USING REPLICATION FOR HIGH PERFORMANCE
DATABASE SUPPORT IN DISTRIBUTED
REAL-TIME SYSTEMS

Sang Hyuk Son

Computer Science Report No, TR-87-17
August 18, 1987

Using Replication for High Performance Database Support
in Distributed Real-Time Systems

Sang Hyuk Son

Department of Computer Science
University of Virginia
Charlottesville, Virginia 22903

ABSTRACT

Considerable research effort ‘has been concentrated to the problem of developing techniques for
achieving high availability of critical data in distributed real-time systems. One approach is to use replica-
tion. Replicated data is stored redundantly at multiple sites so that it can be used even if some of the
copies are not available due to failures. This paper presents an algorithm for maintaining consistency and
improving the performance of database with replicated data in distributed real-time systems. The seman-
tic information of read-only transactions is exploited for improved efficiency, and a multiversion tech-
nique is used to increase the degree of concurrency. Related issues including the consistency of the states
seen by transactions, version management, and recovery of replicated data in distributed systems are dis-

cussed.

Index Terms: distributed system, replication, read-only transaction, consistency, multiversion.

This work was partially supported by the Office of Naval Research under contract no. NOO(14-86-K-0245 10 the Department of Computer
Science, University of Virginia, Charlottesville, VA,

1. Introduction

A aisnibuted system consists of multiple autonomous computer systems (called sites} that are con-
nected via a communication network. Since the physical separation of sites ensures the independent
failure modes of sites and limits the propagation of errors throughout the system, distributed systems
must be able to continue to operate correctly despite of component failures. However, as the size of a dis-
tributed system increases, so does the probability that one or more of its components will fail, Thus, dis-
tributed systems must be fault tolerant 1o component failures to achieve a desired level of reliability and
availability. Asserting that the system will continue to operate correctly if less than a certain number of
failure occurs is a guarantee independent of the reliability of the sites that make up the system. It is a
measure of the fault tolerance supported by the system architecture, in contrast to fault tolerance achieved

by using reliable components.

Considerable research effort has been concentrated in recent years to the problem of developing
techniques for achieving high availability of critical data in distributed systems. An obvious approach to
improve availability is to keep replicated copies of such data at different sites so that the system can
access the data even if some of the copies are not available due to failures. In addition to improved avai-
lability, replication also increases the reliability of data by reconstructing accidently destroyed copy from
other copies. Replication can enhance performance by allowing user requests initiated at sites where the
data are stored to be processed locally without incurring communication delays, and by distributing the
workload of user requests to several sites where the subtasks of a user request can be processed con-
currently. These benefits of replication must be seen in the light of the additional cost and complexities

introduced by replication control.

A major restriction of using replication is that replicated copies must behave like a single copy, i.e.,
mutual consistency of a replicated data must be preserved. By mutual consistency, we mean that all
copies converge to the same value and would be identical if all update activities cease. The inherent com-

munication delay between sites that store and maintain copies of a replicated data makes it impossible to

ensure that all copies are identical at all times when updates are processed in the system.

Mutual consistency is not the only constraint a distributed system must satisfy. In a system where
several users concurrently access and update data, operations from different user requests may need to be
interieaved and allowed to operate concurrenily on data for higher throughput of the system. Concurrency
control is the activity of coordinating concurrent accesses to the system in order to provide the effect that
each request is executed in a serial fashion. The task of concurrency control in a distributed system is
more complicated than that in a centralized system mainly because the information used to make schedul-

ing decisions is itself distributed, and it must be managed properly to make correct decisions.

A number of concurrency control schemes proposed are based on the maintenance of multiple ver-
sions of data objects{BAY80, BER83, CHA85, REE83 SON86, STE81]. The objective of using multiple
versions is to increase the degree of concurrency and 1o reduce the possibility of rejection of user requests
by providing a succession of views of data objects. One of the reasons for rejecting a user request is that
its operations cannot be serviced by the system. For example, a read operation has to be rejected if the
value of data object it was supposed 10 read has already been overwritten by some other user request.
Such rejections can be avoided by keeping old versions of each data object so that an appropriate old
value can be given to a tardy read operation. In a system witﬁ multiple versions of data, each write opera-
tion on a data object produces a new version of it instead of overwriting it. Hence, for each read opera-
tion, the system selects an appropriate version to read, enjoying the flexibility in controlling the order of

read and write operations.

