The Xpress Transfer Protocol (XTP)-
A Tutorial

Robert M., Sanders

Computer Science Report No. TR-89-10
Revised Yanuary 15, 1990

The Xpress Transfer Protocol (XTP) —
A Tutorial

Robert M. Sanders

Computer Networks Laboratory
Department of Computer Science
University of Virginia

January 15, 1990

The Xpress Transfer Protocol (XTP) —
A Tutorial

© 1989 by the Computer Networks Laboratory,
Department of Computer Science, University of Virginia,
Charlottesville, Virginia

This document is protected by international copyright laws
and may not be reproduced without the written consent of
the Computer Networks Laboratory.

CONTENTS

Introduction . . .

XTP Protocol Overview
2.1 Typesof XTPPDUs
2.2 Multi-Packet Handshaking . .

Error, Rate And Flow Control in XTP
31 FlowControl

3.2 Rate Control

33 ErrorControl
3.4 Gaps And Selective Retransmission

XTP Timing Considerations . .

5. Addressing Mechanisms In XTP .

5.1 XTP Inter-Network Routing . .

6. XTP Fragmentation Issues . . .
7.
8
9

XTP Muiticast Mode

. Prioritization Issues In XTP

REFERENCES, . . .

-

. Detailed Format Descriptions for XTP Packets .

W3 N

21
26
31
33

35

39
46

33
56
58
61
66

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15,
Figure 16,
Figure 17.
Figure 18,

LIST OF FIGURES

XTP Process Structare
General Frame Formats
Three Packet Connection-Mode Handshake . .
Two Packet Transaction-Mode Handshake

XTP Closing Connection Modes and the WCLOSE/RCLOSE/END

Flags « . « « .«
XTP Flow Control and Selective Retransmission
Flow Window Ring Structure
Rate Control of a Hypothetical XTP Transmitter
Gaps and Spanning Byte Groups
XTP Key Exchanging
Address Substitution Mechanism in Routers
XTP Key and Route Exchanging . . .
Multicast Transmission on a Token Ring .
Preemptive Priority Scheduling Among 4 Queues
XTP Control Packet Format .

XTP Information Packet Format . .

The Command Word — The First Four Bytes of an XTP Packet

XTP Trailer Flag Field and Align Field Format

-ij -

-

*

*

.

-

-

10
15

17
20
23
29
33
43
49
52
36
58
63
64
635
65

TABLE 1.
TABLE 2.
TABLE 3.
TABLE 4.
TABLE 5.
TABLE 6.
TABLE 7.
TABLE 8.
TABLE 9.
TABLE 10.
TABLE 11.
TABLE 12.

LIST OF TABLES

XTP Processes . . .

XTP Packet Types . .

XTP Protocol Control Flags

XTP Flow-Control Parameters
Change in Flow-Control Parameter Values .
XTP Rate-Control Parameters
XTP Checksum Parameters .

XTP Selective Retransmission Parameters .
XTP Timers and Timing Parameters . . .
XTP Addressing Parameters . .

XTP Flag Replication During Fragmentation

XTP Prioritization Control Parameters .

- iii -

14
21
23
27
31
34
39
45
35
60

The Xpress Transfer Protocol (XTP) — A Tutorial
Robert M. Sanders

Computer Networks Laboratory
Department of Computer Science
University of Virginia

ABSTRACT

XTP is a reliable, real-time, light weight transfer! layer protocol being developed by a group of
researchers and developers coordinated by Protocol Engines Incorporated (PEX). (1231 Current
transport layer protocols such as DoD’s Transmission Control Protocol (TCP)4!

and ISO’s Transport Protocol (TP)' were not designed for the next generation of high speed,
interconnected reliable networks such as FDDI and the gigabit/second wide area networks.
Unlike all previous transport layer protocols, XTP is being designed to be implemented in
hardware as a VLSI chip set. By streamlining the protocol, combining the transport and network
layers and utilizing the increased speed and parallelization possible with a VLSI implementation,
XTP will be able to provide the end-to-end data transmission rates demanded in high speed
networks without compromising reliability and functionality.

This paper describes the operation of the XTP protocol and in partiéular, its error, flow and rate
control, inter-networking addressing mechanisms and multicast support features, as defined in the
XTP Protocol Definition Revision 3.4.11 :

1. The transfer layer is formed by combining the functionalities of both the network and transport layers of the ISO
OSI model into a single layer. '

1. Introduction

Future computer networks will be characterized by high reliability and very high data
transmission rates. Traditional transport layer protocols, such as TCP and TP4, which were
designed in an era of r;aiatively slow and unreliable interconnected networks, may be poorly
matched for the emerging environment. Although they contain many necessary features, such as
error detection, retransmission, flow control and data resequencing, they are deficient in many
respects -~ they do not provide rate control and selective retransmission, reliable multicast is not
supported, their packet formats are complex and require extensive parsing due to variable header
lengths and support of coniplex modes. These protocols manage many timing events at both the
sender and the receiver — for example, since the sender does not initiate receiver data
acknowledgements, both the receiver and sender require an additional timer. The data
transmission rates assumed are no longer valid and may limit the scalability of the protocols — in
TCP, for example, which was designed in an era of 56Kbps data transmission rates, the flow
window size is small, and based on 16 bit byte sequencing. Finally, the state machines for these
tfansport protocols were intended for sequential rather than parallel execution. For example, the

placement of the checksum field was considered arbitrary and so it was placed in the header.

XTP provides for the reliable transmission of data in an inter-networked environment, with
real-time processing of the XTP protocol — i.e., the processing time for incoming or outgoing
packets is no greater than transmission time. XTP contains error, flow and rate control
mechanisms similar to those found in other more modern transport layer protocols? in addition to

multicast capability. Timer managerhent is minimized — in XTP there is only one timer at the

2. Specifically, two other modem transport layer protocols — Versatile Message Transaction Protocol (VMTP)
developed at Stanford University by David Cheriton, and Network Bulk Transfer (NETBLT) developed at MIT by
David Clark.

receiver, used in closing the context. XTP has a 32 bit flow window. XTP’s state machine is
specifically designed for parallel execution. Address translation, context création, flow control,

error controi, rate control and host system interfacing can all execute in parallel.

The XTP protocol is considered a lightweight protocol for several reasons. First, it is a fairly
simple yet flexible algorithm. Second, packet headers are of fixed size and contain sufficient
information to screen and steer the packet through the network. The core of the protocol is
essentially contained in four fixed-sized fields in the header — KEY, ROUTE, SEQ and the
command word. Additional mode bits and flags are kept to a minimum to simplify packet -

processing.

The XTP subsystem can be decomposed into four processes as shown in Figure 1 and
described in Table 1.° These processes are the reader, receiver, the writer and the sender. In
Figure 1, one end of a full-duplex connection is depicted. A connection can be considered as a

pair of contexts, with one context at each end of the connection.

3. Note that other implementation schemes are possible. This particular scheme was taken from the example imple-

mentation described in the XTP Protocol Definition Revision 3.4.

Process Accesses Description
Reader control blocks Interface between XTP receiver and host operating system.
input buffer Transfers data and commands from receiver to host through control blocks.
Writer control blocks Interface between X TP sender and host operating system.
output buffer Transfers data and commands to sender from host through control blocks.
Receiver | network interface | Parses packets received from the network.
translation map Queues data for reader in the input buffer.
input buffer Uses translation map to determine context owning packet.
context records Updates context record to maintain state of receiver.
Sender | network interface | Prepares packets for transmission,
translation map Uses translation map to determine outbound network address.
output buffer Transmits packets onto the network.
context records Updates context record to maintain state of sender and manages XTP timers.

TABLE 1. XTP Processes

In this hypothetical implementation, control blocks are used to pass data and commands

between the host operating system/user application and the XTP subsystem. Each control block

corresponds to one XTP service request, such as read or write a block of data to or from the

remote process. Each control block is associated with a context, whose state is contained in a

context record.

FROM
NET

¢ READER PROCESS INPUT BUFFER RECEIVER PROCESS

HOS T CONTROL I

BLOCKS

CONTEXT
RECORDS

TRANSLATION MAP

WRITER PROCESS OUTPUT BUFFER

I]

Figure 1. XTP Process Structure

Consider the sequence of events occurring when an application initiates a data transmission.
The host operating system prepares a control block containing the write command and pointing to
the data to transmit. The control block is then passed to the XTP subsystem. In the subsystem, the
writer process examines the control block and responds by queueing the appropriate data into the
output buffer for the associated context. Ultimately, the sender process prepares the data into one
or more packets, which it transmits to the remote destination network address. At the destination,
the XTP subsystem receiver parses the incoming packet, and queues the data for delivery to the
destination’s host operating system. Presently, the destination’s reader process extracts the data
from the input buffer, and transfers it to the host. Once the data have been deIivered, the reader

updates the associated control block to indicate that the data have been received.

The companies belonging to the Technical Advisory Board (TAB) developing XTP are:
AMD, Apollo, Artel/NASA, Boeing, Brookiree, Concurrent, DY-4, IBM, Intergraph, Interphase,

Mentat, SBE, Silicon Graphics, Synemetics, Unisys and Xerox. Research affiliates include the

University of Virginia, Concordia University, Naval Surface Warfare Center (NSWC) and Naval

Ocean Systems Center (NOSC).

2. XTP Protocol Overview

A protocol specifies how data are exchanged between two or more user entities using
sequences of protocol data units (PDUs). User entities for XTP are referred to as client or
application processes, and may be located at or above the session layer of the OSI Reference
Model. Each PDU consists of a sequence of fields laid out in a specific format. Some fields
contain control information, some contain data. Some fields are optional. The length of a field

may be variable or constant. Different PDU types have different packet format specifications.
2.1 Types of XTP PDUs

XTP utilizes two frame formats, one for control packets and one for information packets (see
Figure 2). XTP packets can also be typed. XTP information packet types are DATA, FIRST,
PATH, DIAG (Diagnostic), MAINT (Maintenance), ROUTE and MGMT (Management). DATA
and FIRST packets both can contain user data. Also, an experimental information packet for
coalescing data packets at a router is being studied and is called a SUPER packet. Control
packets have two types: Control (CNTL) and Route Control {(RCNTL). Table 2 describes the

function of each of these packet types.

INFORMATION PACKET CONTROL PACKET
{ Common Header | Information Segment | Common Trailer | [Common Header | Control Segment | Common Trailer |
(24 Bytes) (Variable Length) {16 Bytes) (24 Bytes) (Variable Length) (16 Byies)

Figure 2. General Frame Formats

Both packet type formats (control and information) share a common header segment and a
common trailer segment, each of constant length. The common header is 24 bytes long, while the
common trailer is 16 bytes in length. Each XTP packet includes a variable length segment
between the header and trailer whose segment type determines the packet type (i.e., in
information packets the variable length segment is known as the information segment; in control

packets the variable length segment is referred 1o as the control segment). The important fields

are aligned on 8 byte boundaries so that they can be quickly accessed by any machine with 2

byte, 4 byte or 8 byte alignment. The formats are described in greater detail later,

PACKET | TYPE | CODE | GENERATOR "DESCRIPTION
FIRST INFO | 00010 sender Initiates context establishment, contains address
segment and may contain client data.
DATA INFO | 00000 sender Containg client data,
PATH INFQ | 00110 sender Establishes path to receiver. Used in inter-net connections.
DIAG INFO @ 01000 receiver, Indicates error condition at receiver or router.
router (Example: destination unknown)
MAINT INFO | 01010 sender Gathers end-to-end diagnostic dats.
{Example: determine hoptimes on route)
MGMT INFOQ | 01110 Not defined in the XTP Protocol Definition version 3.4
CNTL CNTL | 00001 sender, Used by receiver to return status; containg receiver’s
receiver error, flow and rate parameters,
Used by sender when re-synchronizing with the receiver.
SUPER INFO 10000 router Experimental packet format used for coalescing data
packets at a router using the same route.
ROUTE INFOQ | 10010 sender, Used for route control, Sent by context originator
router to request that route be released. Sent by Router
to acknowledge that route has been released.
RCNTL CNTL | 1001t router Router generated CNTL packet. May be generated by router
at any time,
Packet type indicated by 5 bit code in common header's command word field.
Least significant bit in type field code is set for control packets,

TABLE 2. XTP Packet Types

The common header specifies the packet type and identifies what portion of the data stream,
if any, is included in the information segment, Optional modes, such as disabling error checking
or multicast transmission, are indicated in the packet header’s control flags field. The common
trailer contains two checksum fields, identifies how much of the data stream has been delivered
to the receiving client application, and also contains a flags field. These flags generally control
state changes, for example closing the data transmission connection or requesting data
acknowledgement. Message boundaries are also specified in the trailer by setting the end of

message flag (EOM).

