straints on the choice of first-stage heuristic and a high
computational cost that have discouraged its widespread
adoption [34].

Analysis of these previous methods for starting tem-
perature determination offers insight into desirable prop-
erties for a new method. The method should be generally
applicable with respect to problems and traditional SA
implementations; it should be relatively insensitive to the
given starting solution so as to avoid constraints on the
choice of the first-stage heuristic; and it should be as
computationally inexpensive as possible. This paper pre-
sents a method for starting temperature determination in
traditional monotonically cooling TSSA systems that
meets these goals. The SA algorithm is described in Sec-
tion II; Section III presents the derivation of the proposed
method; Section IV presents the experimental results for
three different NP-hard combinatorial optimization
problems, namely the VLSI network partitioning
(VLSI-NPP), rectilinear Steiner minimal tree (RSMT),
and traveling salesperson (TSP) problems; and Section V
discusses robustness issues.

II.  SIMULATED ANNEALING

In this section we first describe the SA algorithm in
general. We then present behavior characteristics of the
traditional SA algorithm that will be used in the deriva-
tion of our method of starting temperature determination
for traditional TSSA systems given in Section III.

 2.1.  The Algorithm

The SA algorithm was first introduced by Kirk-
patrick, Gelatt, and Vecchi [20] and independently by
Cerny [4] as a problem-independent combinatorial opti-
mization technique. It is a generalization of the Metrop-
olis Monte Carlo simulation [27]. It combines the
advantages of iterative improvement techniques with
randomizing techniques to yield a powerful optimization
engine.

The traditional SA process typically starts with a
random solution to the optimization problem in question.
Through the use of somegeneration mechanism, a copy
of the current solution is randomly perturbed to form a
new solution. This new solution is subjected to the
Metropolis acceptance criterion. The Metropolis crite-
rion always accepts the perturbed solution as the next
current solution if its cost—as defined by the given prob-
lem’s cost function—is lower than that of the current
solution (assuming minimization). It also allows for the
probabilistic acceptance of higher-cost perturbed solu-
tions as the next current solution, enabling the SA algo-
rithm to climb out of local optima. This probabilistic
acceptance is a function of the SA temperature and the
difference in cost between the current and perturbed
solutions.

The initial temperature t0 is chosen high enough
such that nearly all Metropolis trials result in acceptance.
After a certain number of Metropolis trials, the tempera-
ture is lowered according to somedecrement rule. This
process continues until somestop criterion is met, at
which point thebest-so-far or BSF [3, 36] solution is
returned and the algorithm is terminated. If instead the
last solution visited is returned at termination, the algo-
rithm is calledwhere-you-are or WYA-SA. Pseudo-code
for the BSF-SA algorithm using the Metropolis criterion
is shown in Fig. 1.

The sequence of solutions generated at a fixed tem-
perature can be mathematically modeled as ahomoge-
neous Markov chain, due to the fact that the outcome of
any given Metropolis trial depends only upon the out-
come of the previous Metropolis trial [32]. Using the
homogeneous Markov chain model, several sets of
authors [22, 26, 29, 32] independently show that the SA
algorithm as described above will converge asymptoti-
cally to a globally optimal solution given an infinite
number of state transitions at each temperature and an
infinite number of monotonically decreasing temperature
values that in the limit approach zero. According to the
theory, the temporal distribution of solutions will
becomestationary for the Markov chain executing at the
current temperature, known as theBoltzmann distribu-
tion, after an infinite number of Metropolis trials. At this
point, the Markov chain is inequilibrium and the temper-
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ature is lowered. Equilibrium must be regained at each
new temperature if the optimal solutions are to be found.

Obviously, asymptotic convergence can only be
approximated by any SA implementation. The majority
of SA implementations proposed in the literature attempt
to follow the theoretical model shown to converge
asymptotically to the set of optimal solutions [1, 4, 15,
20, 23, 29, 35, 39]. The main point of commonality in
these approaches is the use of monotonically decreasing
temperature schedules. The differences can be traced to
the way the authors choose to approximate Markov equi-
librium, called quasi-equilibrium. The choices made in
defining quasi-equilibrium for the given schedule have a
direct impact on how the temperature is lowered. There
are many open issues regarding the concept of
quasi-equilibrium that are beyond the scope of this paper.

Recent work with optimal finite-time temperature
schedules [3, 12, 13, 37] points to the possibility of
non-monotone or even warming or periodic temperature
schedules outperforming traditional monotonically cool-
ing SA schedules given a finite amount of computation
time. This preliminary work is encouraging, but optimal
temperature scheduling lacks the wealth of theoretical
and empirical results available for traditional SA. For
this reason we choose not to focus on optimal finite-time
temperature schedules. We instead focus on traditional
SA cooling schedules that attempt to approximate the
theoretical model. These types of schedules will con-
tinue to be important for many types of combinatorial
applications. The automatic determination of the starting
temperature in TSSA systems utilizing non-monotone
optimal finite-time temperature schedules remains an
open problem.

