
The Cogency Monitor: An External Interface Architecture
For a Distributed Object-Oriented Real-Time Database System

John A. Stankovic, Sang H. Son, and Chi D. Nguyen
Department of Computer Science

University of Virginia
Charlottesville, VA 22903

Abstract

We are developing a distributed database, called
BeeHive, which could offer features along different
types of requirements: real-time, fault-tolerance,
security, and quality-of service for audio and video.
Support of these features and potential trade-offs
between them could provide a significant improvement
in performance and functionality over current
distributed database and object management systems.
The BeeHive system however, must be able to interact
with existing databases and import such data. In this
paper, we present a high level design for this external
interface and introduce the concept of a cogency
monitor which acts as a gateway between BeeHive
and the external world. The cogency monitor filters,
shapes, and controls the flow of information to
guarantee specified properties along the real-time,
fault tolerance, quality of service, and security
dimensions. We also describe three implementations
of the cogency monitor and present some preliminary
performance results that demonstrate the value of the
cogency monitor.

Key Words: Real-time, object-oriented, database
security, fault-tolerance, quality of service

1. Introduction

The Next Generation Internet (NGI) will provide
an order of magnitude improvement in the
computer/communication infrastructure. What is
needed is a corresponding order of magnitude
improvement at the application level. One way to
achieve this improvement is through globally
distributed databases. Such databases could be
enterprise specific and offer features along real-time,
fault tolerance, quality of service for audio and video,
and security dimensions. Support of these features and
potential trade-offs between them could provide a
significant improvement in performance and
functionality over current distributed database and
object management systems.

There are many research problems that must be
solved to support global, real-time databases. Solutions
to these problems are needed both in terms of a
distributed environment at the database level as well as
real-time resource management below the database level,
i.e., in both the operating system and network layers.
Included is the need to provide end-to-end guarantees to
a diverse set of real-time and non-real-time applications
over the current and next generation Internet. The
collection of software services that support this vision is
called BeeHive.

The BeeHive system that is currently being defined
has many innovative components, including:

• real-time database support based on a new notion of
data deadlines [15], (rather than just transaction
deadlines),

• parallel and real-time recovery based on semantics
of data and system operational mode (e.g. crisis
mode),

• use of reflective information and a specification
language to support adaptive fault tolerance [5],
real-time performance and security [13],

• the idea of security rules embedded into objects
together with the ability for these rules to utilize
profiles of various types,

• composable fault tolerant objects that synergistically
operate with the transaction properties of databases
and with real-time logging and recovery,

• new architecture and model of interaction between
multimedia and transaction processing,

• a uniform task model for simultaneously supporting
hard real-time control tasks and end-to-end
multimedia processing [10], and

• new real-time QoS scheduling, resource
management and renegotiation algorithms [9].

One of the interesting issues that is encountered is
how to interact with the external Internet world. There
are many sources of data that are publicly available and
for many enterprises this data should be accessed and
incorporated into their own enterprise database. In our
case, the external data is incorporated into BeeHive and
we support new functionality in accessing the data along

real-time, fault tolerance, QoS, and security
dimensions. Common examples of external data are
weather information and stock market price quotes.
Additionally, there may be external sensors and
actuators that contain vital information, which needs to
be monitored and stored within BeeHive. In the
remainder of this paper we present a brief overview of
the BeeHive system and discuss the issues concerning
the external interface. We then present the cogency
monitor architecture, describe its implementation, and
provide some performance results.

2. BeeHive System

2.1. Brief Overview For Perspective

BeeHive is an application-focussed distributed
database system. For example, it could provide the
database level support needed for information
dominance in the integrated battlefield. BeeHive is
different from the World Wide Web and databases
accessed on the Internet in many ways including
BeeHive’s emphasis on sensor data, use of time valid
data, level of support for adaptive fault tolerance,
support for real-time databases and security, and the
special features that deal with crisis mode operation.
Parts of the system can run on fixed secure hosts and
other parts can be more dynamic such as mobile
computers or general processors on the Internet.

The BeeHive design is composed of native
BeeHive sites, legacy sites ported to BeeHive, and
interfaces to open Internet systems.

