Performance Analysis of a Software Implementation
of the Xpress Transfer Protocol

A Thesis
Presented to

the Faculty of the School Engineering and Applied Science

PN

University of Virginia

In Partial Fulfiliment
of the Requirements for the Degree
Master of Science (Computer Science)
by
Timothy W. Hartrick

August 1991

APPROVAL SHEET

This thesis is submitted in partial fulfillment of the
requirements of the degree of

Master of Science (Computer Science)

Timothy W. Hartrick

This thesis has been read and approved by the Examining Committee:

Thesis Advisor

Committee Chairman

Accepted for the School of Engineering and Applied Science:

Dean, School of Enginneering and Applied Science

August 1991

Abstract

In this thesis we present a survey of a group of influential Transport Layer protocols,
including the Transmission Control Protocol (TCP), ISO Transport Protocol Class 4 (TP4),
the Versatile Message Transaction Protocol (VMTP) and the Xpress Transfer Protocol
(XTP). A variety of features of each protocol are examined in detail. These features include
packet formats, communication syntax, error and sequencing control and multicast
capabilities. Next, we describe an implementation of XTP version 3.5 which was developed
at the University of Virginia Computer Networks Laboratory. We discuss the results of a set
of performance experiments performed on UVa XTP 3.5. These experiments include
unicast throughput and latency measurements, and multicast throughput measurements. We
also present a set of performance measurements which compare the performance of a
commercially available implementation of TCP with the performance of UVa XTP 3.5

running on the identical hardware platform.

ii

Acknowledgments

I would like to express my gratitude to my advisor, Dr. Alfred C. Weaver, for his
generosity and encouragement throughout my tenure in the Computer Networks
Laboratory. I would also like to thank my colleagues in the Computer Networks
Laboratory, particularly Robert Simoncic and John Fenton for developing the UVa XTP 3.5
implementation. Their insight into the internal workings of the implementation was
invaluable. Special appreciation goes to Molly and Bert Dempsey for providing me with a
home during the completion of this work. Finally, I would like to thank my parents for their

support and encouragement.

ii

Chapter 1

Table of Contents

Transport Protocol Survey.........vinnn. resrreraeseaseees e srrenraas creereererrsernesasenes 1

1.1. OSI Reference Model ...ooovenvvcenceiecenrenees ereerereerrernesasasenssnsrensnnaraen

1.2, Transport Protocols.......weececeen veeesesrresassssessasassatee s s annes

1.1.1. Physical Layer..ccccorivimerirennnicnnenne et eesrerrraetese sttt ses st n e s e araes
1.1.2. Datalink Layer eeeeerenreeneeest e searans eeraee e re s et b s
1.1.3. Network Layer trererrerssrersasessiaesrarnes tebeeesreatessaseeseternt et s aarans
1.1.4. Transport Layer......ccoeveenens, creesesni s retrtnss bbb enan .
1.1.5. Session Layer.............. ceererren e as s rerrerrereesen et snse e st e an s
1.1.6. Presentation Layer verres e Crreeesases e seas b s n e s -
1.1.7. Application Layerc.uviiccncnnnes ereerresnre e aee et esreerens

1.2.1. Transmission Control Protocol......c.ueu... tetrerbersraenenres s ae e staseren e s
1.2.1.1. Segments and Segment STUCtUreeeeee reresiar e e e aeras e aa s nnans .
1.2.1.2. Connection Establishment ceveerbere e e eraeeres e neneanes
1.2.1.3. Connection Terminationceeeieeresennans etrereeeeeneererrastaesaaanes
1.2.1.4. Windows, Acknowledgments and Retransmission.........ueene 10
1.2.1.5. Flow Control....ccovmninsionimnernnens ceeeberrerarereee st esasenrsnnes cevneenss 11

1.2.2. ISO OSI Transport Protocol Class 4........ ceesrnertr e e e sessra st srene e veeeeens 12
1.2.2.1. Transport Protocol Data Units teeveee b sas st b e e en we 13
1.2.2.2. Connection Establishment et rreereerant bt ae e nser s nren e coreees 14
1.2.2.3. Connection Terminationcccccueiveearienens rreerrerrer e seae e eres 15
1.2.2.4. Acknowledgments and Retransmissioncovvererene. veereereerareres 13
1.2.2.5. Flow Control........... revserrrersassasiassssiaeias eeveesrerenesnessanenneranes e aran s 16

1.2.3. The Versatile Message Transaction Protocoloinicicnnicnnn 16
1.2.3.1, Packet Formats.....cccoceeninnnnes revrersreeneseesasene s res e aeaan veereevuroreanas 17
1.2.3.2. Message Transactionseveeeveccsisecsenanes creesesaenrs bbb e an 19
1.2.3.3. Acknowledgment and Selective Retransmissionuueveeseeenes 20
1.2.3.4. Rate Based Flow Control.....ceeueneee. creersserersresasarsnssastte s ntaenane 21

1.2.4. GAM-T-103 Transfer Layer ServiCes.....uumrimmnininnninnianes ceevereanes 22
1.2.4.1. Transfer Layer Architecture........ cterist e r et asar e crvras 22
1.2.4.2. Transfer Layer Services........... reebesbeerretaneeatesssaresanarnenes veereeens 23

1.2.4.2.1. Data Communication SeIVICeS......cuiimmmnmimninimrsseminens 24
1.2.4.2.2. Synchronization and Management Services.......... vevessesnnees 24

1.2.5. The Xpress Transfer Protocol.......wcecniveiannee rererasererien e s as et enas 24
1.2.5.1. Navy SAFENET ArchiteCturecovvirmrvenresnneseencrnenenns veerasansane 20
1.2.5.2. Packet Formats......covvmnnmnsireenneenens ceeeaeerrreeaaeere s ara s s aenre s st reranan . 28
1.2.5.3. Data Transmissionveveresresscisneens Ctreaseeaa e s s bs s bt e banas J31
1.2.5.4. Acknowledgments and Retransmission ..o weveenees 32
1.2.5.5. Multicast Transmissioneeueenes ceveertetessatessnae st et ae s aenanesane 33

1.2.5.5.1. The Bucket Algorithmcocoeeenne ceeeeete e e rtesrea st sesaneas 34
1.2.5.5.2. Slotting and Damping........ feerieeerrtesate s e s ebas b ae s s s nas eeee 35
1.2.5.6. Flow Control.....cccecinvevinsenrncsseeraneninnnes revererereeereesare s e aeseatares 36
1.2.5.7. Rate and Burst Controlcccvniviivieicinininnisnonnns vievrereeseeserennaans 30

YoodhGbh &b bW

iv

1.3, CONCIUSION «rververrerrieesierieseaereereesscsiaesassrsessaesstessesstsarsssesassssessnesbossasasssssesnassses 37
Chapter 2

A Software Implementation of XTP ... ceeeeaesreresesennnreentes 38

2.1, Introduction........ccccceenncnnvennns crtevesrserses bt ae s sres crtereeeeeeseserae e e aeabans 38

2.2. Hardware BOVITONIMENT. ..ccuccrreerereersecetsssevussssssssnsssissosssssorsssssssserssssssnssnsaress 38

2.3. MAC Layer Hardware EnvIronIment ... i nssersnessones 39

2.3.1. Western Digital WD8003E Ethernet Interfaceoceeineneiieneiennene. 40

2.3.2. Proteon p1340 Token Ring Interface........ccvvvivvencenvennnnnes reeseneeenees 40

2.4. UVa XTP 3.5 Software ArchiteCtureooccovinenreceensrnns ceteeireerese s r e e n s .41

2.4.1. ZEK — Fast Real-Time Scheduler. ... 42

2.4.2. XTP Engine and Driver Interactionc.cveveininieniereninnnss cerrreeneeenne 44

2.4.3, XTP Protocol Engine Drivers.....c.verrenne cerreee e e cereceeree 45

2.4.3.1. Resource Allocation and Deallocation Drivers ... TR 45

2.4.3.2. Memory Transfer DIIVEIS ..o s sssssssssens 46

2.4.3.3. Character-Oriented DIiveIS...coivirnenicrniininininninin e e 46

2.4.3.4, Device-Oriented DITVETS ..ot senes 47
Chapter 3

Performance Measurements and Analysis ... 48

3.1, Introducton. ..o ccceeeev e ccrenee feetrtevesessrershnreseraranaantreeeeaesanarrrrtranaarrene ceeeruene 48

31,1, THITIETS ceveeeeireiierireeressseeesbesssnesrssns s sansssuse s sbessras s s rssonaesmnnssrbannsbbssness 48

3.1.2. Throughput Measurementsumisiiisimnssieimssisiremssssseessess 49

3.1.3. Latency Measurements ..o.eoieeneenesnsannens Ferereaesaisare s es e e bsanebanas 49

3.1.4. Delay Measurements. ..o Feetresteseeasres e e rn s aaeree s e ree bt ens bbbt b s RSO 49

3.2. XTP Unicast Measurements eeerbeesereebeTer e bt ea e te et et e s e e s arenresnnnen 50

3.2.1. IEEE 802.5 Token Ring Implementation reesestenes st banaesaners 50

3.2.1.1. Throughput Measurementscuevuesisnernenns reseesreresaresassaresnes 50

3.2.1.2. Round-trip Latency Measurements.....o.cieriineriiiesnesierneseasene 53

3.2.2, IEEE 802.3 Ethernet Implementation.............. rerere et et arae e sbaaes 55

3.2.2.1. Throughput Measurements . ..o, verrroes veerersrerarereneres 55

3.2.2.2. Round-trip Latency MeasurementS. ... ieeeinnsrresiesneiosissaeraens 57

3.3. XTP Multicast MEaSUIEIIERLScorevvreriniisnieriiiisrissiisrssrsssissrsssssssesssesssessassens 59

3.3.1. Multicast Groups......... reseaetennenseennearenennes rereaesveeteseassrasnetnssraras rereeenee 39

3.3.2. IEEE 802.5 Token Ring Implementationccumisisinnsis 60

3.3.2.1. Throughput Measurements e sraesaae s reasras s saes rereeraneeee 60

3.3.3. [EEE 802.3 Ethernet Implementation............ ceveveeraseaeshesss sy rnne b . 61

3.3.3.1. Throughput Measurementsovveenen ettt e aees 61

3.3.3.2. The Bucket ALZOTithin c...ccvoeveirininniininiesnniisnis e srnnss .63

3.3.3.3. Slotting And Damping.............. feveressrertressasssesarsterssesaranans crrerranes 0O

3.4, XTP vs. TCP/IP Measurementscoovvevecrrrisssnens crerreresstteraeeaaeerre s nesenesarraens 70

3.4.1. WIN/TCP for DOS ..o reereeseesrestetesres e srenennne e ananans crseeanensererens 70

3.4.2, WIN/APLLOr DOS ...ttt st ssee s sses e 71

3.4.3. Throughput Measurementscou... Ceteareer s ee s as e e et s a e s eras vevenne 11
3.4.4. One-way Latency Measurements.....o.ccvecnverennene ereereree s ey s ses bbb naae 72
3.4.5. Delay Measurements......ooeeenee. reeerrerbeerrearteeenteserneraens cevetresrninnesnnaseess 13

Chapter 4
ConclusionsS.......ocvvervecesrernnes ceresteetenseensraserensnsnnssnnrrnes reetersressbeesarnbsrasarernrnrnsnanes reresrianane 13

4.1, Transport Protocol Surveyevennnees certeie e st e e nas ceevveeranions 19
4.1.1. Data Communication Syntaxes.......... cererteeresareresernssenesaessssrasaresae e e 15
4.1.2. Sequencing and Error Control Mechanismsccovevevererniinisisninnnns .76
4.1.3, FIOW COIIOL ...cviivvirresnsrninnresssssnisnennens rrertee oot e st s ae s et voens 17
4.1.4. Rate and Burst Control retess s rae e s e TPV i
4.1.5. Multicast Transmission.......cueeereanen. teseesaenenteais e as e asss e araas rreevareniee 18
4.1.6. Hardware Support and Implementation................ reerirernsanesaneseseresssssses 18

4.2. Performance Analysis........ ceereeereeseees s er st e et e anraens ceeveeeaesrase s eesnasasneene s 78
4.2.1. XTP Unicast Performancecc.cceeueene ebessreesnes et re e s s et aeshans v 19

4.2.1.1. Throughput Performancececvvcrencnneen ST TOU RO VURION 79
4.2.1.2. Round-trip Latency Performance.......ooeenincnicininnnanns wrevevrraenens 19

4.2.2. XTP Multicast Performance reetsstee et e s bs s nae e eee snerenns 80
4.2.2.1. Throughput Performanceocverieevenreisseseeanenes cesvereenrerenrsansees S0
4.2.2.2. Bucket Algorithm Performancecocuinencnciinennnnn, cerrensorerereer 30
4.2.2.3. Slotting and Damping Performance........cuwvennnnnnneennns .80

4.2.3. XTP vs. TCP Performance................ reeeresaesare ettt et n e veeerrernnnns 80
4.2.3.1. Throughput Performance cereeeerrreseaeesesee et esnsesanenes ceeerenneens S0
4.2.3.2. One-way Latency Performance rreereeeeseta et sae e s e s enes e 81
4.2.3.3. Delay Performancecoccouvmvrinaieninannn. veeteserere et aasenas 81

4.3, Conclusionoumimiciisiesierenennes rresee s s ssas e en s a e reeraes vervrssassrssesseorses S 1
4.4, Future Work ..o, ceeree et se s sr s n s veeveannenes 82

References.....cooecvveinnneinnnns D R PTS Ceerserseeriesrrustasestesranseeenenres vereesrress 83

List of Figures

Chapter 1

Figure 1.1— OSI Reference Model ... 1
Figure 1.2 — OSI Datalink SUBIAYEFS . vvevvenivirriesicsiiiiniisitcn s 3
Figure 1.3 — TCP Segment HEGAETovvcorvmmiriincsiiniiniiisissssssissssssessssssnens 6
Figure 1.4 — Connection EstabliSHent SYRIAXES o eeevcvvervisniviniiiinisssssinssness 9
Figure 1.5 — Connection Termination. ... i 10
Figure 1.6 — Transmit and Receive WilAOWS ...t 11
Figure 1.7« TP4 TPDU HEAAETS ..covvvvnirnnrecinnininciiititiiiinitsis s 13
Figure 1.8 — VMTP Packet FOTmMQL ... uvovnintirinvmiiiiniiinii et s 18
Figure 1.9 — MRT-LAN AFCHIECIUTEv.comirenenrvovricsisisis ittt st e 23
Figure 1.10 — Protocol Enging ArChIECIUFE.....cvunieivinintimiiiiiriintinstnnsenssssssiss s 25
Figure 1,11 — SAFENET I AFCRITECIUTE cvvvrnrivnevivriconiniiieisisisnerisassssisns e ssenscns 27
Figure 1.12 — XTP PaCREl FOTIALS ..vvovrviereisisnecscnsnicnmististsssnssstinstinsssssssassssn s sasnsnonses 28
Figure 1.13 — Data TransmisSion SYRIAXESwsiiiisinisiinisimniississnssssises 32
Figure 1.14 — Rseq, AIloC QRO SPARS «.cccovnmrevivismiminiiniiiniirtisisis s 33
Chapter 2

Figure 2.1 — UVa XTP ArCHILECHUTE ...ouovvvisnseeseserinsmsmsisisinssisssns s s sesssssss i ssens 42
Figure 2.2 — XTP Rilg BUITETS c.eoumecmrititirrinisc et sesnsnens 44
Chapter 3

Figure 3.1 — XTP Unicast Throughput on Token Ringcceivivnimnnniininicianns 51
Figure 3.2 — XTP Driver Throughput Efficiency on Token Ring ... 52
Figure 3.3 — XTP Unicast Round-trip Latency on ToKen Ringcoeiveieiinnnninennees 53
Figure 3.4 — XTP Driver Round-trip Latency Efficiency on Token Ringcveuceveiennnss 54
Figure 3.5 —XTP Unicast Throughput on ETRETREL.........oovvvmrinmiiiiniiisssineesiisisncens 55
Figure 3.6 — XTP Driver Throughput Efficiency on EtRErnet. ...t 56
Figure 3.7 — XTP Unicast Round-trip Latency on EtRETHELcovvvviviiiinimnensisicicnnen: 57
Figure 3.8 — XTP Driver Round-trip Latency Efficiency on Ethernet ..., 58
Figure 3.9 — XTP Multicast Throughput on Token Ringc.coumeenininiininsecnnnnn. 60
Figure 3.10 — XTP Multicast Throughput of ETRETREL ...cvveviininiirininineiisiinseirnnee 61
Figure 3.11 — XTP Multicast Throughput Efficiency on Etherner ... 62
Figure 3.12 — UVa XTP 3.5 Bucket AIGOTIAM. ..o iiesisssesisies 64
Figure 3.13 — XTP Four Receiver Multicast TRFOUGADUL.....ovovvivenivrrisicininnniinennnnnns 66
Figure 3.14 — XTP Multicast Slotring and Damping Control Packet Transmission........ 68
Figure 3.15 — XTP Multicast Slotting and Damping TRIOUGAPULovvirrierniiininneinnnee, 69
Figure 3,16 — TCP vs. XTP TRIOUZAPUE coevvevivinneiarincicinisininrnstsinnse i s s 72
Figure 3.17 — TCP vs. XTP One-way LALENCY «.cooonvvvevvisviirivimnisiniinittnissss s, 73

vii

Figure 3.18 — TCP vs. XTP Connection Setup Delays

viii

Chapter 2

List of Tables

Table 2.1 — Machine Classifications eebeserereaeiEreesrreratyet i st aetans bt aetbetessbe s ntassennans

Takble 2.2 — XTP Task Priorities

...