Fig. 1: The traditional BSF-SA algorithm using the
Metropolis acceptance criterion.

Simulated_Annealing()
{

initialize(i, t);
iBSF = i;
do {

do {
j = perturb(i);
∆cij = c(j) - c(i);
if ((∆cij ≤ 0) || (random() < exp(-∆cijj /t))) {

i = j;
if (c(i) < c(iBSF)) iBSF = i;

}
} while (equilibrium has not been reached);
decrement(t);

} while (stop criterion has not been met);
return(iBSF);

}

Traditional SA cooling schedules tend to fall into
one of two classes depending upon the employed decre-
ment rule—fixedor adaptive. Fixed schedules typically
have decrement rules of the form , where the
temperature decrement size is kept proportionately con-
stant with . Adaptive schedules dynamically
vary the size of the temperature decrements according to
various aggregate statistics of each Markov chain, such
as the mean and variance of the cost. The seminal papers
[4, 20] both introduced fixed decrement rules, so we tend
to refer to this type of schedule as the classic schedule.
The majority of SA applications present in the literature
use some variation of the classic schedule. Adaptive
schedules tend to produce better quality solutions than do
classic schedules at the cost of increased computation
time. This can limit their practical applicability.

For the purpose of testing our proposed TSSA
method, we implement one classic and one adaptive
schedule for each of the problems in our test suite. The
classic schedule is the one proposed by Kirkpatrick,
Gelatt, and Vecchi [20]. The adaptive schedule is that of
Aarts and van Laarhoven [1]. Results for the six prob-
lem/schedule combinations are presented in Section IV.

 2.2.  Characteristic Behavior

One way of ensuring general applicability of the
proposed TSSA methodology is to base the determina-
tion of the starting temperature on some characteristic
behavior of the traditional SA algorithm. Large-scale
numerical studies examining solution densities at vary-
ing SA temperatures have been conducted for different
pseudo-random combinatorial problems by four differ-
ent sets of authors [2, 11, 28, 38]. All four independently
present evidence that supports a typical behavior of the
expected cost Ek and standard deviation σk with respect
to SA temperature tk given a traditional SA cooling
schedule. Specifically, the investigations conclude that at
all temperatures except those very close to the tempera-
ture corresponding to the optimal value of the cost func-
tion, the following behaviors can be noted:

; and (1)

, (2)

where E∞ and σ∞ respectively represent the expected
cost and the standard deviation of the cost over the solu-
tion space. Additionally, the investigations indepen-
dently show that for this same range of temperatures, the
probability distribution of the cost values can be closely
approximated by a normal distribution.

If we assume that the first-stage heuristic solution
for a TSSA system is in equilibrium for the SA phase at
some temperature, then we could use the equation shown

tk t0 αk⋅=

0 α 1< <

Ek E∞ σ∞
2 tk⁄ 

 –≈

σk σ∞≈



4

in (1) as a reasonable temperature approximation
method. However, as pointed out by Rose, Klebsch, and
Wolf [34], this is almost never the case. This assumption
is strictly valid only for first-stage solutions produced by
the same SA algorithm while in equilibrium, a very
unlikely TSSA scenario. Under this assumption, approx-
imation accuracy would be highly problem-dependent,
and could result in a degradation of solution quality for
TSSA as compared to standard SA. For this reason, we
assume that the first-stage heuristic solution is the BSF
solution at some SA temperature, rather than the equilib-
rium solution.

The characteristic behavior of the BSF cost over the
course of the traditional SA algorithm has not been well
documented in the literature. Sibani, Pedersen, Hoffman
and Salamon [36] present a scaling method to estimate
the global minima of NP-hard combinatorial problems
during a SA run based on the EBSF distribution, but make
no attempt to describe the evolutionary behavior of the
BSF cost with respect to decreasing temperature. Fig. 2
illustrates the characteristic SA BSF curve that results
from plotting the evolution of the normalized BSF cost
cnorm(iBSF) against normalized temperature tnorm, using
the normalizations  and

. Similar plots from actual SA runs can be
seen in Figs. 3, 5, and 6.

Fig. 3 shows a comparison of BSF cost evolution
against expected cost evolution from an actual SA run.
As can be seen in the figure, the BSF curve is shifted to
the right of the expected cost curve, indicating that the
expected cost Ek at temperature tk is some number of
standard deviation units σk greater than the BSF cost. In

Fig. 2: Normalized BSF cost cnorm(iBSF) vs. normalized
SA temperature tnorm.

t n
or

m

cnorm(iBSF)

1.0

cnorm i( ) E∞ c i( )–( ) σ∞⁄=
tnorm tk t0⁄=

the next section, we present a method to probabilistically
calculate this difference in expected and BSF cost, to be
used in our method of associating a SA temperature with
a given solution assumed to be the BSF solution.

