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Abstract

The confluence of computers, communications, and
databases is quickly creating a global virtual database
where many applications require real-time access to
both temporally accurate and multimedia data. This
is particularly true in military and intelligence applica-
tions, but these required features are needed in many
commercial applications as well. We are developing a
distributed database, called BeeHive, which could of-
fer features along different types of requirements: real-
time, fault-tolerance, security, and quality-of service
for audio and video. Support of these features and
potential trade-offs between them could provide a sig-
nificant improvement in performance and functionality
over current distributed database and object manage-
ment systems. In this paper, we present a high level
design for BeeHive architecture and sketch the design
of the BeeHive Object Model (BOM) which extends
object-oriented data models by incorporating time and
other features into objects.

1 Introduction

The Next Generation Internet (NGI) will provide
an order of magnitude improvement in the com-
puter/communication infrastructure. What is needed
is a corresponding order of magnitude improvement at
the application level. One way to achieve this im-
provement is through globally distributed databases.
Such databases could be enterprise specific and offer
features along real-time, fault tolerance, quality of ser-
vice (QoS) for audio, video and images, and security
dimensions. Support of these features and potential

*Appeared in IEEE International Symposium on Object Ori-
ented Real Time Distributed Computing, April 1998.

trade-offs between them could provide a significant im-
provement in performance and functionality over cur-
rent distributed database and object management sys-
tems.

There are many research problems that must be
solved to support the global, real-time databases. So-
lutions to these problems are needed both in terms of
a distributed environment at the database level as well
as real-time resource management below the database
level, i.e., in both the operating system and network
layers. Included is the need to provide end-to-end guar-
antees to a diverse set of real-time and non-real-time
applications over the current and next generation In-
ternet. The collection of software services that support
this vision is called BeeHive.

The BeeHive system that is currently being defined
has many innovative components, including:

e real-time database support based on a new no-
tion of data deadlines, (rather than just transac-
tion deadlines),

e parallel and real-time recovery based on semantics
of data and system operational mode (e.g., crisis
mode),

e use of reflective information and a specification
language to support adaptive fault tolerance, real-
time performance and security,

e the idea of security rules embedded into objects
together with the ability for these rules to utilize
profiles of various types,

e composable fault tolerant objects that synergis-
tically operate with the transaction properties of
databases and with real-time logging and recovery,

e a new architecture and model of interaction be-
tween multimedia and transaction processing,



e a uniform task model for simultaneously support-
ing hard real-time control tasks and end-to-end
multimedia processing, and

e new real-time scheduling, resource management
and renegotiation algorithms for sets of services.

In the remainder of this paper we discuss the high-
level BeeHive system architecture and sketch the de-
sign of a native BeeHive site showing how all the parts
fit together. We also present technical details on the
BeeHive Object Model (BOM) and its properties. A
summary of the work concludes the paper.

2 General BeeHive Design
2.1 System Overview

BeeHive is an application-focussed distributed
database system. For example, it could provide the
database level support needed for information technol-
ogy in the integrated battlefield. BeeHive is different
from the World Wide Web and databases accessed on
the Internet in many ways including BeeHive’s empha-
sis on sensor data, use of time valid data, level of sup-
port for adaptive fault tolerance, support for real-time
databases and security, and the special features that
deal with crisis mode operation. Parts of the system
can run on fixed secure hosts and other parts can be
more dynamic such as for mobile computers or general
processors on the Internet.

The BeeHive design is composed of native Bee-
Hive sites, legacy sites ported to BeeHive, interfaces
to legacy systems outside of BeeHive, and an interface
to the Legion system® [11] (see Figure 1).