Chapter 1

Transport Protocol Survey

1.1. OSI Reference Model

In the late 1970’s the International Standards Organization (ISO) began work on a
set of protocol standards for computer and data communications. This effort was
undertaken as a response to the need for a set of data communications standards which were
neither proprietary to a particular vendor, nor of interest only to a small subset of the
international community. The architectural structure for the development of this set of
communication standards is the seven layer Open Systems Interconnection Architecture

Basic Reference Model [13]. Figure 1.1 contains a graphical depiction of the OS] reference

model protocol stack.

Application

..

Presentation

..

Session

Transport

Network

Network Network

Datalink

Datalink Datalink

Physical

Physical

Physical

Figure 1.1 OSI Reference Model

Application

Presentation

Session

Transport

Network

Datalink

Physical

The key feature of the OSI architecture is the strict division between each of the
seven layers of service. Each layer in the OSI protocol stack provides a set of services to
the layer above and requests services from the layer below. The interface to each layeris a
set of primitives which are part of the protocol service specification. Information about the
state of each layer is isolated from the layers above and below with the exception of what
state information can be inferred by the use of the defined primitives [1, 18, 21, 28]. The
following subsections contain a brief discussion of the services provided by each of the

seven layers of the OSI reference model.

1.1.1. Physical Layer

The physical layer of the OSI reference model provides a set of services which
allow for the transmission of a serial bit stream across some physical media.The physical
layer is principally concerned with the electrical and mechanical characteristics of the

signalling media.

1.1.2. Datalink Layer

The datalink layer is concerned with utilizing the serial bit stream services provided
by the physical layer to provide data communication services along a single network link.
These services are generally provided by taking the raw bit stream capability of the physical
layer and combining sequences of bits into datalink protocol data units or frames. These

frames can contain both datalink control information and user data.

In the case of local area networks the datalink layer is divided into two sublayers
known as logical link control (LLC) and medium access control (MAC). Logical link
control provides reliability and acknowledgments while medium access control provides an
unreliable packet communications facility over a muiltidrop physical link. The most

common local area network standards are the IEEE 802.x local area network protocols.

These protocols have been adopted by ISO for use as datalink layers [22, 23, 24, 25]. Figure
1.2 contains a graphical depiction of how the IEEE 802.x standards fit into the ISO

architecture [25].

1808802/2 (IEEE 802.2)
Q Unacknowledged Connectionless Service
b ﬁ Acknowledged Connectionless Service
2 Connection-Oriented Service
yoed
o
-
3 ISO 8802/3 150 8802/4 ISO 8802/5 1SO 9314
= Q CSMA/CD Token Bus Token Ring FDDI
b Medium Access Medium Access Medium Access Medium Access
3 Control § Controt : Control = Control
2 % 2 2
5 E Baseband Coax g Broadband Coax E 7
= &= 19 Mbps & i 1,5and 10 Mbps) z
5 a <
— Carrierband Carrierband Twisted Pair Qptical Fiber
[31 1 and 10 Mbps 1, 5 and 10 Mbps 1, 4 and 10 Mbps 100 Mbps
,%' Broadband Coax Optical Fiber
- 10 Mbps 5,10 and 20 Mbps
Figure 1.2 - OST Datalink Sublayers
1.1.3. Network Layer

The network layer provides addressing and routing services which allow stations,
not physically connected to the same network link, to communicate with each other. It
provides the transport layer with a variety of connectionless and connection-oriented
services including an unreliable data delivery service. By unreliable we mean that network
a protocol data unit (NPDU) may be lost, reordered with other NPDUs, or duplicated while

in transit to the destination.

1.1.4. Transport Layer

The transport layer provides full end-to-end communication between stations using
a network layer data delivery service. This layer is extremely important because it is
charged with providing end-to-end reliable data transmission services over a potentially
unreliable network service and at the same time conceals the nature of the underlying
network. The transport layer must also provide some end-to-end flow control mechanism

so that fast fransmitters can not overrun the buffer capacity of slower receivers.

1.1.5. Session Layer
The session layer provides various connection management services. In particular
it is responsible for providing either full-duplex or half-duplex transport connections and

also manages the graceful closing of transport connections.

1.1.6. Presentation Layer

The presentation layer is responsible for providing the application layer with a set
of datatype translation services which allow computer systems with incompatible datatype
representations to communicate with each other via the 18O protocol stack. This set of
services allows heterogeneous computer architectures and operating systems to transmit
complex data structures between systems and have the content and meaning of the data

structure preserved.

1.1.7. Application Layer
The application layer provides a predefined set of services which can be accessed
by an application programmer. Examples of these types of services are file transfer

protocols and electronic mail services.

1.2. Transport Protocols

Transport layer protocols have been the focus for a substantial amount of research
over the last twenty years. Because they provide peer-to-peer communications while
keeping the nature of the underlying network transparent to the layers above, they present

unique challenges to the protocol designer.

In the sections which follow we will examine the design and function of a set of
influential transport protocols. These influential protocols will range from traditional
connection-oriented protocols, to special purpose transport protocols used for distributed
systems and embedded real-time systems. We will conclude with a description of the
Xpress Transfer Protocol, a high-speed transfer layer protocol which employs many of the

design concepts from the set of influential transport protocols.

1.2.1. Transmission Control Protocol

During the mid-1970s the Defense Advanced Project Research Agency (DARPA)
began development of a set of data communication standards for use within the military.
This development was driven by the need to support communication and inter-operability
among the multi-vendor computer systems in use by the military. By 197879 the
development efforts had spawned a set of five military standards. The standard of interest
in this section is MIL-STD-1778, the Transmission Control Protocol (TCP). In the OSI
reference model TCP is a transport protocol, although it has not been adopted as an ISO
standard. The unreliable network data delivery service associated with TCP is defined in
MIL-STD-1777 and is known as the Internet Protocol (IP). Because TCP and IP provide a
large portion of the functionality of the military communications standards, the whole suite

is usually referred to as TCP/IP [8, 15, 23].

TCP is a connection-oriented sliding window protocol which uses sequence
numbers, positive acknowledgments and timer based retransmission to guarantee reliable
service. It also implements a buffer reservation flow control mechanism in order to
minimize the loss of data between stations which are ill matched with respect to
performance. Each TCP connection provides full-duplex octet stream communication
between the two endpoints of the connection. In the sections which follow we will discuss
some of the details of the protocol with emphasis on segment formats, connection

establishment and termination, and the mechanisms used to provide reliable service.

1.2.1.1. Segments and Segment Structure

TCP uses the unreliable datagram service provided by IP. Each IP datagram has a
header portion and a data portion. TCP uses the data portion of the IP datagram to hold its
own header information and optional user data. The combination of a TCP header and
optional data is called a TCP segment. In Figure 1.3 we see the format of a TCP segment

header.

Source Port : Destination Port
Sequence Number
Acknowledgment Nomber
Data Ul el .
Offset | Reserved Bl E =& Window
Checksum Urgent Pointer
Options & Padding
Data

Figure 1.3 —TCP Segment Header

The 16-bit source port field specifies the port on the source host from which the seg-
ment originated. The destination port field specifies the port on the destination host for
which the segment is intended. Host addressing information is not required in the TCP
segment header because it is contained in the IP datagram header which encapsulates
TCP segments.

The sequence number field is a 32-bit number which specifies the sequence number of
first octet of data in this segment. TCP uses octet significant sequence numbers to keep
track of the current position in the data stream.

The acknowledgment number is the sequence number of the next octet of data
expected by the source port end of the connection. TCP provides for the piggybacking
of acknowledgments on outgoing data segments in order to provide more efficient full-
duplex operation.

The 4-bit data offset field contains a count of the number of 32-bit words contained in
the header. This field is required because the options field can have variable length.

The 6-bits after the reserved field are the flags. The flags are used to indicate which
fields of the header are significant in this segment and also allow protocol control
information to be related to the destination port end of the connection.

The urgent flag (URG) indicates that the urgent pointer is significant in this segment.
The urgent pointer itself is discussed later.

The acknowledgment flag (ACK) is used to indicate that the acknowledgment number
field is significant in this segment. This flag indicates to the receiver of the segment
whether or not the segment is being used to piggyback acknowledgments.

The push flag (PSH) is used to indicate that this segment should be delivered in an
expedited fashion. It provides a way to avoid buffering latency but still delivers the
data in sequence.

The reset flag (RST) is used to request from the destination port end of the connection
an abnormal connection closure. The reset is issued when the source port end of the
connection has experienced system failure and recovered quickly. Since the source
port end of the connection cannot guarantee its state after the failure, it responds to all
incoming segments by transmitting a segment with the reset flag set. This indicates to
the destination port end of the connection that the connection has failed and should be
closed abnormally.

The synchronize flag (SYN) is used to request from the receiver a synchronization of
sequence numbers. This flag is used during connection establishment.

The finished flag (FIN) is used to indicate to the receiver that no more data is available.
The flag is used to gracefully close one half of the full-duplex communication channel.

The window field is used to implement end-to-end flow control. The 16-bit number
indicates the number of data octets for which the destination port end of the connec-
tion has buffer space.

The 16-bit checksum field is calculated over the T'CP segment padded to the nearest
16-bit word with a 12-octet pseudo-header appended to the beginning of the segment.
The pseudo-header contains IP addresses and other information similar to that con-
tained in a IP datagram header. Neither the pseudo-header or the padding is actually
transmitted with the segment. They are reconstructed on the destination port end of the
connection.

+ The urgent pointer field is a 16-bit number which points to the first octet of data which
follows a sequence of urgent data octets, Data marked as urgent receives priority trans-
mission and delivery service. It is different from a segment with the push flag set
because urgent data receives priority service over normal data.

« The options field is a variable length field which is padded out to the nearest 16-bit
word for checksum calculation purposes.

1.2.1.2. Connection Establishment

The endpoint of a TCP connection can be opened by the user in one of two states.
The connection endpoint can be opened in a passive state in which it is listening for a
connection request from a remote connection endpoint or it can be opened in an active state
in which it is sending a connection request to a specified connection endpoint. A connection
can be established between two connection endpoints in one of two ways, but in either case
connection establishment involves at least a three-way handshake between the two
endpoints before the connection is fully established. Figure 1.4 shows two possible

sequences of events which could lead to successful connection establishment.

In Figure 1.4a, A transmits a SYN segment and i, which is the initial sequence
number value for the A-to-B half of the full-duplex connection. When B receives this
segment it responds with a segment with the SYN and ACK flags set and j in its sequence
number field. The value f is the initial sequence number value for the B-to-A half of the full-
duplex connection. In addition, the acknowledgment number field contains i-+1, in order to
acknowledge the initial value of the A-to-B sequence number. When A receives the
acknowledgment from B, it responds with an ACK segment with j+1 in its
acknowledgment number field in order to acknowledge the initial sequence number value
for the B-to-A half of the connection. This segment may also contain data and a sequence

number field of i+1.

In Figure 1.4b, A and B both send SYN segments simultaneously with initial

sequence number values of i and j respectively. These initial sequence number values are

acknowledged with ACK segments with the appropriate values in the acknowledgment
number fields. Once the acknowledgments are received on both sides the connection is

established and data may be transferred using the agreed initial sequence number values.

A B A B
Active Passive Active Active
Endpoint Endpoint Endpoint Endpoint
SYNi SYN i SYNj

ACK i+l ACK j+1 ACK i+l

SYN

ACK j+1

DATA i+1 DATA i+1

DATA j+1

LN/
AN

Figure 1.4 - Connection Establishment Syniaxes

1.2.1.3. Connection Termination

Connection termination in TCP is very similar to connection establishment in that
it requires at least a three-way handshake between the connection endpoints. Figure 1.5
shows one possible sequence of events which would lead to a graceful connection

termination.

In order for a connection to be closed, each endpoint must transmit a FIN segment

with the current sequence number and receive an ACK segment with the current sequence

10

number in the acknowledgment number field. In this way a graceful termination of the

connection with no loss of data is guaranteed.

FIN i

ACK i
FIN j

ACK j

[N/

CLOSED

Figure 1.5 - Connection Termination

1.2.1.4. Windows, Acknowledgments and Retransmission

When using an unreliable network datagram facility fike IP, TCP segments can be
lost or delayed for an indeterminate amount of time. To combat this TCP employs a system
of sliding windows, acknowledgments and segment retransmissions in order to guarantee

reliable service.

A sliding window is a portion of the sequence space which TCP transmits as a
segment or group of segments. Figure 1.6 shows both the transmitter and the receiver
windows moving through the sequence space. At the transmitter side each window has
associated with it a retransmission timer. When the segments in the window are transmitted
the timer is started. If an acknowledgment is received, the portion of the segments which
have been acknowledged are removed from the window. Any data which has become

available at the front edge of the window is transmitted and the timer is restarted. If the

11

timer expires then all of the unacknowledged data segments in the window are

retransmitted. This is known as the go-back-n retransmission strategy.

Transmitted & Transmitted &
Acknowledged Unacknowledged Untransmitted

o

T 35 6 7 8 9 10 11 12 13 14

Recefved & Received &
Unacknowledged

4 5 6 7 8 9 10 11 12 13 14

Figare 1.6 — Transmit and Receive Windows

The acknowledgment strategy used by TCP is fairly simple and involves no timers
When a full window of data is received the receiver responds with an acknowledgment.
Acknowledgments can be piggybacked with outbound data segments in order to improve

network efficiency.

1.2.1.5. Flow Cbntrol

Because different computer systems have very different protocol processing
capabilities with respect to the number of segments which can be processed and the amount
of data that can be buffered, TCP implements an end-to-end flow control mechanism based

on a window credit system.

Each end of a TCP connection has a window allocation for receiving data. When a

window of data is acknowledged, the acknowledgment segment contains in its

12

acknowledgment number field a sequence number corresponding to the next octet of data
expected by the receiver. In the window field of the acknowledgment segment is a value
corresponding to the number of octets after the acknowledgment number that the receiver
can accept in its window. For example, if the acknowledgment number field contained the
value i and the window field contained the value j then the transmitter can transmit data
segments containing sequence numbers between i and i+j-1 and nothing more until another
acknowledgment is received with further credit. In this way a transmitter can be throttled
in order to keep the receiver from being forced to drop error-free segments because there is

no available buffer space.