A read-only transaction is a user request that does not modify the state of the database. A read-only
transaction can be used to take a checkpoint of the database for recovering from subsequent failures, or to
check the consistency of the database, or simply to retrieve the information from the database. Many
applications of distributed databases for real-time systems can be characterized by a dominance of read-
only fransactions. Since read-only transactions are still transactions, they can be processed using the algo-

rithms for arbitrary transactions. However, it is possible to use special processing algorithms for read-

2

only transactions in order to improve efficiency, resulting in high performance. With this approach, the
specialized transaction processing algorithm can take advantage of the semantic information that no data

will be modified by the transaction.

In this paper, we explore this idea of read-only transaction processing, and present a synchroniza-
tion algorithm for read-only transactions in distributed environments. The algorithm is based on the idea
of maintaining multiple versions of necessary data objects in the system, and requires read-only transac-
tions to be identified to the system before they begin execution. By preventing interference between
read-only transactions and other update transactions, the algorithm guarantees that read-only transactions
will be successfully completed. In addition, the replication method used in the algorithm masks failures

as long as one or more copies remain available.

There are several problems that must be solved by an algorithm that uses multiple versions. For
example, selection of old versions for a given read-only transaction must ensure the consistency of the
state seen by the transaction. In addition, the need to save old versions for read-only transactions intro-
duces a storage management problem, i.e., methods to determine which version is no longer needed so

that it can be discarded. In this paper, we focus our attention on these problems.

In the next section we present the basic concepts that are needed for this paper. Section 3 describes
the execution of logical operations by corresponding physical operations. Section 4 describes our syn-
chronization algorithm for replicated data. Section 5 presents two recovery procedures that can be used
for replicated data objects, and Section 6 discusses the availability of replicated data. Section 7 concludes

the paper.

2. Basic Concepts

A distributed database is a collection of data objects. Each data object has a name and is represented
by a set of one or more replicated copies. Each copy of a given data object is stored at a different site of
the system. The value for a given data object at different sites should be the same. However, due to the

update activity, the values may be temporarily different. In addition to data objects, a distributed database

3-

has a collection of consistency constraints. A consistency constraint is a predicate defined on the database

which describes the relationships that must hold among the data objects and their values [ESW76).

Users interact with the database by submitting transactions. Each transaction represents a complete
and correct computation, i.e., if a transaction is executed alone on an initially consistent database, it
would terminate in a finite time and produce correct results, leaving the database consistent. A transaction
consists of different types of operations such as read, write, and local computations. Read and write
operations are used to access data objects, and local computations are used to determine the value of the
data object for a write operation. Algorithms for replication control and synchronization pay no attention
to the local computations; they make scheduling decisions on the basis of the data objects a transaction

reads and writes.

When a transaction commits, all the updates it made must be written permanently into the database,
All participants must commit unanimously, implying that the updates performed by the transaction are
made visible to other transactions in an ‘“‘all or none”’ fashion. One of the most well-known techniques
for the atomic commitment is a protocol called two-phase commit [SKE81), which works as the follow-
ing:

In the first phase the coordinator sends "start transaction” messages to all the participants. Each par-
ticipant individually votes either to commit the transaction by sending precommit message or to abort it
by sending abort message, according to the result of the subtransaction it has executed. If a failure occurs
during the first phase, consistency of the database is not violated, since none of the transaction’s updates
have yet been written into the database. In the second phase the coordinator collects all the votes and
makes a decision. If all votes were precommit, the coordinator sends "commit” messages to the partici-
pants, If the coordinator had received one or more abort messages, it sends "abort" messages to the parti-

cipants.

The standard correctmess requirement for transactions is serializability, It means that the concurrent

execution of a group of transactions is equivalent to some serial execution of the same group of transac-

tions. For read-only transactions, correctess requirements can be divided into two independent classes:

the currency requirement and the consistency requirement.

The currency requirement specifies what update transactions should be reflected by the data read.
There are several ways in which the currency requirement can be specified; we are interested in the fol-

lowing two:

ey Fixed-time requirement: A read-only transaction T requires data as they existed at a given time ¢,
This means that the data read by the transaction must reflect the modifications of all update tran-

sactions committed in the system before .

) Latest-time requirement: A read-only transaction T requires data it reads reflect at least all update

transactions committed before T is started, i.e., T requires most up-to-date data available.

The consistency requirement specifies the degree of consistency needed by the read-only transac-

tion. A read-only transaction may have one of the following requirements:

(1) Intemnal consistency: It only requires that the values read by each read-only transaction satisfy the

invariants (consistency constraints) of the database.