The native BeeHive sites comprise a federated dis-
tributed database model that implements a temporal
data model, time cognizant database and QoS proto-
cols, a specification model, a mapping from this speci-
fication to four APIs (the OS, network, fault tolerance
and security APIs), and underlying novel object sup-
port. Native sites employ a homogeneous design for
the data models and protocols. A simple first version
of a BeeHive native site has recently become opera-
tional. Any sophisticated database application will in-
clude legacy databases. BeeHive permits porting of
these databases into the BeeHive virtual system by a

1Legion is a distributed global execution platform for execut-
ing parallel programs.
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Figure 1: BeeHive.

combination of wrappers and changes to the underly-
ing software of these systems. Solving the problems
of porting legacy sites requires many solutions includ-
ing dealing with heterogeneous data models and proto-
cols. These issues are not addressed in this paper. It is
important to mention that BeeHive, while application
focussed, is mot isolated. BeeHive can interact with
other virtual global databases, or Web browsers, or in-
dividual non-application specific databases via BeeHive
wrappers?. BeeHive will access these databases via
downloaded Java applets that include standard SQL
commands. In many situations, not only must infor-
mation be identified and collected, but it must be ana-
lyzed. This analysis should be permitted to make use of
the vast computer processing infrastructure that exists.
Here, BeeHive will have a wrapper that can utilize the
Legion system to provide significant processing power
when necessary.

2.2 Native BeeHive Design

The basic design of a native BeeHive site is depicted
in Figure 2. At the application level, users can submit
transactions, analysis programs, general programs, and
access audio, video, and image data. For each of these

2 An initial implementation of BeeHive wrappers [16] that pro-
vide an interface to the open information sources of the Internet
has been implemented. However, this aspect of BeeHive is not
the focus of this paper.



activities the user has a standard specification inter-
face for real-time, QoS for audio, video, and images,
fault tolerance, and security. The collection of these
four requirements is generically referred to as services.
QoS is restricted to mean QoS for audio, video, and
images. At the application level, these requirements
are specified in a high level manner. For example, the
user might specify a deadline, full quality QoS display,
a primary/backup fault tolerance requirement, and a
confidentiality level of security. For transactions, users
are operating with an object-oriented database invok-
ing methods on the data. The data model includes
timestamped data and data with validity intervals such
as is needed for sensor data or troop position data. As
transactions (or other programs) access objects, those
objects become active and a mapping occurs between
the high level requirements specification and the object
API via the mapping module. This mapping module is
primarily concerned with the interface to object wrap-
pers and with end-to-end issues.

A novel aspect of our work is that each object has
semantic information (also called reflective information
because it is information about the object itself) as-
sociated with it that makes it possible to simultane-
ously satisfy the requirements of time, QoS, fault tol-
erance, and security in an adaptive manner. For exam-
ple, the information might include rules or policies and
the action to take when the underlying system cannot
guarantee the deadline or level of fault tolerance re-
quested. This semantic information also includes code
that makes calls to the resource management subsys-
tem to satisfy or negotiate the resource requirements.
The resource management subsystem further translates
the requirements into resource specific APIs such as the
APIs for the OS, the network, the fault tolerance sup-
port mechanisms, and the security subsystem. For ex-
ample, given that a user has invoked a method on an
object with a deadline and primary/backup require-
ment, the semantic information associated with the
object makes a call to the resource manager request-
ing this service. The resource manager determines if
it can allocate the primary and backup to (1) execute
the method before its deadline and (2) inform the OS
via the OS API on the modules’ priority and resource
needs.
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Figure 2: Native BeeHive Site.

3 Resource Management

A critical component for the success of BeeHive is
its ability to efficiently manage distributed resources.
BeeHive requires end-to-end resource management, in-
cluding physical resources such as sensors, endsystems
resources such as operating systems, and communica-
tions resources such as link bandwidth.

We assume that low-level resource management is
available for single low-level system resources, such as
operating systems and networks. Based on these com-
paratively primitive resource management systems,
BeeHive will implement a sophisticated end-to-end
adaptive resource management system that supports
applications with widely varying service requirements,
such as requirements on timeliness, QoS, fault toler-
ance, and security. The resource management in Bee-
Hive offers the following services:

e Provide service-specific application programming
interfaces (APIs) that allow developers to specify
the desired services without requiring knowledge
of the underlying low-level resource management
entities. The services can be a function of mode
(normal or crisis mode).

e Map qualitative, application-specific service re-
quirements into quantitative resource allocations.

e Dynamically manage network and systems re-
sources so as to maximize resource utilization.

(Network, OS, etc.)
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Figure 3: Resource Management in BeeHive.