1.2.2. ISO OSI Transport Protocol Class 4

The OSI architecture has defined five classes of connection-oriented transport
protocol service numbered O through 4 [14]. The differences between these five service
classes are related to the type and quality of service required by session layer, and more
directly, by the quality of service provided by the network layer. ISO transport protocol
class 4 (ISO TP 4) assumes that the network layer provides nothing more than an unreliable
datagram delivery service. The network service usually associated with TP4 is the ISO

connectionless network protocol (CLNP) which provides services very similar to IP.

ISO TP4 is very similar to TCP in many ways. However, there are some rather
important differences which should be noted at the outset. First, ISO TP4 is not a octet
stream based protocol; it is based on transport protocol data units (TPDUs). This means that
ISO TP4 sequence numbers are not assigned on a per-octet basis but rather on a per -TPDU
basis. Secondly, because ISO TP4 is one of a whole class of transport protocols which all
use the same set of TPDU formats, the TPDU formats are much more varied and contain

more options and optional fields [1, 14, 21]. In our discussion of the TPDU formats and

13

general protocol mechanisms, we will attempt to concentrate exclusively on the issues

which concern ISO TP4.

1.2.2.1. Transport Protocol Data Units

ISO TP4 supports nine different TPDU types. Each type has a different header
format. Like TCP, the use of options in the header formats allows some headers to have
variable length, Figure 1.7 shows the fixed length portions of the TPDU header formats
used by TP4. We will briefly describe the function of each of the fields in the packet header

formats.

Connection Request (CR}
LI CR | CDT - Source Reference Class |Option

Connection Confirm (CC)
LI cc | CpT Destination Reference Source Reference Class |Option

Disconnection Reguest (DR)

LI DR . Destination Reference Source Reference Reason

Discennection Confirm {(DC)

LI D - Destination Reference Source Reference
Data (DT)

LI pT | - Destination Reference §| TPDU-NR
Expedited Data (ED)

Li ED | - Pestination Reference éIEDTPnU-NR

Data Transfer Acknowledgment (AK)
LI AK | CDT Destination Reference YR.TU-NR

Expedited Data Acknowledgment (EA)

LI EA - Pestination Reference YR-EDTU-NR
TFDU Error (ER}
LI ER . Destination Reference Cause

Figure 1.7— TP4 TPDU Headers

L]

14

Each TPDU begins with an 8-bit length indicator field (LI). This field contains the
length of the TPDU header, including the length of any options but not including the
length of the LI field.

The 4-bit TPDU type field is used to indicate which type of TPDU (e.g., CR, CC, DR,
etc.) has been received.

The 4-bit credit field (CDT) is used to establish the flow contro! buffer credit for each
end of the connection.

The 16-bit destination and source reference fields are used by the transport entities on
either end of the connection to distinguish the connection with which the TPDU is
associated.

The 4-bit class field indicates which class of service the connection is using.
The 4-bit options field indicates which options will be utilized by this connection.
The 8-bit reason field is used to indicate the reason for a disconnection request.

The 1-bit end of transmission (EOT) field is used to indicate that the end of a multi-
TPDU message has been reached. It is set to 1 on the last TPDU of the group.

The 7-bit TPDU-NR field is the sequence number of the current data transfer TPDU.

The 7-bit EDTPDU-NR contains the sequence number of the current expedited data
transfer TPDU.

The 8-bit YR-TU-NR field contains the sequence number of the next expected data
transfer TPDU.

The 8-bit YR-EDTU-NR field contains the sequence number of the next expected
expedited data transfer TPDU.

The 8-bit cause field is used to indicate the reason that a TPDU was rejected.

1.2.2.2. Connection Establishment

The mechanism for connection establishment in ISO TP4 is very similar to that of

TCP. The two protocol state machines for connection establishment are virtually identical.

The only difference is that TP4 automatically uses zero as the initial sequence value and

TP4 uses the connection establishment process to initialize buffer credit (CDT) values used

in TP4’s end-to-end flow control mechanism.

Connections are established by the initiating transport entity transmitting a CR-

TPDU to the destination transport entity. The initiator’s CR-TPDU contains an initial CDT

value and also contains any options which the initiator desires for this connection. On

receipt of the CR-TPDU the destination transport entity assigns the connection a source

15

reference and responds to the CR-TPDU with a CC-TPDU. The destination’s CC-TPDU
contains the destination reference extracted from the source reference of the CR-TPDU,
and the assigned source reference. It also contains the destination’s initial CDT value.
When the initiator receives the CC-TPDU in order to complete the three-way handshake
and establish the connection, the initiator must respond with a DT-TPDU, ED-TPDU, or

AK-TPDU.

1.2.2.3. Connection Termination

ISO TP4 connection termination is quite a bit different than that of TCP. ISO TP4
uses a two-way handshake in order to release a connection. When a transport entity wishes
to terminate a connection it transmits a DR-TPDU. Any DT-TPDUs which were queued for
transmission previous to the disconnect request are discarded. The receiving transport
entity responds to the DR-TPDU by discarding any pending DT-TPDUs and transmiiting a
DC-TPDU. ISO TP4 does not possess a graceful close mechanism like TCP. Within the OSI
reference model the responsibility for graceful closure without loss of data resides at the

session layer.

1.2.2.4. Acknowledgments and Retransmission

ISO TP4 uses mechanisms very similar to TCP; however there are some
differences. First, TP4 requires that AK and EA TPDUs be transmitted explicitly. There is
no piggybacking of acknowledgments on outbound DT or ED TPDUs. Secondly, when the
TP4 retransmission timer expires only the first TPDU in the window is retransmitted. TP4
can implement this strategy because the receiver maintains an acknowledgment timer
which guarantees the transmission of an acknowledgment for any successfully received

data within a certain time interval. If the transmitter’s retransmission timer expires then the

16

transmitter is assured that at least the first TPDU in the window was lost and therefore can

retransmit only that TPDU in order to force acknowledgment from the receiver.

1.2.2.5. Flow Control

ISO TP4 flow control is identical to the flow control used in TCP with the exception
of the different sequence number systems employed by the two protocols. When an AK-
TPDU is received by a transport entity it examines the YR-TU-NR and the CDT of the
TPDU. The YR-TU-NR field contains the sequence of the next expected DT-TPDU. The
CDT field indicates the number of buffer openings available in the receiver’s window. The
transmitter is given the right to transmit DT-TPDUs with sequence numbers between YR-

TU-NR and YR-TU-NR + CDT - 1, inclusive.

1.2.3. The Versatile Message Transaction Protocol

The Versatile Message Transaction Protocol (VMTP) was developed by Dr. David
Cheriton for use with the V distributed system at Stanford University [2]. It was designed
specifically for use in distributed systems applications using remote procedure calls (RPC)
and uses request/response communication semantics rather than the traditional connection-

oriented semantics of TCP and ISO TP4.

There were three design goals for the VMTP protocol, all targeted at overcoming
the inadequacies of connection-oriented protocols for distributed system applications. First,
connection-oriented protocols do not support request/response semantics well and their
flow control mechanisms are not sufficient to combat packet overrun problems at the host
network interface. Specifically, with high speed, low error rate local area networks the main
cause of lost packets is not bit errors on the media, but rather the dropping of packets at the
host interface because packets cannot be buffered quickly enough. Second, the current set

of protocols do not provide host independent naming facilities which would allow process

17

migration in a distributed system environment, Lastly, functions such as real-time
datagrams, multicast and security are not supported at all by traditional connection-oriented
transport protocols and can be very useful in a distributed environment based on remote
servers [3, 4, 5]. In the sections which follow we discuss some of the major features of

VMTP.

1.2.3.1. Packet Formats

VMTP uses only two packet types—request and response. Figure 1.8 shows the
VMTP packet structure. Each VMTP packet is a member of a packet group consisting of
one or more VMTP packets. There can be up to 32 packets in a packet group and up to 16K
octets of user data. The user segment data in a packet group is divided into a maximum of
thirty-two 512 octet blocks. VMTP packet groups can be grouped to form message
transactions. Message transactions can consist of as many as 256 packet groups for a total
of 4 million octets of data per message transaction. Each VMTP packet contains a header,
message control block (MCB), and data segment. The MCB is contained in all packets of
the message. We will briefly discuss the functions of the fields which comprise the VMTP

packet header, MCB, and data segment.

+ The 64-bit client entity identifier is used to identify the client process involved in the
message transaction.

+ The 3-bit version field identifies the current version of the protocol in use.

« The 13-bit domain field is used to identify the administrative domain responsible for
the client and server involved in this transaction.

« The 1-bit HCO flag is used to indicate whether the checksum should be calculated over
the whole packet or just the packet header.

« The 1-bit EPG flag indicates whether the packet group of which the packet is a mem-
ber is using encryption.

« The 1-bit MPG flag indicates whether the packet group of which the packet is a mem-
ber is a multicast packet group.

+ The 13-bit length field indicates the number of 32-bit words contained in the segment
data field. All VMTP packets all required to be aligned on an 8-octet boundary.

18

The 9-bit flags field under normal circumstances contains all zeros. These flags are
used to implement VMTP’s transaction streaming capability, request explicit request
acknowledgments and other non-standard services.

The 3-bit retransmission count field is used to indicate the number of times a packet
group has been retransmitted.

The 4-bit forward count field is used to indicate the number of times a request has been
forwarded.

The 8-bit interpacket gap field is used by the transmitter to space packet transmissions
so that the receiver can keep up with the flow of data. Each tick represents 1/32 of a
maximum sized network packet transmission time. This translates to a maximum
interpacket gap time of 8 network packet transmissions.

The 8-bit PGeount field contains the number of packet groups which are being cumu-
latively acknowledged by this transaction packet group. This field is used when using

~ streamed transactions.

Client Entity Identifier

Versi(ml Domain 8

SIE Length

==
Retrans
B2 mission | T orward | InterPacket Gap/

| count | Count PGceount

[

Priority E

NRS
APG
NSR
NER
NRT
ST1

RES
i,

CMG

Transaction

Packet Header

Packet Delivery

Server Entity Identifier

Request/Response Code

CMD
DGM
MDM
SDA
CRE
MRD
PIC

CoResident Entity Identifier

User Message Control Block

Message Delivery

Message Contrel Block

Segment Size

Segment Data

Data

Checksum

Figure 1.8 — VMTF Packet Formuat

-

The 4-bit priority field is used to indicate the transmission and reception priority level
of a request.

19

» The 1-bit function code field indicates whether the packet is part of a request or
response packet group.

» The 32-bit transaction field contains the unique identifier for transactions to which the
packet belongs.

+ The 32-bit packet delivery is a mask used to indicate which of the 512-octet segment
data blocks of user data are contained within the segment data field of this packet.

+ The 64-bit server entity identifier is used to identify the process or group of processes
involved in the transaction.

+ The 8-bit flag field indicates which fields of the MCB should be interpreted and pro-
vides some other optional functions. In particular, MDM and CRE flags indicate
whether the message delivery mask field and the coresident entity field are to be inter-
preted in the packet. The SDA flag indicates whether the segment data field contains
data and whether the segment size field should be interpreted.

« The 24-bit request/response is a code set by the user.

+ The 64-bit coresident entity identifier identifies an entity or group of entities which
must reside on the same host as the server entity.

+ The 12-octet user message control block allows user data to be transmitted in the MCB
portion of the packet header. This field can be expanded to 20 octets if the MDM and
SDA flag bits are zero.

+ The 32-bit message delivery field is a mask indicating which 512-octet segment data
blocks are being transmitted with a request packet group. In an acknowledgment
packet group the field is interpreted as a mask indicating which 512-octet segment data
blocks were received correctly by the server. This mask is used to signal which packets
of the request must be retransmitted.

» The 32-bit segment size field indicates the number of octets of segment data contained
in this packet group.

+ The variable length segment data field contains up to thirty-two 512-octet segment
data blocks of user data. The actual amount of user data which can appear here is
restricted by the maximum transmission unit of the network service.

« The 32-bit checksum field is a checksum calculated over the whole packet or just the
header portion of the packet. The checksum is located at the end of the packet to
enable the eventual use of hardware streaming techniques to calculate checksums dur-
ing packet transmission and reception[4].

1.2.3.2. Message Transactions

The basis for VMTP communication is the message transaction. A request message
is assembled by a client entity and then transmitted to a server entity. When the server entity
receives the client entity’s request it assembles and transmits the appropriate response to
the client entity. No explicit acknowledgment is required as long as all the packet groups of

a request message arrive intact. The response message acts as an implicit acknowledgment

20

to a request message. Response messages are implicitly acknowledged by the receipt of the
next request message from the client entity. As long as no packets are lost, communication
can be carried out as a sequence of client request messages followed by server response

messages without any explicit acknowledgments required.

Multicast message transactions are supported in VMTP by mapping group entity
identifiers onto the IP or raw Ethernet multicast facilities. A client entity transmits a request
message intended to query a group of server entities. When the request is received by one
of the group of server entities, a response is assembled and transmitted to the client entity.
VMTP’s multicast facility is only a “best effort” multicast, meaning that the client entity
only needs to receive a single response regardless of the number of server entities in the
group. When the client entity transmits its next request message any further responses from

the previous multicast request are ignored.

VMTP also supports streaming of request messages in order to allow efficient

implementation of file transfer and other stream oriented applications.

1.2.3.3. Acknowledgment and Selective Retransmission

When a client transmits a request message Or a Server transmits 4 response message
it transmits each packet group of the message as one burst of packets. When packets are lost
during the burst transmission of a packet group, VMTP provides for explicit positive
acknowledgments, time-outs and a simple selective retransmission scheme to fill the gaps

in the packet group.

Associated with each client entity and server entity is a management server module.
The management server module is responsible for receiving packet groups, accounting for
all the segment data blocks within a packet group, managing time-outs relative to the

reception of packet groups, managing time-outs relative to the retransmission of request

21

messages and mapping entity identifiers to network addresses. All management server

modules are identified using the same well known entity identifier.

Explicit positive acknowledgments for request and response messages are produced
by both client and server management server modules when packets have been lost. The
positive acknowledgments take the form of a request message addressed to the
management server module entity identifier with a coresident identifier corresponding to
the originating client or server entity. Selective retransmission is made possible by
initializing the message delivery field of the acknowledgment MCB with the appropriate

mask to indicate which packets of the packet group were received correctly.

When the acknowledgment is received by the management server module of the
originating client or server entity, the packets which need to be retransmitied can be
inferred by examining the message delivery field of the MCB. The appropriate packets are
then retransmitted by the management server module of the originating client or server
entity. This method provides a quick and simple way of providing selective retransmission

on a per packet group basis.

1.2.3.4. Rate Based Flow Control

Because VMTP is not a typical sliding window protocol it does not require
traditional buffer management flow control. In addition, the problems of packet overrun at
the host interface must be addressed because it is the major cause of packet loss on high
speed, low error rate networks. Because of this, VMTP incorporates rate-based flow control
in order to enforce on transmitters a maximum packet transmission rate acceptable to
receivers. In VMTP, rate-based flow control takes the form of an inter-packet gap which
forces a transmitter to pause a predetermined amount of time between the transmission of

the packets of a packet group.

22

When a client entity sends a request message it uses the interpacket gap field of the
MCB to inform the server entity of the rate at which it can accept the packets of the
response message. The client must guess at the initial rate that the server can accept packets
but the scheme is adaptable in response to the number of retransmissions required. If a
client entity receives an acknowledgment message from a server entity which requests
retransmissions, it can adjust its transmission rate accordingly. Conversely, if a client entity
is forced to request retransmissions from a server entity it can place an adjusted inter-packet
gap value in the MCB of the acknowledgment message in order to inform the server entity
to adjust its transmission rate. A very advantageous part of this scheme is that it not only is
effective at eliminating packet overrun problems at the endpoints of the transaction, but

also at intermediate routers and gateways.

1.2.4. GAM-T-103 Transfer Layer Services

In 1987 the French Ministry of Defense published the GAM-T-103 reference model
specification which was the culmination of a joint research effort with Electronique Serge
Dassault, a French avionics manufacturer [7, 10]. The GAM-T-103 reference model
specification defines an architecture and a service specification for military real-time iocal
area networks (MRT-LAN) used on French military ships and aircraft. The GAM-T-103
document does not define specific protocols for data transfer, but merely defines the
architecture of MRT-LAN protocols and the services they provide. In the sections which
follow we will discuss both the MRT-LAN architecture and the user services provided by

the MRT-LAN.