The information segment contains the user data being transferred, and is also used to pass

addresses and other miscellaneous data when appropriate. In general, user data bytes are

streamed to the receiver application process in the order generated by the sending application
process (a bit pipe). Each dara packet containg a contiguous subset of the data stream being
transferred. In XTP, there is no protocol-imposed upper limit on the number of bytes included in
- each data packet — each implementation is bounded by the underlying datalink layer. For each
implementation this limit is known as the maximum transmission unit (MTU) and is found by
subtracting the XTP header and trailer sizes from the datalink’s maximum data field size. XTP
supports two additional modes of data transfer which allow out-of-band, tagged data of constant
iength (8 bytes) to be included in the data packet along with the user’s data. These additional data
bytes also appear in the information segment, either at the beginning or at the end of the usual
user data. Their presence is indicated by flags in the header and trailer (the tag).. Beginning
tagged data are indicated by the BTAG flag in the common header. Ending tagged data are

specified with the ETAG flag in the common trailer,

The control segment contains the receiver’s error, flow and rate control parameters’ values.
This segment also contains fields used to resynchronize the transmitter and receiver when

necessary.
2.2 Multi-Packet Handshaking

Sequences of PDU exchanges between the user entities must correspond to a protocol-defined
handshake. The handshake requires multiple packet exchanges in both directions and perhaps
involving different types of packets. Two-way communication is necessary to establish end-to-
end data transmission reliability levels in XTP as in other protocols.”) In XTP, multi-packet
exchange sequences provide user applications with both a transport-level virti;zal circuit capability
and a transport-level datagram service. For exarnplé, in XTP a connection may consist of an

exchange of three packets, as shown in Figure 3.

-10-

DESTINATION PACKET FUNCTION

s Request context be established
» Transmission of user data

FIRST (A) : FIRST (A)
_ s Request context termination

¢ Acknowledge context init request

¢ Acknowiedge user data reception

e Acknowledge context termination
request

+ Inform destination that sender
has terminated context

CONTROL (B) CONTROL (B)

CONTROL (©) CONTROL (C)

Figure 3. Three Packet Connection-Mode Handshake

The scenario above depicts how XTP can reliably set up a connection between two user
processes, transmit data, and close the connection with a minimumvof three packets. In this
scenario, the source initially transmits packet (A). At the destination the header is examined and
it is determined that the source wishes 1o establish a send connection. If the destination wishes to
comply, a context is established. The packet’s data are then queued for transfer to the wiiting

destination user process.

Within packet (A)’s header and trailer is encoded the current status of the connection at the
source from which it is deduced that packet (A) is the last data packet to be transferred, and that
the source is ready to close the connection. Also, the source requests that a control packet be

returned with the current status of the destination.

After successfully transferring the received data to the host, the destinaﬁon complies by
sending control packet (B). This packet acknowledges the receipt of the data, and indicates that
the destination is also ready to close the connection. On receiving packet (B), the sender emits
control packet (C), and closes its side of the comnection — thus completing the three way
handshake. Any buffers still associated with the connection are freed, and the sender will no

longer respond to control packets arriving for the context. When packet (C) is received by the

“11 -

destination, the connection is closed.

Since the bésic network may be unreliable, packets may be dropped in transit, become
corrupted, arrive out of order, or may be duplicated. Packet reception is not guaranteed. The
sender must assume ﬂuat-packet reception failed until directed otherwise by the receiver. Thus,
the receiver is required to positively acknowledge correctly received data from the network as in
TCP. This acknowledgment is contained in the lcontrol packet sent from the destination back to
the sender. By a similar argument, the receiver can not be sure that the acknowledgement arrived
safely at the sender unless the sender acknowledges the receiver’s acknowledgement. To avoid
the recursive trap of acknowledging acknowledgements, and acknowledging acknowledgements
of acknowledgements, the protocol must resort to a different mechanism for guaranteeing
delivery of the acknowledgement. It is more efficient for the receiver to assume that the sender
received the acknowledgement unless informed by the sender otherwise. This shifts the burden of
lost acknowledgments onto the sender. In XTP, the sender can request acknowledgement of all
currently received data by setting the status request bit (SREQ) in the XTP common trailer, as
described in Table 3. A timer (WTIMER) is used by the sender to determine if the receiver has
failed to respond to a sender-generated request for current status and data acknowledgement. If
the timer expires before an acknowledgement arrives, the sender assumes. the acknowledgment
was lost, and sends another request for a control packet acknowledging the received data. The
only exception is in closing the connection. When closing, the source acknowledges context
termination, o that the receiver can be sure that the context is closed. If this last packet gets

corrupted or lost, the receiver will eventually timeout and close the connection.

This timeout method differs from the approach taken by TCP in that the XTP timer is only
needed when the sender is expecting a return control packet rather than implicitly with each data

packet. This significantly reduces the number of packet retransmissions whern multiple data

-12-

packets are issued for each SREQ and the WTIMER times out due to a sudden increase in the
round trip latehcy time. Unlike TCP, where each data packet would be retransmitted after the
timeout, in XTP only a CNTL packet containing tﬁc SREQ would be sent. The corresponding
returned CNTL packet would indicate which data packets, if any, to retransmit. This is a
conservative procedure which forces a “synchronizing handshake” before retransmitting except

when retransmission is explicitly indicated by the receiver.

The XTP receiver only sends an acknowledgment when the sender requests one. Thus, a
range of data packets may be acknowledged by one CNTL packet. This reduces the overhead of
generating and receiving extraneous CNTL packets and the number of interrupts which must be

serviced per context.

Some transport protocols require elaborate packet ekchanges to establish, maintain and
terminate a connection. The ISO TP4 protocol, for instance, requires that six logical packets be
exchanged for a single exchange of data.!”l The first pair negotiates the connection creation, the
second pair sends the data packet and acknowledges the correct receipt of data, and the last pair
close the connection. This additional packet ping-ponging is undesirable in a real-time

environment.

Closing an XTP connection is coordinated using the three flags RCLOSE, WCLOSE and
END. These flags are listed in Table 3. The local host sets the RCLOSE or WCLOSE flags in an
out-going packet to inform the remote host that it has completed all reading or writing it intends
to perform on the shared connection. Note that in a full dupiex connection between two nodes A
and B data would be rransmitted i.n‘both directions (A—B and B~»A). Using RCLOSE and
WCLOSE, each direction can be shut down independently. Suppose B-»A completes first. In the
last data packet from B to A the WCLOSE flag is set, indicating no more data will be sent from B

to A on the connection. A responds by acknowledging the received data and the WCLOSE request

-13 -

by setting RCLOSE in the subsequent CNTL packet. Meanwhile, data packets from Al are still
being generated and transmitted to B on the same connection. Packets from B to A now have
WCLOSE set, and afe only CNTL packéts acknowledging data sent from A to B. Pa;:kets sent
from A to B do not have WCLOSE set, but do have RCLOSE set. Finally, when A is preparing
its final data packet, it set.s the WCLOSE flag in the outgoing packet to inform B that 4 has also
completed writing, and is ready to close the A—8 ransmission (RCLOSE is also set in this

packet). st acknowledging CNTL packet also contains both RCLOSE and WCLOSE.

The END flag is set in an outgoing packet to signal to the remote host that the local host
released or closed its end of the connection, Thus, END is set in the final packet transmitted, and
indicates that the context has been terminated — i.e., that it is guaranteed that no further packets
can be exchanged, If, at any time, a packet is received with the END bit set, the context is
assumed closed at the remote end, and the local host releases the context. This means that the
receiver/sender will not generate further packets, unless errors occur requiring retransmission. In

the previous paragraph, B’s last CNTL. packet would have the END flag set.

-14 -

Parameter Location Description
SREQ trailer flags | (Immediate Status Request)
field (1 BIT) | Set by sender when requesting receiver’s status,
Effect: Receiver immediately returns a CNTL packet containing
up-to-date error, rate and flow parameter values.
DREQ trailer flags (Delayed Status Request)
field (1 BIT) | Set by sender when requesting receiver’s status.
Effect: Receiver delays returning CNTL packet until all
queued data has been delivered to receiving client.
END trailer flags (End of Connection)
field (1 BIT) | Set in the last packet for each connection.
Effect: No more packets will be transmitted.
RCLOSE trailer flags (Read Side Closed)
field (1 BIT) | Set when closing connection.
Effect: Future incoming packets will be ignored, even if
some data has not been acknowledged.
WCLOSE | trailer flags {(Write Side Closed)
field (1 BIT) | Indicates that all user data has been transmitted.
Effect: New output commands are aborted but retransmission of
unacknowledged data may occur.
EOM trailer flugs (End of Message)
field (1 BIT) | Marks the end of the current message transmission,
Future packets (except for retransmissions) will pertain to
the next message.
Effect: EOM indication passed to receiving client.
BTAG header flags | (Beginning Tagged Data)
field (1 BIT) | Signifies presence of user-tagged data in
first 8 bytes of the information segment.
| Effect: BTAG indication and associated data are passed to
receiving client.
ETAG “trailer flags (Ending Tagged Data)
field (1 BIT) | Signifies presence of user-tagged data in
last 8 bytes of the information segment.
Effect: ETAG indication and associated data are passed to
receiving client,

TABLE 3. XTP Protocol Control Flags

Referring to Figure 3, Packet (A) requests context termination by setting the WCLOSE bit.
' The destination notes that WCLOSE has been set, and ackﬁowledges the context termination
request by setting RCLOSE in control packet (B). In the final packet (C), the sender sets all three

flags (END, WCIL.OSE and RCLOSE) to terminate the connection.

The "close" protocol based on END, RCLOSE and WCLOSE can uniformly support the three

packet graceful termination of Figure 3, an abbreviated termination, transactions, and abort

-15.-

situations without modification.

The two-packet, transaction-like packet exchange sequences are referred to as fast
handshakes. For full duplex connections, these modes are less reliable than the three packet
connection and appear in Figure 4. The two packet fast close can be considered a transport level

datagram service or the basis for simple request/response operations.

SOURCE DESTINATION
READER

FIRST (A)

‘\\%.

RECEIVER DELIVERS DATA

CLOSE INDICATION FOLLOWS DATA

CONTROL (B)

Figure 4. Two Packet Transaction-Mode Handshake

In one fast close mode, the source informs the destination that a final close acknowledgment
packet will not be sent by setting both RCLOSE and WCLOSE in packet (A)’s trailer, The
source also sets SREQ, as discussed previously, to request acknowledgement of the data it
transmitted. Since the source has set RCLOSE, the destination knows that the source will not
transmit a final acknowledgement after receiving control packet (B). The advantage of this mode
is that the destination doesn’t have to wait to close the context after issuing the closing control

packet. Control packet (B) sets RCLOSE, WCLOSE and END.

In another fast close mode, the sender sets WCLOSE and SREQ in packet (A), and the

receiver returns with WCLOSE, RCLOSE, and END set in packet (B). The relationship between

-16 -

the XTP closing flags can be illustrated as shown in Figure 5. In Figure 5, six different paths for

closing a connection are depicted.

In the paths marked a) and b), the local host operation system or XTP client application has
requested a graceful close of the XTP connection. Path a) corresponds to the case where a
sending context has completed data transmission. In the first step, the host informs the XTP
~subsystem that closing has been requested. As in Figures 3 and 4, the XTP subsystem responds
by setting the WCLOSE flag in the next outgoing packet. At this point, the sending context enters
the next step in cloging. In this step, the local XTP subsystem waits for the remote system to
acknowledge all data and, specifically, to acknowledge the write close request (WCLOSE) with a
remote read close acknowledge (RCLOSE received). At this point, the WTIMER is started, as
shown in the picture; by a loop back to the same state. If the acknowledgement occurs before
WTIMER expires, the connection can now be closed by sending the final sender-generated
CNTL packet of Figure 3. Otherwise, the WTIMER expires, a second WCLOSE request is sent,
and the WTEMER is restarted. Path b) is 2 symmetric case when the host at the reader requests a

graceful close.