III.  DERIVATIONS

Given the behavioral information presented in the
previous section, we now present the following two
propositions that describe the derivation of our TSSA
starting temperature determination methodology.
Proposition 1: Given a solution i for some combinatorial
optimization problem, the following function can be
used to closely approximate the SA temperature tk(i) at
which i would be found as the BSF solution:

. (3)

Proof: We will use the behavior of the expected cost Ek
represented by (1) as a starting point. Solving (1) with
respect to absolute temperature tk gives:

. (4)

Since we are assuming that the given solution i corre-
sponds to the SA BSF solution as described in the previ-
ous section, we cannot reliably use (4) as a temperature
approximation. A function relating Ek and c(iBSF) is nec-
essary to complete the derivation. If we assume ikmin is
the minimum-cost solution seen during the kth Markov
chain executing at temperature tk, then we know that the
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Fig. 3: Plots of normalized SA expected cost Ek and BSF
cost cnorm(iBSF) vs. normalized SA temperature tnorm pro-
duced by an actual SA run for the 318-city TSP instance.

tk i( )
σ∞

2

E∞ c i( ) γ∞σ∞––
-------------------------------------------≈

tk

σ∞
2

E∞ Ek–
------------------≈
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following relation holds:

. (5)

This implies that Ek is some number of standard devia-
tion units σk greater than c(ikmin) at temperature tk. We
call this number the offset and denote it by the symbol γk.
In this context, (5) can be expressed as:

. (6)

We can replace the σk term in (6) with σ∞ as described by
(2). We can also approximate ikmin with iBSF to give:

. (7)

Using the behavior of the standard deviation σk
described by (2), combined with the assumption that the
solution density is nearly normally distributed, we
expect the offset γk to remain approximately constant at
the higher temperatures while converging quickly
towards zero close to the temperature corresponding to
the optimal value of the cost function. Our experimental
evidence indeed supports this behavior. This can be seen
graphically in Fig. 4, showing the evolution of the offset
over the course of the SA algorithm for a number of runs.
This behavior allows us to closely approximate the γk
term in (7) with γ∞. Replacing the Ek term in (4) by the
updated version of (7) gives us the following:

. (8)

Finally, instantiating (8) with the first-stage heuristic
solution i for iBSF gives (3).

■

Equation (3) serves as the basis for our proposed
method of starting temperature determination in tradi-

Ek c ikmin( )≥

Ek c ikmin( ) γkσk+=

Ek c iBSF( ) γ kσ∞
+≈
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Fig. 4: Evolution of the offset γk for the 100-city TSP
instance.

tk iBSF( )
σ∞

2

E∞ c iBSF( ) γ∞σ∞––
---------------------------------------------------≈

tional TSSA systems. However, the offset γ∞ is still an
unknown. It is important to note that without the offset
term, (3) generates temperature approximations that
could possibly be too low depending upon the problem
being solved, resulting in TSSA solution quality less
than that of standard SA. This is discussed in more detail
in Section 5.2. The following proposition describes the
calculation of γ∞.
Proposition 2: Given a SA formulation for some combi-
natorial optimization problem with Markov chain length
LM, the offset γ∞ can be calculated probabilistically with
the equation:

(9)

Proof: As discussed in the previous section, we make use
of the observation that we can use a normal distribution
to closely approximate the probability distribution of the
cost values over each Markov chain. Using this assump-
tion, the cost values seen over the course of a Markov
chain can be represented by a normally distributed ran-
dom variable X with probability distribution function:

. (10)

A simple change in variable leads to the following cumu-
lative distribution function (CDF):

, (11)

where t = (x - µ)/σ and dx = σ dt. This CDF can then be
used in such a way as to determine the probability of gen-
erating a solution with a given cost. Explicitly, this can
be written as

. (12)

If we let z = (x - µ)/σ, the term zρ/2 determines the percen-
tile ρ of the normal distribution, , to
which X = x is likely to belong. For our purposes, it is
useful to consider these normal probabilities in terms of
standard deviation units away from the mean. In this con-
text, zρ/2 can be used in the following manner:

. (13)

It should be clear that the zρ/2 term in the above equation
corresponds to the offset γk used in our starting tempera-
ture determination method. The problem remains to cal-
culate appropriate ρ values and their corresponding zρ/2
values to be used in determining the expected value for
γ∞. Using the behavior characteristics described earlier in
this section, we can use the offset value γ1 for the first
Markov chain to obtain a reasonable approximation for
γ∞. We need now only determine the expected offset for
the first Markov chain.

