

 Architecture Review for
Advancing Hyku project.

Version 1.3

16 June 2020

 Architecture review for Hyku

2

Author Role/Org Version Date Remarks

Rathin Sundar Solutions Architect,
British Library.

V1.0

27-March-2020 Initial version

Ellen Ramsey Acting Director of Scholarly
Communications,
University of Virginia Library.

V1.1 22-May-2020 Comments and
suggestions from AH
PI

Rachael Kotarski Head of Research Infrastructure
Services,
British Library.

V1.2 11-June-2020 Resolved comments
and suggestions from
partners

Ellen Ramsey Acting Director of Scholarly
Communications,
University of Virginia Library.

V1.3 16-June-2020 Final version

 Architecture review for Hyku

3

Contents
1 Introduction .. 4

2 Background ... 4

3 Implementation Guidelines .. 5

3.1 Merging .. 6

3.2 Multi-tenancy ... 6

3.4 Interoperability ... 7

3.5 Portability ... 7

3.6 Scalability .. 7

3.7 Stability ... 7

3.8 Security & Compliance ... 8

4 Conclusions .. 8

5 Further Reading .. 8

 Architecture review for Hyku

4

1 Introduction

The purpose of this document is to review the architecture and design of the Hyku implementation of
British library, with reference to the capabilities of the platform and requirements of the Library. The
current implementation of Hyku for the British Library’s (BL) shared research repository project would
form the baseline for the Samvera Hyku application towards the target state architecture for the
Advancing Hyku project. The strategic goals to be achieved by this project are structural improvements
for the Hyku framework and new features for the repository application. This document also outlines
the scope of the requirements and the main principles and guidelines that drive the Advancing Hyku
architecture and design. The main aspects considered for review of the product are the following:

• Merging – features from Hyku community into current BL’s version and vice versa.
• Multi-Tenancy – provider-consumer model.
• Interoperability – with other systems e.g. DataCite, Crossref, OAI-PMH API

communication.
• Portability – components should be deployed for Cloud as well as on-premise

infrastructure
• Stability – High availability
• Scalability – performance should not degrade with increasing volume of data
• Security – Open access for users of data and role-based secure model for tenant admins

Prerequisites: It’s assumed the reader of this document has good knowledge of the Samvera Hyku
repository product and the related functionalities and technologies involved. Please refer to the links
in the Further Reading section for more information on the product or technologies. This document
should be read in perspective with the Grant proposal document1 of Arcadia project, for a focus on
the requirements of the British Library as a member of the Samvera Community.

2 Background

This section gives a background of the system architecture of the BL's Shared Research Repository2
application that is based on the Samvera Hyku open source repository framework. The system
components are designed and implemented in a multi-cloud infrastructure. The components stack
involved in the Hyku application are: Sidekiq for handling asynchronous tasks, Redis used as task
broker, ZooKeeper for distributed configuration, Memcache and Redis caching, and Solr search
engine. The core Hyku application is deployed as Docker container managed by Kubernetes cluster on
the Google Cloud platform. The main Hyku components are built from publicly available GitHub code
repositories3. All data files (including metadata) from the applications are stored in Google Cloud NFS,
ZFS file server with persistent storage. The operational database (PostgreSQL) is provisioned with
Zonal redundancy backup that serves as a fall-back database for live service. The documents
(repository contents) are actually stored securely and independently on AWS cloud using S3 storage.

1 Available upon request from https://advancinghyku.io/contact/
2 Currently available from https://iro.bl.uk/
3 https://github.com/samvera/hyku

 Architecture review for Hyku

5

The public facing repository websites (client sites) are developed using React JS with Rest API and JSON
data model. These components are hosted on a separate scalable infrastructure in the Google Cloud
platform. The search indexes are stored using Solr in a dedicated instance as well as on a shared
instance that also run on a Kubernetes cluster. This provides a fault tolerant and auto scalable
capabilities for a faster search functionality. The application also uses proprietary bespoke
components and tools for interfacing with external services. The system architecture aims to move
away from the legacy monolithic architecture of the Hyku framework to a decoupled, modular
components-based architecture, using a restful API approach.