-17-

B

Host requests Send Receive Send
a) Sender WCLOSE RCLOSE END.
Close In Packet in packet In Packet
Host requests Send Receive Send
Reader RCLOSE WCLOSE END
Close In Packet in packet iIn Packet
Receive Send
) WCLOSE RCLOSE . END
in packet In Packet in packet
Receive Send Receive
d) RCLOSE WCLOSE . END
in packet In Packet in packet
Host requests
e) Context
Abort In Packet
Receive
f END
in packet

Figure 5. XTP Closing Connection Modes and the WCLOSE/RCLOSE/END Flags

In parts ¢) and d), the local XTP subsystem has detecied a close request from the remote end
of the connection, and responds by closing the local end gracefully. As in the host initiated close

modes, the WTIMER is used to retransmit the close acknowledgement until a packet containing a

-1%8-

set END bit is received. (Once again, the third and final packet in Figure 3.)

The three packet close can at any time be short-circuited by sending the END bit prematurely,
from either end of the connection. As shown in paft e), this may have been initiated by an
“impatient” host. At the connection end receiving the END packet, closing is abruptly terminated

as in part).

Note that when a data acknowledgment is requested in XTP, as in the FIRST packets of
Figures 3 and 4 (packet (A) inl both figures), the acknowledgment is not necessarily provided
immediately. In the fast close cases, the receiver delays acknowledgment until all data received
prior to the SREQ have been processed. This includes the data contained in the packet with

- SREQ.

XTP contains a second staﬁ;s request flag in the common header flags field which is called
DREQ. DREQ differs from SREQ in that SREQ requests a response immediately from the
receiver, and DREQ requests it after the currently queued data have been received at the receiver.
This is useful because the acknowledgement is delayed until the receiver has freed the buffer
space associated with the queued data and is capable of accepting more data from the sender.

Flow control blocking is minimized,

In closing, SREQ behaves like DREQ — if this were not so, the protocol would behave as
follows in minimal packet exchange scenarios such as in Figure 3. Packet (A)’s SREQ could
generate CNTL packet (B) before the data from packet (A) had been delivered to the receiving
client. Thus, CNTL packet (B) doesn’t acknowledge the data sent in packet (A). At the sender,
the context could not be closed because the data was not acknowiledged. After the WTIMER
expires, a new packet would be generated at the sender, say packet (C”) requesting the receiver
once again return its status. The final control packet, say (C”), would acknowledge that all data

had been successfully transferred. In this scenario, an extra packet, Packet (C”) has been sent, and

-19.

the WTIMER has been forced to expire at least once, both of which are unnecessary and

undesirable. Thus, in closing, SREQ responses are delayed until all data have been processed,

3. Error, Rate And Flow Control in XTP

XTP includes substantial error, rate and flow control mechanisms which all require feedback
from the remote XTP receiver process to the local XTP sender process. This feedback is
comaihed inside CNTL packets and guides the sender on what and when to transmit. In this
section, each of these control mechanisms is éxplored. In particular, flow control is presented
within the context of an example, depicted in Figure 6. This figure illustrates a situation where
the sender intends to transmit a total of 27 packets containing user data to the destination. At the
point in time depicted, the data in the first seven paékets have been transmitted, has arrived
correctly at the destination’s receiver, is queued for delivery to the destination host receiving
process, and has been accepted by the host — processing on these sevén packets has thus been
completed. The receiver has detected a gap in the data stream occuring over the bytes in packets
11 through 14. A gap is detected when out of sequence data are received and accepted. The
missing data bytes may be lost or delayed. The XTP packet format has provisions for reporting
up to 16 separate gaps that are outstanding within the data stream of any one context at a given

point in time.

Packets 8, 9 and 10 have been received by the destination, and queued for transfer to the host.
They currently occupy space in the XTP buffer for receiving packets from the network. Buffer
space is finite, and is partitioned among various contexts between the destination and other hosts
on the inter-network. The buffer space curréndy allocated for this context’s receiver buffer at the
destination is large enough to hold 13 data packets. (Note: Buffer space is actually allocated as
a number of bytes*, not packets, because fhe amount of data contained in each packet may

vary. The scenario presented here has been simplified.) Packets 8, 9 and 10, in addition to

-20 -

packets 15, 16, 17 and 18 are in the buffer, leaving space for six more data packets.

%

[2]3[4 1516 [7 |8 19 MO IZ I3 [14[5 16 i7 I8 i 0

2T 122 |23 [125 26 o7]

TO BE

ALREADY
TRANSMITTED
< (HOLE)->

| RECEIVED BY DESTINATION XTP RECEIVED

(NO HOLES) BY DEST XTP
ALREADY
DELIVERED TO
DESTINATION HOST

(BUFFERS RELEASED) DESTINATION RECEIVE BUFFER

ALLOCATION OF 13 PACKETS

UngmmOmi OZ -~

Coap

Figure 6. XTP Flow Control and Selective Retransmission

TRANSMITTED

NOTES:

CURRENT RECEIVER ALLOC
VALUE IS SEQUENCE NUMRER
OF FIRST BYTE IN PACKET 21

SENDER WAITING FOR
UPDATED ALLOCATION
FROM RECEIVER

PACKET 20 CONTAINS SREQ
AND IS IN TRANSIT

PACKET 19 IS CURRENTLY
ARRIVING AT THE
DESTINATION

The four packets 11, 12, 13 and 14 were transmitted, but never arrived at the destination in an

acceptable form. Together, they represent a gap in the stream of data received from the network

for the context. These packets have been either discarded or delayed somewhere in the network.

If the receiving XTP process continues to accept packets beyond packet 20 before the gap is

filled, the receiver will not have enough buffer space for the gap when it arrives. The destixiation

XTP process must assume that the gap will eventually arrive, and therefore sets aside space for

the lost bytes from the allocation. Since the XTP receiver process is required to deliver the data

4. An advantage to this policy is that byte-oriented allocation is not affected by internet fragmentation,

-21.

stream in the same byte ordering that the source process generated it, packets 15, 16, 17 and 18
must be held in the buffer until the preceding gap is filled. Thus, 11 data packets are currently in
the buffer space, or have space reserved. The remaining two packets of buffer space are currently

free,
3.1 Flow Control

When the buffer space is full, the receiver will discard any additional non-gap-filling data
packets, even if they are well formed — the receiver will not overrun its buffer allocation for the
context. Unless the sender has detailed knowledge of the receiver’s buffer space, and the
existence and extent of gaps in the received data, it may continue transmitting new data packets

that eventually get dropped by the receiver, needlessly overburdening the network.

Thus, a mechanism must exist for the receiving XTP process to inform the sending XTP
process about the current state of its receiving buffers. This information is included in control

packets sent from the receiver to the sender. Specifically, the receiver includes the parameters in

Table 4,
Parameter Type Location Descri-ption

ALLOC 32 bit sequence number | control segment | | + sequence number of last byte receiver will accept.

DSEQ 32 bit sequence number | common trailer | 1 + sequence number of last byte receiver delivered 1o
destination client process.
RSEQ 32 bit sequence number | control segment 1 + sequence number of last byte TEceIver accepted.
ALLOC - DSEQ Size of receiver's data buffer in bytes. .
RSEQ - DSEQ Number of bytes received and waiting to be transferred to destination client process.

TABLE 4. XTP Flow-Conirol Parameters

ALLOC constrains'the sender from introducing more data than the receiver’s buffers can
accept. The sender refrains from sending bytes with sequence number ALLOC or higher. Thus,
ALLOC is one greater than the highest byte sequence number that the receiver will accept. DSEQ
is the sequence numbér of the next byte to be delivered to the destination application process, or

client. Likewise, DSEQ can be thought of as one greater than the sequence number of the last

-22.

byte delivered to the destination client. All bytes with sequence number less than DSEQ have
been successﬁﬂly transferred to the destination client. DSEQ is always less than or equal to
ALLOC. Subtracting DSEQ from ALLOC (modulo 2°?%) yields the buffer size allocated in bytes
to the context by the receiving XTP process. Note: A default value of ALLOC is used initially by

the sender until a value is received from the receiver.

The sender holds data that have been transmitted in a buffer until it knows the -data have been
delivered to the destination client. As long as the data are buffered, they can be retransmitted if
necessary. When the sender notes that DSEQ has been extended, it frees the buffers associated

with the delivered data.

Note that DSEQ appears in the common trailer rather than in the control segment like
ALLOC and RSEQ. Refer to Figures 16 and 18 for an exact layout of both the control segment

and the common trailer included in control packets.

RSEQ is the sequence number of the first byte not yet received contiguously from the
network. This can be the first byte in the first gap, or the first byte in the next data packet
expected. As with ALLOC and DSEQ, an alternative interpretation exists for RSEQ. All bytes
associated with sequence numbers less than RSEQ have been buffered by the receiving XTP
process at the destination, but may not have been delivered to the destination client process yet,
Thus, RSEQ is one greater than the largest consecutively received data byte sequence number.
The sequence numbers of all bytes associated with gaps lie between RSEQ and ALLOC. The

following relationship conceptually holds for DSEQ, RSEQ and ALLOC:
DSEQ < RSEQ £ ALLOC

Collectively, these parameters provide the means for XTP to implement flow control whereby
the receiver can restrict the sender from sending excessive data prematurely. Note that all

sequence number parameters in XTP occupy 4 bytes — SEQ, RSEQ, DSEQ, ALLOC and the

-23-

sequence number pairs contained in the SPAN field of CNTL packets associated with gaps in the

received data stream.

The exception to the above inequé,iity occurs when the number of bytes to transmit exceeds
2%2, In this case, insufficient bit patterns exist using 32 bit sequence numbers to uniquely identify
each byte 10 be transmitted. To arbitrarily bound the size of data transmissions to this or any other
number would be unacceptable. To allow unbounded-sized transmissions, sequence numbers
must be reusable. XTP, like other protocols, reuses sequence numbers when necessary using
modulo arithmetic — byte O follows byte 232 — 1, Thus, in practice, ALLOC may wrap when

extended, and actually decrease in value, as depicted in Figure 7.

221

Figure 7. Flow Window Ring Structure

It should be observed that each byte still in the bit pipe, i.é., each byte currently in transit or
still subject to retransmission, must be uniquely identifiable, so that retransmission is possible. In
TCP/IP sequence numbers are limited to 16 bit numbers with only 26 = 64K bytes possible in the
bit pipe at any given point in time. On the other hand, XTP's 2°2 bit patterns yield over 4 billion

unique sequence numbers. Thus, XTP is more naturally suited to networks with both high

-4 -

bandwidth and/or high end-to-end latency than TCP/IP.’

Once the sender has been informed of the receiver's allocation limit via the ALLOC
parameter, it continues to transmit until the allocation has been reached, without the need for
individual acknowledgements of each packet transmitted. Thus, XTP more efficiently utilizes the
higher reliability of modern networks, such as fiber optic LANs. Once the allocation has been
reached in this hypothetical example, the XTP sender process sets the SREQ parameter in the last
data packet transmitted, and the receiver responds as earlier described with a cont;'ol packet that
acknowledges all data received, describes any gaps detected, and, if appropriate, advances the

allocation.®

For example, in Figure 6 the receiver is currently receiving packet 19, and waiting to deliver
the packets 8, 9 and 10 to the destination client. Suppose that both tasks complete before packet
20, marked with an asterisk, arrives. The values of the parameters DESQ, RSEQ and ALLQC

will have changed as depicted in Table 5.

. Van Jacobsen has proposed extending the TCP protocol to, among other things, include 29 bit sequence numbers to

extend the size of the TCP flow control window.[5

. Note that other policies are possible for determining when to set the SREQ bit in XTP; in XTP, the SREQ policy is

determined by the user application.

-25-

' Parameter Before After
ALLOC (sequence number of first byte in packet 21) or | (sequence number of first byte in packet 24) or
(1+sequence number of last byte in packet 20) | (l+sequence number of last byte in packet 23)
DSEQ {sequence number of first byte in packet 8) or (sequence number of first byte in packet 11} or
(I+sequence number of iast byte in packet 7) (l+sequence number of last byte in packet 10)
RSEQ (sequence number of first byte in packet 11) or | no change
{1+sequence number of last byte in packet 10)

TABLE 5, Change in Flow-Control Parameter Valués

These changes reflect the frecing of buffer space associated with packets 8, 9 and 10 that
allows the allocation to be extended by three data packets. RSEQ has not advanced because the
sending XTP process is still unaware of the gap’s existence and has not retransmitted the missing
packets contained in the gap. When packet 20 is decoded, the réceiver sees that SREQ has been
set, and responds by sending back across the network a control packet with the new allocation
and a description of the gap. Until the conirol packet arrives at the sender XTP process, the
sender refrains from further data packet transmission. After decoding the control packet, the
sender notes the new, extended allocation, and transmission may resume. Packets 11, 12, 13, 14,

21,22 and 23 could be sent.