@) Weak consistency: It requires that the values read by each read-only transaction be the result of a
serial execution of some subset of the update transactions committed. Weak consistency is at least
as strong a requirement as internal consistency, because the result of a serial execution of update

transactions always satisfies consistency constraints,

(3) Strong consistency: It requires that all update transactions together with ali other read-only tran-
sactions that require strong consistency, must be serializable as a group. Strong consistency

requirement is equivalent to serializability requirement for processing of arbitrary transactions.

We make a few comments concerning the currency and consistency requirements. First, it might
seem that the internal consistency requirement is too weak to be useful. However, a read-only transaction
with only internal consistency requirement is very simple and efficient to process, and at least one pro-

posed algorithm [FIS82] does not satisfy any stronger consistency requirement. Second, it is easy to sce

5.

that strong consistency is a stronger requirement than weak consistency, as shown by the following exam-
ple. Suppose we have two update transactions, T'y and T, two read-only transactions, T3 and T4, and two
data objects, X and Y, stored at two sites A and B. Assume that the initial values of both X and Y were 0

before the execution of any transactions. Now consider the following execution sequence:

T3 reads O from X at A,
Ty writes 1 into X at A,
T4 reads 1 from X at A.
T4 reads O from Y at B,
T,writes 1into Y at B,

Ty reads 1 from Y at B,

The values read by T3 are the result of a serial execution of T,<T3 <7, while the vaﬁxes read by T4 are
the result of a serial execution of Ty <T4<T5. Both of them are valid serialization order, and thus, the
execution is weakly consistent. However, there is no single serial execution of all four transactions, so the
execution is not serializable. In other words, both read-only transactions se¢ valid serialization orders of

updates, but they see different orders.

Clearly, strong consistency is preferable to weak consistency. However, as in the case of internal
consistency, it can be cheaper to ensure weak consistency than to ensure strong consistency. For the

applications that can tolerate a weaker requirement, the potential performance gain could be significant.

Finaﬂy,'one might wonder why fixed-time requirement is interesting, since most read-only transac-
tions may require information about the latest database state. However, there are situations that the user is
interested in looking at the database as it existed at a given time. For an example of a fixed-time read-only
transaction, consider the case of a general in the army making a decision by looking at the database show-
ing the current position of the enemy. The general may be interested in looking at the position of the

enemy of few hour ago or few days ago, in order to figure out the purpose of their moving. A read-only

el

transaction of a given fixed-time will provide the general with the desired results.

3. Execution of Logical Operations

In our algorithm, we use the notion of tokens to support a fault-tolerant distributed database in
increasing both the availability of data and the degree of concurrency, without incurring too much storage
and processing overhead. Each data object has a predetermined number of tokens. Tokens are used 10
designate a read-write copy, and a token copy is a single version representing the latest value of the data
object. The site which has a token copy of a data object is called a token site, with respect to the data

object.

Multiversions are stored and managed only at read-only copy sites. For read-only copies, each data
object is a collection of consecutive versions. A read-only transaction does not necessarily read the latest
committed version of a data object. The particular old version that a read-only transaction has to read is
determined by the time-stamp of the read-only transaction (for the latest-time requirement) or by the
given time (for the fixed-time requirement). The time-stamp is assigned to a read-only transaction when it
begins, while the time-stamp for an update transaction is determined as it commits. When a read-only
transaction with time-stamp T attempts to read a data object, the version of the data object with the larg-

est time-stamp less than T is selected as the value to be returned by the read operation.

To simplify the presentation in this paper, we use a simple model of data objects, with only read and
write operations, instead of considering an abstracted data model. As discussed in [HER86, WEI84],
greater concurrency among update transactions can be achieved if more semantic information about the
specification of each abstract data object is used. The algorithm presented in this paper can be easily

adapted to use this kind of semantic information of data objects.

In this paper, we do not consider Byzantine type of failures. When a site fails, it simply stops run-
ning (fail-stop). When the failed site recovers, the fact that it has failed is recognized, and a recovery pro-
cedure is initiated. We assume that site failures are detectable by other sites. This can be achieved either

by network protocols or by high-level time-out mechanisms in the application layer.

.