By providing service-specific APIs, we allow applica-
tion programmers to specify the service requirements of
an application in an application-specific fashion. The
resource management entities of BeeHive are respon-
sible for mapping the service requirements into actual
resource needs. For example, for the QoS service, a
high quality video requirement might map to 10% of
the CPU and 10 Mbytes of network bandwidth. The
advantage of this approach is a significant increase
of reusability. Specifically, an application need not
be modified if the underlying resource infrastructure
changes. (It may be convenient to think of our ap-
proach as “Resource Hiding”).

To maximize resource utilization in BeeHive, we will
enhance resource management with a planning com-
ponent. The planning component keeps track of the
dynamic behavior of resource usage. By maintaining
information not only of the current state of resource
utilization, but also of past and (predicted) future us-
age, the resource management scheme can adapt to
the changing resource demands in the system especially
during crisis.

In Figure 3 we illustrate the main components of
the resource management system in BeeHive. These
components will be discussed below.

Service-Specific Application Programming Interfaces

The application programming interface (API) pro-
vided by BeeHive must satisfy several constraints. On

the one hand, the API must allow the application pro-
grammer to access the full functionality of the system
without being burdened with internal details. On the
other hand, the API must be simple enough as to pro-
vide a simple (and extensible) internal representation.
The API of the resource management system in Bee-
Hive is a trade-off between the requirements for appli-
cation specificity and internal simplicity.

e Since BeeHive operates in a heterogeneous dis-
tributed computing environment, application de-
velopers should not be required to have knowledge
of the underlying resource infrastructure on top of
which the application is being executed.

e Rather than adopting a “one-size-fits-all” ap-
proach, we provide a set of different APIs. More
specifically, we design a separate API for each of
the value-added services provided by BeeHive. In
this project, we will build four APIs for the fol-
lowing services:

Applications with Real-Time Requirements.

Applications with QoS Requirements.

Applications with Fault-Tolerance Require-
ments.

Applications with Security Requirements.

For example, the service-specific API allows appli-
cation developers to specify the audio and video
QoS requirements of a fault-tolerant application
in terms of MTTF (Mean Time To Failure). The
resource manager maps these service-specific QoS
requests into actual resource requests. Of course,
applications and/or individual tasks or transac-
tions may require more than one or even all the
services.

“BeeKeeper” — The Resource Manager of BeeHive

The resource manager of BeeHive, referred to as the
“BeeKeeper,” is the central entity of the resource man-
agement process.The following are the main compo-
nents of the BeeKeeper:

e The Service Mapper performs the mapping of qual-
itative resource requests into quantitative requests
for physical resources. The service mapper gener-
ates a uniform internal representation of the mul-
tiple (service-dependent) requests from applica-
tions.



e The Admission Controller performs the tests that
determine if BeeHive has sufficient resources to
support the service requirements of a new applica-
tion without compromising the service guarantees
made to currently active applications.

The Resource Allocation Module is responsible for
managing the interface of BeeHive to underlying
resource management systems of BeeHive compo-
nents, i.e., the resource management entities of an
ATM network, an RSVP managed IP network, or
a real-time operating system, such as RT-Mach.
It maintains a database on resources allocated to
the BeeHive application.

The Resource Planner attempts to globally opti-
mize the use of resources. The Admission Con-
troller of the BeeKeeper merely decides whether
a new application is admitted or rejected. Ob-
viously, such a binary admission control decision
leads to a greedy and globally suboptimal resource
allocation. (Note that most current resource allo-
cation methods, e.g., for ATM networks or real-
time operating systems, are greedy.) The Re-
source Planner is a module to enhance the admis-
sion control process and to yield globally improved
resource allocations. The Resource Planner pri-
oritizes all current and incoming requests for re-
sources. Based on the prioritization, it devises a
resource allocation strategy.

The Resource Planner obtains from the Resource
Allocation Module information on the state of cur-
rent resource allocation. As much as possible, the
Resource Planner should be provided with infor-
mation on future resource usage. The Resource
Planner processes this information and provides it
to the Admission Controller.

In BeeHive, the Resource Planner of the Bee-
Keeper plays a central role for adaptive resource
allocation. If an incoming request with high-
priority cannot be accommodated, the Resource
Planner initiates a reduction of the resources allo-
cated to low-priority applications. If necessary, the
Resource Planner will decide upon the preemption
or abortion of low-priority applications.