An alternative allocation policy exists in XTP based on the size and availability of the
receiving client application’s buffers. This mode is referred to as reservation mode. In reservation
mode, the transmission is determined by the size of the receiving user’s buffers reserved
specifically for the context. In this mode, the sender must pause between message transmissions
(the end of a message is indicated when the EOM bit is set in an outgoing XTP packet) until the
receiving client has posted a new client buffer to receive the next message. This is necessary to
separate adjacent messages into different client buffers, since each message may not entiréiy fill

its buffer.

-26 -

The mode is invoked by the RES flag in the common header flags field. The 4 byte ALLOC
field is redefined in this mode to contain the size of the current receive buffer at the receiving
client when the RES flag is set. ALLOC is located in the common header, Note that the field
designated RESERVED in the XTP header (see Figure 16) has nothing to do with the reservation
mode described here. The RESERVED field is reserved for further extensions to XTP and is

undefined at present.

In reservation mode, the reservation buffer size may differ greatly from the normal allocation
size, and may be greater. This mode is similar to the the allocation control mechanisms in the

VMTP! and NETBLT™®! protocols.

3.2 Rate Control

Unfortunately, flow control is not sufficient to ensure efficient, error-free transmission
between the sender and receiver, even on an extremely reliable network. Imagine a network
contaitting both hardware and sofiware implementations of the XTP protocol. Since the VLSI
chip set will allow much of the protocol to be execut_ed iﬁ parallel, a sending XTP process
implementedl in hardware may overwhelm a receiving XTP process implemented in software if it

sends multiple, back-to-back packets.

One solution would be for the receiver to impose a one packet allocation schemé:in which the
sender would block after each packet — i.e., stop-and-wait. Each data packet would cqntain a
SREQ, and each packet would be individually acknowledged by the receiver, In this scheme,
excessive nufnbers of control packets would be generated (one per data packet), and the transfer

of data would proceed slowly.

Even with all-hardware implementations, a router between two networks may be transferring
multiple data streams between two networks where each data stream is attempting to use the

maximum data flow rate possible. Although the hardware XTP receiver in the router may have no

.27 -

trouble processing and queueing a burst of incoming data packets as it arrives, the router’s output
buffers may fill up due to the unpredictable backlog of packets queueing for output on the target
network. Consider, for example, a node on an FDDI LAN connected fo a node on an Ethernet
LAN through a router. Clearly, the router occasionally needs a mechanism for lowering the
packet arrival rate. The one packet allocation approach would be very inefficient, and all of the
extra control packets would still pass through the router, taxing its capabilities further, In short, a

better approach is needed.

The XTP solution uses rate control to restrict the size and time spacing of bursts of data from
the sender. Within any small time period, the number of bytes that the sender transmits must not
exceed the ability of the receiver (or intermediate routers) to decipher and queue the data —
otherwise they will be overwhelmed and begin dropping packets, creating gaps in the received
data stream. ‘This problem is independent of the flow control/buffer size problem discussed
previously. The receiver may have adequate buffer space available, but back-to-back packets
may arrive faster than the XTP receiver process can analyze them. The XTP parameters used to
implement rate control are shown in Table 6. Together, the two rate control paramefﬁrs allow the

receiver to tune the data transmission rate to an acceptable level.

Parameter Location Description ;
RATE control segment | Maximum number of bytes receiver will accept in each one second tme period,
BURST control segment | Maximnum number of bytes receiver will accept per burst of packets. The
transmitter may not transmis more than BURST bytes between RTIMER timeouts.

RATE/BURST | Maximum number of packet bursts per second.
BURST/RATE | Seconds per Packet Burst. 1he rate timer (RTIMER}) is set to this value,

RATE =1 Rate control is disabled — L.e., sender transmissions are unconsirained.

TABLE 6. XTP Rate-Control Parameters

In the first situation described, where a XTP receiver implemented in software is listening to
a hardware-implemented sender, packet bursts must be time spaced to guarantee that the slow

receiver has sufficient time between back-to-back packet bursts to complete protocol processihg

-28 -

before the arrival of the next burst. With the above parameters, inter-packet spacing can be
achieved as follows. Set the BURST parameter equal to the MTU (maximum transmission unit)
of the underlying network. Thus, each packet "burst" may not contain more than one packet’s
worth of data. If the receiver can handle N packets per second, set RATE equal to MTU * N. In
this manner, the sender is constrained to spacing back-to-back packets accordingly. See Figure 8
which plots bytes transmitted versus time during a one second time period for a hypothetical XTP

transmitter.

The RATE and BURST parameters are adjustable, and for each implementation of XTP,
appropriate values could be determined experimentally. Their values would then be included in

all out-going control packets from the receiver. Note that in this example, RATE > > BURST.

In Figure 8, the BURST and RATE parameters have been adjusted such that an inter-burst
separation occurs. Each burst of data is depicted by a ramped triangle. The separations between
adjacent bursts are shown by horizontal dotted line segmehts in which no progress is made

towards the top of the graph. During each pause in the transmitter, the slower receiver is allowed

to catch up.

.99

Cumulative
Bytes 4+
(RATE) A
ﬁﬁﬁﬁﬁﬁ B ;rt;s per :
BURST ,
"““““ZIWU ! |
! I
! 1
........ X !
]
i RTIMER!
. : Interval 1
....... !
]
A,. ans s {
L [4 | 4 |1 [I
x \pause) iy {pause) |y (pause) Jy Kpause) [y (pause) [y (pause) s (pause) |
M M M M M M p 1 Second

I I 1 I I I I
T T T T T T T

+

Figure 8. Rate Control of a Hypothetical XTP Transmitter

Unfortunately, the sender process does not know the appropriate RATE and BURST values to
use with a particular receiver until the first burst of data has been completed; the proper value for
ALLOC is also unknown initially. The appropriate values only become known when the first
control packet arrives at the sender. Before this control packet is returned, the sender must use
default values for the various flow and rate control parameters. These values may be different for
outgoing data than for incoming data; for instance, on a network with one hardware
implementation and 5 slower software XTP implementations, incoming packets té the hardware
XTP receiver can be handled with no spacing between packets, but outgoing packets need to be
spaced by the same node. Thus, different flow and rate control parameters may be used by the

sender process.

If protocol processing speeds vary widely on a network, the default values for ALLOC and
rate control parameters affect the number of dropped packets during the initial data burst. A

cdnservative approach would be for the sender to set the default ALLOC to a small number of

-30-

bytes (say one average-sized data packet as defined by the maximﬁm transmission unit} and to use
the aforementioned approach to setting the default rate parameters such that packet spacing is
sufficient for the slowest receiver on the network. After the initial burst, which also establishes
the context connection, the sender would block, waiting for the returned control packet generated
by the SREQ in the last data packet of the burst. This control packet would contain the more
accurate flow and rate control parameters specifically applicable to the receiver. In__this case, few

packets would be lost at the cost of moderately more overhead in the initial burst.

In the router example discussed above, back-to-back packet delay is not needed, but limiting
the number of bytes arriving in a given time period is; thus setting RATE > > BURST (=MTU)
is not adequate for controlling flow rate. The router, implementing the XTP protocol in
hardware, can absorb back-to-back packets as fast as they arrive, but must avoid exhausting the
buffers between the two networks. To implement this, BURST could be set equal to RATE, and
RATE would be set to the rate at which the router could relay frames for the context in terms of
bytes per second. In this scenario, the RTIMER’s interrupt rate would be once per second, and the
number of bytes per second allowed would equal RATE. As more inter-network contexts become
established, the router may need to restrict the burst rate for existing contexts with the RATE
(=BURST) parameters, Later, as contexts become inactive or removed from the inter—network,
the router may chose to increase the flow rate of the remaining contexts. RATE (zBTfRST) would
be increased in outgoing control packets in this case. RATE and BURST allow the router to

dynamically control the flow into the router so as to avoid overwhelming it with requests.

XTP’s rate control feature may be disabled by setting RATE equal to -1 in outgoing CNTL

packets.

-31-

3.3 Error Control

When errors do occur in transmission, XTP, like TCP and TP4, must detect the errors and
initiate retransmission of the erroneous data. XTP uses two checksums over the XTP packet
contents to verify the integrity of the data received through the network. These two checksums
appear in Table 7. The XTP checksum algorithms were chosen for speed and VLSI compatibility;

details of their operation are found in Appendix A of the XTP Protocol Definition version 3.4.[1

Parameter Location Description

DCHECK Value traifer (4 bytes) 4 byte checksum over data fields,
Includes the control segment in contro] packets;
the information segment in information packets.
"HTCHECK Value tratler (4 bytes) 4 byte checksum over header and trailer.
NODCHECK Flag traiter flags Flag used to signify that DCHECK checksum is not
. field (1 BIT) present in current packet.
NOCHECK Hag header flags Flag used to signify that checksum calculation is
field (1 BIT) disabled in current packet.
XOR Calculated using exclusive-OR operations only. Represents the vertical parity of datd bytes.
RXOR Each intermediate result is left rotated before exclusive-ORing in the next word.

XTP's checksum function is formed using left rotation and exclusive-OR operation§ over the 16-bit words covered.
The 4 byte checksum is the concatenation of two 2-byte checksums XOR and RXOR. (XOR | RXOR).

TABLE 7. XTP Checksum Parameters

It is preferable to place the checksums in the last few bytes of the XTP frame so that the
checksum calculation can be concurrent with packet transmission or reception. If the checksums
were placed in the front of the packet, the entire packet would have to be accessed to compute the
checksum before packet tranéinission begins. Thus, two sweeps over the data would be necessary
— one for the checksum, and one for copying the bytes to the network. This inefficient approach
is inherent to TCP and TP4, whose checksums occur before the information segment, and
avoided in XTP where the checksums follow the rest of the packet and are found in the common

trailer.

The checksum DCHECK is optional in that it can be activated or deactivated by setiing the
NODCHECK flag in the XTP common trailer’s flag field. When NODCHECK is set, no

DCHECK is calculated by the sender XTP process, and the DCHECK field is undefined.

-32-

Checksum calculation is also not performed when the NOCHECK bit is set in the header flags

field.

When either checksum indicates that the packet received contains erroneous information, the
receiver assumes the pa-cket is garbled and discards it. If the source were known, the receiver
could immediately inform the source XTP sender process that the packet was garbled in transit —
allowing the source to begin retransmission. Normally, this information is- available by
referencing the packet’s KEY field, located in the common header, that uniquely. identifies the
originating client process at the node that transmitted the packet. But, the receiver cannot assume
that the KEY field is correct, since the error could conceivably have occurred anywhere within
the packet including the KEY field itself (if the HTCHECK checksum is invalid). Thus, the

receiver always discards packets received with errors.

At the sender, transmission continues as if no error had occurred. The next packet is placed
onto the network. If this new packet arrives correctly, the receiver examines the starting
sequence nﬁmber for the packet. Like the context identifier KEY, the starting sequence number is
contained in the packet’s header (in the SEQ ﬁeld.). The receiver expects the SEQ value of the
incoming packet to equal the current RSEQ value for the context. Since a packet was dropped,
the incoming SEQ is larger than RSEQ by the size of the dropped packet. The receiver accepts
the data packet, noting that it arrived out of sequence, and that a gap exists in the data stream,
Now the receiver can utilize the KEY information of the current packet to send back a CNTL
packet to announce the gap. Having the receiver indicate when a gap has been detected is
optional in XTP; if the receiver fails to send the CNTL packet, the sender will eventually include

a SREQ and block, or timeout.

-33-

3.4 Gaps And Selective Retransmission

A receiver could describe a gap using a pair of sequence numbers that bound the gap. Instead,
XTP describes the groups-of bytes (called spans) which were received. This process is known as
selective acknowledgement. Thus, in XTP, the location of gaps is inferred to be between the |
spanning byte groups selectively acknowledged. Each byte group is described with two sequence
numbers that bound the bytes received. Associated with each byte group is a gap immediately
preceding it in the ordered data stream. The first sequence number in the pair marks the byte
where the group started (i.e., the first byte in the group). The second sequence number is one
greater than the Iast byte in the group (i.e., the first byte not contained in the group.) Between
each pair of received byte groups is a gap, or hole, in the received byte stream encompassing one

or more bytes, as illustrated in Figure 9.

