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Abstract 

An exact rectilinear Steiner minimal tree algorithm 
is presented that improves upon the time and space 
complexity of previous guarantees and is easy to imple- 
ment. Experimental evidence is presented that demon- 
strates that the algorithm also works well an practice. 

1 Introduction 

The rectzhear Stezner mznzmal tree (RSMT) prob- 
lem is stated as follows: given a set of points called 
termznals in the plane, find a set of horizontal and ver- 
tical line segments of minimal total length that inter- 
connects the terminals. The RSMT problem is similar 
to the well-known minimum spanning tree problem, 
with one important exception: in a minimum spanning 
tree, terminals may only be connected to one another, 
while in the RSMT problem, new points called Stezner 
yoznts may be introduced such that the length of the 
tree is reduced. Figure 1 illustrates an optimal RSMT 
for a set of 20 terminals. Garey and Johnson [3] prove 
that the RSMT problem is NP-complete, indicating 
that a polynomial-time algorithm to solve it exactly 
is unlikely to exist. However, a primary application 
of RSMT algorithms is routing of VLSI circuits. In 
such applications, the number of terminals is typically 
quite small, so an efficient exact algorithm may often 
be practically applied. In this paper we present a dy- 
namic programming algorithm that computes an exact 
ItSMT and has time and space complexity better than 
any previous worst-case guarantees. The algorithm is 
easy to implement, and we present empirical evidence 
that it performs well in practice on sets of terminals 
small enough to solve practically. 

*The authors gratefully acknowledge the support of Na- 
tional Science Foundationgrant MIP-9107717and Virginia CIT 
award 5-30971. 
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Figure 1: An optimal RSMT for a set of 20 terminals. 

2 Previous work 

Previous work on exact RSMT algorithms can be 
categorized into two types, based on whether they at- 
tack the RSMT problem directly or reduce it to the 
Steiner problem in graphs. 

There have been few algorithms that use geometric 
approaches to solve the RSMT problem directly. Yang 
and Wing [14] present a branch-and-bound algorithm 
with worst-case time complexity O(ak’) ,  where IC is 
the number of terminals. The largest instance on 
which they test their algorithm contains 9 terminals. 
Wong and Pecht [13] describe another exact RShlT 
algorithm that is essentially an exhaustive version 
of the edge-embedding heuristic of Ho, Vijayan, and 
Wong [5]. They do not state its time complexity, but 
i t  appears to be at least exponential in the number of 
edges in the Hanan grid graph (see next paragraph), of 
which there are O(lc2). Their algorithm is applicable 
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to instances containing up to about 15 terminals [12]. 
Thomborson, Deneen, and Shute [ll] describe an al- 
gorithm whose time complexity is 0(2fi10g k), but 
their algorithm is designed such that either the time 
complexity or the optimality of the computed tree 
is probabilistic. Furthermore, while their algorithm 
has not been implemented, it is not expected to be 
competitive for small terminal sets [lo]. Salowe and 
Warme [9] present an algorithm that works very well 
in practice-it can efficiently solve problems with up 
to 30 terminals-but the only known bound on its time 
complexity is 0(2’~) .  

The other major approach to solving the RSMT 
problem exactly is to reduce it to the Steiner problem 
in graphs. Hanan [4] proves that a rectilinear Steiner 
minimal tree exists for every set of terminals, that 
is composed solely of subsegments of the set of hori- 
zontal and vertical lines (called grzd Iznes) that con- 
tain terminals. Thus, one can construct a grzd graph 
whose vertices are the terminals and the points where 
the grid lines intersect (the latter are potential Steiner 
points), and in which there is an edge between pairs 
of vertices that are adjacent along a grid line. The 
weight of each edge is the rectilinear distance between 
its endpoints. It is clear from Hanan’s theorem that 
an optimal solution to the Steiner problem in the grid 
graph is an optimal solution to the original geomet- 
ric problem. Thus, a common approach to solving 
the RSMT problem is to apply an algorithm for the 
Steiner problem in graphs to the Hanan graph. Cur- 
rently the algorithm with the best guaranteed time 
complexity for this task is the dynamic programming 
algorithm of Dreyfus and Wagner [a], which has time 
coniplexity O(k23k + (IC’ log k ) a k )  in planar graphs [l] 
such as the Hanan grid graph. Since the Dreyfus- 
Wagner algorithm has the best worst-case time com- 
plexity for solving the RSMT problem exactly, and 
since it is somewhat similar to our algorithm, it is 
against the Dreyfus-Wagner algorithm that we coni- 
pare ours. 