 The native BeeHive sites comprise a federated
distributed database model that implements a temporal
data model, time cognizant database and QoS
protocols, a specification model, a mapping from this
specification to four APIs (the real-time, QoS, fault
tolerance and security APIs), and underlying novel
object support. It is important to mention that
BeeHive, while application focussed, is not isolated.
BeeHive can interact with other virtual global
databases, or Web browsers, or individual non-
application specific databases via BeeHive wrappers.

2.2. BeeHive Object Model

In the BeeHive architecture, the user sees the
database as a set of BeeHive objects, a set of
transactions, and a set of rules. Objects are used for
modeling entities in the real world, transactions are
used to specify application requirements and to
execute the functionality of the application, and rules
are used for defining constraints and policies. Our
BeeHive object model (BOM) extends traditional
object-oriented data models by incorporating semantic

information regarding real-time, fault-tolerance,
importance, security, and quality of service requirements.
This information includes worst-case execution time,
resource requirements, and other constraints that must be
considered in resource management, scheduling, and
trading-off among different types of requirements. In
this section we briefly describe each component of the
BOM. The BOM has some similarity in terms of the
structure of objects to the RTSORAC object model [11].
One of the main differences is that while RTSORAC
model supports only real-time and approximation
requirements, BOM supports a rich set of types of
requirements and their trade-offs. The reason for
presenting the BOM in this paper is to give a flavor of
how objects are represented internally in BeeHive. Any
external data, that is to be imported into BeeHive, must
adhere to the BOM and must map to this uniform view.

A BeeHive object is modeled as a tuple <N, A, M,
CF>, in which N is an object identifier, A is a set of
attributes (composed of a name, domain information and
values), M is a set of methods, and CF is a compatibility
function that determines how method invocations can
coexist. The data stored in an object can have temporal
consistency specified by a validity interval. A value and
a validity interval represent the value part of each
attribute. Each attribute has a timestamp of the latest
update time of the attribute value. The timestamp is used
to determine the temporal consistency of the value.
Other semantic characteristics may be added in the
future. For example, if an attribute X contains some
amount of imprecision in its value, the field X.MaxImp
represents the maximum amount of imprecision that can
exist in X.value.

Every object belongs to a class, which is a collection
of objects with a similar structure. Classes are used to
categorize objects on the basis of shared properties
and/or behavior. Classes are related in a
subclass/superclass hierarchy that supports multiple
inheritance. In addition to the structure, all objects that
belong to the object class can be accessed from it.
Complex objects, object identity, encapsulation, class
hierarchies, overloading, and late binding can be fully or
partially supported.

The functional interface of an object is defined as
the set of methods M. A method is modeled by <MN, P,
ET, R, SI>, in which MN is the name of the method that
represents the executable code, P is the set of parameters
to be used by the method, ET is the execution time
requirements of the method (in many cases this will be
the worst case execution time of the method), R is the set
of resources required by the method other than CPU time
(includes memory, I/O, data, etc.), and SI is a set of
semantic information associated with the method. For
example, if the method M1 can be applied to either
single copy or primary/backup copies, SI should specify
different constraints to be considered in each case (e.g.,

availability of both copies in the case of
primary/backup copies). It is important to note that
this functional interface is extensible in the set of
resource requirements and semantic information
associated with methods.

The compatibility function is defined between all
method invocations. It uses semantic information
specified in methods as well as policies and system
state information to specify compatibility between
each pair of methods of the object. The function can
be specified in the form:

CF(M1, M2) = < Boolean Expression >

where the boolean expression can either be a simple
true or false, or it may contain predicates involving
semantic information of the object, system state, and
policies.

The implementation of a native BeeHive node is
currently underway and is being built using the Shore
object store from the University of Wisconsin.

3. The BeeHive External Interface

3.1. Overview

BeeHive as a database must be able to interact
with the vast resources available from open
information sources. This data could be from other
databases, from the World Wide Web, and from
sensors that are important to Beehive. The main
objective of the BeeHive external interface is to be
able to handle and retrieve such data in such a manner
as to:

1. Retrieve the data as quickly as possible to
minimize temporal staleness.

2. Guarantee specified properties along the
dimensions of real-time, QoS, fault-tolerance,
and security.

3. Add value to the data by filtering and possibly
integrating it into BeeHive.

The “data” that is external to BeeHive is
extremely heterogeneous in content and must be
handled accordingly. From the viewpoint of BeeHive
the interactions with external databases are query-
centric. Additionally, the query mechanisms to
retrieve this data range from standard SQL queries to
information retrieval search methods used by the
WWW search engines. In order to deal with this
heterogeneous data we have chosen to classify the data
into three distinct categories (1) structured (2)
unstructured and (3) raw data. We believe that this
taxonomy of data is logical, consistent and complete
with respect to the types of data that are available.