GAP GAP GAP
1 2 3 e,
RS ey Y I 0 Y I OO OAte:
SPAN
1 2 3 -

—
5
Z
———————,

ﬂ_
|
I

B
5
Z
<
R

Figure 9. Gaps and Spanning Byte Groups

As mentioned earlier, XTP allows a receiver to track and lnotify up to 16 separate gaps for any
given context. This capability is not required, however ~ receivers may chose to ignore all out-
‘of-sequence data. In this case the receiver would never allow géps to be created, and would force
the sender to retransmit both lost data and correctly received out-of-sequence data. This latter

method is referred to as go-back-n retransmission,

Since up to 16 byte groups may be described in any CNTL packet, the SPAN field must be

variable in length. It is located in the controf segment, and contains descriptors for the gaps.

Each byte group descriptor takes 8 bytes and contains the two 4 byte sequence numbers that
bound the group. Preceding the sequence number pairs is NSPAN, occupying 4 bytes so that the
following SPAN sequence number pairs are aligned onto 8 byte boundaries. NSPAN contains the

number of byte groups described with the SPAN field. In Figure 9, NSPAN would equal 3.

Each gap spans a portion of the data stream, For 16 individual gaps to accumulate would
presumably be a rare occurrance, and only possible when large volumes of data are transmitted
v.lrith few SREQs. Consider a massive file transfer between mainframes with considerable buffer
space. The entire file could be transferred with a single SREQ in the final data packet. Any lost
data could be determined and communicated to the sender in a minimum number of CNTL
packets (one) in most cases. This process, in which only the lost data are retransmitted, is known

as selective retransmission. The XTP selective retransmission parameters are summarized in

-34 -

Table 8.
Parameter Location | Description
NSPAN control Number of spanning byte groups described in the SPAN field.
segment | Legal values range from 0 to 16.
SPAN control Variable length field containing pairs of sequence numbers.

segment | Each sequence number pair describes a spanning byte group.
The first sequence number in each pair is associated with the
starting byte of the group. The second sequence number is
one greater than the sequence number of the last byte in the group,

Spanning Group | A contiguous group of bytes received out of sequence, To the left of

each spanning group is a hole or gap.
The sequence numbers of all bytes in all spanning groups are
between RSEQ and ALLOC,

Gap

Portion of the data stream currently in transmission which has been
tost or delayed. The receiver detects a gap when a packet arrives
whose starting sequence number (SEQ) > RSEQ.

TABLE 8. XTP Selective Retransmission Parameters

-135.-

4, XTP Timing Considerations

In certain pathological cases, the XTP connection may be severed without one or both énds
realizing what has occurred. Typically, connection timers are used to detect the péssibility that
such an event has occurred. In XTP, the CTIMER is used to monitor for such events. CTIMER
expires when the connection has been inactive for 60 seconds. By the time a break is suspected, a
number of attempts may have been made to prompt the other "end" to re-sjfnchronize the
protocol. In XTP, these prompts are in the form of CNTL packets (called sync packets). If, after a
number of attempts have been made, the situation has not improved, the XTP process will inform
its client application process-of the situation, and if so directed, close the connection. Each sync

packet is issued when a timer expires.

In other situations, communication may have been temporarily suspended or interrupted, and
connection closure is not required. In these cases, XTP attempts to re-synchronize the sender with
the receiver. Re-synchronization is attempted when the sender has issued a SREQ to the receiver
and the WTIMER times out before the receiver’s CNTL packet has been received by the sender,
as earlier described, The X'TP sender process will assume that the packet containing the SREQ
was dropped, and transmits another packet containing an SREQ to the receiver — a sync packet.
If the oﬁginal SREQ containing data packet is still on the network, two SREQs could arrive at the
receiver, both requesting positive acknowledgement of data received, and an updated ALLOC
value from the receiver. The receiver complies by outputting two CNTL packets back to the
sender. Note that at the receiver, the values for ALLOC, RSEQ and DSEQ may have changed
between the arrival of the two stauis requests. Thus the CNTL packets may contain different
information ~ one outdated and misleading, the other one current, so the sender must be able to

distinguish the most current CNTL packet from old ones.

XTP associates each receiver-generated CNTL packet with the SREQ that requested it. When

-36 -

the sender issues a sync packet, it increments a counter value (the SYNC counter for the context),
and includes this value in the SYNC field of the outgoing sync packet. The SYNC field is located
in the control segment, and occupies 4 bytes. When the receiver receives sync‘ packets from the
sender, it copies the SYNC value from the incoming CNTL packet into the ECHO field of the
outgoing CNTL (called an echo packet). The sender differentiates between old echo packets and
the current one by comparing the ECHO value against the current SYNC counter contents. Like

SYNC, the ECHO field is 4 bytes in length and located in the control segment.

Note that an ECHO/SYNC match does not guarantee that the echo packet is the most current
echo packet, but from the sender’s point of view, this is the best assumption. Consider the
undesirable case where a sender’s second sync packet arrives at the receiver before the first sync
packet, by taking a different route on the inter-network. The receiver will issue two echo packets,
but in the wrong order. In the first echo packet, ECHO is set to 2, while in the second, more
current echo packet, ECHO is set to 1. When the first echo packet arrives at the sender, SYNC

equals ECHO, and the packet is accepted. Although this scenario is possible, it is improbable.

When an incoming ECHO matches the context’s SYNC counter value, the sender examines
the receiver’s current status data. If no retransmissions are needed, and ALLOC has been
extended, the sender resumes with data transmission. If the receiver has not extended ALLOC,
but there are gaps to retransmit, the sender begins retransmitting the lost data. Otherwise, the

sender must wait for the receiver to extend the ALLOC value before proceeding, and must block.

Each time the sender outputs a new syac packet, it resets WTIMER, and blocks. If the sender
fails to synchronize, or fails to receive an updated and extended ALLLOC in a reasonable amount
of time, the XTP sender notifies the sending client process, and may terminate the connection. If
the sender and receiver reestablish synchronization, the sender quits outputting syac packets, and

resumes data transmissions.

-37-

Sync/echo packets are also used to update the current round trip time (RTT) estimate, The
sender sets the TIME field in the sync packet to the current time at the sender. When the receiver
prepares the corresponding echo packet, it also copies the TIME field of the sync packet into the
TIME field of the echo packet. When the sender receives the echo packet, it estimates the current
round trip time by subtracting the echoed TIME value from the current time. This RTT estimate
is used by the sender in setting the duration of the WTIMER. WTIMER is set to twice the RTT.
Since XTP acknowledgements are generated at the sender’s request (using SREQ), the RTT
estimate more accurately reflects the average round trip time than schemes relying on timeout-

generated acknowledgements.

XTP bounds the time each packet is allowed to "live" in the network using the time-to-live
(TTL) field in the common trailer. The time value is expressed in 10 millisecond "ticks". In
outgoing packets, this field is initialized by the user to a given number of ticks (in TCP time-to-
live is based on the current RTT estimate). At each hop, the TTL value for the packet is
decremented — when the value becomes zero or negative, the packet has exceeded its time to
live and is discarded. Note that bounding the time the packet can exist on the inter-network aids
in removing packets which can not be delivered due to pathological situations such as host or

router crashes.

Since the TTL field occupies 2 bytes, 64K different values are expressible in the field yielding
a range in values from zero seconds to 655.36 seconds in 10 millisecond steps. For networks with
greater propagation time than 655 seconds, (e.g., a very wide area network) the TTL mechanism
must be disabled. XTP allows the TTL mechanism to be disabled by setting the initial TTL value
to zero. If a packet arrives with a TTL value of zero, it is assumed that the policy is to bypass the
TTL decrement-and-discard step, and the packet is relayed onto the next network with the TTL

value still equal to zero.

~38 -

When transmitting, the sender may use a timer to comply with the receiver’s rate control
requirements for bytes/second (RATE) and bytes/burst (BURST). This timer (RTIMER) must be
accurate enough to support the rate control timing requirements for the given implementation.
The duration of the RTIMER is set to BURST/RATE seconds. Each RTIMER timeout
reestablishes the limit on the maximum number of bytes which can be output on the context

during the next RTIMER time period.

XTP requires only one timer at the XTP receiver process, and it is only needed during
connection closing as shown earlier in Figure 5. This timer (also called the WTIMER) is set
whenever the receiver process issues a CNTL packet with the RCLOSE request set. The timer

estimates the round trip time, and if necessary, generates a new RCLOSE request upon expiring.

Each multi-context route requires a special timer called a Path timer {(PTIMER). In routers,
the PTIMER duration may extend for days to allow datagram-type service over stable,
infrequently used routes. In each end-node, the PTIMER duration is substantiaily shorter, and

may be measured in minutes or hours.

The timing parameters discussed in this section are listed in Table 9.

.39.

TIMER Dugation Description
WTIMER RTT Used by sender when re-synchronizing with receiver. A new sync packet is
transmitted when WTIMER expires. WTIMER is restanted every time a SREQ is
issued, and during closing.
Used by receiver during closing.
CTIMER 60 seconds Used by sender to detect dead connections.
RTIMER | impiementation Used by sender to perform rate control,
dependent
(BURST/RATE)
PTIMER minules or Path timer (one per route in each node), Used by host in managing routes,
tens of minutes | Each route may support multiple contexts,
PTIMER hours or Path timer (one per route in each router). Used by router 1o detect dead routes.
days Each route may support multiple contexts,
Parameter Location o Description
RTT sender’s Round Trip Time estimate for context. Estimate based on time elapsed between
context transmission of sender sync packet and reception of associated echo
record CNTL packet.
TTL common {Time-to-live).
trailer Used to detect and discard packets which stay on the network too long,

The sender sets TTL to a number of 10 miflisecond ticks when the packet
is transmitted. Intermediate routers decrement and monitor the value.

SYNC control Counter value used by sender to individually mark syne packets.
- segment The receiver copies the §YNC value into the ECHO field when responding
10 a syne packet. Allows sender to differentiate between CNTL packets.
ECHO control Field that receiver copies received SYNC into when responding to sync packets,
segment
TIME control Echoed back by receiver from sender’s sync packet. Used 1o
segment estimate carrent round trip time. When the sender receives a TIME
echo, it subtracts the echoed TIME from the current TIME to estimate
the current round trip delay (RTT).

TABLE 9. XTP Timers and Timing Parameters

5. Addressing Mechanisms In XTP

The aforementioned KEY field is but one of the parameters XTP uses to perform addressing.
Addressing occurs on a number of levels. First, consider XTP as a client process to an underlying
datalink layer as depicted in Figure 1. At this level, the datalink layer needs a unique service
access point (SAP) for XTP to separate incoming XTP packets from non-XTP packets, The XTP
packet, or frame would be encapsulated inside a datalink layer’s protocol data unit .(PDU). As the
datalink layer process decodes the PDU, it determines the destination to be the XTP server

process.

XTP was designed to interface with a variety of datalink layers. In each case, XTP packets

must be encapsulated within the PDUs of the underlying datalink layer. This encapsulation must

-40 -

conform to the requirements of the various datalink layer protocols. For those protocols capable
of multiplexing their services among multiple transport layers (say XTP and TCP
simultaneously), the datalink layer uses a unique, standardized identifier to dist_inguish between
TCP and XTP packets. In 1990, XTP is expected to be operational on Ethemet, IEEE 802.5, and

FDDI; XTP is already operational on top of the User Datagram Protocol (UDP).

Within the XTP layer, each end of a XTP connection must be able to uniquely identify its
peer. To complicate matters, XTP’s inter-network and multicast capabilities impose additional

addressing requirements.

One solution would be to include all relevant addressing data explicitly in each packet. With
large internet addresses, this approach would cause substantial per-packet overhead. The XTP
approach caches the addressing data contained in the first packet at both the sender and receiver,
and uses the KEY as a lookup index into the cache to access the actual addresses as needed. As
described earlier, this initial packet is a special information packet of type FIRST. The following
packets contain only the KEY, resulting in smaller packets because the KEY is encoded in fewer

bytes.

In TCP/IP, 14 bytes are used for addressing information in every packet — IP rgquires an
IDENTIFICATION field of length 2 bytes that is used, like XTP’s KEY field, to identify the
connection uniquely, 4 bytes for the IP source address, 4 bytes for the IP destination address in |
the IP encapsulation, and 2 bytes each for the source and destination ports in the TCP segment.
" In XTP, 4 'bytes are. used to specify the context number. Thus, XTP encodes the addressing

information with less overhead per packet.

Medium Access Control addresses (MAC values) uniquely identify nodes on the same local
area network. Note that within each XTP process, however, a MAC value may not be unique —

if multiple XTP clients are connected to the same remote host, the MAC address for each

-41 -

connection’s context record will be the same. The concatenation {MAC,KEY] of the remote
host’s medium -access control address and any given context identifier uniquely determines the

connection.