1.2.4.1. Transfer Layer Architecture

In Figure 1.9 we see a figure illustrating the four layers of the MRT-LAN

architecture juxtaposed with the seven layer ISO/OSI reference model architecture. As we

23

can see, the top three aners of the ISO reference model are not present in the MRT-LAN
architecture. Also, the MRT-LLAN architecture has combined the network and transport
layers of the ISO reference model into a single layer known as the transfer layer. The
combination of network and transport layer functions into a single functional module is the
key feature of the MRT-LAN architecture. Also, the fact that the user application can have
direct access to the full functionality of the transfer layer allows the construction of highly
optimized real;time applications without sacrificing the need for standard architectures and

services.

ISO MRT-LAN
Application
Presentation User
Session
Fransport
Transfer
Network e
- LLC
Datalink Datalink
~— MAC
Physical Physical -

Figure 1.9 — MRT-LAN Architecture

1.2.4.2, Transfer Layer Services

There are three types of services provided by the MRT-LAN architecture via the
transfer layer. These services are: data communication, synchronization, and management.
In the sections which follow this array of offered services will be discussed with emphasis

on the data communication services.

1.2.4.2.1. Data Communication Services

The MRT-LAN data communication service specification provides for two classes
of connectionless service, classes 0 and 1, and three classes of connection-oriented service,

classes 0, 1 and 2. Each type of data communication provides a different level of reliability.

+ Class 0 connectionless service provides an unreliable datagram service which can use
unicast, multicast, or broadcast transmission. The size of transfer service data units
(TSDU) is restricted by the maximum size of the datalink service data units (DSDU).

« Class 1 connectionless service provides a reliable acknowledged datagram service
which can use either unicast or multicast transmission. The size of the TSDUs is
restricted by the maximum size of the DSDUs.

+ Class 0 connection-oriented service provides unreliable delivery of TSDUs with
optional duplication control and detection of out-of-sequence data. The size of the
TSDUs is restricted by the maximum DSDU size. Unicast, multicast, broadcast and
concentration transmission are all available in this service class.

« Class 1 connection-oriented service provides reliable delivery of TSDUs. Correct
TPDU sequencing is guaranteed and duplicate TPDUs are eliminated. The size of
TSDUs is restricted by the maximum DSDU size. Unicast and multicast transmission
are available.

« Class 2 connection-oriented service provides reliable delivery of TSDUs. Correct
TPDU sequencing and duplicate elimination is guaranteed. The size of TSDUs is unre-
stricted.

1.2.4.2.2. Synchronization and Management Services

The synchronization services provided under the MRT-LAN services specification
provide two services. First, a global time reference is maintained on the network and can

be polled by entities on the network. Second, a teleinterrupt service is provided so that user

processes can be signalled or interrupted as a result of events in the network.

The management services allow for the maintenance and monitoring of network

entities as well as the detection and configuration of new network entities.

1.2.5. The Xpress Transfer Protocol

The Xpress Transfer Protocol (XTP) is being designed and implemented as part of

the protocol engine project sponsored by Protocel Engines Incorporated (PEI). The

25

designer of XTP and co-founder of PEI is Dr. Gregory Chesson, chief scientist at Silicon
Graphics Incorporated (SGI).The aim of the protocol engine project is to design a semi-
custom VLSI chip set which implements transport and network layer functionality for high
speed local, metropolitan, and wide area networks [6]. Figure 1.10 shows a graphical

depiction of the protocol engine chip set architecture.

{ (WCSiH HPORT :
j DRAM ;
§ BCTL i
: 8 PROM ;
: = '
| a E
CP Hom|i
t [WCS|H MPORT :
; ' z
: o i
; MAC o :
: & :
E NP E
E Ve E
§ PHY2 | | PHY1 SRAM ;

Figure 1.10 — Protocol Engine Architecture

The motivating factor for the protocol engine project is the realization that current
transport layer protocols were never designed to support high-speed, low error rate

networks like the 100 Mbit/sec Fiber Distributed Data Interface (FDDI) local area network

26

and were never designed to support the wide array of network applications that now exist
as a result of technological advances in network hardware technology. Traditional
connection-oriented protocols like TCP and TP4 were originally designed to provide end-
to-end reliability services over slow (10 Kbits/sec) and unreliable links. As a result the
algorithms of TCP and TP4 were designed with the assumption that transmission errors and
lost data were the norm rather than the exception [6]. Also, because the network links were
not high performance channels, no mechanisms to handle packet overrun were required;
however, on high-speed network links packet overrun is the major source of lost packets [3,
5, 11]. Traditional transport protocols also lack the range of functionality required to

support real-time applications and distributed systems.

The design of XTP and many of its services are derived from the French MRT-LAN
transfer layer reference model GAM-T-103 {7, 10]. In particular X'TP provides a wide range
of data communication syntaxes in order to implement both reliable and unacknowledged
datagram service and reliable and unacknowledged connection-oriented service. Multicast
services are also supported on both an unacknowledged and best-effort basis. XTP also
supports selective retransmission, as well as rate and burst control in order to make it

suitable for use with high performance networks [16, 17, 19].

1.2.5.1. Navy SAFENET Architecture

Because of XTP’s support for many features desirable within a real-time
communication system, The United States Navy has selected XTP for use in the Survivable
Adaptable Fiber Optic Embedded Network (SAFENET) architecture. The SAFENET
architecture is a suite of data communication protocol standards grouped together to
provide a data communication system for shipboard mission-critical computer systems [26,

27]. Figure 1.11 shows a profile of the protocols which comprise the SAFENET

27

architecture. XTP provides the real-time transfer services within the SAFENET

architecture.
SAFENET User
MAP Application
""""""""""" Interface Lightweight
Application
150 %ay er FITAM Services
ACSE
"""""""""""" SATENET
. User
ISO Layer Presentation Services
6 Layer
Session
ISO gayer Layer
------------------ Transfer Services Interface X
ISO Layer IS0 CO ISO CL
4 Transport Transport X
.................. press SAFENET
Transfer Transfer
ISO Layer Connectionless Protocol Services
3 Network Protocol
Logical Link Control
ISOLayer oo e e Y
2
"""""""""" FDDI Token Ring SAFENET X1
ISO Layer Local Area Network LAN Services
SAFENET Physical Medium

Figure 1.11— SAFENET II Architecture

Current U.S. Navy shipboard computer systems, like the AEGIS system, use
multiple point-to-point links to provide data communication between the individual
processing units. The implementation of the multiple point-to-point link system requires

special purpose I/O controllers and redundant cabling. Future shipboard computer systems

28

will require more connectivity to support more complete system integration and
consequently will require more I/O controllers and cabling. SAFENET is being developed

as a solution to these future system integration problems [27].

In the sections which follow we will discuss the major features of XTP, with
emphasis on its packet formats, data transmission syntax, and error control mechanisms.
We will also discuss XTP’s multicast facility and some of the algorithms used to implement

XTP’s best-effort multicast service.

1.2.5.2. Packet Formats

XTP features a header/trailer packet format designed specifically to allow efficient
hardware pipelining. The 24-octet header and 16-octet trailer have a fixed format and all
XTP packets are required to be aligned on a 8-octet boundary. The middle segment of the
XTP packet is either an information segmenf or a control segment depending on the packet
type. Figure 1.12 shows a breakdown of the fields of the XTP headers, trailers and middle

segments. We will briefly discuss the fields of each portion of the XTP packet.

XTP Header Fields

o The 4-octet cmd field contains a 2-octet options field, a I-octet offser field, and a 1-
octet type field. The options field is a set of flags which indicate whether a variety of
options are in effect for this packet. These options include: a flag indicating whether
the packet header and trailer are in little endian or big endian byte order, whether the
middle segment checksum is to be calculated, and whether the packet is a multicast
packet. The offset field indicates the number of padding bytes immediately preceding
an information segment. The type field indicates the packet type.

+ The 4-octet key field is used as a short form address to identify the context to which the
packet belongs.

+ The 4-octet sort field is used to implement priority service within XTP. It is optionally
interpreted based on a flag in the options field.

+ The 4-octet seq field contains the sequence number of the packet sender’s half of the
context’s full duplex data stream. For First and Data packets the seq field represents
the sequence number of the first non-offset padding octet in the information segment.
For Cntl and Path packets the seq field represents the next octet to be transmitted on
the packet sender’s data stream.

29

XTP Packet
XTP Header Information / Control Segment XTP Trailer
XTP Header
cmd key sort reserved seq route
XTP Trailer
dcheck dseq flags| ttl htcheck

Information Segment

20 ot S —— penesmn e aenmeenee e e nmas s e :
i offset padding address segment btag ; data 1 align padding §
L ,

' ! offset padding fbtag’ data i align padding é

Path Packet

: offset padding | code | val message align padding |

.................

Control Segment

..............

rate [burst| sync | echo | time [techo] xkey ixroute| rsvd | alloc | rseq nspani spans §

..............

Figare 1.12 — XTP Packet Formats

» The 4-octet route field is used as a short form address for identifying a path through
one or more X TP switches.

XTP Trailer Fields

« The 4-octet dcheck field is a checksum calculated over the entire middle segment of
the XTP packet.

30

The 4-octet dseqg field is the sequence number value which can have two interpreta-
tions. In the first case it is used by the receiver to indicate to the sender the sequence
number of the next octet of data to be delivered to the client. In the second case it is
used to initialize sequence numbers during connection establishment.

The 10-bit flags field is used to issue commands to the XTP receiver. Two of the flag
bits are of particular interest. The SREQ bit is used by the XTP sender to request an
immediate response from the XTP receiver in the form of a Cn#l packet. The DREQ bit
is used to request a response when the data associated with the current packet’s seq
value is delivered to the user application.

The 2-octet 1zl field is interpreted as a packet’s time to live. Each tick of the field repre-
sents 1 ms.

The 4-octet htcheck field is a checksum calculated over the XTP header and trailer.

XTP Information Segment

The variable length offser padding field is used to help align data on required 8 byte
boundaries and meeting the minimum packet length requirements of underlying proto-
cols.

The variable length align padding field is used to align data on the required 8 byte
boundary.

The variable length address segment is used in First and Path packets to convey net-
work and MAC layer addresses to the receiver. XTP supports a number of network
addressing formats including IP addresses and ISO network layer addresses.

The optional 8-octet btag field is used to transport out-of-band data. Tagged data is
included in the sequence space but is not user data. This field is intended for use by
higher layer applications to pass control information.The presence of btag data is sig-
nalled by the setting of a flag in the header.

The variable length data segment is used for carrying user data. An empty Data packet
is simulated by inserting a specially encoded brag field.

The 4-octet code field is used by Diag and Route packet types to specify the type of
message contained in the message field.

The 4-octet val field is used by the Diag packet type to provide subcodes to the code
field.

The variable length message field is intended for upper layer application use. Its con-
tents are not interpreted.

XTP Control Segment

»

The 4-octet rate field is used by a receiver to indicate to a transmitter how much data
the receiver is prepared to receive in a particular length of time. In this case rate is.
expressed in units of octets per second.

The 4-octet burst field is used by a receiver to indicate to a transmitter how much data
the receiver is prepared to receive in one transmission burst.

31

« The 4-octet sync and echo fields are used for protocol state machine synchronization.
The sync values received on incoming Cnel packets are transmitted back in the echo
field of outgoing Crtl packets.

e The 4-octet time and techo fields are used in the measurement of round trip time. The
time value received with incoming Cntl packets is transmitted back in the techo field
of outgoing Cntl packets.

+ The 4-octet xkey and xroute fields are used for key and route exchange.

 The 4-octet alloc field is used by receivers to implement flow control. The transmitter
may send data up to but not including the value of the alloc field.

+ The 4-octet rseq field indicates the sequence number of the next octet of data expected
by areceiver.

+ The 4-octet nspans field indicates the number of spans contained in the spans field.
+ The spans field contains pairs of 4-octet sequence numbers, These sequence number

pairs represent spans of the sequence space which have been correctly received by the
receiver.
1.2.5.3. Data Transmission
XTP is very much like TCP in that it provides a full-duplex octet stream between
two connection endpoints or contexts. Sequence numbers are assigned on a per octet basis
and each half of the full-duplex stream has its own sequence space. X' TP, however, provides
a much ticher set of data transmission syntaxes in order to support transport services other
than reliable connection-oriented service. The ability of the XTP First packet to carry user

data, and the design of the XTP receiver to operate as a slave of the XTP sender, gives XTP

the flexibility to provide a number of different transport services.

In addition to full-duplex connection-oriented service, XTP supports transport level
datagram service using both a three-way handshake and a fast two-way handshake, Using
the End-of-Message (EOM) bit in the trailer flags field allows the implementation of multi-
packet message systems for use in distributed systems applications. Figure 1.13 illustrates

three possible types of XTP interaction.

For real-time applications where XTP is being used to transport frequently repeated

data which does not require reliable transmission, XTP provides the ability to disable error

32

control at the receiver. By setting the NOERROR bit in the options field of the XTP header
the sender informs the receiver to disable error control. Any Cntl packets transmitted from
the receiver to the sender will indicate that all data has been passed to the user regardless

of whether or not the data arrived correctly.

(FIRST,INFQ)
(CNTL)

(DATA)

{DATAY ™| (FIRST,INFO)

(DATA)
(DATA) E (CNTL) (FIRST,INFO)

(CNTL) (CNTL) {CNTL)

closed closed close

Figure 1.13-— Data Transmission Syntaxes

1.2.5.4. Acknowledgments and Retransmission

An X TP receiver has no timers and takes very little independent action with respect
to acknowledging data transmitted by the sender. In particular, if only simplex
communication is occurring, acknowledgments, in the form of Crtl packets, are transmitted
by the receiver only at the request of the sender. The sender makes acknowledgment
requests by the use of the SREQ and DREQ bits in the XTP trailer’s flags field. In full-
duplex data communication the dseq field of incoming Data packets is used to
acknowledge data which has been delivered to the user, allowing buffer space to be freed

by the sender.

XTP Cntl packets received in response to SREQ or DREQ Cnil packets contain four
fields of interest. The alloc field contains a value one larger than the largest sequence value

that the receiver has buffer space to accept. The rseq field contains a value one larger than

33

the largest monotonic sequence number received without error. The nspans field contains
the number of correctly received spans of data which lie between rseq and alloc and the
spans field contains pairs of sequence numbers corresponding to the correctly received
spans of the sequence space. Figure 1.14 illustrates the relationship between these fields.
The spans are used by the receiver to indicate what data needs to be selectively

retransmitted.

rseq = 100 alloc = 475

|

0 99 150...199;

Received Span

Figure 1.14 — Rseq, Alloc and Spans

1.2.5.5. Multicast Transmission

Like VMTP, XTP provides a multicast facility. XTP’s multicast facility can be
operated without error control by setting the NOERROR bit, or it can be operated in a best
effort fashion using rseq values furnished by the receivers in Cnil packets to implement a
go-back-n retransmission strategy. This is only a best-effort multicast because at some
point, if a receiver falls too far behind, it will simply drop out of the multicast conversation.
XTP specifies a procedure known as the bucket algorithm to provide multicast receivers
with a window of opportunity to respond to a sender request for a Cnil packet. The bucket
algorithm will be discussed in more detail in the following subsection. XTP multicast
receivers also implement a procedure for suppressing redundant control packets. This

procedure is known a slotting and damping, and will be discussed in section 1.2.5.5.2.

34

1.2.5.5.1. The Bucket Algorithm

The bucket algorithm is a procedure implemented by XTP to allow a multicast
sender to accumulate data about the state of the multicast receivers over a specified time
period and then, after that time period has expired, apply the accumulated data to the state

of the sender.