Additionally, segregating data into these three categories
allows for an easier implementation of our external
interface.

Structured data is data pertaining to a collection of
objects that have been returned from a database. The
interface to this type of data would be through some type
of query language like SQL and through some form of
database connectivity such as ODBC or JDBC.
Structured data is indexed and usually returned as unique
tuples for a relational database or objects for object
oriented databases. Tuples or objects can be readily
transformed into an object, which means it is easier to
integrate into BeeHive.

The major hurdle involved in inserting structured
data into an object-oriented database is that the schema
or object definition must be previously defined or
available. The other issue is that not all of the attributes
of the object are present in the data (e.g., the query might
return the projection of a schema or class type) and thus
there must be some method of dealing with these “null”
attributes. This implies that whatever method is used for
integrating the structured data into BeeHive requires
some semantic information about the actual data that is
being received.

Unstructured data is data pertaining to a collection
of objects that is not indexed. Unstructured data is the
results of queries from common search engines, such as
Infoseek, and Altavista. Other forms of unstructured
data are frequently asked questions (FAQ) listings,
usenet, etc. Unstructured data is hard to deal with since
the mapping of the data to an object, which can be
integrated into an object oriented database, is not well
defined. The data is awkward to deal with and is
extremely diverse ranging from text files to multimedia
clips. Often there is not a direct mapping of data to tuple
or object as in structured data. For example, do we want
to insert the entire HTML file as an object or are we to
insert only the hyper-links? To make matters worse the
query mechanisms used by information retrieval engines
are rarely repeatable; it is often the case that the same
query to an Internet search engine will return different
results. The results of unstructured data queries are thus
ranked in terms of “relevance”. This ranking that is
provided is not always accurate and this leads to the
question of what data is of interest and what data should
be entered into BeeHive. In order to deal with such data
one must have some semantic information to make these
decisions, similar to the case of structured data. An
important difference here is that some form of filtering
must be done on unstructured data prior to integration
into BeeHive. This filtering performs the mapping of
data to object that was previously mentioned.

Lastly, raw data is data that inherently pertains to
only one object. This would include sensor data,
individual web pages, video clips, files, etc. Similar to
unstructured data, raw data is very diverse in nature, but

in this case there is usually more of a direct mapping
between raw data and an object. There is still the need
to perform some filtering on the raw data however,
similar to unstructured data. The difference here is
that raw data would be periodic in nature as in the case
of sensor data. The issues that are involved with
handling this data include how often to poll the sensor
for new data and how much of a buffer to keep prior to
integration into the database. (Polling data too
frequently leads to wasted resources since it may not
be required if the temporal validity of the data is larger
than the polling rate.)

3.2. The Cogency Monitor

The key concept about the different types of data
is that once we have the data it must be verified and
shaped prior to its incorporation into BeeHive. (By
verified we mean that the data meets the real-time,
fault tolerance, quality of service, and security
characteristics that the user specified.) At the very
least since BeeHive is an object oriented database we
must be able to transform this data into unique objects.
Our overall view of the BeeHive external interface is
shown in Figure 1.

The heart of our architecture is the cogency
monitor. Any BeeHive node can execute one or more
cogency monitors. A cogency monitor can (i) support
value added services that are explicitly specified, (ii)
monitor the incoming data for “ correctness” and
possibly make decisions based on the returned data,
(iii) execute client supplied functionality, and (iv) map
incoming data into BeeHive objects. The term

cogency is used since cogency means validness, strong
argument, ability to forcefully compel or constrain; this
is exactly what we would like the external interface to
do.

The planned value added services include real-time,
fault tolerance, QoS, and security features and are shown
in Table 1. This is by no means an exhaustive list; as we
gain more experience with building cogency monitors
more services will be added.