4 BeeHive Object Model

In the BeeHive architecture, the user sees the
database as a set of BeeHive objects, a set of trans-
actions, and a set of rules. Objects are used for mod-
eling entities in the real world, transactions are used
to specify application requirements and to execute the
functionality of the application, and rules are used for
defining constraints and actions to be taken. Our Bee-
Hive object model (BOM) extends traditional object-
oriented data models by incorporating semantic in-
formation regarding real-time, fault-tolerance, impor-
tance, security, and QoS requirements. This informa-
tion includes worst-case execution time, resource re-
quirements, and other constraints that must be consid-
ered in resource management, scheduling, and trading-
off among different types of requirements. In this sec-
tion we present each component of the BOM, and then
discuss how they can be supported by the BeeHive ar-
chitecture. The BOM has some similarity in terms of
the structure of objects to the RTSORAC object model
[12]. One of the main differences is that while RTSO-
RAC model supports only real-time and approximation
requirements, BOM supports a rich set of types of re-
quirements and their trade-offs.

4.1 Objects

A BeeHive object is a tuple < N, A, M,CF,T >, in
which N is an object identifier, A is a set of attributes
(composed of a name, domain information and values),
M is a set of methods, CF is a compatibility function
that determines how method invocations can coexist,
and T is a timestamp of the latest update. If no up-
dates have been done to this object, the value of T is
the object creation time. The data stored in an object
can have temporal consistency specified by a validity
interval. The value part of each attribute is represented
by a value and a validity interval. Each attribute has
a timestamp of the latest update time of the attribute
value. The timestamp is used to determine the tem-
poral consistency of the value. Other semantic charac-
teristics may be added in the future. For example, if
an attribute X contains some amount of imprecision in
its value, the field X. MaxImp represents the maximum
amount of imprecision that can exist in X.value.

Every object belongs to a class which is a collec-
tion of objects with a similar structure. Classes are
used to categorize objects on the basis of shared prop-



erties and/or behavior. Classes are related in a sub-
class/superclass hierarchy that supports multiple in-
heritance. Complex objects, object identity, encap-
sulation, object classes, class hierarchies, overloading,
overriding, and late binding can be supported by the
BOM.

The functional interface of an object is defined
as the set of methods M. A method is modeled by
< MN,P,ET,R,SI >, in which MN is the name of
the method that represents the executable code, P is
the set of parameters to be used by the method, ET
is the execution time requirements of the method (in
many cases this will be the WCET? of the method),
R is the set of resources required by the method other
than CPU time (includes memory, I/O, data, etc.), and
SI is a set of semantic information associated with the
method. For example, if the method M1 can be ap-
plied to either single copy or primary/backup copies,
SI should specify different constraints to be considered
in each case (such as availability of both copies in the
case of primary /backup copies). It is important to note
that this functional interface is extensible in the set of
resource requirements and semantic information asso-
ciated with methods.

The compatibility function is defined between all
method invocations. It uses semantic information spec-
ified in methods as well as policies and system state
information to specify compatibility between each pair
of methods of the object. The function can be specified
in the form:

CF(M1, M2) = < BooleanEzpression >

where the boolean expression can either be a simple
true or false, or it may contain predicates involving
semantic information of the object, system state, and
policies. For example, if M1 and M2 can be executed
in parallel only when the object is being used in pri-
mary/backup mode and two instances of the resource
O is available, the compatibility function can be stated
as follows:

boolean Compatibility_M1.M2

if ((0bj_Mode = PB) and (Nr_avail(0) = 2))
then return true

else return false;

3WCET is the worst case execution time.