When LANs are interconnected, packets must travel through routers or gateways and
[MAC,KEY] may no longer be unique. As with the KEY, XTP associates an identifier with each
| route inside a router (the ROUTE value); ROUTE values are included in each packet, and the
triple <MAC,KEY,ROUTE> does uniquely identify each context. Inter-network routing and the

ROUTE field are further discussed in section 5.1,

The KEY is generated by the node initiating the connection, and included in the FIRST
packet transmitted to the receiver. Also included in this FIRST packet are addressing data used
to identify the intended receiver. These addresses are contained in a list for comparison with the
receiver’s address filter. In multicast mode, more than one receiver is targeted for each packet.
The appropriate receivers note the arrival of the FIRST packet, and save the context identifier
(KEY), the source of the datalink frame containing the packet (MAC address) and the route
identifier (ROUTE) in a database associated with the context record. Subsequent packets need
not contain the destination network address since the triple <MAC,KEY,ROUTE> can be used to

lookup the context.

As described in Table 10, the KEY field of the XTP packet common header is 32 bits in
length, but the context identifier KEY’s value islrestricted to a value expressible in 31 bits. The
extra bit is located in the most significant bit position, and reserved for determining the direction
of the packet — i.e., which end of the connection generated the packet. Packets sent from the
node which generated the KEY value have the bit set to zero; packets received at the node
generating the KEY value have the bit set to one. When the hi gh bit is set, the KEY is referred to

as a rerurn key. If the KEY in an incoming packet’s header is a return key, the receiver can use

-42 -

the key as a lookup to determine the context for an incoming packet since the receiver generated

the original key.

In order to make context lookup faster, the receiver must be able to substitute a value of its
own choosing for the newly forming context’s KEY. But the new KEY will only be useful if the
peer uses it when transmitiing packets on this context. The substitute KEY is transmitted back to
the context initiator in the XKEY field of the next CNTL packet. The receiving XTP context
continues to output CNTL. packets containing the original KEY (with the high bit set), whereas
the sending XTP context will adopt the receiver’s requested KEY (also with the high bit set)
when transmitting packets. Note that in this case, once KEYs have been exchanged, all packets
will be using return keys — with the high bit set. See Figure 10. Key exchanging is only possible

when there is a unique receiver (i.e., keys may not be exchanged in multicast mode).

-43 -

Packet (Al)
TYPE: ! FIRST
KEY: . KEY DESIRED BY (A) High Bit=0
ROUTE: :ZERO -
SEQ#: ZERO

P ISTHAY ISYAY ETHAY ATADAY
DATA: :ISTHAY ISYAY ETHAY ATADAY
: ISTHAY ISYAY ETHAY ATADAY

SREQ: i ONE
Packet (B1)
TYPE: (CNTL
KEY: : RETURN KEY (A) High Bit=1
ROUTE: :ZERO
SEQ#: !ZERO
¢ ALLOC;Buffer Size ~RATE=xxx
CNTL: ! RSEQ:Received BURST=yyy
: (etc.)
XKEY: : KEY DESIRED BY (B) High Bit=0
Following Packets from (A)
TYPE: :DATA
KEY: : RETURN KEY (B) High Bit=1
ROUTE: :ZERO

SEQ#: 81,82, 83, etc.

: ISTHAY ISYAY ETHAY ATADAY
DATA: :ISTHAY ISYAY ETHAY ATADAY
: ISTHAY ISYAY ETHAY ATADAY

Following Packets from (B)

TYPE: :CNTL
KEY: ! RETURNKEY (A) High Bit=1
ROUTE: :ZERO
SEQ#: :zZERO

. i ALLOC:Buffer Size ~RATE=xxx
CNTL: : rsEQ:Received (otcy BURST=¥Y

Figure 10. XTP Key Exchanging

In Figure 10, the sending context at node (A) issues a FIRST packet to set up a connection.

This packet is labeled Packet (A1), and contains the KEY value that context {A) prefers be used

in returned packets. The XTP receiver associates this KEY (say K,) with the context record at

node (A) corresponding to the connection.

When the packet arrives at (B), the XTP receiver at (B) creates a new context, and saves A’s
desired KEY value (K,) in the context record at (B) associated with the connection. All packets
returned to (A) on the connection will use the remurn form of (K,), denoted by (K). (B) decides it
would be advantagious to exchange KEYs. Packet (A1) contains a SREQ, so (B) responds with

Packet (B1). Note the KEY field value (K7), and the XKEY field value (X,,).

When Packet (B1) arrives at node (A), the KEY value (K7) it is used to locate the context
record for the conniection. (A) saves the requested exchange KEY in the context record for out-

going packets on the context.

Any additional packets sent in either direction contain the appropriate return KEY value for
the packet’s destination. That is, in the A—B direction packets carry (K},) and in the B—A

direction they carry (X7,) respectively in their KEY field.

-45 -

Parameter Location Description
MAC External Medium Access Control layer address.
to XTP The physical address of the network interface for the given host,
KEY Field XTP header | Uniquely identifies the XTP context at the sender.
31 bit number generated by sender occupies 4 bytes or 32 bits.
The highest bit reserved for determining direction of packet.
~ XKEY Field X1P Exchange KEY returned from destination
control for sender to use in subsequent packets.
segment Uniquely identifies the XTP context at the destination.
ROUTE Field XTP header | Used by sender when forwarding through routers.
Similar to KEY field.
XROUTE Feld XTP Exchange ROUTE value returned from router
control for sender to use in subsequent packets.
segment Containg router-generated number used to assist router in
determining origin and destination of inter-networked packet.
MULTI Flag XTP header | Indicates that XTP multicasting addressing is being used.
Sfags field In this mode multiple receivers simultaneously listen to the
same sender. More efficient than setting up individuoal contexts
for each receiver and then duplicating outgoing packets.
Contained in the FIRST packet only. This field is variable
in length since multiple addresses may be specified.
It is further sub-divided into the following fields;
SS § }'(fII . LENGTH number of bytes in address field
ADDRESS Segment ;:g‘:;’;f:“’“ FORMAT Hietwork addross syniax
null to §-byte-align address data
1D undefined in XTP version 3.4
Actual addresses depends on FORMAT
DADDR Flag XTPheader | Indicates that direct addressing mode is used.
fags field In this mode the KEY field is interpreted as a short address,

TABLE 10. XTP Addressing Parameters

The address segment included in the FIRST packet contains two main fields — a fixed length
descriptor field indicating the addressing format used, and a variable length field containing the
actual list of addresses. The address descriptor field is 16 bytes long, and contains four sub
fields — LENGTH (2 bytes), FQRMA’I‘ (2 bytes), NULL(2 bytes) and ID (8 bytes). The
LENGTH field is the number of bytes in the variable length address segment, including the 2
bytes in the LENGTH field itself. The FORMAT field specifies the address formatting scheme
used in the list of addresses. At present, compatible formats are supported for both.Darpa Internet
and ISO formats.”! Formats for accommodating Xerox XNS!® style addresses, U.S. Air Force

Modular Simulator project (MODSIM) addresses and Source Route addresses are under study

-46 -

and should be available in future versions of the XTP protocol.

Inciuded in the Internet compétible format are IP source and destination host addresses (4
bytes each), and source and destination ports or socket numbers (2 bytes each). For 8 byte

alignment purposes, the IP address format also contains 4 null bytes.

The ISO address is formed by concatenating the appropriate network layer service access
point (NSAP) with the transport layer service access point (TSAP) yielding two 24 .byte addresses
for a total of 48 bytes — one address for the destination (DSAP), one for the sour-tl:le {SSAP). For
each address, the NSAP is positioned in the first 20 bytes. The TSAP occupies the remaining 4
bytes. Since the _ISO address length is divisible by 8, no additional null bytes are needed with this
formatting scheme.®! The address descriptor ID field is currently not defined in the XTP protocol

definition revision 3.4.

Address filtering occurs at the receiver when determining whether to establish the connection
requesied by the sender of a FIRST packet. Beforehand, the receiving client describes to the XTP
receiver process the set of network addresses to which it will connect. When a FIRST packet
arrives, the receiver compares its address segment contents against the receiving client’s address

filter to determine whether to accept the packet or not.

In the event that the network topology is known, and network addresses do not require more
than 4 bytes, XTP can use a direct addressing mode. In this mode, the KEY field contains the
actual destination address rather than an index used to look up the context. This direct addressing

mode is invoked by setting the DADDR flag in each packet, The DADDR flag is located in the

common header.,
3.1 XTP Inter-Network Routing

When connecting to a process on a remote network, a connection must be established through

-47 -

one or more routers until the destination network is reached, and finally to the remote host on
which the receiver client resides. Packets hop from one network to the next through routers. The
router receives the packet on the first network, makes a routing decision, and outputs the packet
onto the second network, The router must be capable of determining the appropriate node on the
new network to which the packet should be transferred, based on the destination addressing
information contained in the packet. As in the single network case, this addressing information
can be cached. Figure 11 illustrates the address management occurring when a connection is
established on first an adjacent network requiring a single hop (through router R), and second on

a remote network requiring two hops (through routers R and H).

The ROUTE field serves a similar purpose to the KEY field. Refer to Table 10. It is located in
the XTP common header and is utilized by the router to locate the proper addressing data in its -
cached address translation map. As with the KEY, ROUTE values can be exchanged between
adjacent routers and/or the endpoint nodes. Like the XKEY field, the XROUTE field is Iocated in

the control segment of CNTL packets,

When a FIRST packet arrives at the router, the router saves the incoming ROUTE value in
the data structure associated with the route upon which the packet is travelling. Packets generated
at the router to be returned to the context initiator will use the refurn form of this ROUTE value.
The Router has the option of generating its own ROUTE values for the next host or router in
sequence to use on the given route. When relaying the FIRST packet towards the destination, the
router merely substitutes its preferred ROUTE value in the header, overwriting the original

ROUTE value chosen by the context initiator.

Packets arriving at the router from the destination-end of the connection will contain the
return form of the router’s desired ROUTE value. The destination-end of the connection may

choose 10 exchange ROUTE values with the router. If so, it will set the XROUTE field to its

.48 -

chosen ROUTE value when transmitting its first CNTL packet. The router will note the

XROUTE value, and use its remurn form in future packets to the destination-end.

The router relays the CNTL packet towards the sender-end of the connection. In this CNTL
packet, the original KEY value and ROUTE value received from the sender-end in the FIRST
packet are substituted into the CNTL packet header, both in return form. If the router choses to
exchange ROUTE values with the sender-end, it creates a second ROUTE number, associated
with the address of the destination, and includes this ROUTE value in the XROUTE field of the

CNTL packet sent back to the sender node on the first network.

Once the CNTL packet arrives at the sender node, the sender adopts the router’s XROUTE
value, and includes the return form of it in subsequent packet transmissions for the given
connection, in the ROUTE field. Thus, the router may use different ROUTE values for packets
traveling in different directions. This is illustrated in Figure 11. In the top diagram, node (4) is

the sender, node (B) is the receiver, and node (R) is the router connecting the two networks LAN

1 and LAN 2.

-49 .

SOURCE AND DESTINATION NETWORKS SEPARATED BY ONE ROUTER

R
(IR, 1A K A] [2B,2R.K.RB]

MAC Addresses: s
et Original
Destination Source ¢ ¢ Route Fields
1A IR K A’} [2R,2B. K’ RB’] [IR,1A X ,A]
[XROUTE=RA] " [XROUTE=B}
[1A,1IR X", A"]
Router Returned
IR, 1A K RA’] [2B,2R. KB’} Key & Route Fields
L 1 .--. ‘-" L 2 '0‘

SOURCE AND DESTINATION NETWORKS SEPARATED BY TWO ROUTERS

A R H B
IIR,IA,K,AI . EzﬂyzRaK:RH] E3Bv3H¢K’HB] N()tes:
Key or Route Returned 5
equals original value plus 2
[1A,IRK".A’] [2R,2H K’ RH'] [3H,3B,K’,HB’]] o
[XROUTE=RA] [XROUTE=HR] [XROUTE=B] [XROUTE=xxx] signifies that
ROUTE value exchange is
requested.
[IR,1A,K,RA’] I2H,2R,K,HR") 3B,3H,K,B’] Subsequent packets 10 requester
Contain returned form of
requested exchange ROUTE value.
L1 - N A L3

Figure 11. Address Substitution Mechanism in Routers

The bracketed notation {lR,lA,K,A} [XROUTE=xxx] describes the values of address
parameters associated with a packet transmitted between adjacent hosts. As described in Figure
11, the first value (1R) is the MAC address of the destination node, the second value (1A) is the
MAC address of the sender node, the third value (K) is the value of the KEY field contained in

the XTP packet, and the last value (A) is the ROUTE value contained in the given packet. When

-50-

the XROUTE is not listed, the field is disabled and set to zero. The XROUTE designator appears

below the arrow pointing from the packet’s sender to the packet’s destination.