Figure 1 provides a solution concept diagram to demonstrate the various components of Hyku
repository implementation and its interactions.

Figure 1. Conceptual view of the repository solution implemented for British Library.

3 Implementation Guidelines

This section gives more context and describes the architectural principles and implementation
techniques which could be useful for implementation in Advancing Hyku, as well as for the wider
Samvera Hyku community. It’s advisable to use an iterative approach for development and
deployment of new functionalities by using multiple work packages and transition-state-architectures

 Architecture review for Hyku

6

with milestones, as schematically shown in Figure 2. The aim of this approach is that at any stage of
the delivery, the code base should be useable for the community and should have upgrade-
compatibility with future versions of releases during the project duration.

Figure 2. The iterative approach to development and deployment.

3.1 Merging
Ubiquity Press have progressed a lot of good work for the British Library’s Shared Research Repository,
delivering new functionalities into the Hyku product. But these changes are currently held in a specific
code repository, though publicly available but still outside of the main git branch of Hyku. These
developments have been implemented in Hyku Version 1, but the Hyku community has advanced to
Version 2, with lots of new features. There will be significant gains for the Hyku community if the code
repositories are merged and provided as the primary code base for new users. This merging process
needs to be worked out in close collaboration with the Samvera community. It would also be useful
to publish the documentation about the configurations (Docker and Kubernetes) and
deployment/build scripts for the British Library’s version of Hyku to the community, as part of this
merge process. This would enable any new organisation to understand and on-board a new repository
application service quickly and at a lesser cost.

3.2 Multi-tenancy
Multi-tenant architecture in this context means multiple instances of the application operating in a
shared environment, thereby enabling a provider and customer model of repository service. For
example, a research institution can host and manage the service in one physical or hosted
environment and can serve multiple customers for storing their data and indexing it for searches
(discovery and access). This would also allow the data to be shared across the tenants taking part in
the same service. The advantages of these architectural features are:

• Customised client website design matching their brand, theme and logos
• Common data standard and business features for all the tenants
• Individualised data storage management for the tenants.

 Architecture review for Hyku

7

Having a core common data model for all of the tenants of the shared repository system would be
easier to manage. But the design should consider having an extensible metadata standard, between
the front-end components (e.g. search websites) and the back-end Hyku components. This would
allow the tenants to customise the worktype and other templates handled in the repository solution.
The British Library’s version of Hyku has partly addressed this, by using separate client sites, JSON
data model and an API layer. The metadata and the actual contents of the artefacts (documents)
stored in the repository system should be independent of the Hyku application thereby facilitating
easier extraction of data.

3.4 Interoperability
Interoperability features provide easier import and export functionalities of the data for the
organisations using the repository service. Both the metadata and the actual content (documents)
need to be persisted independent of the Hyku application semantics, i.e., the metadata and content
should persist in the semantics even if they are migrated outside the Hyku application to another
application environment. The design of the application should allow communication with other
services such as ORCID, Crossref, DataCite, and proprietary applications that use OAI-PMH API
standards for data communication.

3.5 Portability
Portability of Hyku application components for either on-premise or cloud installation is a key feature
for increasing the user base and on-boarding new organisations to realise the work of this project. The
Hyku application components should be packaged for both on-premise infrastructure and cloud
infrastructure installations to support a range of installation requirements across the community.

3.6 Scalability
This feature refers to the system’s ability to enlarge or diminish the capacity based on the number of
users or requests experienced by the repository service. In the cloud hosted model of Hyku
application, technologies like containerisation and Kubernetes will provide automatic scaling
capabilities. The design of the Hyku components needs to provide both horizontal and vertical scaling
based on the organisation’s infrastructure needs. The main advantage of this feature is that the cost
of providing the repository service will be optimised, as the cost follows the demand on the system.