We assume that update transactions use two-phase locking [ESW76], with exclusive locks used for
write operations, and shared locks for read operations. Lock requests are made only to token copies, and
there is no locks associated with read-only copies. In addition, update transactions use the two-phase
commit protocol and stable storage [LLAME1] to achieve fault-tolerance to site failures. When a new ver-
sion is created, it is created at all copy sites, including read-only copy site. However, any new versions
are not accessible to other transactions until they are finalized through the two-phase commit protocol.
Upon receiving the commit message from the coordinator, new versions of data objects created by the
transaction replace the current versions at the token sites, while they are attached to the multiple versions

at read-only sites.

Operations invoked by update transactions are processed using ordinary two-phase locking: when an
update transaction invdkes a read operation on a data object, it waits until it can lock the data object in
shared mode. When an update transaction invokes a write operation, it locks the data object in exclusive
mode, and then creates a new version. If the transaction later aborts, the newly created version will be dis-
carded. Qur algorithm follows the read-one/write-all-available paradigm [BHAS86] in which a read lock
request succeeds if at least one of the token copies can be locked in shared mode, and a write lock request
fails if at least one of the available token copies cannot be locked in exclusive mode. In a straightforward
implementation of a write operation in this paradigm, the value to be written is broadcast to all sites
where a copy of the data object resides. A physical write operation occurs at each copy site, and then a
confirmation message has to be returned to the site where the write operation was requested. The write
operation is considered completed only when all the confirmation messages are returned. This solution is
unsatisfactory because every write operation incurs waiting for responses before the next operation of the
transaction can proceed. In the next section, we present an algorithm that permits an operation after a
write to proceed as in a nonreplicated system, with the physical write operations being executed con-

currently at other copy sites.

4. The Algorithm

As noted above, our algorithm combines time-stamp ordering and locking. To generate time-stamps
for update transactions, a time-stamp is maintained for each data object. The time-stamp for data object X
represents the maximum of the time-stamps of update transactions that have accessed X and committed,
and the time-stamps of read-only transactions that have accessed X. Time-stamps for update transactions
are generated during the commit phase as follows:
In the first phase of the two-phase commit protocol, each participant attaches to the precommit message
the maximum time-stamps of all data objects that it accessed. Upon receiving precommit messages from
the participants, the coordinator chooses a unique time-stamp greater than all the time-stamps received.
This is the time-stamp for the tranéact;ion. Then, in the second phase of the commit protocol, this time-
stamp is broadcast to all participants (piggybacked on the commit message). Each participant, upon
receiving this message, updates the time-stamp of each data object to the maximum of its current value
and the received time-stamp, and releases any locks held by the transaction. Any version written by the

transaction is marked with the time-stamp of the transaction.

When a participant searches for the maximum time-stamp to attach to a precommit message, read-
only copies are also included in the set of copies for the search. By including the time-stamps of read-
only copies in determining the time-stamp for an update transaction, the system can ensure that any
potential conflicts between read-only transactions and the current update transaction are resolved in the

correct order of their time-stamps.

Time-stamp assignment for read-only transactions with latest-time requirement is quite different
from that for update transactions. When a read-only transaction begins, the coordinator sends messages to
the participants telling them the data objects the transaction needs to read. When a participant receives
such a request, it checks the current time-stamp of each data object at the site, and sends the maximum
time-stamps among them to the coordinator. Each data object accessed by-a read-only transaction in this

way records the pair of the identifier of that transaction and the current time-stamp it reported. After

9.

receiving responses from all participants, the coordinator chooses a unique time-stamp greater than all the
responses. The time-stamp recorded for the read-only transaction at each object is thus a lower bound on
the time-stamp of the transaction, and it will be used in making a decision to discard or retain versions of
the data object. For a fixed-time read-only transactions, time-stamp is provided by the user, and hence the

system needs not bother to assign a new time-stamp for if.

When a read-only transaction with time-stamp T invokes a read operation on a data object, the parti-
cipant chooses the version of the object with the largest time-stamp less than T, This invocation of read
operation is nothing but sending the time-stamp T to the participants, since each participant already
knows which data object to read. If T is larger than the current time-stamp of the data object, it will be
updated as T. This will force update transactions that commit later to choose time-stamps larger than T,

ensuring that the version selected for the read-only transaction does not change.

It is easy to show that the above algorithm ensures strong consistency, The mechanism for generat-
ing time-stamps for update transactions ensures that any conflicting update transactions are ordered
according to their time-stamps, and hence they are serializable in the time-stamp order. Read-only tran-
sactions then read versions of data objects consistent with all transactions executing in their time-stamp

order.