4.2 Transactions

A transaction is one element of the BeeHive system
that brings information from applications to objects,
and returns information from objects to applications.
A transaction is associated with requirements, policies
for trade-offs, and importance, in addition to usual
method invocations with required parameters. A trans-
action is modeled by < TN, XT,I, RQ,SES,P >, in
which TN is a unique identifier of the transaction, XT
is the execution code, I is the importance, RQ is a set of
requirements, SES are the static execution semantics,
and P is the policy for trade-offs. The set of require-
ments, RQ, consists of requirements for each property
(real-time, fault-tolerance, QoS, security), and optional
PreCond and PostCond. PreCond represents precon-
ditions that must be met before the transaction can be
executed, and PostCond represents postconditions that
must be satisfied upon completion of the transaction.
For example, it may be appropriate for a transaction to
execute only if some specified event has occurred, such
as after the successful execution of a related transac-
tion. The real-time requirements of a transaction are
specified in terms of a deadline, start time, its period
if it requires periodic execution, the transaction type
(hard, firm or soft), and a statistical guarantee level.
The fault-tolerance requirements can be specified by
the degree and form of redundancy. The security re-
quirements are specified by the level of security of the
transaction and types of encryption and authentication
to be used.

The SES consists of the the following types of infor-
mation about transactions: resource needs for mem-
ory, bandwidth, I/O, execution time and the read and
write sets. SES represents the facts about the needs
of a transaction while RQ represents the requirements
that a user or the system imposes on an instance of
the transaction. The SES for each transaction is de-
termined by pre-analysis and is stored as part of the
database.

The policies can be stated by specifying which re-
quirements can be reduced to a lower level. For ex-
ample, the requirement of 3 replicated copies for fault-
tolerance can be reduced to 2 copies if the resource
manager cannot assign 3 copies of the object for the
transaction. The policies can be stated in several dif-
ferent ways to show the order in which the requirements
are to be reduced. For example, one policy can state
that if the system cannot allocate resources to satisfy



all the requirements, first reduce the fault-tolerance re-
quirement from 3 copies to 2 copies. If the require-
ments cannot still be satisfied, reduce the security re-
quirement from the secret level to the classified level
and omit all the encryption involved, etc. Other poli-
cies might state that the fault-tolerance and deadline
requirements can be reduced simultaneously, but secu-
rity requirements cannot be reduced.

We are also developing sensor, actuator and au-
dio/video transactions that have specialized database
support to efficiently handle the requirements of these
types of transactions. These are not discussed further
in this paper.

4.3 Rules

Rules are used to specify constraints that define cor-
rect states of an object and inter-object relationships
as well as actions to be taken on events. A rule is mod-
eled by < RN,O,E,C,A,CM >, in which RN is the
name of the rule, O is the set of objects that are refer-
enced in this rule, E is a set of events that can invoke
the rule, C is a set of conditions, A is a set of ordered
actions that need to be taken if any, and CM is a cou-
pling mode that describes when the action A is to be
executed.

Any component can be omitted in a rule specifica-
tion. For example, if the coupling mode CM is missing,
the rule only supports the default coupling mode. If
the action part A is missing, events are detected and
conditions are evaluated, but no action is taken. De-
pending on the definition of conditions, the action may
be a side effect of condition evaluation. If the condi-
tion part C is missing, an action is taken every time
an event is taken. And if the event part E is missing,
conditions are evaluated every time any event occurs
in the system, which could be very expensive.

The set of events E describes all events that can
trigger this rule. An event in E has two components:
< EN,AE >, in which EN is the name of the event
and AE C AtomicEvents is a set of atomic events that
constitute the event. AtomicEvents represents the set
of all possible atomic events that can be detected (e.g.,
update of a specified data object). Although it is pos-
sible to extend our model to support composite events
for detecting complex situations, BOM in the current
design supports only atomic events in rule specifica-
tion, since the detection of composite events can be
very expensive.

The set of conditions C describes the possible con-
ditions that can trigger an action once an event is de-
tected. A condition is specified by a predicate which
can include attributes of objects and system states.
Both logical and temporal consistency constraints can
be expressed by these conditions with their corre-
sponding actions to take to correct the violated con-
straints. For example, assume that an object X has
an attribute Position. If a temporal consistency re-
quirement of the X.Position requires that it is not
more than 3 seconds old, a condition X.Position >
Now() — 3 captures that situation and corresponding
action Update(X.Position) will enforce the temporal
consistency.