3 The algorithm 

Before describing the algorithm we must define a 
few terms. A set T of terminals is a full set  if, in 
every optimal RSMT for T ,  every terminal in T is 
a leaf. An RSMT of a full set is called a full tree. 
Hwang [6] proved that a full tree can have only one 
of t,wo simple topologies. The first type of topology 
is a backbone segment adjacent to one of the extreme 
terminals, with alternating segments connecting the 

Figure 2: Possible full tree topologies 
Hwang’s theorem (the shaded segment 
may or may not be present). 

according to 
and terminal 

other terminals to the backbone. The second type is 
the same as the first, but with one additional terminal 
connected to the segment that connects the other ex- 
treme terminal to the backbone. These two topologies 
are illustrated in Figure 2. Using Hwang’s theorem, 
an optimal RSMT of a full set. can be computed in 
linear time by checking these topologies. Finally, a 
well-known theorem regarding RSMTs is that every 
RSMT consists of a number of full t,rees that intersect 
at terminals of degree two or greater (see, e.g., Hwang. 
Richards, and Winter [7]). 

From these facts it is clear that for any set of termi- 
nals, an optimal RSMT is either a full tree satisfying 
Hwang’s theorem, or can be divided into two smaller 
trees joined at a terminal. This observation leads di- 
rectly to the dynamic programming algorithm. Sub- 
sets of the input set of terminals are enumerated; for 
pairs of terminals, the optimal RSMT is simply an 
edge between the terminals. For subsets of more than 
two terminals, the algorithm checks the length of the 
tree produced by applying Hwang’s theorem and the. 
lengths of the trees produced by joining the optimal 
RSMTs of every pair of disjoint subsets at every ter- 
minal, and chooses the decomposition with niinimunl 
length. The subsets are enumerated in order of car- 
dinality, so that at each step, the optimal RSMT for 
every smaller subset has already been computed and 
stored. Figure 3 describes the algorithm in detail. The 
algorithm shown computes only the length of the op- 
timal tree; a similar second pass computes the actual 
tree given the lengths computed by the first pass. We 
henceforth refer to this algorithm as the Full s e t  Dy- 
namic Programming (FDP,) algorithm. 

4 Analysis 

The FDP algorithm described above improves upori 
the Dreyfus-Wagner algorithm with respect to both 
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FDP(set  of terminals T )  

(1) 
(2) For each C T such that IC1 = m 
(3) e[C] = FullTree(C) 

For m = 2 to IT1 

For each i E C 
For each F c C - { i }  

(4) 
(5) 
(6) e' = t[f U { i } ]  + e[c - F] 
(7) ![C] = min{e[C], e'} 

Figure 3: The FDP algorithm. The routine Full- 
Tree computes the length of an optimal full tree using 
Hwang's theorem. 

time and space complexity. The Dreyfus-Wagner al- 
gorithm has time complexity O(n3' + (n  log n)2') in 
planar graphs [l], where k is the number of terminals 
and n is the number of candidate Steiner points. In the 
Hanan grid graph, n is O(k2) ,  making the overall time 
complexity O(k23' + ( k 2  logk)2'). The space com- 
plexity of the Dreyfus-Wagner algorithm is O(n2'), 
i.e., O(k22'). 

The time complexity of the FDP algorithm 
is O(k3' + k2'), and its space complexity is O(2'). 
The time complexity is derived in a manner similar to 
that of Dreyfus and Wagner [2]. Recall Figure 3: for 
each value of m in loop (I) ,  

o ~ o o p  (2) iterates L Z  = (i) times. 
o Loop (4) iterates L4 = mL2 times. 
o Loop (5) iterates 2"w1L4 times. 

Thus, the time complexity of the FDP algorithm is 

This analysis does not include line ( 3 )  of Figure 3, in 
which a full tree is computed for every subset of T ,  
each in linear time, resulting in an additional O(k2') 
time. Thus, the total time complexity of the FDP 
algorithm is O(k3'" + k2')t. 

The space complexity is straightforward: the algo- 
rithm stores only the length of the optimal tree for 
each subset; there are 2'" subsets, and thus the space 
complexity is O(2'). In practice, one might wish to 
store the optimal decomposition of each subset along 
with its length. This does not change the time com- 
plexity of the algorithm, but eliminates the need for 

tThis is, of course, asymptotically equivalent to O ( k 3 k ) ,  but 
we retain the other term for consistency with Dreyfus and Wag- 
ner [2] and because for small terminal sets, the second term is 
significant. 