To achieve the high performance by reducing the cost of write operations in our algorithm, the level
of synchronization between write operation and its physical implementation can be relaxed by allowing
physical write operations to be completed by the commit time of the transaction. A write operation is con-
sidered completed when the required update messages are sent. This eliminates the delay caused by wait-

ing for confirmation messages before the next operation can proceed.

To this point we have assumed that all versions are retained forever. We now discuss how versions
can be discarded when they are not needed by read-only transactions. Recall that each data object keeps
track of the read-only transactions that have accessed the data object, along with a lower bound on the

time-stamp chosen by each transaction. Data objects can use the following rule to decide which versions

.10-

ol

to keep and which to discard.

Rule for retention:

A version with time-stamp T must be retained if
(1) there is no version with time-stamp greater than T (i.e,, current version), or

(2) there is a version with time-stamp T’ > T, and there is an active read-only transaction whose

time-stamp might be between T and T'.

By having a read-only transaction inform data objects when it completes, versions of data objects that are
no longer needed can be discarded. This process of informing data objects that a read-qnly transaction has
completed need not be performed synchronously with the commit of the transaction. It imposes some
overhead on the system, but the overhead can be reduced by piggybacking information on existing mes-

sages, or by sending messages when the system load is low.

When a read-only transaction sends a read request to an object, the read-only site effectively agrees
to retain the current version and any later versions, until it knows which of those versions is needed by the
read-only transaction. When the read-only site finds out the time-stamp chosen by the transaction, it can
tell exactly which version the transaction needs to read. At that point any versions that were retained only
because the read-ondy transaction might have needed them can be discarded. By minimizing the time dur-
ing which only a lower bound on the transaction’s time-stamp is known, the system can reduce the
storage needed for maintaining versions. One simple way of doing this is to have each read-only transac-

tion broadcast its time-stamp to all read-only sites when it chooses the time-stamp.

The version management described above is effective at minimizing the amount of storage needed
for versions. For example, unlike the "version pool" scheme in [CHAS8S5], it is not necessary to discard a
version that is needed by an active read-only transaction because the buffer space is being used by a ver-
sion that no transaction wants to read. However, ensuring that each read-only site knows which versions

are needed at any point in time has an associated cost; a read-only transaction cannot begin execution

«11.

until it has chosen a time-stamp, a process that requires communicating with all data objects it needs to

acceess.

Because the time-stamp for a fixed-time read-only transaction is determined by the user, the number
of versions that needs 10 be retained to process fixed-time read-only transactions cannot be bounded as in
the case for latest-time read-only transactions. In order to process all the potential fixed-time read-only
transactions, the system must maintain all the versions created up to the present, which may require huge
amount of storage. There are several altemnatives to keep a history instead of saving all the versions
creéted for each data object. One of the simplest and efficient alternative would be to keep a log of all the
update transactions. A transaction log is a record of all thé transactions and the updates they performed.
Fixed-time read-only transactions can be processed by examining the log in reverse chronological order
until the desired version of the data object can be reconstructed. Since fixed-time read-only transactions
must examine the log, their execution depends on the availability of transaction log, and their execution
speed would be slower than that of latest-time read-only transactions. One important advantage of the
transaction log mechanism is that in many systems the log is required anyway for crash recovery. Thus, in

these systems, keeping the log for fixed-time read-only transactions represents no real overhead.

5. Recovery of Replicated Data Objects

Sites of a distributed system may fail and recover from time to time during the life-time of the sys-
tem. When a failed site recovers, the consistency of the entire system may be threatened if proper
recovery mechanisms are not exercised. A task of integrating a site into the rest of the system when the
site recovers from a failure is called the site recovery. Site recovery must perform the recovery of non-
replicated as well as replicated data objects in order to bring the system into a consistent state. In this sec-
tion we discuss only the recovery of replicated data objects. A more detailed discussion on site recovery

is given in [SONS6b].

There are two main approaches to this problem. The first is to perform all missed updates in a

correct order at the recovering site. Multiple message spoolers used in SDD-1 [HAMS0] is one practical

-12-

solution using this approach. We do not discuss this approach further in this paper because (1) it is
difficult to determine a correct schedule for all the missed operations, and (2) it is not suitable for systems

in which some sites may not be operational for a long period of time.

The second approach is to use other replicated copies by reading the current values at operational
sites and refresh out-of-date values at the recovering site. An advantage of this approach is that the recov-
ering site can start normal operation on the data objects as soon as they are refreshed, without waiting for
the compietion of the recovery procedure for other data objects, resulting in improved availability of the
system. Algorithms using this approach have been studied in [BHAS86]. In this section we present two
recovery procedures that belong to the class of the second approach, and discuss the trade-offs between

two recovery procedures.