Performance was a key factor that gets degraded in the earlier versions of Hyku product particularly
when the volume of search data increases. Hyku’s dependencies on legacy Fedora components need
to be analysed. It should implement the latest stable versions of Fedora or alternatively consider using
Valkyrie for data persistence and linking the search indexers. The British Library’s implementation of
Hyku has leveraged the Solr search indexes by provisioning them on a fault tolerant (Kubernetes)
mechanism. Alternatively, using a Valkyrie component would increase the ability of extracting
metadata to various relational databases for example SQL, MySQL, etc. at a later date.

3.7 Stability
The application design of the Hyku components should provide for high availability using fault tolerant
mechanisms. This can be provisioned and configurable for the cloud-based installations more easily
when compared with on-premise installations. All the legacy open source components need to be
upgraded to the latest supported version of that component, for example the Solr indexing
components in Fedora should continue to use the latest version available. Good documentation also

 Architecture review for Hyku

8

needs to be provided for users as how to recover systems in case of a disaster event. Documentation
about setting up failsafe mechanisms for the repository service should be provided for users.

3.8 Security & Compliance
The websites provided along with the Hyku repository application suites need to be secured for the
top 10 web application security risks. For example, injection, broken authentication, sensitive data
exposure, broken access control, cross-site scripting, using components with known vulnerabilities,
insufficient logging & monitoring. Sensitive information for data-at-rest needs to be encrypted and
protected. Data-in-transit needs to be secured with adequate TLS security protocol. Best practices and
installation requirements for security standards need to be published, for new users to understand
the security implications of the Hyku repository application. The data components design needs to be
compliant with privacy regulations e.g. GDPR, FIPPs.

4 Conclusions

The architecture and guidelines described here outline the British Library’s assessment – based on its
own requirements – of how best to guide the developing architecture of Samvera Hyku in a way that
will best drive and deliver the outcomes of the Advancing Hyku project. This needs to be an iterative
governance process, monitored during the implementation phase, and if any variance is detected
corrective measures need to be applied.

Towards the closing of the Advancing Hyku project, the British Library will review progress that has
been made.

5 Further Reading

Please refer to the information provided in the links of this section that will help the reader to
understand the Hyku community and various things about the repository applications in general.

• Hyku is the official name of the repository product that is a main deliverable of the Hydra-in-
a-Box project. https://wiki.duraspace.org/display/samvera/Samvera+Hyku+Interest+Group

• Visit https://hyrax.samvera.org/ for historic information about Samvera components.
• Advancing Hyku project partners are University of Virginia Library, Ubiquity Press and the

British Library. The work funding is provided from Arcadia, a charitable fund of philanthropists
Lisbet Rausing and Peter Baldwin. https://advancinghyku.io/

• The shared research repository (open access) service provided from the British Library on a
multi-tenant model for a community of institutional repositories such as, with a shared layer
and individual tenant’s repository searches. https://iro.bl.uk/

• Open Access repository service provided by University of Virginia – Libra is a scholarly
institutional repository. It provides safe and secure storage. The contents include journal
articles, theses, and other completed scholarly works. https://www.library.virginia.edu/libra/

• Architectural guidelines and principles are based on the open group framework that provides
the standards and references for methods and designs. https://www.opengroup.org/togaf

o Google cloud platform. https://cloud.google.com/docs

 Architecture review for Hyku

9

o Amazon cloud platform. https://docs.aws.amazon.com/s3/?id=docs_gateway
• Other tools mentioned:

o SideKiq: https://github.com/mperham/sidekiq
o Redis: https://redis.io/
o ZooKeeper: https://zookeeper.apache.org/
o Memchached: https://memcached.org/
o Solr: https://lucene.apache.org/solr/
o Kubernetes: https://kubernetes.io/