The cogency monitor checks correctness by
verifying that incoming data should be entered into
BeeHive. This aspect is a form of firewall. The cogency
monitor can execute general functions provided by
clients such as queries, transactions, or workflows. The
cogency monitor needs semantic information that the
user provides so that the external data can be checked,
controlled, and transformed into BeeHive objects
properly. The semantic information can be supplied as
schema definitions.

The cogency monitor can have little to no
functionality, for efficiency, or it is able to perform
processing and filtering on data prior to integration into
BeeHive. The cogency monitor utilizes its own files that
exist outside BeeHive as a useful technique to support
many of its capabilities.

Our use of a cogency monitor assures an architecture
that is extensible and flexible and that can be used with
or without BeeHive. We have identified several key
services that a cogency monitor can provide as shown in
Table 1. The vision is to allow users to mix and match
the capabilities available from our library to construct a
cogency monitor that gains this added value and that is
precisely what is required by a client, and no more. The
full design of the GUI is being developed.

BeeHive

Returned data

Object

Unstructured
DataRaw

Data

Structured Data

Data
manipulation

Internet Open Databases

BeeHive
integration

Cogency
Monitor

Data
maintained by
cogency
monitor
(external to
BeeHive)

Figure 1: BeeHive External Interface Architecture

Research questions still must be resolved including
how to ensure compatibility in automatically linking
and loading the various features found in Table 1. Our
current idea is to use a compatibility function that
identifies valid combinations of services.

A cogency monitor is not a firewall or an
intelligent agent. A firewall [6] is a device that
secures a connection between a trusted network and
another network. A firewall might simply filter
packets based on headers or include a proxy that acts
to limit operations, keep an audit trail, or apply
security based rules. Intelligent agents [4] are proxies
that try to provide some value added service in very
general ways, perhaps even learning or using
inference. Our cogency monitor is different from
firewalls in that it extends significantly beyond
firewalls, but is more focused on specified behavior
than an intelligent agent is. In particular, cogency
monitors add real-time, quality of service, fault
tolerance, and security as well as allowing user-added
transformations and mappings into BeeHive objects.
The philosophy of the cogency monitor is that which is
explicitly specified along the four dimensions is
guaranteed, but nothing else. Of course, if a user tries
to specify a requirement that is not feasible, then it is
denied and no such cogency monitor is created.

4. Experiments

We have implemented three simple cogency
monitors, one for each of the three data source types:
structured, unstructured, and raw, respectively. We
have chosen these three cogency monitors to
demonstrate that our architecture is applicable and

valid for all three types of data. In each implementation
we demonstrate some of the value added services that
were presented in Table 1. For the structured data type
we interfaced with a small relational database (mSQL)
and developed some real-time (timeout with old data,
timestamp, monitor response times), and fault tolerance
(return previous/old results) properties. For the
unstructured data type we have implemented a meta-
searcher that possesses fault tolerance (primary and N
backup sites, return previous/old results) and real-time
(timestamp) properties. And lastly, for the raw data
types we have implemented a cogency monitor that will
“ add functionality” by filtering raw data for the user.

4.1. Structured data cogency monitor

Assume that a BeeHive user requires external data
and that his query result needs to be returned within a
pre-specified deadline. If this deadline is not met then
the user is willing to settle for a result that is temporally
stale. He would also like response time monitoring
support to help ascertain the typical response time for his
query. The user should then be able to use a GUI to
collect these features from a library and create a cogency
monitor for this particular set of requirements. While we
do not yet have a general GUI, we implemented this
particular cogency monitor.

An example of where this cogency monitor is useful
is aboard a US Navy carrier. The database might contain
intelligence information about unfriendly forces that are
of interest (vessel type, position, capabilities, etc.) At
present the carrier is more interested in an unfriendly
ship that is in the nearby vicinity. As such the
commanding officer wants to get data about this

Real-time features Fault tolerance features Quality of Service
features

Security features

�
 Real-time timeout

�
 Periodic activation

�
 Start time

�
 Return partial results

�
 Timestamp incoming data

�
 Broadcast in parallel to

multiple sites for faster
response

�
 Monitor response times

(and/or adjust deadlines
dynamically)

�
 Retries

�
 Return previous/old

results
�

 Primary and N
backup sites

�
 Filters (check

returned values for
reasonableness)

�
 Keep history log

�
 Reserve

bandwidth
�

 Compress data
�

 Keep multiple
resolution
versions of data

�
 Encryption

�
 Access control

�
 Maintain a firewall

(place cogency
monitor external to
BeeHive)

�
 Keep audit trail

Table 1: Cogency monitor value added services

unfriendly ship with timely and fault tolerant guarantees.
If the commanding officer cannot get the most up to date
information, he will settle for stale information, but he
must have the information in time.