XTP multicast senders periodically request acknowledgments from multicast
receivers by transmitting a Cn#l packet with the SREQ bit set in the trailer. When the Cnzl
packet is transmitted the multicast sender accumulates the most conservative values
contained in the responses from the multicast receivers in a bucket. Buckets are uniquely
identified by the sync value sent out in the SREQ Cntl packet and response Cnul packets are
associated with buckets by their echo value. The values accumulated in each bucket are the
minimum alloc, rseq, and dseq values and the maximum rft value over all responses

associated with the bucket,

A multicast sender may have multiple buckets which are recycled periodically.
Specifically, when a multicast sender needs to send a SREQ Crtl packet to the multicast
receivers, it applies the values contained in the oldest bucket to its state and then the oldest
bucket becomes the current bucket. A small number of buckets allows the values contained
in the buckets to be applied to the sender’s state more quickly and increases throughput.
However, a small number of buckets provides the multicast receivers with a small time
window in which to respond and can lead to slowly responding receivers being dropped
from the conversation. A large number of buckets provides a larger time window for
multicast receivers to respond and allows slowly responding receivers to maintain
conversation membership at the expense of performance. In this way XTP’s multicast
facility can be tailored to the characteristics of the multicast conversation participants and

the reliability requirements of the multicast conversation.

35

1.2.5.5.2. Slotting and Damping

When an XTP multicast sender requests an acknowledgment from the multicast
receivers, the request is made without knowledge of the number or configuration of the
stations of the multicast group. Since receivers must respond immediately to sender SREQ
Cntl packets, there exists the possibility that for large homogenous multicast groups the
network could experience bursts of Cnil packet traffic. To combat this phenomenon XTP
multicast receivers implement procedures for spacing responses to SREQ Cnil packets over

time (slotting) and suppressing redundant responses (damping).

Slotting is implemented by assigning each multicast receiver a random slot time
based on some local seed such as the receiver’s MAC address [17]. The allotted time slot
is used by the receiver to determine how long after receiving an SREQ Cnil packet the
receiver should wait before transmitting a Cn#l packet in response. In this way the Cntl
packets transmitted by the multicast receivers can be spaced over some period of time to

help avoid an avalanche of Cril packets on the network.

Damping is used by multicast receivers to prevent their redundant or outdated
multicast Crtl packets from being transmitted. Multicast receiver’s Crnil packets are
multicast to all members of the multicast group. When a multicast receiver receives a Cnil
packet from another multicast receiver it examines the packet to see if its own pending Cnl
packet contains information which is redundant. If its Cnzl packet is redundant then the
multicast receiver suppresses the transmission of the packet and allows the packet it
received from the other multicast receiver to provide the multicast sender with appropriate

information.

Slotting and damping working in concert provide a mechanism to smooth XTP

multicast Cnel packet traffic and also reduce the amount of multicast Cntl packet traffic.

36

1.2.5.6. Flow Control

The flow control mechanism used in X TP is similar to that of other stream-based
transport protocols. The alloc field in control packets is used by receivers to indicate to
senders an upper limit on sequence numbers which should be transmitted. The relationship
dseq < rseq < alloc {modulo 232) describes the relative positions of dseg, rseq, and alloc in

the sequence space.

1.2.5.7. Rate and Burst Control

In addition to traditional flow control mechanisms XTP provides rate and burst
control which are used to help alleviate packet overrun problems. Rate and burst control is
of particular importance in XTP because of the potential problems created by having high-
speed VLSI implementations of XTP attempting to communicate with slower software

implementations.

XTP receivers advertise their rate and burst requirements by using the rate and
burst fields of the Cntl packets. When a connection is opened the initiator uses default
values for rate and burst. When the receiver responds with a Cntl packet its rate and burst

requirements are contained in the cnif segment.

The rate value is the number of octets per second that the receiver is capable of
accepting. The burst value is the maximum number of bytes per burst of packets that the
receiver is capable of accepting. By dividing the rare value by the burst value we get a value
equal to the number of packets per second the receiver is prepared to receive. This, coupled
with a timer whose period is burst divided by rate, forces the proper time spacing between
packet bursts. When the rate value is 0 all rate control is disabled. When the burst value is

0 transmission is halted.

37

1.3. Conclusion

The balance of this thesis will focus on the design and performance of a software
implementation of XTP built by the staff of the University of Virginia’s Computer
Networks Laboratory, The performance analysis will focus on many of the features of XTP
previously discussed and will include relevant comparisons to a TCP implementation

running on the identical hardware platform.

Chapter 2

A Software Implementation of XTP

2.1. Introduction

In 1988 the University of Virginia’s Computer Networks Laboratory began work on
a software implementation of the XTP under the sponsorship of Sperry Marine
Incorporated. Sperry’s sponsorship was motivated by their general interest in the emerging
SAFENET architecture and their desire to have a seamless transition from their own
SeaNET shipboard communication system to the SAFENET architecture. SeaNET was
originally developed by the UVa Computer Networks Laboratory and later commercialized

by Sperry Marine for use in their integrated bridge systems for commercial ships.

Since the delivery of the original XTP version 3.4 implementation to Sperry Marine
in the spring of 1990, the staff of the UVa Computer Networks Laboratory has continued
upgrading the original implementation to keep it current with the most recent release of the
XTP protocol specification. The upgrade process has included adding support for Ethernet
and porting the implementation from its original Inte] 80x86 IBM PC/AT Token Ring based
implementation, to a Motorola 68020 processor using an FDDI MAC and VME backplane
bus. The version currently supported on the Intel 80x86 PC/AT platform is XTP version

3.5.

2.2. Hardware Environment

Because Sperry Marine’s SeaNET based integrated bridge system was developed
using an IBM PC/AT hardware platform, Sperry funded the development of XTP for the
same hardware platform. The current version of XTP runs on IBM PC/AT compatible

computers using either an Intel 80286 or 80386 processor.

38

39

The UVa Computer Networks Laboratory has a variety of Intel 80386-based
machines which vary in the processor and bus clock speed. Table 2.1 lists the four basic
classes of machines employed by the Laboratory in the development of XTP 3.5. The
machines in the table are listed in descending order based on their performance
characteristics. The CORE International machines with the 25 MHz processor clock and
the 12.7 MHz bus clock are the fastest machines available in the Laboratory. Because of the
faster bus clock the CORE International machines provide a significant performance gain

when copying data to and from devices attached to the bus.

Class Name CPU Bus
1 CORE International Turbo AT | 25 MHz 80386 | 12.5 MHz AT-Bus

2 ALR FlexCache 25386X 25 MHz 80386 | 8.3 MHz AT-Bus
3 Zenith Z-386/20 20 MHz 80386 | 8.3 MHz AT-Bus
4 Zenith Z-386/16 16 MHz 80386 | 8.3 MHz AT-Bus

Table 2.1 — Machine Classifications

2.3. MAC Layer Hardware Environment

The IBM PC/AT implementation of XTP currently supports two MAC interfaces.
Standard 10 Mbps baseband coaxial Ethernet is supported using the Western Digital
WDS8003E EtherCard Plus interface [30]. The IEEE 802.5 Token Ring is supported using
the Proteon p1340 4 Mbps token ring interface and the Proteon p2700 multi-station wire
center [29]. In the following two sections we will discuss some of the features of these
MAC interfaces with emphasis on those features which have ramifications with respect to

performance.,

40

2.3.1. Western Digital WD8003E Ethernet Interface
The Western Digital WD8003E Ethernet interface has three sets of control registers
which can be accessed using the 80x86 port I/O instructions. These registers allow for the

configuration and operation of the National Semiconductor DP8390 Ethernet chip set.

The key feature of the WD8003E is the on-board 8-Kbyte dual ported RAM buffer.
This buffer can be mapped directly into the machine’s address space so that data can be
copied directly into the buffer. This feature allows packets to be copied on and off the board
using simple 80x86 move instructions rather than more costly I/O instructions or DMA.
The buffer is divided into thirty-two 256-byte blocks. After setting aside six blocks for a
transmission buffer we have 26 blocks left to buffer incoming packets. This feature makes
this board capable of handlin g large bursts of packets and has allowed the board transmitter

and receiver to be fairly well matched in terms of performance.

2.3.2. Proteon p1340 Token Ring Interface

The Proteon p1340 token ring interface utilizes the Texas Instruments TMS380 chip
set to implement the token ring MAC layer functions. This chip set has a programming
interface; however, it operates on a very low level. It requires the device driver to recognize
and handle correctly the wide array of control packets used by the TEEE 802.5 token ring

MAC protocol.

The alternative to using the low level MAC interface provided by the TMS380 chip
set was to utilize the LLC protocol firmware contained in the p1340’s EPROMs. The LLC
firmware handled the complexities of the low level MAC interface while providing a
programming interface which allowed access to the MAC interface’s data transmission and

reception capabilities. Because the full LLC functionality was not required the LLC

41

programming interface was placed in promiscuous mode so that all properly addressed

MAC frames would be received by the LLC firmware.

The LLC programuming interface is controlled using a set of control registers, and a
set of control blocks and packet buffers allocated in user memory. Commands are issued to
the interface by formatting the appropriate control block and then using a port 1/O
instruction to inform the interface of the available command. The interface then uses DMA
to transfer the control block to the interface’s on-board memory. The movement of packets

on and off the board is handled in a similar fashion.

Experience with the Proteon p1340 LLC programming interface indicates that the
receiver is significantly slower than the transmitter. This has some interesting consequences
with respect to the performance of the XTP 3.5 implementation. These consequences will

be discussed in more detail in Chapter 3.

2.4. UVa XTP 3.5 Software Architecture

The UVa Computer Networks Laboratory’s software implementation of XTP 3.5 is
implemented as five light-weight tasks grouped into three task sets. The tasks operate on
two sets of shared data structures [9, 12, 20]. Figure 2.1 shows how the light-weight tasks

are grouped

The device processor contains two tasks—the MAC task and the LLC task. The
MAC task provides the software services to the MAC hardware interface. The LLC task is
available to implement the logical link control protocol of choice. No LLC protocol is

currently implemented in UVa XTP 3.5.

The context processor provides the XTP protocol processing for up to thirty-two
simultaneously open contexts. The context processor maintains the protocol state

information about each open context. The context processor is also referred to as the XTP

42

engine. The interaction between the context processor and the device processor uses

request/response semantics and shared data structures known as frame structures.

The XTP drivers are divided into two tasks—the user task and the timer task. The
user task executes the user application code. The timer task handles most of the required

XTP timer functions and events.

XTP Drivers -
¥
» = Context
= 8 Structures
© F
A
Context Processor |
Y
'g bl
) % Frame
= z Structures
A
Device Processor =

Figure 2.1 UVa XTP Architecture

In the next section we briefly describe the light-weight task scheduler used to

implement the UVa XTP 3.5 architecture’s multi-tasking.

2.4.1. ZEK - Fast Real-Time Scheduler
The host operating system for the UVa XTP 3.5 is MS-DOS. Since MS-DOS is a

single threaded operating system it was necessary to implement a real-time scheduler in

43

order to provide the multi-tasking required by the UVa XTP 3.5 architecture. The scheduler

implemented is called ZEK [9, 12, 20].

ZEK is a preemptive, light-weight task scheduler with sixteen priority levels. It has
a context switch latency of approximately 25 us on a class 1 or a class 2 machine. It is
implemented as a Tarbo C large model library which is linked to the UVa XTP application
code. The only portions of the MS-DOS operating system used by UVa XTP 3.5 are the file

system and the loader.

ZEK Priority UVa XTP Task
0 King Processor Task
1 Null Task
2 MAC Processor Task
3 L1.C Processor Task
4 Null Task
5 Context Processor Task
6 DOS Processor Task
7 Client Processor Task
8 Timer Processor Task
9 User Processor Task
10 Null Task
11 Nuli Task
12 Nuil Task
13 Nul Task
14 Null Task
15 Idle Processor Task

Table 2.2 — XTP Tusk Priovities

Preemption in ZEK can only occur when an interrapt service routine, initiated as
the result of an external event, marks a higher priority task ready to run. In all other cases

the currently executing task must explicitly surrender the processor to another task. Only

44

one process can operate on each priority level. Table 2.2 lists the priority level of the UVa

XTP 3.5 tasks.

2.4.2. XTP Engine and Driver Interaction

Interaction between the XTP drivers and the XTP engine is implemented via a set
of function calls, function upcalls and shared data structures known as context structures.
A context structure contains all the state variables for a particular open context. The key
portions of the context structure are the context ring buffers. Each half of a context’s full-
duplex channel has a pair of ring buffers associated with it. These ring buffers are known
as the data ring and the event ring. These rings allow inbound and outbound buffering for
two communication channels, the data channel and the event channel [9, 12, 20]. Figure 2.2

shows both transmit and receive ring buffer structures with their associated pointers.

X'TP Transmit Engine Area XTP Receive Engine Area
e P e

Mark

Tail Head Tail

e A erenmian
XTP Transmit Driver Area XTP Receive Driver Area

Figure 2.2 — XTP Ring Buffers

The head pointer points to the last item written into the ring. For receive rings the

XTP engine moves the head pointer; whereas for transmit rings the XTP driver moves the

45

head pointer. The tail pointer points to the next item to read from the ring. For tran smit rings
the tail pointer is moved by the XTP engine and for receive rings it is moved by the XTP

driver.

The mark pointer is maintained exclusively by the XTP driver. It functions as a
synchronization point between the XTP engine and the XTP driver. In the transmit ring
case, when the tail pointer passes the mark pointer the XTP driver is signalled using a
predefined upcall routine. In the receive case a signal is issued when the head pointer passes

the mark pointer.

2.4.3. XTP Protocol Engine Drivers

Managing the interaction between the XTP engine and the XTP drivers is extremely
difficult and error prone. It requires not only a full knowledge of the XTP protocol '
specification but also knowledge of the implementation details of the XTP engine and the
XTP device processor. Because of this problem, a standard set of XTP drivers has been

implemented as a set of library routines to allow application programs to be written quickly.

The XTP driver library functions were designed to provide services similar to the
services provided by the C programming Janguage standard /O library. Based on the type
of service provided these functions can be divided into four groups — resource allocation,
memory data transfer, character-oriented data transfer, and device-oriented data transfer.

These four groups of functions will be discussed in the following sections [12, 20].

2.4.3.1. Resource Allocation and Deallocation Drivers

The function X_open () is used to allocate and initialize a context structures,
However, it does not attempt to open a connection. It merely binds the context to a
particular destination address. This allows XTP drivers to take full advantage of the XTP

First packet’s ability to catry user data. The X_open () function returns a XF ILE number

46

which acts as the handle for the open context. It is analogous to the file descriptor returned

by the UNIX system call open ().

The X_close () function takes as an argument an XF ILE number and closes the
appropriate connection and deallocates the context structures associated with that

connection.

2.4.3.2. Memory Transfer Drivers
The functions X_putb () and Xputm () are used the transmit a single byte of data
or a block of data respectively. Depending on the arguments supplied these functions can

implement blocking, partial-blocking, or non-blocking semantics.

The functions X_getb () and X_getm () allow the reception of a single byte or
a block of data respectively. Function X_getb () implements non-blocking semantics and
can be used to pole for the availability of data. Function X_getm () blocks until the buffer

supplied as an argument is filled with data.

2.4.3.3. Character-Oriented Drivers

The functions X_putc () and X_print () are used to transmit a single character
of data or a formatted string of data respectively. All data produced by calls X_putc ()
and X_print () is buffered until a newline character appears in the character stream or

immediate transmission is requested using the X_flush () function.

Function X_getc () requests a character from the incoming character stream. The
X_getc () function implements blocking semantics. The X_ungetc () function forces
a character back into the incoming character stream. This function only operates within a

single message boundary.

47

2.4.3.4, Device-Oriented Drivers

The device-oriented drivers allow data from a byte or block oriented device to
" transferred directly to the network and data from the network to transferred directly to such
a device. This interface provides a faster way to implement file transfers because it avoids

an intermediate copy.

Function X_putf () transmits a file over the network using the standard read ()
system call to copy data from the file directly to the transmit data ring, The X_getf ()
function receives a file over the network using the standard write () system call to copy

the data from the receive data ring to the file.