5.1. Updating Directories

The first recovery procedure is based on updating directories. Each data object is associated with a
directory that keeps the status of each copy, i.e., the availability of each copy of the data object. User tran-
sactions read the directories of the data objects in its read-set and write-set 10 determine the participants
of the transaction. Directories are replicated at each copy site and updated by the processing of Update
Directory Messages (UDM) which contains information of the status change of other sites. A UDM is

used to include a copy as well as to exclude a copy.

To exclude a copy, a UDM is broadcast by the network protocol which detects a site failure. In this
case, a UDM contains only the identifier of the crashed site. On receiving a UDM of this type, the
recovery manager of each site checks directories of all the data objects at the site and removes the site

from the available copy lists.

From the viewpoint of data objects, there are two types of the system failures: a partial failure and a
total failure. They are distinguished by the availability of token copies of a logical data object. In a partial
failure, one or more token copies are available; in a total failure, none of them is available. To recover

from a total failure, the site which failed last must be determined, because this copy has the latest version

13-

of the data object. This task can be achieved by executing an algorithm similar to those proposed in

[GOO83, SKE85].

To recover from a partial failure, the recovering token copy must be updated to the current value of
the data object before being included in the list of available copies. A token-copy cannot be included in
the directory while the data object is being used. The recovery manager of the site generates a special
transaction which requests a write operation on the data object. When the request is granted, the transac-
tion updates the directory by including the identifier of the recovered site into the list of available copies,
instead of updating the value of the data object. A read-only copy can be included in the available copy

list simply by appending the identifier of the recovered site, without being updated on recovery.

5.2. Updating Site Status

The second recovery procedure is based on keeping track of the status of sites instead of maintain-
ing the status for each data object. In this approach, each site maintains the site status table, in which each
site is represented in one of three distinguishable states: up, down, and recovering. A site is down if no
activity is going on at the site. A site is up if it executes user transactions normally. A site is recovering if

it performs recovery actions but no user transactions.

When a site recovers from a failure, the first action it should take is to change its own state to recov-
ering state so that no user transactions can be accepted. It then performs local recovery for non-replicated
data objects. Finally, it marks all replicated copies at the site unreadable. If there is a method to find out
the replicated copies that have actually missed updates since the site failed, only those copies are marked
unreadable. The site then becomes up, and broadcasts its state change to all operational sites. During nor-
mal operation after the site becomes up, unreadable mark of a replicated copy will be removed by a write
operation of a committed transaction, or by a read operation which is performed through the copy actuali-

zation procedure for bringing the copy up-to-date.

-14-

§.3. Trade-offs in Recovery

There is a trade-off bet_ween the transaction processing time during normal operation and the time
required to perform recovery procedures. In the second approach (maintaining site status), the participants
of a transaction is not determined simply by looking at the directories as in the first approach. Each tran-
saction should read the local copy of the site status table prior to any other operations. The transaction can
use this table in deciding which sites to be included (up sites) and which not (down sites) in the partici-
pant list. This requires the transaction processing time longer than that in the first approach during normal

opetration.

The second approach performs better than the first approach for the storage requirement and the cost
of recovery processing., According to the second approach, the storage necessary for maintaining the avai-
lability information of data objects can be reduced by the factor of the product of the number of replicated
data objects and the number of copies used in the replication. Consider an extreme case in which almost
all data objects are replicated at each site. In the first approach, the number of updates is proportional to
the number of replicated data objects when a site status changes, while only a single table needs updating
in the second approach. Although a straightforward method to reduce the number of updates is possible in

this case, the first approach remains more expensive than the second approach in these regards.

6. Availability of Replicated Data Objects

One of the important properties of our algorithm is the flexibility. By manipulating the number of
tokens for each data object, a system administrator can alter the performance and the reliability charac-

teristics of the system.

There are two interesting extremes out of a spectrum of possible token numbers: a situation where
all copies are token copies, and a situation where there is only one token copy for each data object. In the
first case, no multiversions are maintained, resulting in a less storage requirement and a simpler algo-

rithm. However, read-only transactions cannot be processed effectively in that case,

-15-

The second case is similar to primary copy algorithms. As pointed out in [GIF79], primary copy
algorithms are inflexible even though they are relatively simple. It is simple in the sense that a transaction
needs only one copy to update a data object. However, primary site algorithms are not reliable in that
transactions cannot be executed if the token site is crashed. Although we can make the system robust
through the regeneration of the token when the token is lost, the detection and the regeneration of a

unique token may bring the complexity to the system, spoiling the simplicity of the original scheme.