Since virtually all LM transitions will be accepted

P E∞ γ∞σ∞– X E∞ γ∞σ∞+< <[ ] 1 LM
1–

–≈

f x µ σ,;( ) 1

σ 2π
-------------- e

x µ–
σ

------------
2

2⁄–
=

Φ z( ) 1

2π
---------- e t2 2⁄– dt

∞–

z

∫=

P X x≤[ ] Φ x µ–
σ

------------ 
 =

Φ z ρ 2⁄( ) ρ=

P µ zρ 2⁄ σ– X µ zρ 2⁄ σ+< <[ ] 1 ρ–=
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during the first Markov chain of the SA cooling schedule,
the stationary distribution of this chain is uniform over
the state space [2, 11, 28, 38]. This implies that the mean
µ1 and standard deviationσ1 of the cost values seen over
the first Markov chain will approachE∞ andσ∞ respec-
tively. Using this fact, we can assume that each generated
solution has a probability very close to |LM|-1 of having
the minimum cost value seen over the course of the first
Markov chain. This will serve as the value forρ. Con-
versely, each generated solution will have a probability
very close to 1 -ρ of having a cost greater than that of the
minimum-cost value seen over the course of the first
Markov chain. Using these values, we can now deter-
minezρ/2, and hence our offsetγ∞. Since we are consid-
ering the first Markov chain, we can substituteE∞ for µ
andσ∞ for σ in (13), giving us (9).

■

Given the appropriate value forρ, the corresponding
zρ/2 value can be calculated via numerical methods or by
a table lookup. Tables I-III show results for approximat-
ing the offset of each problem instance in our test suite
using table values. Results for each instance are averaged
over 20 runs. As can be seen in the tables, computedzρ/2
values match very closely with observed average offsets
γ∞.The variance seen in the offset values generated for
any particular problem instance is generally quite high.
However, in practice, this did not affect the ability of the
TSSA systems to converge to the same average quality
solutions as the corresponding standard SA algorithms
for the same instances. This can be seen in the TSSA
results presented in Section IV.

In addition to being required for our starting temper-
ature determination method, the offsetγ∞ can be used as
a gauge in the choice of first-stage heuristic. Intuitively
we know that if the normalized cost of the first-stage heu-
ristic solutioncnorm(iheur) is less than γ∞ then TSSA will
most likely not be beneficial, since this is the amount of
optimization expected to occur during the Markov chain
executing at the first SA temperature. This rough guide-
line can be further refined if we keep in mind that TSSA
can only be beneficial if the cost of the first-stage solu-
tion is such that

. (14)

This implies that for TSSA to be beneficial, a first-stage
heuristic should return solutions of absolute cost

. (15)

Based on the above discussion, our method can be
summarized in the following steps, assuming TSSA has
been judged beneficial by (15):

• Execute the heuristic to obtainc(iBSF).

tk iheur( )
σ∞

2

E∞ c iheur( ) γ∞σ∞––
---------------------------------------------------- t0<≈

c iheur( ) E∞
σ∞

t0

------ γ∞+ 
  σ∞–<

• Obtain values forE∞, σ∞, andγ∞.

• Usec(iheur), E∞, σ∞, andγ∞ in (5) to obtain the
starting temperature approximationtapp.

• Sett = tapp and begin the SA phase.

As can be seen in Figs. 5 and 6, our method produces
approximations that are quite close to actual SA temper-
atures associated with the BSF solution for different

cells LM 1 - |LM|-1 zρ/2
(computed)

γ∞
(observed)

100 100 0.9900 2.58 2.76

500 500 0.9980 3.09 3.02

833 833 0.9988 3.24 3.13

1500 1500 0.9993 3.41 3.28

3014 3014 0.9995 3.59 3.64

10000 10000 0.9998 3.87 3.88

Table I: Experimental results for approximating the off-
setγ∞ for several VLSI-NPP instances.

terminals LM 1 - |LM|-1 zρ/2
(computed)

γ∞
(observed)

13 47 0.9787 2.30 2.18

16 83 0.9880 2.51 2.87

20 380 0.9974 3.01 2.90

23 313 0.9968 2.95 3.01

30 695 0.9986 3.19 3.08

37 438 0.9977 3.05 3.09

Table II: Experimental results for approximating the
offsetγ∞ for several RSMT instances.

cities LM 1 - |LM|-1 zρ/2
(computed)

γ ∞
(observed)

42 861 0.9988 3.25 3.33

50 1225 0.9992 3.35 3.31

57 1596 0.9994 3.42 3.62

100 4950 0.9998 3.72 3.55

318 50403 1.0000 4.27 4.38

532 141246 1.0000 4.45 4.56

Table III: Experimental results for approximating the
offsetγ∞ for several TSP instances.
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problem/schedule combinations. Fig. 5 shows our
approximation curve plotted against actual SA BSF
curves for the PrimarySC1 VLSI-NPP instance. Fig. 6
shows our approximation curve plotted against actual SA
BSF curves for the 318-city TSP instance. For both fig-
ures, plots (a) and (b) concern respectively the adaptive
and classic schedules. The experimental results pre-
sented in the next section indicate that in practice there is
a significant time reduction seen for TSSA systems
incorporating the above methodology over standard SA
with no loss in solution quality.