The cogency monitor consists of a daemon process
that queries the mSQL database periodically at a
predetermined rate. The data that is returned is stored
locally on the client side and timestamped. (This allows
the commanding officer to have a local copy of the data
at all times.) To handle a client request the cogency
monitor attempts to connect to the mSQL database. If
the deadline is reached prior to getting a response the
cogency monitor returns the most recent result that was
retrieved by the daemon process. By varying the
periodic rate at which the daemon queried the mSQL
database we are able to evaluate how “ stale” the local
data is relative to a given query.

Figure 2 plots the average staleness of previously
saved data versus the query deadline for different
daemon update rates. It is important to note that the
staleness of the data is bounded by the daemon update
rate in milliseconds. This is important since it gives an
upper bound of how stale the data can be. For our navy
carrier example, if the daemon update rate is set at 250
milliseconds, then the captain can be assured that the
data that he gets back will not be stale by more than 250
milliseconds. And on average the staleness will be
approximately be 200 milliseconds as explained below.

The mean and standard deviations for the different
update rates are given in Table 2. The average time it
took to return a query result from the mSQL database
was 75 milliseconds. Using this fact it is easy to explain
the mean staleness results obtained. For example the
expected staleness for a daemon update rate of 250 ms
would be -(250/2 + 75) = -200 milliseconds. This value
agrees with the actual value of –185 milliseconds.
Figure 3 shows the average staleness over all queries. As
can be expected there is a sharp decrease in staleness at a
deadline of 75+ milliseconds, since deadlines larger than

this would have results provided directly from the
mSQL database instead of a previously stored result.

Daemon
update rate
(msecs)

Mean
staleness
(msecs)

Staleness
standard
deviation
(msecs)

250 -185 32
500 -329 19
1000 -591 58

Table 2: Mean and Standard deviation for staleness
for different daemon update rates

The results of the experiments on our cogency
monitor are promising since it allows data to be
retrieved with a known staleness by changing the
daemon update time accordingly. The cogency
monitor has added value by providing a soft guarantee
of how long a query should take. An important
implication of this result is that the cogency monitor
can be used to provide the client with an expected
query execution time. This allows for feedback to be
provided to the client concerning the average time it
takes to return a query result. The client using this
information is able to set a reasonable deadline time.

In summary, the client now has a cogency monitor
that accesses a remote database with some real-time
and fault tolerance properties.

4.2. Unstructured data cogency monitor

For this experiment, assume that a user requires
that a query sent to three unstructured remote data
sources are to be returned within a pre-specified
deadline. As in the structured experiment, the user is
willing to settle for temporally stale data, however for

Figure 3: Average staleness of data vs. Query deadline

Average staleness of data vs. Query deadline

-800

-700

-600

-500

-400

-300

-200

-100

0
10 20 30 40 50 60 70 80 90 100

Query deadline (millisecs)

A
ve

ra
g

e
"s

ta
le

n
es

s"
 (

m
ill

is
ec

s)

250
msecs

500
msecs

1000
msecs

Daemon update
rate

Average staleness of previously saved data vs. Query deadline

-800

-700

-600

-500

-400

-300

-200

-100

0

10 20 30 40 50 60 70 80 90 100

Query deadline (millisecs)

A
ve

ra
g

e
"s

ta
le

n
es

s"
 (

m
ill

is
ec

s)

250 msecs

500 msecs

1000 msecs

Daemon update
rate

Figure 2: Average staleness of previously saved data
vs. Query deadline

this experiment there is more than just one site that can
be queried. The scenario that we envision for this
cogency monitor is a stockbroker who requires a stock
price within a prescribed amount of time. The
stockbroker will settle for old data, as long as he knows
exactly how old it is. (The cogency monitor that we
describe below actually connects to general information
search engines instead of stock market search engines,
but the two are logically equivalent.)