No matter how many copies exist, it is always possible to enter a state in which no copy is available.
We call a data object state unavailable if any update operation cannot be performed by any transaction.
Since unavailable states of data objects reduce the system availability (i.e., some transactions must be
rejected because they cannot update unavailable data objects), it is obviously desirable to reduce the pro-

bability of unavailable states.

For a given number of copies, we can evaluate the probability that the data object is available, given
the failure probabilities of each component of the system. We assume that for each site and link, the pro-
bability of being operative is known. These probabilities represent the expected fraction of time each
component is able to provide the service correctly. We refer to these probabilities as the component

availabilities.

For the simplicity of the discussion, we restrict ourselves to the homogeneous system where all sites
have the same availability p and all links availability s. We first consider the case in which the links are
perfectly reliable, i.e., s=1. Let ¢=1-p. For a data object with n copies including m token copies, m<n, let
the probability that the data object is available be Py. If there is only one token copy, i.e., m=1, then

Pl=p. The probability in general is
m
P?=k§1[’,’c’} ptqm*
It is clear from this equation that the availability of a data object increases as m increases. However, the
marginal increase of the availability of a data object achieved by adding one more token copy decreases

as m increases. Let 8 be the marginal increase of the availability of a data object by increasing the

-16-

o

number of token copies from m to m+1:

8y =Pyt P
The marginal increase of the availability is the gain we can achieve by making one more token copy of
the data object. Figure 1 shows the behavior of &7 as a function of m. As shown in the figure, 37
decreases very abruptly as m approaches to ». This implies that from the availability viewpoint, the cost
of adding more token copies cannot be justified by the increase of availability, once we achieve a desir-

able availability of a data object by certain number of token copies.

The network never becomes partitioned if all the links are perfect, i.e., s=1. If we relax the assump-
tion of perfect links, network partitioning should be considered. To adapt our scheme to the system where
network partitioning can occur, we need to change the conditions for the coordinator to make a commit

decision as the following:
(C1) Majority of the token sites of each data object in the write-set have precommitted.

(C2) One copy of each data object in the read-set belongs to the majority of token copies and is precom-

mitted.

In order to make this modified algorithm to work, the number of token copies must be stored with
each data object. This modified algorithm is able to handle the network partitioning, but reduces the avai-
lability of data objects of the original algorithm because now the system cannot process transactions if
majority of the token sites are not available (the original algorithm is able to process update transactions

with one token copy available),

Network topology plays a critical role in determining the availability of data objects when partition-
ing can occur. The expression for P in such situations is the same as the majority of voters connected in
a voting scheme, because the system should have at least a majority of token sites connected. We do not
derive the expression for P} in this paper. The probability that the system is operative in different net-
work topology using voﬁng mechanism has been studied in [BAR8S], which shows that for the same set

of component availability, a fully connected topology provides higher probability of operative system

-17-

o

than Ethernet or ring topologies. However, full connectivity is expensive to support, and it may not be
feasible to have a full connectivity in a system with a large number of sites. For a system of an arbitrary
graph topology with possibly different component availabilities, we may need good heuristics to deter-

mine the best token assignments to achieve a desirable system availability.

7. Concluding Remarks

Replication is the key factor in making distributed systems more reliable than centralized systems.
However, if replication is used without proper synchronization mechanisms, consistency of the system
might be violated. In this regard, the copies of each logical data object must behave like a single copy

from the standpoint of logical correctness.

We h.ave presented a synchronization algorithm for distributed real-time systems with replicated
data. It reduces the time required to execute physical write operations when updates are to be made on
replicated data objects, by relaxing the level of synchronization between write operations on data objects
and physical write operations on copies of them. At the same time, the consistency of replicated data is
not violated, and the atomicity of fransactions is maintained. The algorithm extends the notion of primary
copies such that an update transaction can be executed provided at least one token copy of each data
object in the write set is available. The number of tokens for each data object can be used as a tuning
parameter to adjust the robusmess of the system. The algorithm also exploits the multiple versions of a
data object and the semantic information of read-only transactions in achieving improved system perfor-
mance. Multiple versions are maintained only at the read-only copy sites, hence the storage requirement

is reduced in comparison to other multiversion mechanisms[REES3, CHAS8S].