IV.  TSSA EXPERIMENTAL RESULTS

We now present results for our TSSA method
applied to the VLSI-NPP, RSMT, and TSP. A short
description of each problem is given in the correspond-
ing subsection. All TSSA systems discussed here are
implemented in the C/C++ programming language using
the Gnu g++ compiler. All test runs were executed on a
Sun SparcServer 10/51 operating under SunOS 4.1.3
(UNIX) with 128 MB of RAM. All results are averaged
over 20 runs. Further discussion of these results can be
found in Section V.

As mentioned in Section I, each problem is solved
with two different cooling schedules—a classic schedule
[20] and an adaptive schedule [1]. There are a number
parameters particular to each schedule implementation,
as well as some that are schedule-independent. The
schedule-dependent parameters were set to their recom-
mended values as discussed in each of the original

papers. Initial temperature for both schedules is set equal
to σ∞ as recommended by Otten and van Ginneken [29]
and White [38]; and the Markov chain length for both
schedules is set equal to the size of the SA neighbor-
hoods as recommended by Aarts and van Laarhoven [1].

 4.1.  VLSI Network Partitioning Problem

The VLSI-NPP is a generalization of the graph par-
titioning problem (GPP) referred to as hypergraph parti-
tioning [7, 16, 19]. The input to the VLSI-NPP consists
of a set of VLSI circuit elements, or cells, connected by
a set of nets. Each cell has an associated positive-valued
area. Each net is a hyperedge, and represents at least two
cells that are electrically interconnected. The goal of the
VLSI-NPP is to divide the cells into two blocks so as to
minimize the number of nets that have cells in both
blocks under the constraint that the sums of the areas of
the cells in each block are approximately equal. The
specified balance tolerance for each block is the size of
the largest cell in the circuit SMAX [7]. The difference in
area between the two blocks is used as a penalty term.
Hence, the objective function to be minimized is

, (16)

where Ecut is the number of nets with cells in both blocks
and λ is a weighting constant. For our VLSI-NPP imple-
mentation, .

The TSSA VLSI-NPP system incorporates the
Fiduccia and Mattheyses (F-M) heuristic [7]. The F-M

c i( ) Ecut λ area aj( )
aj A∈
∑ area bj( )

bj B∈
∑–

 
 
 ⋅

2

+=

λ 1 4 SMAX2⋅( )⁄=

Fig. 5: Starting temperature approximation curve vs. SA BSF curves for PrimarySC1 VLSI-NPP instance concerning
(a) the adaptive schedule; and (b) the classic schedule.
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cells
CPUSA

(sec)
CSA

CPUTSSA

 (sec)
CTSSA ∆CPU%

100 0.20 16.0 .11 15.8 45.0

500 2.90 101.8 1.01 102.6 65.2

833 6.56 72.5 2.26 76.2 65.5

1500 18.72 289.9 5.95 287.3 68.2

3014 47.38 226.0 16.30 245.2 65.6

10000 324.51 2181.6 141.33 2127.8 56.4

Table IV: Results for the TSSA VLSI-NPP system
using an adaptive schedule.

cells
CPUSA

(sec)
CSA

CPUTSSA

 (sec)
CTSSA ∆CPU%

100 0.09 16.8 0.07 15.9 22.2

500 0.99 109.5 0.65 103.3 34.3

833 2.09 99.8 1.33 129.3 36.4

1500 4.82 320.4 2.84 318.5 41.1

3014 12.15 396.0 5.38 414.2 55.7

10000 61.45 2121.0 35.70 2108.3 41.9

Table V: Results for a TSSA VLSI-NPP system using a
classic schedule.

heuristic is a generalization of the Kernighan-Lin graph
bipartitioning heuristic [19]. The heuristic was selected
due to its fast running times and quality of solution. The
complexity of the algorithm is linear in the total number
of pins, where apin is an interconnection point on a cell
for a particular net. We chose to only use one pass of the
algorithm, since the majority of improvement takes place
during the first pass. Experimental results show that SA
improves solutions generated by one pass of F-M by an
average of 15% relative toE∞ in terms of standard devi-
ation unitsσ∞.