The action A is a pair < Ty, Op > where Ty is action
type and Op is action operation. The action type Ty
describes what type of an action can be done. Actual
operation of an action depends on action type T'y. In
BOM, we support three types of actions: reject, method
invocation, and transaction. The action type definition
goes from simple to complex. The type reject is the
simplest form. Reject means that the current activity
that triggered the rule is rejected. An example could
be a security violation or failure in authentication. The
second type method invocation is useful when rules are
meant to be used inside an object. Using transactions
is a waste of resources in such a case because all op-
erations occur inside an object. Finally, the last type
transaction can be used with the full functionality of
the triggering mechanisms of an active database model.

The Coupling Mode CM describes when the invoked
action should be performed. The most common cou-
pling modes to be supported in BOM are immediate,
deferred, and detached. In immediate coupling mode,
the transaction is triggered immediately; if the event
was triggered within a transaction, the triggered trans-
action is executed as a subtransaction of the triggering
transaction. In the deferred coupling, the triggered
transaction is executed right before the commit of the
triggering transaction. In detached coupling, the trig-
gered transaction is executed as a separate transaction
regardless of the triggering condition.

4.4 BeeHive Object Manager

To support the object model described above, the
BeeHive architecture will provide modules to manage
schemas, objects, transactions, and rules. The func-
tions are separated into the schema manager mod-



ule, object manager module, storage manager module,
transaction manager module, recovery manager mod-
ule, and rule manager module. Here we only briefly
discuss the object manager module (OMM).

The OMM provides the organization of semantic in-
formation of objects, creation and deletion of objects,
and concurrency control and recovery of objects. All
the persistent objects are created and stored in per-
manent storage using the storage manager. At sys-
tem startup time, a shared main memory segment is
created and an object table is instantiated at a well-
known location in the shared segment. The table asso-
ciates each object’s name with the object entry in the
shared segment. Semantic information of each object is
preprocessed and compiled into method calls and rules
associated with the object.

Objects can be shared by concurrent transactions
and, hence, concurrency control must be exercised by
the OMM. The compatibility function specified for an
object should be utilized for concurrent access of ob-
jects and invocations of methods. When a transaction
requests a method invocation of an object, OMM evalu-
ates the compatibility function of the method with each
currently invoked method. Depending on the outcome,
a transaction is either allowed to execute the requested
method or suspended until the conflicting lock is re-
leased.

5 Adaptive Fault Tolerance

Given the large and ever-growing size of databases
together with their potential use in applications such
as information dominance on the battlefield, faults may
occur frequently and at the wrong times. For the sys-
tem to be useful and efficient and to protect against
common security breach points, we must have adap-
tive fault tolerance. In this section, we briefly discuss
adaptive fault-tolerance features of BeeHive.

Our approach is to design adaptive and database
centric solutions for non-malicious faults. Any system
that deals with faults must first specify its fault hy-
potheses. In particular, we will consider the following
fault hypotheses: processors may fail silently (multiple
failures are possible); transient faults may occur due
to power gliches, software bugs, race conditions, etc.;
and timing faults can occur where data is out of date
or not available in time.

In our approach we propose a service-oriented fault

tolerance and support it with underlying model based
on adaptive fault tolerance.

Service-Oriented FT: For service-oriented fault tol-
erance we consider how typical users operate with Bee-
Hive and consider the fault tolerance aspects of these
services. The services are:

e Read Only Queries: These can be dynamically re-
quested by users or automatically triggered by the
actions in the active database part of BeeHive.
These queries can have soft deadlines and can re-
trieve data of all types including text, audio, video,
etc.

o Update Tramsactions: These transactions can be
user invoked or automatic. When permitted, they
can update any type of data including temporal
data.

o Multimedia Playout and QoS: When data that is
retrieved is audio and video, the playout itself has
time constraints, is large in volume, must be syn-
chronized, can be degraded if necessary, etc.

o Analysis Tools: Retrieved data may be fed to anal-
ysis tools for further processing including having
this processing itself be distributed by using Le-
gion [11].

The user-level fault tolerance interface includes fea-
tures for each of the four service classes for each fault
type. For example, the FT service for read-only queries
allows queries to proceed when processors fail, be re-
tried if transient faults occur, and can produce partial
results prior to the deadline to avoid a timing fault.
For multimedia playout, processing can be shifted to
other processors when processors fail. A certain degree
of transient faults is masked, and degraded service is
used to avoid some timing faults. Similar fault toler-
ance services can be defined for the other combinations.