Reliability does not come for free. There is a cost associated with the replication of data: storage
requirement and complicated control in synchronization. For appropriate management of multiple ver-
sions, some communication cost is inevitable to inform data objects about activities of read-only transac-
tions. There is also a cost associated with maintaining the data structures for keeping track of versions and

time-stamps. In many real-time applications of distributed databases, however, this cost of replication is

-18-

justifiable. Further work is clearly needed to develop alternative approaches for maintaining multiversions

and exploiting semantic information of read-only transactions, and to study performance of different

approaches.

0.100 " . '
0.080¢]
0.060}-]
0.040} §
0.020}]
0.0004 ' ; .

0.0 1.0 2.0 3.0 4.0 5.0

m

Fig. 1 Marginal increase of data object availability
Parameters: p=(.9, s=1.0, n=5.

-19-

el

REFERENCES

BARSS

BAYS80

BERS3

BHAS86

CHASS

ESW76

FIS82

GIF79

GOO83

HAMBS0

HER86

LAMS1

REES3

SKES&1

SKE8S

SONB86

SONg86b

STES1

WEIB4

Barbara, D., and Garcia-Molina, H., Evaluating Vote Assignments with A Probabilistic
Metric, Proc. 15th International Symposium on Fault-Tolerant Computing, June 1985, pp 72-
77.

Bayer, R., Heller, H., and Reiser, A., Paratlelism and Recovery in Database Systems, ACM
Trans. on Database Systems, June 1980, pp 139-156.

Bemstein, P., Goodman N., Multiversion Concurrency Control - Theory and Algorithms,
ACM Trans. on Database Systems, Dec. 1983, pp 465-483.

Bhargava, B., Ruan, Z., Site Recovery in Replicated Distributed Database Systems, Proc. 6th
International Conference on Distributed Computing Systemns, Cambridge, Massachusetts, May
1986, pp 621-627..

Chan, A., Gray, R., Implementing Distributed Read-Only Transactions, [EEE Trans, on
Software Engineering, Feb. 1985, pp 205-212.

Eswaran, K.P. et al, The Notion of Consistency and Predicate Locks in a Database System,
CACM 19, Nov. 1976, pp 624-633.

Fischer, M. J., Griffeth, N. D. and Lynch, N. A., Global States of a Distributed System, IEEE
Trans. on Software Engineering, May 1982, pp 198-202.

Gifford, D., Weighted Voting for Replicated Data, Operating Systems Review 13, December
1979, pp 150-162.

Goodman, N., Skeen, D. and et al., A Recovery Algorithm for a Distributed Database System,
Proc. 2nd ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, March
1983, pp 8-15.

Hammer, M. and Shipman, D., Reliability Mechanisms for SDD-1: A System for Distributed
Databases, ACM Trans. on Database Systems, December 1980, pp 431-466.

Herlihy, M., A Quorum-Consensus Replication Method for Abstract Data Types, ACM Trans.
on Computer Systems, February 1986, pp 32-53.

Lampson, B., Atomic Transactions, Distributed Systems: Architecture and Implementation,
Lecture Notes in Computer Science, Vol. 105, Springer-Verlag, 1981, pp 246-265.

Reed, D., Implementing Atomic Actions on Decentralized Data, ACM Trans. on Computer
Systems, Feb, 1983, pp 3-23.

Skeen, D., Nonblocking Commit Protocols, Proc. ACM SIGMOD Conference on Manage-
ment of Data, 1981, pp 133-142,

Skeen, D., Determining The Last Process to Fail, ACM Trans. on Computer Systems, Feb.
1985, pp 15-30.

Son, S. H. and Agrawala, A., A Token-Based Resiliency Control Scheme in Replicated Data-
base Systems, Proc. Fifth Symposium on Reliability in Distributed Software and Database
Systems, January 1986, pp 199-206.

Son, S. H. and Agrawala, A., An Algorithm for Database Reconstruction in Distributed
Environments, Proc. 6th International Conference on Distributed Computing Systems, May
1986, pp 532-539.

Stearns R. E., Rosenkraniz, D. J., Distributed Database Concurrency Controls Using Before-
Values, Proc. ACM SIGMOD Conference, 1981, pp 74-83.

Weihl, W., Specification and Implementation of Atomic Data Types Ph.D. dissertation, MIT
Tech, Rep. MIT/LCS/TR-314, 1984,

20-