0.004 0.091 
0.010 0.169 
0.027 0.394 
0.061 1.093 
0.174 3.248 

10 0.493 10.05 
11 1.532 31.00 
12 4.773 98.69 

- 
!q 
13 
14 
15 
16 
17 
18 
19 
20 

6615 
22104 
72574 

Table 1: Average running times (in seconds) for the 
FDP algorithm vs. the Dreyfus-Wagner (DW) algo- 
rithm. 

the second pass to compute the actual RSMT, and 
thus substantially reduces the running time in prac- 
tice. This change increases the space requirement 
to O(k2'), which is still an improvement over the 
Dreyfus-Wagner algorithm. 

5 Empirical results 

We have implemented the FDP algorithm and the 
Dreyfus-Wagner algorithm to demonstrate that the 
FDP algorithm is faster not only in theory, but also 
for sets of terminals small enough to be solved on a 
workstation in under 24 hours. Both algorithms are 
implemented in C and run on a Sun S ~ a r c - 2 ~ ~  work- 
station. The Dreyfus-Wagner algorithm is applied to 
the Hanan grid graph with all vertices outside the rec- 
tilinear convex hull of the terminals deleted; Yang and 
Wing [14] show that this reduction does not affect the 
optimality of the resulting RSMT. 

Table 1 shows the average running time for each 
algorithm on sets of terminals of size 5 to 20, gen- 
erated uniformly at random over a 10,000 by 10,000 
grid. Each value is averaged over ten sets of termi- 
nals; the running time of both algorithms is very con- 
sistent, and their variances are quite low. Not only 
does the FDP algorithm improve upon the Dreyfus- 
Wagner algorithm asymptotically, but these experi- 
ments demonstrate that it is also a dramatic improve- 
ment for sets of terminals small enough to solve prac- 
tically. The missing entries for the Dreyfus-Wagner 
algorithm could not be run on our workstation due to 
insufficient memory. This illustrates the fact that in 
practice, the real difficulty with the Dreyfus-Wagner 
algorithm is often not its time complexity but its space 
requirements. The drastic increase in running time 
for the Dreyfus-Wagner algorithm between 15 and 16 
terminals is caused by thrashing due to these large 
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space requirements. Note that this implementation of 
the Dreyfus-Wagner algorithm can solve 16-terminal 
problems in under 24 hours on our workstation, while 
the FDP algorithm solves 20-terminal problems within 
the same period of time. 

I t  should be noted that in VLSI routing appli- 
cations, the number of terminals is typically quite 
small-for example, in the benchmark instance PRI- 
MARY 1 [8], the largest net contains 18 terminals, and 
the average net contains far fewer. Furthermore, the 
FDP algorithm is easy to implement-the implemen- 
tation tested here was written in only a few hours. 

6 Conclusions 

We have presented a dynamic programming algo- 
rithm called Full set Dynamac Programming (FDP) 
that computes exact rectilinear Steiner minimal trees 
ancl has worst-case time and space complexity bet- 
ter than any previous guarantees. In particular, 
we improve upon the best previous guarantee, the 
dynamic programming algorithm of Dreyfus and 
Wagner [a]. While the Dreyfus-Wagner algorithm 
requires O( k'3' + ( k2 log k)2') time and O( k 2 2 k )  
space, the FDP algorithm requires O(k3k + k2 ' )  t.ime 
and O(2') space. Furthermore, the FDP algorithm is 
far faster in practice than the Dreyfus-Wagner algo- 
rithm, and is very easy to implement. 

'rhomborson, Alpern, and Carter [lo] present sev- 
eral optimizations to the Dreyfus-Wagner algorithm 
that reduce the constant factors in its time complexity. 
These optimizations rely on explicit memory manage- 
ment and loop reordering to maximize locality of refer- 
ence, and on some geometric properties of the Hanan 
grid graph. Many of these optimizations are applica- 
ble to the FDP algorithm as well. 

Our work continues toward an exact RSMT al- 
gorithm with time complexity O ( k a k  + k2') for 
some a < 3. We believe this might be accomplished 
by eliminating some subsets from consideration in the 
innermost loop of Figure 3. 
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