Support for Adaptive Fault Tolerance: Queries, up-
date transactions, multimedia playout, and analysis
tools may access any number of objects. In order to
support these fault tolerant services, we propose an
underlying system model based on adaptive (secure)
fault tolerant (real-time) objects. Since fault tolerance
can be expensive, we must be able to tailor the cost
of fault tolerance to a user’s requirements for it. In
our solution, each object in the system represents data
and methods on that data and various types of seman-



tic information that supports adaptive (secure) fault
tolerance in real-time. Briefly, this works as follows.

Input to an object can be, in addition to the param-
eters required for its functionality, the time require-
ment, the QoS requirement, the degree of fault tol-
erance needed, and the level of security. Inside the
object and hidden from the users are control modules
which attempt to meet the incoming requirements dy-
namically based on the request and the current state
of the system. This is a form of admission control.
For example, a user of an object may want to exe-
cute a method on this database object with a passive
backup, have all outputs from the object encrypted and
have results within 3 minutes. The control module in-
side the object dynamically interacts with the system
schedulers, resource allocators, and encryption objects
to perform admission control, make copies and encrypt
messages. The admission control calling the schedulers
decides whether this can all be done within 3 minutes.
If not, its control strategies indicate how to produce
some timely result based on the semantics of the ob-
ject. In this way (in this simple example), the users
obtain the fault tolerance, security and time require-
ments that they want on this invocation subject to the
current system state. Another user or this same user
at a different time may request different levels of ser-
vice from this object and the system adapts to try and
meet these requirements. Note that crisis mode may
trigger changes to sets of objects based on the embed-
ded tradeoff strategies.

One key research issue to be investigated is mapping
the service level fault tolerance request to the under-
lying objects. This research question is one of com-
position. That is, given the underlying object mech-
anisms that support adaptive fault tolerance how can
objects be composed to meet the service level require-
ments. Similar mapping questions exist for fault toler-
ance, real-time, and security, and their interaction.

6 Related Work

We are not aware of any efforts to design and
build a system with the same capabilities as Bee-
Hive, that is, a global virtual database with real-time,
fault tolerance, QoS, and security properties in het-
erogeneous environments. Of course, standards such
as ODBC (Open Database Connectivity) and JDBC
(Java Database Connectivity) are being used to get

better access to databases, but these are not addressing
the research questions posed here. There are several re-
search projects, past and present, that have addressed
one or more of the issues of real-time databases, QoS
at the network and OS levels, multimedia, fault tol-
erance, security, and distributed execution platforms.
We briefly describe a few of these projects.

The QuO architecture [22] being developed at BBN
aims at supporting QoS at the CORBA object level. It
provides mechanisms for measuring and enforcing QoS
agreements. Its goal is to make distributed applications
more predictable and adaptive, even if end-to-end guar-
antees cannot be provided. It addresses the issues in
supporting QoS at the object level, such as synthesiz-
ing information about system properties and providing
a framework to support code reuse. It uses the QoS De-
scription Language (QDL) to specify an application’s
expected usage patterns and QoS requirements for a
connection to an object. To help the application adapt
to different system conditions, QuO supports multiple
behaviors for a given functional interface, each bound
to the contract for which it is best suited. One of its
main objectives is the reduction of variance in system
properties, which in the current implementation are
performance issues. Although it is planned to broaden
the scope to include security and fault-tolerance, it is
not clear how such extension can fit into the archi-
tecture. Further, they do not consider issues such as
transactions and database management.

STRIP (STanford Real-Time Information Proces-
sor) [1] is a database designed for heterogeneous en-
vironments and provides support for value function
scheduling and for temporal constraints on data. Its
goals include high performance and the ability to share
data in open systems. It does not support any notion of
performance guarantees or hard real-time constraints,
and hence cannot be used for the applications we are
envisioning in this project.

The Distributed Active Real-Time Database System
(DEEDS) [2] prototype is an event-triggered real-time
database system, using dynamic scheduling of sets of
transactions, being developed in Sweden. The reactive
behavior is modeled using ECA rules. In the current
prototype they do not support temporal constraints of
data and multimedia information.