Chapter 3

Performance Measurements and Analysis

3.1. Introduction

Our performance measurements of the software implementation of XTP 3.5
developed at the UVa Computer Networks Laboratory focused on three basic performance
metrics — throughput, latency and delay. Specifically, we were interested in the
throughput, latency and delay performance that a user of the high level XTP memory
transfer driver would experience. All our experiments were based on four short application
programs using the allocation and deallocation routines X_open () andX close(),and
the memory transfer routines X _putm{)} and X_getm(). The experiments were
performed using single segment 802.5 Token Ring and 802.3 Ethernet LANs installed in
the UVa Computer Networks Lab.

- 3.1.1. Timers

All timing required for the experiments was implemented by using the IBM PC/AT
system timer. The IBM PC/AT system timer is a 16-bit clock that operates at 1.190 MHz.
This gives us a timer period of approximately 0.84 pis, however, it requires at least 10 s to
poll the clock using 80x86 1/O instructions on a 25 MHz 80386 machine. This gives us an
effective resolution of no better than 10 us. The system timer can also be set to issue
periodic interrupts. For experiments which did not require a high resolution timer, we set
the system timer to interrupt every 65535 clock ticks, or approximately every 55 ms. The
elapsed time was deduced from the number of timer interrupts which occurred during an

experiment,

48

49

3.1.2. Throughput Measurements

All throughput measurements are expressed in terms of user data bits reliably
transferred per second. All packet overhead associated with the MAC protocol header and
the XTP header and trailer is ignored in these measurements. All measurements were
obtained by measuring the elapsed time required to transfer 2 Mbytes of user data. All
experiments were performed at least twice and then averaged to obtain a single data point.
The experiments were parameterized using message lengths between 16 bytes and 16

Kbytes.

3.1.3. Latency Measurements

For the purposes of our experiments we defined two different latency metrics. These
metrics will be referred to as round-trip latency and one-way latency. Round-trip latency is
defined to be the amount of time required to send a message and receive its
acknowledgment from the receiving context. One-way latency is defined to be half the
amount of time required to send a message to a receiving context and receive the same
message back from the receiver. We used the one-way latency metric when comparing XTP
with TCP/IP. Each latency measurement was performed at least ten times and then the
average of the measurements was taken. The experiments were parameterized by message

lengths between 16 bytes and 4 Kbytes.

3.1.4. Delay Measurements

The delay metric is defined to be the amount of time required for the transport layer
to fulfill a sequence of service requests. For example, we might be interested in the amount
of time required to establish an XTP or TCP/IP connection. The delay metric is distinct

from either of the latency metrics in that the delay metric is attempting to measure the

50

combination of time delay incurred by local overhead as well as latency from actual data

transmission. All delay measurements were averaged over at least ten samples.

3.2. XTP Unicast Measurements

Our first set of experiments focused on the unicast performance of UVa XTP 3.5.
Specifically, we were interested in determining the throughput and round-trip latency
characteristics of both the XTP engine and the XTP memory transfer driver. By measuring
the throughput and round-trip latency of both the low level interface and high level driver
interface we could draw some conclusions about the efficiency of the high level interface.
All the unicast experiments used class 1 machines (see Table 2. 1) as both transmitter and

receiver.

3.2.1. IEEE 802.5 Token Ring Implementation
3.2.1.1. Throughput Measurements

In Figure 3.1 we see a graph which plots message size on the horizontal axis versus
throughput on the vertical axis. This graph indicates that the maximum throughput of the
XTP memory transfer driver is just over 2.2 Mbits/sec when using 16 Kbyte messages. In
addition, the XTP low level interface and the XTP memory transfef driver have virtually

identical throughput performance.

Figure 3.2 illustrates the relative efficiency of the XTP memory transfer driver
versus the XTP low level interface. The graph expresses the performance of the memory
transfer driver as a percentage of the performance of the low level interface. The graph in
Figure 3.2 indicates that the XTP memory transfer driver performance has exceeded the
performance of the XTP low level interface for some message sizes. On average the
memory transfer driver deliveries slightly over 100% of the throughput performance

delivered by the low level interface. The implication of Figure 3.2 is that the throughput

51

performance bottleneck for the 802.5 Token Ring implementation of XTP is not the XTP
memory transfer driver or the XTP engine, but rather the Proteon p1340 MAC processor.

There are two scenarios which could cause this behavior.

2.4e+06

xTﬁ Enginai**—
XTP Privers —— : : : : ;
2.10+06 : : : : : e S S S

1.8e+06
1.3e+064
1.2e+06"

9.0e+H5

Throughput in bits/sec

6.0e+05

3.08+054

9 ' ' ' 3 3 ' ' H .
0.0e+00 t t) () i T t t 3
16 32 64 128 256 512 1024 2048 4096 B182 16384
Message slze In bytes

Figure 3.1 — XTP Unicast Throughput on Token Ring

First, because the Proteon p1340 receiver is slower than the transmitter, the extra
layer of delay added by the XTP driver allows the receiver to keep better pace with the
transmitter. If the receiver is keeping up with the transmitter, then fewer packets will be
dropped leading to fewer retransmissions. Fewer retransmissions implies better throughput

performance.

Second, our experience with the transmitter of the Proteon p1340 interface indicates

that the MAC transmission interface is likely to be the bottleneck in the system rather than

52

the XTP drivers or XTP engine. An older version of the Proteon p1340 MAC processor had
a raw transmission throughput of 1.8 Mbits/sec [20]. The Proteon p1340 MAC processor
has been improved significantly since then; however, relatively slow DMA is still used
exclusively for the movement of data between the host and the interface. As a result the cost
of setting up and waiting for DMA to complete causes the MAC device processor to be the

bottleneck in the system.

1.0075

1.0050

1.00234

1.0000

0,89754

0.9%504

Percentage of XTP Engine Performance

0.29254

0.9900 Y ; 1 } i E 1 i T
16 32 64 128 256 512 1024 2048 4096 8192 16384
Message slze in bytes

Figure 3.2 — XTP Driver Throughput Efficiency on Token Ring

53

3.2.1.2. Round-trip Latency Measurements

In Figure 3.3 we see a graph which plots message size on the horizontal axis versus
round-trip latency on the vertical axis. For a message of 16 bytes the round-trip latency
which can be expected from the XTP memory transfer driver is 4.92 ms. As can be seen the

round-trip latency curve is nearly linear with message size.

24.00

q T ¥ T
i + . i
' i B i

XT? Drivers, -6 : : : :
XTP Enging —— H H ; ; H

Latency in milliseconds

1 t t T t
16 k¥ 64 128 256 512 1024 2048 4096
Message slze in bytes

Figure 3.3 — XTP Unicast Round-trip Latency on Token Ring

Like Figure 3.2, Figure 3.4 provides a measure of the efficiency of the XTP memory
transfer driver measured as a percentage of the round-trip latency provided by the XTP low
level interface. Averaged over all message sizes, the memory transfer driver has round-trip
latency performance only 1% worse than the round-trip latency performance received from

the low level interface.

54

0
o
<
<
@

LT
=
o~
-

E, S
o
-t
~N 0

i @
W B

S
L
<
-t
Ll
S L L L L LT T TuT C RO P 1o &
o e
M 3]
: @
' o
. 13
H 0
s 0 n
........................ Loy @
H =
|||||||||||||||||||||||||||||||||| H4
A >
|||||||||||| H 4 L O
' : N b
3 . ' :
H . ' H '
H . s N '
H i) i H
. ' ' ' w
¥ ¥ T 1 T i
Ao Q = oy o S o
< < =13 o o e~ i
L= o [=\3 [+ (=] (4] o>
» a
— ~t < (=4 (=] < o

sousmaoiIag authug gLX jo sbejusoiag

3.4— XTP Driver Round-trip Latency Efficiency on Token Ring

igure

F

55

3.2.2. IEEE 802.3 Ethernet Implementation
3.2.2.1. Throughput Measurements

In Figure 3.5 we see a plot of message size on the horizontal axis versus throughput
on the vertical axis. The 802.3 Ethernet version of XTP memory transfer driver provides
just under 4.7 Mbits/sec of throughput when using 8 Kbyte messages. The Ethernet version
of XTP, unlike the Token Ring version, does not provide 100% efficiency between the XTP
memory transfer driver and the low level interface; however, as we will see in Figure 3.2 it

is still extremely efficient.

4,9e+06 * * T
XTP Engine ~0—.
KEP Drivers ~+—

4.2e+06-]
3.5@+06 v s e :,. Rt LI L E T sl Lt SELET AR
2.8e+06

2.le+06-

Throughput 1in bits/sec

1.4e+06--mo-nnoh

p : ' : ' . : : .
: i . . ' H : '

7. 0et05 A -rrmnenn Foararenne |- A fevurnamnas b e L
: . H H
i H : H . H H H

0.0e+00 t 1 f : T ¥ : + t
ié 32 64 128 256 512 1024 2048 4096 B192 16384
Message size In bytes

Figure 3.5 — XTP Unicast Throughput on Ethernet

In Figure 3.2 we see a graph with message size plotted on the horizontal axis and

the XTP memory transfer driver efficiency plotted on the vertical axis. Efficiency is

36

expressed in terms of the percentage of the XTP low level interface performance delivered
by the memory transfer driver. XTP memory transfer driver delivered an average of 95%
of the throughput performance of the low level interface using the 802.3 Ethernet MAC
processor. While this is not perfect efficiency, it falls within the targeted design parameters

for the XTP driver interfaces [12].

Percentage of XTP Engine Performance

| F T
16 32 64 1286 286 Sl2 1024 2048 4096 8192 16384
Mesgage size in bytes

Figure 3.6 — XTP Driver Throughput Efficiency on Ethernet

As a further indication of the efficiency of both the XTP driver interfaces and the
XTP Engine, we have measured the maximum throughput of the WDS003E MAC
processor to be 5.5 Mbits/sec. This means that XTP is delivering over 85% of the

throughput performance of the MAC interface in a reliable data transfer.

57

3.2.2.2. Round-trip Latency Measurements

In Figure 3.7 message size is plotted on the horizontal axis versus round-trip latency
on the vertical axis. The IEEE 802.3 version of XTP using the memory transfer driver
provides a round-trip latency of 2.31 ms for a message of 16 bytes. As with the round-trip
latency measurements for Token Ring implementation of XTP, the round-trip latency curve

of the Ethernet implementation is also nearly linear with message size.

lz.¢00

XTP Drivers —o—
XTP Bngine wh—

Latency in miiliseconds

1]] i L
16 32 64 128 256 512 1024 2548 4096
Message size in bytes

Figure 3.7 — XTP Unicast Round-trip Latency on Ethernet

Figure 3.8 plots message size on the horizontal axis versus round-trip latency
efficiency on the vertical axis. Efficiency is expressed in terms of the percentage of XTP
low level interface round-trip latency performance delivered by the XTP memory transfer

driver. For a 16 byte message the memory transfer driver has round-trip latency

38

performance only 0.4% worse than the round-trip latency performance offered by the low
level interface performance. Averaging across all message sizes, the XTP memory transfer
driver delivers round-trip latency performance which is approximately 2% worse than the

round-trip latency performance offered by the XTP low level interface.

1.00

.59

0.98+

0.97+

0. 864

Percentage of XTIP Engine Performance

0,95

i 1 ¥ T
16 32 &4 128 256 5{2 1024 2048 4096
Message slze in bytes

Figure 3.8 — XTP Driver Round-trip Latency Efficiency on Ethernet

39

3.3. XTP Multicast Measurements

The best-effort multicast facility provided by XTP is a truly unique feature not
offered by any other transport protocol. Unlike VMTP’s multicast facility, XTP uses the
bucket algorithm to allow the transmitter to accumulate control information about the
receiver set. The use of slotting and damping to reduce Cril packet traffic is also unique to
XTP. In the sections which follow we will present results of performance experiments
which indicate that XTP’s multicast facility is extremely efficient in providing high
throughput group communications. We will also show some performance numbers which

indicate the effectiveness of the bucket algorithm and the slotting and damping procedure.

3.3.1. Multicast Groups

For our multicast experiments we used all seven machines at our disposal in the
UVa Computer Networks Lab in order to perform experiments for multicast groups with
two to six receivers. The transmitter for all multicast experiments was a class 4 machine.
When moving from a 1-to-n multicast group experiment to a 1-to-n+1 multicast group
experiment the fastest machine available was always added to the group. For example, our
1-to-2 multicast group had a class 4 machine as transmitter and two class 1 machines as
receivers. Our 1-to-3 multicast group had a class 4 machine as transmitter and two class 1
and one class 2 machine as receivers. Included in all graphs of multicast throughput
performance is a curve which represents unicast throughput performance. This unicast
throughput performance curve represents the unicast throughput obtained by using a class

4 machine as transmitter and a class 1 machine as receiver.

60

3.3.2. IEEE 802.5 Token Ring Implementation

3.3.2.1. Throughput Measurements

In Figure 3.9 we see a graph with message size on the horizontal axis and
throughput on the vertical axis. Each curve represents the throughput as it appears to the
transmitter using the XTP memory transfer driver. A throughput of approximately 985
Kbits/sec is achieved in a I-to-4 multicast using 4 Kbyte messages. The unicast throughput
using 4 Kbyte messages is 991 Kbits/sec. The multicast facility in this case provides
reliable data transfer service to four stations 4 times faster than the unicast facility could

provide the same service to the same four stations.

1.208+06 . .
: i Uniedst —-:
2 Multicast ;Recelvers -e—
3 Multlcast Receivers —— | : N

1. 05e¥ 06Ty WU L SRS TRECRTVEES BT 7" S S A S

9.00+05frrrrrm-n- Leevenanns P bamianannn IR CE e rarnms ; A RN EPREL || TR
o H : H ; : : 1 H :
o
N H H : : : .
@ 7.50e+054 om0 Foeeeenrns LERREEEPES frmnananes emeereuy CSPRRSRERE
*»’ ' H 3 . H i
o
2
o] ' ' 1 R ! * H v
~ 6. 00e+(54-------n Penrnenas e R e Ly Sl AEREEE R RTT IARRTCEEL LI \--
] . ' . : ' + N ' A
1 H ; H ' : 1 H
%
£ " . [l . * o
th H 1 : : H ¢ : 3 :
g 4,506+05 Femrroren- Cemrivusuy Basrea-o=-- Cevomnannn T CEEER " R AL LR LR RSt RS AL LR bt
e : : : : ! : : : X,
£
[

3.00e+05

1.50e+05 - remmrmos LTSI EEPEES e PCATEIEEEE ; S : ..-...-..{-...-...-.E

0.00e+00 ; Y ' r i y i f t

16 32 64 128 256 512 1024 2048 4096 8192 16384

Message size in bytes

Figure 3.9 — XTP Multicast Throughput on Token Ring

61

Figure 3.9 also has an anomaly in the fact that the 1-to-2 multicast throughput
actually exceeds the unicast throughput for message sizes between 1 Kbyte and 4 Kbytes.
This phenomenon is the result of the delay introduced at the transmitter by the bucket
algorithm. The overhead of the bucket algorithm paces the transmitter so that the receivers
and transmitter are more closely matched in terms of performance. Because the transmitter
and the receivers are more closely matched, fewer packets are dropped by the receivers and

throughput improves.

3.3.3. IEEE 802.3 Ethernet Implementation

3.3.3.1. Throughput Measurements

3.5e+06

: Uniogst =

2 Multicast (Recelvers 0 H | ;
3.0e4064---3 Multlcast.Recedvdrs. s
4 Multicast Recelvers -&— : : :

5 Multicast (Receivers -,
6 Multicast (Receivérs 4—

2.5%e+06-]
2.0e+064

1.5e+06

Throughput in bits/sec

1.0e+064

1 1 1 ¥ 1 T ¥
16 32 64 128 256 512 1024 2048 4096 8192 16384
Message size in bytes

Figure 3.10 — XTP Multicast Throughput on Ethernet

62

In Figure 3.10 we see a graph with message size plotted on the horizontal axis and
throughput plotted on the vertical axis. Each curve represents the throughput attainable by

the transmitter using the XTP memory transfer driver.