The setup for the unstructured data type cogency
monitor is very similar to the structured cogency
monitor. The differences are (1) the cogency monitor
now queries three different sites for the data and (2) the
cogency monitor does not have a daemon that
periodically queries the information sources (network
etiquette requires that we do not flood the Internet search
engines).

The client is a WWW graphical browser (Netscape,
Internet Explorer) which submits a common gateway
interface (CGI) query to our cogency monitor with a
given deadline. The cogency monitor passes this query
to three Internet search engines (Infoseek, AltaVista, and
Yahoo) for their response. This setup is similar to other
meta-searchers like MetaCrawler [12], in that we are
collating data from several other search engines versus
actually querying our own data locally. The cogency
monitor waits for the returned results from the search
engines. If a result is returned prior to the time deadline,
the cogency monitor timestamps the HTML file and
presents it to the client. Additionally, the cogency
monitor saves the timestamped file locally. If however,
the result is not received from a search engine prior to
the deadline, the cogency monitor will try to return a
previously saved copy of the results if it is available
locally. If this is not possible, the cogency monitor will
inform the user that no result is available.

What we are trying to demonstrate with this cogency
monitor is not that BeeHive is a meta-searcher like the
ones that are prevalent on the WWW. We are not
competing with such groups and their tools. As a matter
of fact, we would like to leverage their technology. It is
very easy to have the cogency monitor use MetaCrawler
as one of the search engines that it will query. What the
cogency monitor is demonstrating is the added value that
could be obtained from unstructured data dealing mainly
with real-time and fault-tolerance characteristics. Our
cogency monitor is able to select many different sites in
order to retrieve the desired information and it provides a
previous result if possible. (This follows the old fault-
tolerant adage of “ old data is better than no data”).
Additionally, this cogency monitor is able to provide a
bounded time limit for which a user has to wait for a
response through the use of a deadline. The use of
different search engines for fault tolerance is acceptable
since these information retrieval techniques, as
mentioned before, seldom return the same results. Thus

we argue that any result provided by one of the search
engines is just as likely to produce “ valid” results.

4.3. Raw data cogency monitor

Another key capability of the cogency monitor is
the ability to attach user supplied functions. In this
third implementation we apply this capability to raw
data. Our raw data cogency monitor is a simple
prototype for searching web pages on the Internet.
The purpose of this experiment was to demonstrate
how a client would be able to add functionality to raw
data through the use of a cogency monitor. The
cogency monitor filters incoming data based on a
query provided by the user. The client as in the
unstructured example, is a WWW graphical browser
that submits a CGI query to our cogency monitor
along with a specified URL. The cogency monitor
then searches the specified HTML page residing at the
URL and also recursively searches links from that
URL for the keywords that the client entered. The
cogency monitor only recursively checks links to a
maximum depth as selected by the client. For,
example this cogency monitor could be used for
retrieving HTML pages concerning Bill Clinton at the
CNN website.

This cogency monitor demonstrates the added
value that could be obtained for the user. The user
initially only has a piece of raw data, the CNN URL,
but now the cogency monitor returns information
containing unstructured data that pertains to semantic
information (his query). In addition to the added
functionality the client could have also specified real-
time, fault-tolerance, quality of service, or security
requirements.

5. Related work

We are not aware of any efforts to design and
build a system with the same capabilities as BeeHive,
that is, a global virtual database with real-time, fault
tolerance, quality of service for audio and video, and
security properties in a heterogeneous environment. In
the research area there are several projects, past and
present that have addressed one or more of the issues
of real-time databases, QoS at the network and OS
levels, multimedia, fault tolerance, and security. There
have been even fewer that have dealt with trying to
incorporate external data into a database with these
(real-time, fault tolerance, quality of service, and
security) characteristics. Due to space limitations we
briefly describe just one of these projects.

The QuO architecture [16] being developed at
BBN aims at supporting QoS at the CORBA object
level. It provides mechanisms for measuring and
enforcing QoS agreements. Its goal is to help

distributed applications be more predictable and adaptive
even if end-to-end guarantees cannot be provided. It
addresses the issues to support QoS at object level, such
as synthesizing information about system properties and
providing a framework to support code reuse. Although
it is planned to broaden the scope to include security and
fault-tolerance, it is not clear how such extension can fit
into the architecture. Further, they do not consider issues
such as transactions and database management.