Experimental data used for evaluating the TSSA
VLSI-NPP system are the SIGDA standard cell bench-
mark circuits PrimarySC1 (833 cells, 904 nets) and
PrimarySC2 (3014 cells, 3029 nets) [31] as well as four
randomly generated networks with average edge degrees
and net-size distributions similar to the benchmark cir-
cuits. The randomly generated networks range in size
from 100 nets with 100 cells to 10000 nets with 10000
cells. The results are given in Tables IV and V respec-
tively for the adaptive and classic schedules. The follow-
ing conventions are used for the tables:CPUSA and
CPUTSSA represent the average CPU times respectively
of SA and TSSA;CSA andCTSSA represent the average
final BSF cost respectively for SA and TSSA; and
∆CPU% represents the average percentage difference in
CPU time between SA and TSSA for the given instance.
These results are for flat, non-clustered partitioning.
Many authors have demonstrated the fact that a clustered
partitioning phase before a flat partitioning can signifi-
cantly improve solution quality. This was not examined

Fig. 6: Starting temperature approximation curve vs. SA BSF curves for 318-city TSP instance concerning (a) the
adaptive schedule; and (b) the classic schedule.
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here, but we expect the proposed TSSA methodology to
behave similarly in this case. As can be seen from the
tables, significant speedup is observed in the TSSA sys-
tems incorporating our method of starting temperature
determination over standard SA with no average loss in
solution quality. The average speed-up was approxi-
mately 61% and 39% respectively for the adaptive and
classic schedules.

 4.2.  Rectilinear Steiner Minimal Tree Problem

The input to the RSMT problem consists of a set of
n points in a plane, calledterminals. The goal of the
RSMT problem is to connect the terminals with horizon-
tal and vertical line segments such that the sum of the
lengths of the segments is minimized. The connected ter-
minals should form an acyclic tree such that all of the ter-
minals serve as endpoints to various segments.
Additional points, calledSteiner points, can also be used
to connect the terminals. Using a result of Hanan [12],
we can restrict a search for an optimal solution to Steiner
point locations that lie on a grid imposed by the termi-
nals. This grid defines at most O(n2) possible Steiner
locations. Hanan’s result also allows us to limit the actual
number of Steiner points to at mostn - 1. The objective
function is simply

, (17)

whereE is the set of all edges in the tree.

The heuristic chosen for the first phase of the TSSA
RSMT system is based on Kruskal’s minimum-spanning
tree algorithm [21]. Kruskal’s algorithm is first run to
obtain the minimum-spanning tree for then terminals
using no Steiner points. Then up ton - 1 Steiner points
are added in a greedy fashion from the set of possible
Steiner locations to form the initial solution for the SA
phase. SA improves solutions produced by our variation
of Kruskal’s algorithm by an average of 10% relative to
E∞ in terms of standard deviation unitsσ∞.

Experimental data used for evaluating the TSSA
RSMT system consists of four of the larger nets from the
SIGDA benchmark circuit PrimarySC2 as well as ran-
domly generated 20 and 30 terminal networks. The nets
taken from PrimarySC2 range in size from 13 to 37 ter-
minals. The placements of the nets from PrimarySC2 are
intermediate solutions generated by a local placement
and routing package. The results are shown in Tables VI
and VII. Again, significant speedup is noted for the
TSSA RSMT system over standard SA with no loss in
solution quality. The average speedup was approxi-
mately 41% and 30% respectively for the adaptive and
classic schedules.

c i( ) length ej( )
ej E∈
∑=

 4.3.  Traveling Salesperson Problem

The input to the TSP consists of a symmetricn × n
distance matrixd, representing distances betweenn cit-
ies. The goal is to find a minimum-length tour that visits
each city exactly once while terminating at the city of
origin. The objective function to be minimized is

. (18)

For the first stage of the TSSA TSP system, a variation
of the Croes heuristic [5] is used. SA improves solutions
produced by our variation of the Croes algorithm by an
average of 10% relative toE∞ in terms of standard devi-
ation unitsσ∞.

Experimental data used for evaluating the TSSA
TSP system consists of the following instances: the 42
city problem of Dantzig, Fulkerson, and Johnson [6]; a
randomly generated 50 city problem; the 57 city problem
of Karg and Thompson [18]; a randomly generated 100
city problem; the 318 city problem of Lin and Kernighan
[25]; and the 532 city problem of Padberg and Rinaldi

terminals
CPUSA

(sec)
CSA

CPUTSSA

 (sec)
CTSSA ∆CPU%

13 11.96 1964.3 5.95 1958.4 50.3

16 54.10 3022.8 23.45 3004.2 56.7

20 921.58 304.5 669.55 304.4 27.3

23 1144.48 7550.0 711.76 7553.4 37.8

30 6863.57 359.3 4191.14 359.3 38.9

37 5720.76 6490.0 3648.04 6491.0 36.2

Table VI: Results for a TSSA RSMT system using an
adaptive schedule.

terminals
CPUSA

(sec)
CSA

CPUTSSA

 (sec)
CTSSA ∆CPU%

13 8.67 1949.5 6.05 1953.0 30.2

16 32.59 3005.6 22.23 2998.8 31.8

20 274.38 305.4 215.50 305.0 21.5

23 373.03 7556.4 264.66 7553.2 29.1

30 1512.38 360.5 1169.05 361.5 22.7

37 1628.60 6490.0 1109.23 6494.8 31.9

Table VII: Results for a TSSA RSMT system using a
classic schedule.

c i( ) dj j 1+,
j

n 1–

∑ dn 1,+=
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[30]. The results are given in Tables VIII and IX. As with
the previous two problems, significant speedup is noted
for the TSSA TSP system over standard SA with no loss
in solution quality. The average speedup was approxi-
mately 48% and 35% respectively for the adaptive and
classic schedules.