For a 1-to-6 multicast the transmitter would see throughput of 985 Kbits/sec using
a message of 2 Kbytes. The unicast throughput using 2 Kbyte messages is 2.53 Mbits/sec.
In order to unicast the data to six receivers as quickly as the multicast facility, a unicast
throughput of 5.91 Mbits/sec would be required. For this particular case, XTP’s multicast

facility provides an effective throughput more than two times faster than that of unicast.

'2 Multficast Recelvers —¢—

13 Multicast Recejvers —+—— | H H 1 :

3.0 Deennn W MultEcast. Repeivers. . sy HAR RS WSS T N
15 Multkcast Recelvers --— : ' : :

16 Multicast Receivers -4—

Percentage of Unicast Throughput

i ¥ F 1
16 32 61 128 256 512 1024 2048 4096 8132 16384
Message size in bytes

Figure 3.11 — XTP Muliicast Throughput Efficiency on Ethernet

Figure 3.11 plots message size on the horizontal axis and efficiency on the vertical

axis. In this case efficiency is measured as the percentage of the XTP unicast throughput

63

delivered by the XTP multicast facility. For a 1-to-6 multicast group using 1 Kbyte

messages the XTP multicast facility delivers 221% of the XTP unicast throughput.

In analyzing Figure 3.11 it is clear that for most cases XTP’s multicast facility
provides a large performance gain over unicast. The exceptional cases include the 1-t0-2
multicast group and some cases involving message sizes of 4, 8 and 16 Kbytes. In the next
section dealing with the bucket algorithm we will discuss the cause of the loss of efficiency

for cases which involve large message sizes.

3.3.3.2. The Bucket Algorithm

The Bucket Algorithm described in the XTP 3.5 specification uses the expiration of
a timer called the STIMER (switch timer) to demarcate the end of one bucket and the
beginning of the next [17]. When the STIMER expires the current bucket is cycled to the
end of the bucket list and the contents of the bucket at the front of the bucket list are applied
to the state of the protocol engine. In addition, a SREQ Cnil packet is sent to the multicast
group. The bucket from the front of the bucket list becomes the current bucket and all
responses to the most recently sent SREQ Ctnl packet are accumulated in that bucket. The
amount of time used to initialize the STIMER is dependent on the reliability desired and

the number of buckets.

Unlike the Bucket Algorithm described in the XTP 3.5 specification, the Bucket
Algorithm implemented in UVa XTP 3.5 is based on messages, not on timers. Each
message presented to the XTP engine causes a bucket cycle to occur. The algorithm was
implemented this way because the IBM PC/AT does not have enough high resolution timers
to handle all the timing functions required by the XTP transmitter. In fact the IBM PC/AT
does not have any interrupt driven clocks with enough resolution to handle the

requirements of the STIMER.

The variation of the Bucket Algorithm implemented in UVa XTP 3.5 causes some
interesting interactions between the message size, the data ring size, the number of buckets,
the WTIMER (wait timer) and the multicast throughput. The WTIMER is a coarse grained
timer (55 ms) set when an SREQ Crnl packet is transmitted. If a response is not received
from one of the multicast receivers within the period of the WTIMER another SREQ Cnil
packet is sent to the multicast group. As a result each bucket has a maximum period of one

WTIMER period or 55 ms.

16 Kbyte Message
Bucket Cycle

Bucket 1

16 Kbyte Message
Bucket Cycle

Bucket 2

WTIMER .
Bucket Cycle 32 Kbyte Data Ring

Bucket 3

WTIMER
Bucket Cycle

Bucket 4

WTIMER
Bucket Cycle

Figure 3.12 — UVa XTP 3.5 Bucket Algorithm

65

The problem with using messages as bucket delimiters is illustrated in Figure 3.12
using a system with four buckets and a 32 Kbyte data ring. In the diagram the first 16 Kbyte
%nessage fills half the data ring and begins the period for bucket 1. The second 16 Kbyte
message fills the other half of the data ring and begins the period of bucket 2. Because there
is no more space for messages in the data ring the XTP memory transfer driver blocks,
waiting for ring space to be freed. Ring space cannot be cleared until bucket 1 cycles back
to the front of the list and applies its contents to the state of the protocol engine.
Unfortunately, bucket 1 cannot cycle back to the front of the bucket list until the bucket
periods of buckets 2, 3, and 4 have expired. This requires three expirations of the WTIMER

or 165 ms.

There are two possible solutions for the problem described above. The first is to
decrease the number of buckets in order to decrease the period of deadlock. This solution
will work as long as all the receivers can keep up. If one or more of the receivers is falling

behind, fewer buckets will cause the slower receivers to fall out of the group.

Figure 3.13 illustrates quite clearly that this solution will work as long as all the
receivers are of the same general class, as is the case with our 1-to-4 multicast group.
Plotted on the horizontal axis is message size and plotted on the vertical axis is throughput.
As the number of buckets is decreased from 8 to 4, and then from 4 to 2, the throughput for
the larger message sizes increases dramatically. Sixteen Kbyte messages will always
present a problem because they will still require one WTIMER expiration even when using

only two buckets.

The other possible solution is to increase the data ring size to 64 Kbytes.
Unfortunately, because this implementation of UVa XTP 3.5 is based on the Intel 80x86
architecture this is a slightly tricky proposition. It is possible but requires some major

modifications to the UVa XTP protocol engine.

66

3.5e+06

Unicast =
2 Buckets =—
3.0e+06+

8 Bugkets -SH-
2.5e+06"

2,.0e+06-]

1.5e+06]

Throughout in bits/sec

1.0e+064

1 ¥ ¥ 3 1
6 32 64 158 2%6 512 1024 2048 4§96 8192 16384
Message size in bytes

Figure 3.13 — XTP Four Receiver Multicast Throughput

3.3.3.3. Slotting And Damping

The XTP 3.5 protocol specification describes the slotting and damping procedure as
highly implementation dependent [17]. In particular, the size and number of time slots, as
well as the method used for time slot assignment, is left to the protocol implementor. The
following paragraphs will describe how the slotting and damping procedure is implemented

in UVa XTP 3.5.

Each slot in XTP is equivalent to 32 ticks of the IBM PC/AT system clock, or

approximately 27 Us. Slots are assigned by using a pseudo random number generator to

67

provide a random integer in the range 0 to 500. The random number generator is seeded

with an integer derived from the local station’s MAC address.

The damping procedure is implemented in UVa XTP 3.5 in the following manner.
Each context structure has a set of control bits associated with it. When a SREQ Cnt! packet
arrives at a local context the SREQ bit is set in the context structure. The next time the local
context receives service from the context processor the SREQ bit will be checked. If it is
still on, a Cnzl packet will be sent with the appropriate control information. Alternatively,
if a Cntl packet from another receiver in the same multicast group arrives before the local
context is serviced, the control values of that Cnil packet will be compared with the local
values. If the local values are redundant the local context’s SREQ bit will be masked. In

this way, the context processor is prevented from sending a Cntl packet.

There are two basic metrics of interest with respect to the slotting and damping
procedure — Cntl packet traffic and throughput. Specifically, how much does slotting and
damping reduce multicast receiver-generated Cnil packet traffic, and how does the use of

slotting and damping affect the throughput performance of the XTP multicast facility?

In Figure 3.14 we see the effects of slotting and damping on receiver-generated Catl
packet traffic for a 1-to-4 multicast group. Plotted on the horizontal axis is the message size.
Plotted on the vertical axis is the total number of Cntl packets transmitted by the receivers
of the multicast group during the reception of 2 Mbytes of data. Each curve represents one

alternative for the activation of the slotting and damping procedures.

As we can see, when slotting and damping are both active the number of Cnil
packets transmitted by the receivers is significantly less than for the other three alternatives.
Averaged over all message sizes, when slotting and damping are both enabled there are

21% fewer receiver-generated Cnil packets transmitted than when slotting and damping are

68

both disabled. This is outstanding given that the slotting and damping procedure was

designed and intended to be most effective for multicast groups of 1-to-10 or larger [17].

1.42+04
S]Eotting/}bampingf g
¢ No Slotting/Damping ——
1.20+041 oo 8lokting/No Damplng. B .

No Slotting/No Dampiag -w—

1. 0e+04 deasszzars I SR el . WA R RCTIE.SRTRES
B.0e+03-------n- é. E, § ‘ § i § §

6.0e+03-mromsen Frernnens b e .

Control packets transmitted

4. 0et03md-creurnry 5. :, :. E. s -3 v:..........E

2.0e+03u-memarans } - 5 : SN _...-.....i -

C.0et00 : f f f ; ¥ t t t]
16 32 64 128 256 512 1024 2048 40986 8192 16384
Message size in bytes

Figure 3.14 - XTP Multicast Slotting and Damping Conirol Packet Transmission

Figure 3.15 shows the effect that slotting and damping have on multicast throughput
performance. Message size is plotted on the horizontal axis versus throughput on the
vertical axis. From the graph it is clear that slotting has a negative effect on throughput
performance. Since slotting causes receivers to delay responding to SREQ Cnrl packets, the
transmitter’s data ring space is freed more slowly and the XTP memory transfer driver will

tend to block, waiting for service.

Throughput in bits/sec

3.5e+00 7 ; ; : 7 ; 7

: P tnicdgst —!

No $lotting/No Damping —— : : d

3.00+06--—- HNalslotting/Damping. —rlo o f e denneeaee N (S [
i5lotting/Damping B—. H '

slgttinglqo Dampgng !

2.52406"
2.0e+06+
1.5e#06---=mnrr : : bomenn e ey . B /S0 WL W W

1.0e+06 : : : : = SN

5,00+05 ; ioo _ fememnme s frernneens :

! e ; : : : 3
0.0e+00 t ; r ; ¥ 3 f f }

1% 32 51 128 256 S12 1024 2048 4096 8192 16384

Message size in bytes

Figure 3.15-— XTP Multicast Sloiting and Damping Throughput

70

3.4. XTP vs. TCP/IP Measurements

In order to reach some conclusions about the performance of the UVa Computer
Networks Lab’s implementation of XTP 3.5 relative to other transport protocols, we tested
the performance of an implementation of TCP/IP running on the identical hardware
platform. Of course, the important part of these experiments was determining the
circurnstances under which comparisons between UVa XTP 3.5 and TCP/IP were valid. We
chose unicast throughput, ore-way latency and resource allocation delay measurements as

the three areas of valid comparison.

All the experiments were performed using a class 2 machine (see Table 2.1) as both
transmitter and receiver. In addition, because it is not possible to disable the TCP/IP
checksum algorithm, we were required to enable the UVa XTP 3.5 data checksum
algorithm in order to make our comparisons valid. It should be noted, however, that the
checksum algorithm used in TCP is a simple algorithm based on addition of one’s-
complement 16-bit words [15]. The checksum algorithm used in XTP is a 32-bit checksum
based on a series of exclusive ORs and bitwise rotations [17]. The XTP checksum

algorithm is much more computationally expensive than the TCP checksum algorithm.

3.4.1. WIN/TCP for DOS

The implementation of TCP/IP chosen for our experiments was WIN/TCP for DOS
4.0 from The Wollongong Group Inc. [31]. WIN/TCP for DOS 4.0 is an IBM PC/AT hosted
implementation of TCP/IP based on an implementation called PC/IP originally developed
at MIT. The WIN/TCP kemel is implemented as a DOS TSR (Terminate Stay Resident)
program which occupies PC memory above 640K. Included with the implementation are
device drivers for a variety of LAN interfaces including the Western Digital WD8003E
Ethernet interface used with the UVa Computer Networks Lab’s implementation of XTP

3.5.

71

3.4.2. WIN/API for DOS

All access to the memory-resident WIN/TCP kernel is implemented via a set of
interrupt service routines. The exact nature of the interrupt service routine interface to the
kernel is proprietary. Therefore, a high level application programmer’s interface is required
for application programs to operate in conjunction with the WIN/TCP kernel. For this

purpose The Wollongong Group provides WIN/API for DOS 4.0 [32].

WIN/API for DOS 4.0 provides two sets of interface routines. One set of routines
provides a low level interface to the WIN/TCP kernel. The low level interface requires the
application programmer to provide upcall routines to handle various events which may
occur in the WIN/TCP kernel. This low level interface is fairly complicated and
cumbersome to work with. The other set of routines provides an interface virtually identical
in name and function to the socket IPC interface provided by BSD UNIX 4.3. The two sets
of interface routines are packaged in four MicroSoft C 5.1 compatible libraries which can
be linked with application object files using the MicroSoft linker. All application programs

used to test WIN/TCP for DOS were developed using the WIN/API socket IPC library.

3.4.3. Throughput Measurements

In Figure 3.16 we see a graph with message size plotted on the horizontal axis and
throughput plotted on the vertical axis. As we can see, UVa XTP 3.5 with the data
checksum algorithm disabled provides better throughput performance than TCP/IP for all
message sizes, XTP with the data checksum enabled has better throughput performance

than TCP/IP for all message sizes except 256 and 512 bytes.

The maximum throughput delivered by TCP/IP is 2.68 Mbits/sec using messages of
4 Kbytes. The throughput delivered by XTP with the data checksum enabled using 4 Kbyte
messages is 3.16 Mbits/sec. That is 18% better throughput performance than TCP/IP using

72

4 Kbyte messages. XTP with the data checksum enabled attains a maximum throughput of
3.18 Mbits/sec using 8 Kbyte messages. That is a 33% improvement over TCP/IP using 8

Kbyte messages.

4,2e+06

: WIN/TCP for DOS ~~— : : H ;
XTP {Without! Data Checksum -&-- | ' : e — el
XTP With Data Checksum =g~ H ' H Ll NG
3.6&+06’ --------- :......----.:. r-u-c»v---: ---------- :— : --------- g-/».f ----- ‘:-.--—----1----.‘...

3.0e+06"

2.4e+06]

1.8e+06+

Throughput in bits/sec

1.2e+06

0.0e400 } g ; i i i 1
16 32 64 128 256 512 1024 2048 4066 8192 16384
Message size in bytes

Figure 3.16 — TCP vs. XTP Throughput

3.4.4. One-way Latency Measurements

In Figure 3.16 we see a graph with message size plotted on the horizontal axis and
one-way latency plotted on the vertical axis. TCP/IP has a one-way latency of 1.09 ms when
using a 16 byte message. XTP with the data checksum enabled has a one-way latency of

2.03 ms. The XTP and TCP curves are nearly linear with message size.

73

15.00

WIN/TCE for DOS| ——
XTP Without Datal Checksum -&--
XTP With Data) Checksum &

Latency in milliseconds

T 13 ¥
16 32 64 128 2é6 512 1024 20'48 4096
Message size in bytes

Figure 3.17 — TCP vs. XTF One-way Latency

UVa XTP 3.5’s one-way latency performance is rather poor compared to TCP/IP.
The reason for this is the transmission syntax used by the XTP memory transfer driver. It
requires the transmission of four packets (2 Data, 2 Cntl) to send a 16 byte message to a
destination and then return it. TCP/IP only requires two packet transmissions to perform
the same operation. This is not an inherent problem with the XTP protocol, but rather a

feature of the protocol syntax implemented by the XTP memory transfer driver.

3.4.5. Delay Measurements

The delay measurement of interest is the total time required to open a connection

and send a message and then close the connection. In Figure 3.18 we see a grapiu with

74

message size plotted on the horizontal axis and delay plotted on the vertical axis. As can be
seen in Figure 3.18, the speed with which XTP can set up a connection, send a message and
close the connection far exceeds TCP’s performance when providing the same service.
XTP with the data checksum enabled requires 4.11 ms to establish a connection, send a 16
byte message and close the connection. It requires 17.32 ms for TCP to perform the same
operations. Because the XTP First packet can carry data, opening the connection and
sending the message are achieved simultaneously. TCP requires a fixed overhead of 2.42
ms to open a connection and approximately 14.20 ms to close the connection. XTP requires

3.41 ms to close a connection. Both sets of curves are nearly linear with message size.