In the first packet, transmitted from source (A) to the router {R), the route field is set to A.
This is a FIRST packet, and thus contains an gddress segment inside its information segment.
The router exarmines the address, and determines that the packet needs to hop from LAN 1 to
LAN 2, and that the destination is at node (B) on LAN 2. When the router outputs the FIRST
packet onto LAN 2, the KEY field is unchanged, but the router has modified the ROUTE field by
setting it to (RB), which is associated with the MAC address of (A). When (B) receives the
modified FIRST packet, it accepts the connection request. The return CNTL packet has the high
bit set in both the KEY field (K*) and ROUTE field (RB”) indicating return forms for the values.
Also, the XROUTE field has been set té B, signifying that (B) wishes to exchange ROUTE

values with the router,

When the CNTL packet arrives at the router on LAN 2, the ROUTE value is used to retrieve
the addressing data for node (A). Since this is the first transmission from (B) to (A), router (R)
generates a new ROUTE value to exchange with (A). This ROUTE value (RA) is stored in the
XROUTE field of the CNTL packet returning to (A). It will be used at the router to associate
incoming packets from (A) with the MAC address of node (B) on LAN 2. Node (A) notes the
XROUTE field value, and includes (RA’) as the ROUTE value in all subsequent packets output

for the context.

Also dépicted in Figure 11 is a scenario with three networks and two routers, (R) and (H). In
this situation, packets must make two hops. Note that the routers overwrite the ROUTE field
values incoming from packets generated by the other router. New ROUTE field values are

generated at each hop.

.51 -

Figure 12 demonstrates KEY and ROUTE exchanging between two nodes (A) and (B)
separated by a common router (R) using the simple packet diagrams of Figure 11, Note that once

all exchanges have completed, all KEY and ROUTE values used are in return format.

@

-57.

Packet (Al)
TYPE: ! mmst
KEY: KEY DESIRED BY (A) High Bit=0
ROUTE: : ROUTE DESIRED BY (A) HB=0
SEQ# : zmo
: ISTHAY ISYAY ETHAY ATADAY
DATA: ISTHAY ISYAY ETHAY ATADAY
: ISTHAY ISYAY ETHAY ATADAY
SREQ: | oNE
First Packet from (R) to (A)
TYPE: : ontL
KEY: : RETURN KEY (A) High Bit=]
ROUTE: : RETURN ROUTE (A) High Bit=1
SEQ #: E ZERO
ALLOC:Buffer Size RATE=xxx
CNTL: i RSEQReceived () BURST=yyy
XROUTE: ROUTE DESIRED BY (RA) HB =)
XKEY: KEY DESIRED BY (B) High Bit=0
Following Packets from (A)
TYPE: : pata
KEY: ! RETURNKEY (B) High Bir=1
ROUTE: : RETURN ROUTE {RA) High Bit=1
SEQ#: $1, 52, 83, etc.
: ISTHAY ISYAY ETHAY ATADAY
DATA: ISTHAY ISYAY ETHAY ATADAY
ISTHAY ISYAY ETHAY ATADAY
SREQ: ONE
Following Packets from (R) to (A)
TYPE: : cnerp
KEY: ! RETURN KEY (A) High Bitwi
ROUTE: : RETURN ROUTE {A) High Bit=1
SEQ #: § ZERQ
: ALLOC:Buffer Size RATE=xxx
CNTL: RSEQReceived rony BURST=yyy

Figure 12. XTP Key and Route Exchanging

. First Packet from (R) to (B)
TYPE: : gmst
KBY: KEY DESIRED BY (A) High Bit=0
ROUTE; : ROUTE DESIRED BY (RB) HB=0
SEQ# : o
: ISTHAY ISYAY ETHAY ATADAY
DATA: : ISTHAY ISYAY ETHAY ATADAY
ISTHAY ISYAY ETHAY ATADAY
SREQ: ! onE d
Packet (B1)
TYPE;
KEY: : RETURN KEY (A} High Bit=1
ROUTE: : RETURN ROUTE (RB) High Bit=i
SEQ# : zmro
ALLOC Buffer Size RATE=xxx
CNTL: i RSEQRecaved (g ~ BURSTeyyy
XROUTE: ! ROUTE DESIRED BY (B) HB=0
XKEY: KEY DESIRED BY (B) High Bit=0
Following Packets from (R) to (B)
TYPE: : DATA
KEY: RETURN KEY (B) High Bite1
ROUTE: : RETURN ROUTE (B) High Bit=s1
SEQ#: §1, 52, 3, eto.
: ISTHAY ISYAY ETHAY ATADAY
DATA: ISTHAY ISYAY EYHAY ATADAY
ISTHAY ISYAY ETHAY ATADAY
SREQ: : ong
Following Packets from (B)
TYPE: ! oup
KEY: ! RETURNKEY (A) High Bit=t
ROUTE: : RETURN ROUTE (RB) High Bit=1
SEQ#: : zpro
ALLOC Buffer Size RATEoxzx
CNTL: RSEQReceived (o) BURST=yyy

As discussed earlier, each individual route can exist for an extended period of time, (.e.,

-53-

perhaps even for days inside routers.) By allowing more than one context to share a route, the
cost of initiaﬁzing and maintaining the route can be shared among contexts. Additionally, the rate
control for the shared route can also be shared. Sharing routes allows the routers to combine
redundant table entries in imem.al routing tables and minimize their space requirements. XTP

supports route sharing, and inheritance between contexis,

In XTP, an existing route can be utilized by a newly-forming context by setting the ROUTE
value in the header of the FIRST packet to the ROUTE number associated with the particular
route. This number is available in the context record of any active context currently using the

route,

One éomplication of route sharing is that the router can not detect when the route is no longer
being used without being explicitly requested to0 release the route. In XTP, the special
information packet type ROUTE is used by routers and nodes to tear down routes. When a node
knows that it is finished us_ing a given route, it issues a ROUTE packet to the router, which
contains a RELEASE request embodied in the information segment. The routér responds by

issuing its own ROUTE packet acknowledging the request and releasing the route.

6. XTP Fragmentation Issues

XTP also supports fragmentation of data packets when necessary. The need arises when two
connected networks have different maximum transmission unit sizes, as mentioned earlier. In this
case, the routers perform the fragmentation transparently. The resulting set of smaller packets are
referred to as fragments, although they are legitimate XTP frames themselves. Each fragment

contains its own header, a portion of the original packet’s data segment and its own trailer.

XTP CNTL packets are sufficiently small that they do not require fragmentation. The largest

CNTL packet contains a 24 byte header, 16 byte trailer, 40 byte constant subset of the control

-54 .

segment and 16 SPAN groups containing 8 bytes each, also located in the control segment. The

maximum number of bytes in a CNTL packet is thus 208 bytes plus the media framing.

During fragmentation, the router must refrain from exactly duplicating the original data
packet’s header and trailer into the smaller fragments because certain option flags are non-
replicatable. For example, the SREQ bit in the common trailer must not be replicated — if it
were, each fragment would solicit its own CNTL packet status response from the réceiver, when
only one was desired. Partial exceptions are the first fragment’s header and th'e.'l&st fragment's
trailer. The first fragment’s header is an exact duplicate of the original packet’s header, All other
fragments contain different SEQ numbers, and perhaps other differences from the original header.
The last fragment’s trailer would be an exact duplicate of the original trailer except that the
HTCHECK header-trailer checksum is calculated over a different header from the original

packet’s HTCHECK.,

Refer to Table 11 for a list of the replicatable and non-replicatable flags and option bits in the

XTP header and trailer.

-55-

Replicatable Explanation

All Header Option | These flags contain information which is unchanged during
Flags except BTAG | fragmemation, such as whether 1 direct-addressed priority
maulticast transmission is underway. They must be copied into
all fragments created. The replicatable header options fags

are:
LITTLE, NOCHECK, DADDR, NOERR, MULTI, RES, SORT and DEADLINE.
Non-replicatable Explanation
BTAG “Fhis fiag indicates that beginning tagged data is

Tocated in the first 8 bytes of the original data packet.

Since the tagged data is positioned at the start of

the data being fragmented, it is copied into the the first

8 bytes of the first packet fragment. The following fragments
can not contain beginning tagged data. Thus, the original
packet’s BTAG flag is copied into the first packet fragment
only. The BTAG field for additional packet fragments is set to
Ze10,

All Trailer Flags The trailer flags are also non-replicatable for various reasons,
They are all copied into the trailer flags field of the last packet
fragment only. The trailer flags fieM in the other packet fragments
(i.e., the first and intermediate packets fragments) are

suppregsed by setting them all to zeroes,

Bach SREQ or DREQ generates a CNTL packet from the receiver. If
they were copied into each packet fragment, the receiver would
generate more CNTL. packets than necessary.

RCLOSE/WCLOSE and END are used in closing the context. Receiving any one
of them prematurely would confuse the receiver and violate the closing
rules of the protocol,

ETAG, like BTAG indicates the presence of tagged data, in this case
in the last 8§ bytes of the origina! packet’s data segment. This data
must arrive in order, and thus must appear in the last packet fragment.

EOM indicates that the dats in the original packet completed a message
vransfer. If this bit were copied into more than one packet fragment,

the receiver would assume more than one message had arrived erroneously.
The EOM flag must not be set until the last packet fragment containing

a portion of the message. ’

NODCHECK indicates that the packet does not contain a checksum over the
information segment. If in packet fragmentation this checksem is not
recalculated for each packet fragment, the NODCHECK flag is not
replicated.

TABLE 11. XTP Flag Replication During Fragmentation

A method is under development for combining packets at a router which have identical
ROUTE fields. The combined packet is referred to as a SUPER packet, and contains a special
experimental header referred to as a SUPER header. The individual XTP packets can be

recovered if the SUPER packet must be fragmented.

- 56 -

7. XTP Multicast Mode

XTP defines a multicast mode of operation where one sender can broadcast the same data
stream or datagram sequence to multiple receivers $im111taneous1y (one-to-many). Figure 13
depicts such a case where the sender and all receivers are located on a token ring. The multicast
sender is located at node (A), with multicast receivers at nodes (B), (D) and (E). To activate this
mode, the MULTI flag in the common header is set, indicating a multicast transmission is in

progress.

XTP’s multicast mode is similar in operation to the single receiver mode in many respects.
The transmitter issues a FIRST packet, and subsequent DATA packets. SREQ is used to solicit
CNTL packets. Error control is supported using the go-back-n retransmission scheme; selective
retransmission is not supported. Note that in multicast connections the allocated buffer space in

each receiver may vary in size. Essentially, data transmission proceeds at the pace of the slowest

receiver.

Figure 13. Multicast Transmission on a Token Ring

-57-

When a multicast receiver detects out-of-sequence data, it multicasts the CNTL packet, called

a reject packet, so that all other receivers on the connection realize that an error has occurred.

If the multicast involves a large number of receivers, the sender will be inundated with reject
packets as all receivers clammor to announce the error. To dampen this effect, XTP requires
receivers to refrain from sending the multicast reject packet when aware that the sender has been
properly notified. The receivers monitor the network for other reject packets during the time the
packet is being prepared and waiting for transmission. If another reject packet arrives, destined
for the sender on the same &mlticast context, the receiver compares its own RSEQ value to the
one contained in the newly arrived packet. RSEQ is significant because this is the next byte the
multicast receivers will accept — remember, no gaps are allowed in multicast mode. If the
receiver’s own RSEQ number is greater than or equal to the packet’s RSEQ number, the recei{zer
refrains from sending its own reject packet. In this case, the rollback requested in the existing
reject packet covers the request at the current receiver also. If, on the other hand, the receiver’s
own RSEQ value is smaller than the packet’s, the receiver outputs its own reject packet. The
basic idea is to guarantee reliable reception at all receivers of the data stream, without

complicating the sender’s task.