In summary, the average running time speedup for
TSSA over SA for all problem instances in the test suite
is approximately 50% when using an adaptive cooling
schedule and approximately 35% when using a classic
cooling schedule. Both figures are clearly significant.
Equally important is the fact that the TSSA systems are
on average able to produce the same quality solutions as
the corresponding single-stage SA approaches.

V.  ROBUSTNESS OF METHODOLOGY

An important aspect of the methodology that has not
been addressed is that of robustness. Specifically, are
there any constraints on the choice of the first-stage heu-
ristic? Also, what happens if we assume that the
first-stage heuristic solution corresponds to the equilib-
rium solution at some temperature tk as opposed to the
BSF solution? Additionally, what happens in the case of
schedule abbreviation, where the highest temperatures
are found to be superfluous and a lower SA initial tem-
perature is used? These issues are examined in the fol-
lowing three subsections.

 5.1.  First-stage Heuristics with Good Solution Quality

The experiments of Section IV focus on the use of
first-stage heuristics that have low computational cost
and mediocre solution quality as compared to SA. This
was done to illustrate the fact that even these types of
simple heuristics can produce a significant time savings
for TSSA over standard SA while maintaining equiva-
lent solution quality. The quality of these first-stage solu-
tions corresponds to the middle section of the
characteristic BSF curve shown in Figs. 5 and 6. How-

ever, what happens in the case of a first-stage heuristic
that produces solutions near the tail of the BSF curve, in
the regime of good solutions?

In an attempt to address this question, we examined
one instance of each problem from our test suite with a
TSSA system incorporating a first-stage heuristic that
produces high-quality solutions in relation to SA. For the
TSSA VLSI-NPP, we use a full-pass F-M implementa-
tion instead of a single pass as the first stage followed by

cities
CPUSA

(sec)
CSA

CPUTSSA

 (sec)
CTSSA ∆CPU%

42 4.46 704.4 3.14 703.4 29.6

50 7.02 242.9 2.98 236.4 51.5

57 11.40 13086.4 4.73 13133.0 53.7

100 51.23 313.2 21.53 307.3 54.9

318 1722.98 42869.6 703.22 42835.0 59.0

532 10104.39 88105.5 6044.17 88162.1 40.2

Table VIII: Results for the TSSA TSP system using an
adaptive schedule.

cities
CPUSA

(sec)
CSA

CPUTSSA

 (sec)
CTSSA ∆CPU%

42 0.90 705.2 0.63 704.6 30.0

50 1.23 245.2 0.85 243.4 30.9

57 1.92 13140.7 1.29 13106.5 32.8

100 6.71 324.9 4.23 322.3 37.0

318 125.98 43295.2 87.63 43375.1 30.4

532 651.70 89555.9 345.49 89648.6 47.0

Table IX: Results for a TSSA TSP system using a clas-
sic schedule.

instance Copt Cheur ∆opt%
CPUheur

(sec)
CTSSA ∆opt%

CPUTSSA

(sec)
∆CPU%

3014-cell
VLSI-NPP

160 473.2 195.8 13.97 247.4 40.9 19.48 58.9

30-terminal
RSMT

359 366 1.9 52.60 361.2 0.6 452.91 70.1

318-city
TSP

41345 43389.8 4.9 123.33 42842.4 3.7 933.11 45.8

Table X: TSSA results with good first-stage heuristic solution quality.
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adaptive SA. For the TSSA RSMT, we use the iterative
1-Steiner heuristic of Kahng and Robins [17] as the first
stage followed by classic SA. Finally for the TSP, we use
classic SA as the first stage followed by adaptive SA.
Each of these TSSA systems was executed 20 times for
the given instance. These results are presented in Table
X. The optimal cost for each instance is used as a
control1. As can be seen in the table, the proposed meth-
odology performs just as well with heuristics that pro-
duce high-quality solutions. However, these results are
not surprising in light of the fact that the approximation
curve produced by our methodology overestimates tem-
perature in the regime of good solutions, as can be seen
in Figs. 5 and 6.