6. Summary

We have presented the design of BeeHive at a high
level and have identified the external interface as an
important piece of the BeeHive architecture. We have
described an architecture for the external interface that is
powerful and flexible. Our novel concept of using a
cogency monitor as the gateway between the external
world and BeeHive provides a clean and standardized
way of dealing with heterogeneous data. A cogency
monitor does not rely on cooperating information
services as some other projects do and as such BeeHive
can leverage off of those projects. The most powerful
argument for a cogency monitor however, is that it adds
value to and control on the data, rather than just passing
it on to BeeHive. The value that we are mainly
concerned with pursuing deals with real-time, fault-
tolerance, quality of service for audio and video, and
security. Our future work will entail expanding the
services (see Table 1). We are also developing a
standard graphical user interface that will enable
BeeHive users to create their own cogency monitors
using standard libraries that we provide.

References

[1] B. Adelberg, B. Kao, and H. Garcia-Molina, An
Overview of the Stanford Real-time Information
Processor, ACM SIGMOD Record, 25(1), 1996.
[2] S.F. Andler, J. Hansson, J. Eriksson, J. Mellin, M.
Berndtsson, and B. Eftring, DeeDS: Towards a
Distributed and Active Real-Time Database Systems,
ACM SIGMOD Record, 15(1):38-40, March 1996.
 [3] M. Balabanovic, An Adaptive Web Page
Recommendation Service, Proceedings of the First
International Conference on Autonomous Agents, 1997.
[4] R. J. Bayardo Jr., W. Bohrer, and et. al., InfoSleuth:
Agent-Based Semantic Integration of Information in
Open and Dynamic Environments, ACM SIGMOD,
1997.

[5] A. Bondavali, J. Stankovic, and L. Strigini,
Adaptable Fault Tolerance for Real-Time Systems,
Third International Workshop on Responsive
Computer Systems, Sept. 1993; full version Proc.
PDCS, September 1993.
[6] W. Cheswick and S. Bellovin, Firewalls and
Internet Security: Repelling the Wily Hacker, Addison-
Wesley Publishing Company, 1994.
[7] T. Finin, R. Fritzson, D. McKay, R. McEntire,
KQML as an Agent Communication Language,
Proceedings of the Third International Conference on
Information and Knowledge Management, ACM
Press, November 1994.
[8] J. Hammer, H. Garcia-Molina, K. Ireland, Y.
Papakonstantinou, J. Ullman, and J. Widom,
Information Translation, Mediation, and Mosaic-
Based Browsing in the TSIMMIS System, ACM
SIGMOD International Conference on Management of
Data, San Jose, CA., June 1995.
 [9] H. Kaneko, J. Stankovic, S. Sen and K.
Ramamritham, Integrated Scheduling of Multimedia
and Hard Real-Time Tasks, Real-Time Systems
Symposium, December 1996.
[10] J. Liebeherr, D. E. Wrege, and D. Ferrari, Exact
Admission Control in Networks with Bounded Delay
Services, IEEE/ACM Transactions on Networking,
Vol. 4, No. 6, pp. 885-901, December 1996.
[11] J. Prichard, L. DiPippo, J. Peckham, and V.
Wolfe, RTSORAC: A Real-Time Object-Oriented
Database Model, Database and Expert System
Applications Conference (DEXA’94), August 1994.
[12] E. Selberg, and O. Etzioni, The MetaCrawler
Architecture for Resource Aggregation on the Web,
IEEE Expert, January/February 1997.
[13] S. H. Son and C. Chaney, Supporting the
Requirements for Multilevel Secure and Real-Time
Databases in Distributed Environments, Annual IFIP
WG 11.3 Conference of Database Security, Lake
Tahoe, CA, Aug. 1997, pp. 57-71.
[14] G. Wiederhold, Mediators in the Architecture of
Future Information Systems, IEEE Computer, Vol. 25,
No. 3, March 1992, pp. 38-49.
[15] M. Xiong, R. Sivasankaran, J. Stankovic, K.
Ramamritham and D. Towsley, Scheduling
Transactions with Temporal Constraints: Exploiting
Data Semantics, Real-Time Systems Symposium,
December 1996.
[16] J. Zinky, D. Bakken, and R. Schantz,
Architectural Support for Quality of Service for
CORBA Objects, Theory and Practice of Object
Systems, 3(1):1-20, April 1997.