X’I‘P. also allows the multicast mode to operate in a less reliable "no error" mode indicated by
seiting the NOERR bit flag in the common header. In this mode, receivers discard garbled
packets, and inform their host of the occurrance, but no reject packet or retransmission scheme is
used. This technique is appropriate for, say, broadcasting sensor data in a control system — the
data are gemerated continuously, and a particular lost value is quickly replaced with a more

current reading.

-58-

8. Prioritization Issues In XTP

XTP suppbrts prioritization of packet processing at both the sender and receiver using
preemptive priority scheduling. As packets arrive for processing, they queue for service when the
server is currently unz;vailable. A preemptive scheduler detenﬁines the priority level of the
arriving packet, and places it at the end of the appropriate queue. See Figure 14, In this scheme,
each queue is associated with a specific priority level, and the server prefers to service packets
from.the highest priority queue whenever possible. Thus, if the server is currently processing a
low priority packet as a higher priority packet arrives for service, the server is preempted from
processing the lower priority packet and begins processing the higher priority packet. Only after
aﬁ higher priority packets have been completed or blocked will the server return to the low
priority packet. The granularity of pre-emption (i.e., whether on a byte, frame, or message basis)

is currently under study.

Quene (A)

Queue (B)

-z {schedule Queue (C) serve) —s-

Queune (D)

PRIORITY RANKING:
(A)>(B)>(C)> (D)

Figure 14. Preemptive Priority Scheduling Among 4 Queues
In Figure 14, packets with the highest priority are placed in queue (A), packets with the next
to highest priority are placed in queue (B), and so on. If queue (A) is non-empty, the server will
choose its next packet to process from queue (A), regardiess of how long other packets have been

waiting. Thus, the multiple queues essentially re-sort the arriving packets.

-59.

In XTP, two preemptive schedulers exist — one for incoming packets, and one for outgoing
packets. For both the reader and sender prioritization schemes, XTP supports 22 different
priorities, or 2*% different queues. (This will most likely be implemented by using position in a
single quene.) Each context is associated with a particular priority level. Multiple contexts can be

at the same priority level simultaneously.

For outgoing packets, the packet waits for access to the transmitter in the appropriate output
queue. The priority level is encoded into a 4 byte integer and placed into the SORT field before
transmission. The SORT flag in the common header is set to one to indicate that the packet
contains a SORT value. When the packet arrives at the remote receiver, the SORT field is

examined, and the packet is placed in the input queue corresponding to the packet’s priority.

In XTP, the priority level is inversely proportional to the value of the integer encoding — i.c.,
larger SORT field values have lower priority. This scheme is static, in that the priority level
remains constant as the packet travels through the network. XTP also supports a dynamic
preemptive scheduling scheme based on deadline times and synchronized system clocks with 100
microsecond resolution. In this mode, the original SORT field value represents a future clock
time (the deadline) whose priority is proportional to the immediacy of the deadline. As the
system clock time advances towards tﬁe deadline, the packet’s priority level increases. As with
the static SORT mode, lower SORT values also correspond to higher priority levels, and are used

to determine the queue into which the packet should be placed.

The two scheduling schemes just described are not allowed to co-exist on any given XTP
network. ‘Each network may utilize one or the other, but not both simultaneously. Alternatively,

priority operation may be disabled altogether.

Table 12 further describes the three parameters which control priority scheduling in XTP

packets,

<60 -

Parameter | Location | Description
SORT header Flag used to indicate preemptive priority scheduling is active.

option When SORT is set to one, the SORT field value (see below) is

flags interpreted as a priority level. The type of scheduling is
determined by the value of the DEADLINE flag.

DEADLINE header Flag used to indicate which type of preemptive priority scheduling

option is currently being used on the XTP network. Possible types are

flags dynamic deadline scheduling, and, static scheduling.
When DEADLINE is set to off, the SORT field is interpreted as a
static priority. The packet’s priority remains at the same priority
level until it arrives at its destination. Lower SORT ﬁeld
values correspond to higher priority levels.
When DEADLINE is set to on, the SORT field value is interpreted as a
future clock time at which the packet’s deadline will occur. The
clock’s resolution is 100 microseconds. At each hop, the SORT field value
is compared to the synchronized clock time to determine the packet’s
current priority. If the deadline passes and the packet is undelivered,
the packet’s priority drops to zero.

SORT header This field contains the packet’s priority level in both the SORT and
(4 bytes) | DEADLINE prioritization methods. With 32 bits, the field provides over

4 billion distinct priority levels. With DEADLINE scheduling, the
maximum time-until-deadline expressible is approximately 12 hours.

SORT and DEADLINE scheduling are mutually incompatible, and therefore can niot
be used on the same XTP network simultaneously.

TABLE 12. XTP Prioritization Control Parameters

To enable deadline priority, both the DEADLINE flag and the SORT flag must be set to on.

The SORT flag enables processing of the SORT field, while the DEADLINE flag determines the

scheduling discipline used. In deadline scheduling, it is possible for the deadline to arrive before

the packet has reached its destination. This would be detected if the SORT field became older

than the current time. In this case, the packet is not discarded but instead becomes low priority.

XTP will attempt to deliver packets with expired deadlines only after all other packets have been

processed.

-61-

9. Detailed Format Descriptions for XTP Packets

Refer to Figures 15 and 16 for details on the layout of the XTP packet. In Figure 15, the
.format of control packets is shown, including the header, control and trailer segments. In Figure
16, the format of information packets is depictéd. In Figure 17, the command word field in the
common header is illustrated to show the bit location of each of the header’s option flags.
Likewise, Figure 18 details the bit locations of each flag in the common trailer’s Sflags field. Note
that the trailer’s flags field and align field together occupy 2 bytes. The Sfags field contains 10 bit

flags. The remaining 6 bits are the align field.

The information segment may include address descriptors, addresses, beginning tagged data,
ordinary user data and ending tagged data. In the ﬂags' field are found additional option flags for

the XTP protocol.

As seen in Figures 15 and 16, the fields group together naturally into 8 byte blocks for both
XTP packet types. In XTP, all packets are multiples of 8 bytes, and the trailer must be aligned on
an 8 byte boundary. Thus, some variable length fields occasionally have null bytes appended on

to the end of the field to enforce the 8 byte alignment policy.

An interesting feature of the XTP packet format concemns the order in which bytes are
arranged in a word for various computers. This ordering affects the sequence in which the bytes
are placed onto the network. Bytes within a word can either be arranged from highest to lowest
address, or from lowest to highest address. Different equipment manufacturers support different
byte orderings. Since no standard exists, XTP provided a natural way o support both orderings

transparently,

These two orderings are referred to as big-endian, and little-endian. In big-endian, the most
significant byte is transmitted first. In litzle-endian the least significant byte is transmitted first.

Thus big-endian transmits from most significant byte to least significant byte, and little-endian

-62 -

transmits vice versa.

The problem is to encode in each packet an indication of which byte ordering was used by the
sender to prepare the packet, and in such a way that a receiver adhering to either i)yte ordering
scheme can determine the correct order of the bytes, This was solved in XTP using two bit‘ﬂags.
The position Qf the two flags were chosen so that they map into each other even if the byte
ordering is guessed incorrectly. The two flags are both set to the same value by the'sender. These
flags are called the LITTLE bits, and are found in the highest and lowest byte of the common
header command word (refer to Figure 17). When the LITTLE bits are set to one, the sender
issued the packet using little-endian byte ordering. If the LITTLE bits equal zero, the packet is in
big-endian format. If necessary, the XTP receiver process remaps each sequence of 4 bytes into

the ordering preferred by its host.

XTP
COMMON
HEADER

CONTROL.
SEGMENT

XTP
COMMON
TRAILER

- 63 -

XTP CONTROL PACKET FORMAT

o T s sy
COMMAND WORD KEY FIELD
SORT RESERVED
SEQUENCE NUMBER . ROUTE
RATE (Bytes per Second) BURST (Bytes per Burst)
RSEQ (Consecutively Received) ALLOC (Do Not Exceed Seq Num)

ECHO (Where Sync Field Echoed)

SYNC (Used to invalidate old CNTRLs)

TIME (Echoed to determine rt delay)

XKEY (Exchange Key)

XROUTE (Exhange Route)

NSPAN (Number of Byte Span Groups)

Low Seq Number for Byte Group 1

High Seq Number for Byte Group 1

Each pair marks endpoints of a
0 to 16 Span Groups allowed Spgn of bytes recepi(zre N
Low Seq Number for Byte Group j High Seq Number for Byte Group j

Dcheck (Over Data Segment)

DSEQ (Delivered to Dest Host)

Flags:10 : Align:6 | TTL (Time to live)

HTcheck (Over Header and Trailer)

Figure 15. XTP Control Packet Format

24 Bytes
(Constant)

32 + n*8 Byte
{Variable)

16 Bytes
{(Constant)

XTP INFORMATION PACKET FORMAT

... By e
L L T T i S B
COMMAND WORD KEY FIELD
XTP
COMMON 24 Bytes
HEADER SORT RESERVED (Constant)
SEQUENCE NUMBER ROUTE
LENGTH (*8 Bytes)| ADDR FORMAT NULL | T~

ADDRESS (1:6 Bytes

" tant

DESCRIPTOR . ID FIELD (Used by Destination in Context Lookup: (1D, Key]) (Constant)

ADDRESS List (Supports both DARPA IP and ISO NSAP/TSAP Formats)
ADDRESSES All Addresses in List must have © ISO NSAP/TSAP Address Formed by n*8 Bytes
_ same Address Format Concatenating NSAP & TSAP Values (Variable)
The Length of Each Address in the List is a Multiple of 8 Bytes
DATA FIELD (May Contain Beginning or Ending Tagged Data)
Data Field Length Arbitrary © Null Field Expands Short Packets to n*8 Bytes
DATA Header/Trailer Flags indicate Tagged Data g Minimum Packet Length of the Network (Variable)
DATA FIELD (End) ’,-r"/—/ NULL (Variéble Length, Used to Align Trailer)
TP Dcheck (Over Data Segment) DSEQ (Delivered to Dest Host)
16 Bytes
COMMON — " : (Consiant)
TRAILER Flags:10 : Align:6 | TTL (Time to live) HTcheck (Over Header and Trailer)

Figure 16. XTP Information Packet Format

-65-

.. Bt e
Z2 S T R R S A S s
LITTLE NOCHRECK DADDR NOERRR MULTY RRES SORT DPDRADLINE
OPTIONS
\ """"“j ----- Tmm———— wee= mmess 0 mmeee Tm—— BTAG

OFFSET (number of padding bytes before data in Information Segment)

i PACKET TYPE
LITTLE XTP \Ifersmn ’ : ; | @m

PACKET TYPE (Data, Cnil, First, Path, Diag, Maint, Mgmt, Super, Route, Rentl)
Figure 17. The Command Word — The First Four Bytes of an XTP Packet

DETAILS OF THE FLAGS AND ALIGN FIELDS IN THE XTP TRAILER

SREQ DSEQ RCLGSE WCLOSE NODCHECK ETAG BOM BND
OPTIONS

T — | ALIGN (6 bits)
Figure 18. XTP Trailer Flag Field and Align Field Format

Byte 3
Byte 2
Byte 1

Bywe 0

Byte 1

Byte 0

10.

- 66 -

REFERENCES

. "XTP Protocol Definition 3.4", Protocol Engines, Incorporated, 1900 State Street, Suite D,

Santa Barbara, California 93101, 1989.

. Chesson, Greg, "The Protocol Engine Project”, UNIX Review, Vol. 5, No. 9, September

1987.

- Chesson, Greg, "Protocol Engine Design", USENIX Conference Proceedings, Phoenix,

Arizona, June 1987.

. Comer, Douglas, Internetworking with TCP/IP, Prentice-Hall, Englewood Cliffs, New

Jersey, 1988,

. Stallings, William, Handbook of Computer Communications Standards, Volume 1: The

Open Systems Interconnection (OSI) Model and OSI-Related Standards, Macmillan Inc.,

1987.

. Jacobsen, Van and Braden, R.T., "TCP Extensions for Long-Delay Paths”, Request for

Comment 1072 (RFC 1072), 1988.

. Cheriton, David, "VMTP: Versatile Message Transaction Protocol Protocol Specification”,

Preliminary Version 0.6, Stanford University, 1988.

. Clark, David, and Lambert, Mark, "NETBLT: A Bulk Data Transfer Protocol”, Request for

Comment 998 (RFC 998), 1987,

. ISO 8348 International Organization for Standardization, Addendum 2: Covering Network

Addresses

Hutchison, David, Local Area Network Architectures, Addison-Wesley, Wokingham,

England, 1988.