 5.2.  Expected Cost vs. BSF Cost

As was mentioned in Section 2.2, we assume that the
solution returned by the first-stage heuristic corresponds
to the BSF solution at some SA temperature tk. What
happens if we change this assumption such that the
first-stage heuristic solution instead corresponds to the
expected cost at some SA temperature tk? A slight
decrease in computation time can be expected due to the
lower temperature approximations generated by the
expected cost model. However, is there any difference in
TSSA solution quality between the two models?

As was pointed out in Section 2.2, using the
expected cost assumption could result in varying TSSA
model approximation accuracy under different problems.
We did not attempt to answer the question in the general
case, but instead focused on the PrimarySC1 and
PrimarySC2 instances of the VLSI-NPP using the two
different TSSA models to examine the effect of changing
the cost assumption. Using the classic SA schedule, we

1The optimal cut value for the PrimarySC2 VLSI-NPP
instance does not appear in the literature and is most likely not
known. The given value is the best result we’ve obtained over
thousands of runs with the adaptive SA schedule. This is for flat,
non-clustered partitioning with a balance tolerance of the size of
the largest cell in the circuit, or +/- 0.34% in the case of
PrimarySC2. The figure is consistent with similar partitioning
results presented in the literature.

ran 1000 trials each of full-regime SA, TSSA with our
proposed methodology under the BSF cost model, and
TSSA under the expected cost model for the two
instances. These results are summarized in Table XI. As
can be seen in the table, TSSA under the BSF model pro-
duces solutions almost indistinguishable in cost from
standard SA solutions. However, TSSA under the
expected cost model generates solutions slightly greater
than both standard SA and TSSA under the BSF model.
Although as expected there is a slight decrease in com-
putation time over TSSA under the BSF model, for this
problem it appears that TSSA under the expected cost
model results in premature freezing.

 5.3.  Lowering the Initial SA Temperature

As was demonstrated by Johnson, Aragon,
McGeoch and Schevon [16], traditional SA cooling
schedules could be wasting time at the highest tempera-
tures. Their experiments concluded that for the GPP, an
abbreviated version of the classic SA schedule with
one-half the usual number of temperature steps could
produce solutions of equal quality to those produced by
a full SA temperature regime in roughly half the compu-
tation time. How does this type of situation impact the
performance of the proposed TSSA model?

We examined this question with the PrimarySC1
and PrimarySC2 instances of the VLSI-NPP. Our exper-
iments show that we can start abbreviated SA at approx-
imately one-third the original initial temperature and still
achieve solution quality similar to full-regime SA. We
ran 1000 trials of abbreviated classic SA for PrimarySC1
and PrimarySC2 with average final costs of 99.0 and
396.4 respectively, as compared to 99.8 and 396.0 for
full-regime SA. The BSF curve for the abbreviated SA
quickly regains the expected behavior pattern exhibited
for full-regime SA as described in Section 2.2. This can
be seen graphically in Fig. 7.

This would indicate that the proposed TSSA meth-
odology will be effective with abbreviated SA if the
first-stage heuristic is able to generate solutions that cor-
respond to the remaining part of the abbreviated BSF
curve. Since the chosen first-stage TSSA VLSI-NPP

instance

Standard SA TSSA w/ BSF model TSSA w/ expected cost model

C Cbest CPU C Cbest CPU C Cbest CPU

PrSC1 99.8 72 2.13 100.6 73 1.30 104.1 75 1.27

PsSC2 395.4 344 12.09 410.9 344 5.36 422.2 348 5.02

Table XI: Comparison of two TSSA models on PrimarySC1 VLSI-NPP instance.
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heuristic generates solutions well past this point on the
BSF curve, our experiments show that the proposed
TSSA methodology performance for abbreviated SA is
consistent with that for full-regime SA, although the per-
centage decrease in CPU times is lower in the abbrevi-
ated case. As is the case with full-regime TSSA, a
candidate first-stage heuristic for abbreviated TSSA can
be evaluated using (15) by simply replacing thet0 term
with the starting temperature for the abbreviated sched-
ule. For this VLSI-NPP example, we replace

—the initial starting temperature of SA—with
to get the first-stage heuristic criterion

 for TSSA to be beneficial.

VI.  CONCLUSIONS

We propose a TSSA method with a more formal
basis for determining the temperature at which to begin
the low temperature SA phase. The method is compatible
with TSSA systems utilizing a traditional monotonically
cooling temperature schedule. We have tested our
method on three important optimization problems using
both classic and adaptive schedules. The results have
been consistently very good. On average for a SA algo-
rithm using an adaptive cooling schedule the running
time is cut in half; while for a SA algorithm using a clas-
sic schedule, the running time is reduced by one-third.
Equally important is that there is on average no loss in
solution quality. The TSSA methodology is also shown
to be robust with respect to different first-stage heuristics
and traditional SA formulations.

Fig. 7: Starting temperature approximation curve vs.
abbreviated SA BSF curve for PrimarySC1.
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