To allow applications to utilize multiple remote
databases in dynamic and heterogeneous environments,
the notion of mediator was introduced and a prototype



was implemented in the PENGUIN system [19]. A
mediator is a software module that exploits encoded
knowledge about certain sets or subsets of data to
create information for a higher layer of applications.
It mainly deals with the mismatch problem encoun-
tered in information representation in heterogeneous
databases, but no real-time and fault-tolerance issues
are pursued as in BeeHive.

While commercial database systems such as Oracle
[10] or Sybase [9] allow for the storage of multimedia
data, it is usually done as a BLOB (binary large ob-
ject). These systems are not integrated with real-time
applications. Also developed in industry is the Mer-
curi project [8] where data from remote video cameras
is transferred through an ATM network and displayed
using X windows, but they provide only best effort ser-
vices.

In recent years, considerable progress has been made
in the areas of QoS support for operating systems, net-
works, and open distributed systems. However, no ex-
isting system can give end-to-end QoS assurances in
a large-scale, dynamic, and heterogeneous distributed
system. Note that none of the existing QoS network
architectures supports an integrated approach to QoS
that contains the network as well as real-time applica-
tions.

The Tenet protocol suite [4] developed within the
context of the BLANCA Gigabit testbed networks pre-
sented the first comprehensive service model for inter-
networks. The work resulted in the design of two trans-
port protocols (CMTP, RMTP), a network protocol
(RTIP), and a signaling protocol (RCAP) to support
a diverse set of real-time services. The protocols of
the Tenet Group have not been tailored towards hard
real-time applications, and focused on support of mul-
timedia data. The Tenet protocols do not provide a
middleware layer that can accommodate the needs of
applications with special requirements for security or
fault tolerance.

Several QoS standardization efforts are being un-
dertaken by several network communities. The ATM
Forum recently completed a traffic management speci-
fication [3] which supports hard-real time applications
via peak rate allocations in the CBR service class. All
other ATM service classes only give probabilistic QoS
guarantees. The IntServ working group of the IETF is
working towards a complete QoS service architecture
for the Internet, using RSVP [7] for signaling. The

draft proposal for a guaranteed service definition will
support deterministic end-to-end delays; however, an
implementation is not yet available.

The Open Software’s Foundation Research Institute
is pursuing several efforts to build configurable real-
time operating systems for modular and scalable high-
performance computing systems. An important effort
in respect to fault-tolerance is the CORDS [17] sys-
tem. CORDS develops an extensible suite of protocols
for fault isolation and fault management in support
of dependable distributed real-time applications. The
project is targeted at military embedded real-time ap-
plications and focuses on operating systems solutions,
in particular IPC primitives.

7 Summary

We have described the design of BeeHive at a high
level. We have identified novel component solutions
that will appear in BeeHive. We have presented the
architecture and the object model of BeeHive. More
detailed design is continuing and a prototype system is
being developed. Success of our approach will provide
major gains in performance, timeliness, fault tolerance,
QoS, and security for global distributed database ac-
cess and analysis. The key contributions would come
from raising the distributed system notions to the
transaction and database levels while supporting real-
time, fault tolerance, QoS, and security properties. In
application terms, success will enable a high degree of
confidence in the usability of a distributed database
system where a user can obtain secure and timely ac-
cess to time valid data even in the presence of faults.
Users can also dynamically choose levels of service
when suitable, or the system can set these service lev-
els automatically. These capabilities will significantly
enhance applications such as information dominance in
the battlefield, automated manufacturing, or decision
support systems. However, many research questions
that must be resolved remain. They include

e developing an overall a priori analysis on the per-
formance and security properties of the system,
given a collection of adaptive objects,

e developing efficient techniques for on-line dynamic
composition of these new objects,

e analyzing interactions and tradeoffs among the
myriad of choices available to the system,



determining if the fault models are sufficient,

creating time bounded resource management and
admission control policies,

determining if there is enough access to legacy sys-
tems to achieve the security, functionality, timeli-
ness, and reliability required,

determining how the system works in crisis mode,
and

determining how the system scales.
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