30,00 - '
I WIN/TCE for DOS —4— ; :]

XTP Without Data) Checksum -E—- H :
95 00 omnn-s XTP_With Datal Checksum 8= eeermeeeeees U R e

20,00 -eneee e frmemoenns frenaneeons

Delay in milliseconds

13] 13 ¥ T
16 3z 64 1%8 256 512 1024 2048 4096
Message size in bytes

Figure 3.18 — TCP vs. XTP Connection Setup Delays

Chapter 4

Conclusions

4.1. Transport Protocol Survey

In our transport protocol survey we discussed a wide range of transport protocols
and transport protocol functionality. We examined TCP and TP4, two traditional
connection oriented transport protocols. We discussed VMTP, a transport protocol designed
for distributed systems applications based on request/response transmission semantics. The
GAM-T-103 architecture specification for military real-time local area networks was
examined in order to conclude what networking functionality is required for embedded
real-time systems. Lastly, we examined the Xpress Transfer Protocol. XTP implements
many of the features of the traditional connection oriented protocols and VMTP, and also
offers functionality not supported by TCP, TP4 or VMTP. In the sections which follow we
will examine some general features of transport protocols in order to conclude where XTP

exceeds the capabilities of the other transport protocols we discussed.

4.1.1. Data Communication Syntaxes

TCP and TP4 essentially offer one type of data communication syntax — a duplex
connection-oriented syntax. They require a connection to be explicitly established and
explicitly closed. In the case of TP4, it requires six packet transmissions to send 1 byte of

user data. Both protocols have complex packet headers which can have variable size.

VMTP has essentially one data communication syntax as well. It uses a request/
response communication syntax. It has only two fixed size packet types. VMTP is very well
suited to client/server distributed systems applications. However, VMTP does not support

streaming very well and it does not have any support for unacknowledged datagrams.

75

76

XTP has a wide range of data communication syntaxes. It can support a traditional
connection-oriented byte stream syntax, a request/response message syntax, an
acknowledged datagram syntax and an unacknowledged datagram syntax. The reason that
XTP has this wide range of function is the result of two features of the protocol. One is the
ability of the XTP First packet to carry user data. Another is the master/slave relationship
between the XTP transmitter and receiver. The XTP receiver takes no independent action
with respect to acknowledging data. It only acts in response to commands from the
transmitter. This allows the XTP wansmitter to implement a variety of communication

syntaxes by varying the way in which commands are passed to the receiver.

4.1.2. Sequencing and Error Control Mechanisms

TCP and TP4 both use a sliding window and variations on the go-back-n
retransmission strategy to implement sequencing and error control. These schemes are
acceptable for use with high error rate networks which cause sequences of packets to be
destroyed. However, on newer technologies such as FDDI, packet overrun is the major
cause of lost packets and therefore a selective retransmission scheme would be much more

efficient in filling the occasional gap in the data stream.

Because VMTP is not a stream-based protocol it has no use for a sliding window
mechanism. It does, however, have a selective retransmission scheme which is
implemented on a per-message basis. Each message control block has a bitmask which
allows blocks of the message to be independently acknowledged. In this way only the

missing blocks need be retransmitted.

XTP implements a sliding window and also implements a selective retransmission

scheme based on the positive acknowledgment of the correctly received spans of data. By

77

manipulating these spans correctly XTP can also implement a go-back-n retransmission

strategy.

4.1.3. Flow Control

Flow control is a mechanism used to manage receiver buffer space efficiently. It is
usually implemented using a buffer reservation scheme. TCP, TP4 and XTP implement a
buffer reservation flow control mechanism. These protocols allow the receiver to inform
the transmitter of the amount of buffer space available at the receiver. The transmitter
cannot exceed that buffer allocation until further buffer credit is allocated by the receiver.
Alternatively, because VMTP is not stream-based it does not implement any form of flow

control for buffer management.

4.1.4. Rate and Burst Control

Rate control is a mechanism used to combat the problem of packet overrun. It is
designed to provide an inter-packet gap long enough to allow the receiver to keep up.
Similarly, burst control is designed to limit the amount of data which can be contained in
any one burst of packets. Because TCP and TP4 were designed during a period when slow
networks were the norm and packet overrun was not a problem, neither protocol has any

provision for rate and burst control,

VMTP has a rate control mechanism based on the 8-bit inter-packet gap field in the
packet header. Responses and acknowledgments sent by the receiver communicate to the
transmitter the inter-packet gap which is acceptable to the receiver. VMTP burst control is

implemented implicitly by the protocol’s limitation on message size.

XTP implements rate and burst control by using the rate and burst fields contained
in the XTP Cntl packet. The XTP rate field corresponds to the maximum number of octets

to be transmitted per second. The burst field indicates the amount of data to be transmitted

78

per burst of packets. Using these fields the receiver can effectively throttle the transmitter.
In addition, because of XTP’s transfer layer architecture, XTP routers can participate
directly in the negotiation of the rate and burst parameters. This is a very important feature

because in many cases routers are the bottleneck in an internetwork.

4.1.5. Multicast Transmission

With respect to multicast, only VMTP and XTP support this functionality. Both
protocols implement a best-effort multicast facility; however, XTP is different from VMTP
in two respects. First, XTP can efficiently implement a stream-based multicast
communication. VMTP’s multicast facility uses request/response semantics. Second, with
the use of the bucket algorithm XTP can utilize responses from more than one of the
multicast receivers when updating the state of the multicast transmitter. VMTP multicast
transmitters disregard any multicast receiver response which arrives after the first multicast

TECEeiver response.

4.1.6. Hardware Support and Implementation

TCP and TP4 were clearly designed for software implementaion and VMTP offers
the ability to implement hardware support for checksum calculation. XTF, however, was
designed specifically to be implemented using VLSI technology. XTP*s fixed header and
trailer format coupled with its transfer layer architecture make it uniquely suited for

complete hardware implementation.

4.2. Performance Analysis

In our performance analysis of UVa XTP 3.5 we performed a wide range of
experiments on XTP in order to draw some conclusions about the performance capabilities
of the implementation. We presented the results of throughput and latency measurements

of XTP’s unicast facility and the results of throughput measurements of XTP’s multicast

79

facility. We also presented some experimental results which shed some light on the
effectiveness of the bucket algorithm and the slotting and damping procedure. Lastly, we
presented a set of performance measurements comparing the throughput, latency and delay
characteristics of UVa XTP 3.5 with the throughput, latency and delay characteristics of an
implementation of TCP. In the sections which follow we will summarize the results of our

experiments.

4,2.1, XTP Unicast Performance
4.2.1.1. Throughput Performance

The unicast throughput performance of the IEEE 802.5 Token Ring version of UVa
XTP 3.5 was very impressive. The throughput performance measurements indicated that
the MAC processor was definitely the bottleneck in the system. The token ring
implementation achieved a maximum throughput of 2.21 Mbits/sec on a 4 Mbits/sec Token
Ring.

The IEEE 802.3 Ethernet implementation also had very impressive throughput
performance. UVa XTP 3.5 achieved a reliable throughput of 4.7 Mbits/sec using a MAC

processor that had a maximum throughput of 5.5 Mbits/sec. XTP delivered over 85% of the

bandwidth of the MAC processor in a reliable data transfer.

4.2,1.2. Round-trip Latency Performance
The round-trip latency performance of the IEEE 802.5 Token Ring implementation
of UVa XTP 3.5 was extremely efficient. The XTP memory transfer driver only degraded

the latency performance of the XTP engine by an average of 1%.

The round-trip latency performance of the IEEE 802.3 Ethernet version of UVa
XTP 3.5 was also extremely efficient. There was only a 2% degradation in performance

when using the XTP memory transfer driver instead of the XTP low level engine interface.

80

4.2.2. XTP Multicast Performance
4.2.2.1. Throughput Performance

();zr throughput measurements of XTP’s multicast facility indicated that in some
cases it provided reliable throughput performance more than 3 times faster than the
performance of the X TP unicast facility. Our experiments also indicated that there was a
complex relationship between the throughput performance of the XTP multicast facility,
the message size, the data ring size and the number of buckets utilized by the bucket

algorithm.

4.2.2.2. Bucket Algorithm Performance

The performance of the version of the bucket algorithm implemented in UVa XTP
3.5 was mixed. It performed its function in that it allowed the multicast communication to
be tuned relative to the desired reliability and performance. However, it interacts in an
undesirable fashion with the message size and the size of the data ring. The problems with

the bucket algorithm have been recognized and are being corrected.

4.2.2.3. Slotting and Damping Performance

The performance of the slotting and damping procedure was much better than
expected. The slotting and damping procedure was intended to be most effective when used
with large multicast groups containing many homogeneous machines. Qur multicast groups
were neither large nor homogeneous and yet we observed as much as a 44% reduction in

the receiver generated Cntl packet traffic in a 1-to-4 multicast group.

4.2.3. XTP vs. TCP Performance
4.2.3.1. Throughput Performance

Our performance measurements of UVa XTP 3.5 and TCP indicated that XTP

provided as much as 33% better throughput performance than TCP. XTP achieved a

81

maximum throughput of 3.18 Mbits/sec using a message size of 8 Kbytes. TCP achieved a
maximum of 2.39 Mbits/sec using the same message size. In addition, a significant
performance penalty was paid by XTP because the checksum algorithm employed by XTP

is much more complicated than the checksum algorithm implemented by TCP.

4.2.3.2. One-way Latency Performance

The one-way latency performance of XTP was not impressive when compared with
TCP, The one-way latency of a 16 byte message on UVa XTP 3.5 was 2.20 ms. The TCP
one-way latency for the same size message was 1.09 ms. The chief reason for the poor
performance of XTP relative to TCP is related to the communication syntax used by the
XTP memory transfer driver. XTP required four packet transmissions to send the message

and return it. TCP required only two packet transmissions to perform the same operation.

4.2.3.3. Delay Performance

Our delay measurements indicated that UVa XTP 3.5 has a large performance
advantage over TCP with respect to the opening and closing of connections. It required
over 17 ms for TCP to open a connection, send a 16 byte message, and close the connection.
It required just over 4 ms for XTP to perform the same set of operations. These
measurements clearly illustrate the utility of the XTP First packet for providing a high

performance acknowledged datagram service.

4.3, Conclusion

When looking at the full range of features offered by the protocols we examined in
our transport protocol survey it is clear that XTP has the widest range of functionality. It
offers a rich set of communication syntaxes usable by applications ranging from simple file
transfer to distributed computing systems to real-time control systems. XTP also offers a

unique multicast facility which can be applied to distributed systems and real-time

82

applications. In addition, XTP offers the possibility for full hardware implementation

which will allow the processing of the full bandwidth of FDDI in real-time [6].

QOur performance analysis of UVa XTP 3.5 yielded some interesting results and
validated many of the fundamental design concepts of XTP. The throughput and round-trip
latency performance of XTP was excellent and the XTP memory transfer driver was shown
to be extremely efficient in delivering a high percentage of the performance of the XTP
engine. X'TP’s multicast facility also proved to be a high-performance and efficient group

communications facility.

Our comparison of XTP to TCP indicated that XTP provided superior throughput
performance and greatly superior delay characteristics when connection setup time is
included. XTP’s one-way latency was inferior to that of TCP only because of the
communication syntax employed by the memory transfer driver rather than any inherent

problem with the XTP protocol.

4.4. Future Work

There are several areas of XTP performance which still need to be investigated
thoroughly. An investigation of the performance of XTP on a high speed network such as
FDDI would yield results of great interest, particularly to the SAFENET community.
Extensive performance evaluation of XTP’s multicast facility needs to be done, especially
for multicast groups of 1-to-10 or larger. Finally, further comparison of XTP to other
transport protocols, such as TP4 or other implementations of TCP, would be very valuable

in validating the design concepts employed in XTP.

10

11

12

13

14

15

16

17

18

References

U. Black, OSI — A Model for Computer Communications Standards, Prentice-
Hall, Englewood Cliffs, New Jersey, 1991

D. Cheriton and W. Zwaenepoel, “Distributed Process Groups in the V Kernel”,
ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

D, Cheriton, “VMTP: A Transport Protocol for the Next Generation of
Communications Systems”, IEEE Computer Communications Review, Vol. 16,
No. 3, 1986.

D. Cheriton, VMTP: Versatile Message Transaction Protocol — Protocol
Specification, Stanford University, February 1988. Version 0.7.

D. Cheriton and C. Williamson, “VMTP as the Transport Layer for High-
Performance Distributed Systems”, IEEE Communications Magazine, June 1989.

G. Chesson, “The Protocol Engine Project”, Unix Review, September 1987.

P. Cocquet, “GAM-T-103 Reference Model for Military Real-Time Local-Area
Networks (MRI-LAN)”, Proc. IFIP Workshop on Protocols for High Speed
Nerworks, Zurich, Switzerland, May 1989,

D. Comer, Internetworking with TCP/IP, Prentice-Hall, Englewood Cliffs, New
Jersey, 1988.

XTP 34 User’s Manual, Computer Networks Laboratory, University of Virginia,
November 1990.

GAM-T-103 — Military Real Time Local Area Network (Transfer Layer),
Delegation Generale Pour L’Armement, Ministere De La Defense, Republique
Francaise, February 1987.

W. A. Doeringer, D. Dykeman, M. Kaiserswerth, B. W. Meister, H. Rudin and R.
Williamson, “A Survey of Light-Weight Transport Protocols for High-Speed
Networks”, IEEE Transactions on Communications, Vol. 38, No. 11, November
1990.

J. C. Fenton, User Interface for Xpress Transfer Protocol: Design and Analysis,
University of Virginia, January 1991.

“Information Processing Systems -— Open Systems Interconnection - Basic
Reference Model”, Draft International Standard 7498, October 1984,

“Information Processing Systems — Open Systems Interconnection - Transport
Protocol Specification”, Draft International Standard 8073, June 1984,

J. Postel, Ed., “Transmission Control Protocol — DARPA Internet Program -
Protocol Specification”, Request for Comments 793, September 1981.

Xpress Transfer Protocol Definition: Revision 3.4, Protocol Engines, Inc., Santa
Barbara, California, July 1989,

Xpress Transfer Protocol Definition: Revision 3.5, Protocol Engines, Inc., Santa
Barbara, California, August 1990.

M. T. Rose, The Open Book — A Practical Perspective on OSI, Prentice-Hall,
Englewood Cliffs, New Jersey, 1990

83

19

20

21

22

23

24

25

26

27

28

29
30

31

32

84

R. Sanders, The Xpress Transfer Protocol (XTP): A Tutorial, University of
Virginia, January 1990.
R. Simoncic, A. C. Weaver and M. A. Colvin, “Experience with the Xpress

Transfer Protocol”, Proc. of the 15th Conference on Local Computer Networks,
Minneapolis, Minnesota, October 1990,

W. Stallings, Handbook of Computer Communications Standards, Volume 1: The
Open Systems Interconnection (0OSI) Model and OSI-Related Standards,
Macmillan, Inc., New York, New York, 1987.

W. Stallings, Handbook of Computer Communications Standards, Volume 2: Local
Nemwork Standards, Macmillan, Inc., New York, New York, 1987.

W. Stallings, Handbook of Computer Communications Standards, Volume 3:
Department of Defense (DOD) Protocol Standards, Macmillan, Inc., New York,
New York, 1988.

W. Stallings, Local Networks, Macmillan, Inc., New York, New York, 1990.

W. Stallings, Data and Computer Communications, Third Edition, Macmillan,
Inc., New York, New York, 1991.

“Survivable Adaptable Fiber Optic Embedded Network I - SAFENET I, M/IL-
HDBK-0034 (Draft), January 1990.

“Survivable Adaptable Fiber Optic Embedded Network I - SAFENET II”, MIL-
HDBK-0036 (Draft), January 1991.

A. S. Tanenbaum, Computer Networks, Second Edition, Prentice-Hall, Englewood
Cliffs, New Jersey, 1988.

TMS 380 Adapter Chipset User’s Guide Supplement, Texas Instruments, 1986.

WDEO003EB High Performance Ethernet PC Adapter with Boot ROM Capability —
Engineering Specification - Revision X0, Western Digital, June 1988.

WIN/TCP for DOS Installation and User Guide — Release 4.0, The Wollongong
Group, Inc., Palo Alto, California, 1989

WIN/IAPI for DOS Programming Guide — Release 4.0, The Wollongong Group,
Inc., Palo Alto, California, 1989

