
The Core Legion Object Model August 30, 1995 1

The Core Legion Object Model1

Mike Lewis
Andrew Grimshaw

{mlewis,grimshaw}@Virginia.edu
Department of Computer Science

University of Virginia
August 1995

Abstract

This document describes the core Legion object model. The model specifies the

composition and functionality of Legion’s core objects—those objects that coop-

erate to create, locate, manage, and remove objects from the Legion system. The

model reflects the underlying philosophy and objectives of the Legion project. In

particular, the object model facilitates a flexible extensible implementation, pro-

vides a single persistent name space, grants site autonomy to participating orga-

nizations, and scales to millions of sites and trillions of objects. Further, it offers

a framework that is well suited to providing mechanisms for high performance,

security, fault tolerance, and commerce.

1. This is University of Virginia Computer Science Technical Report CS-95-35. It is located on the Web at
ftp://ftp.cs.virginia.edu/pub/techreports/CS-95-35.ps.Z.

The Core Legion Object Model August 30, 1995 2

1 Objectives

The Legion project1 at the University of Virginia is an attempt to design and build system
services that provide the illusion of a single virtual machine to users. Legion targets wide-
area assemblies of workstations, supercomputers, and parallel supercomputers. Legion
tackles problems not solved by existing workstation-based parallel processing tools. It
aims to provide shared object and shared name spaces, application adjustable fault-toler-
ance, improved response time, greater throughput, wide area network support, manage-
ment and exploitation of heterogeneity, protection, security, efficient scheduling,
comprehensive resource management, parallel processing, and object inter-operability.

This document describes the core Legion object model. The model specifies the composi-
tion and functionality of Legion’s core objects—those objects that cooperate to create,
locate, manage, and remove objects from the Legion system. The model reflects the
underlying philosophy and objectives of the Legion project. In particular, the object model
facilitates a flexible extensible implementation, provides a single persistent name space,
grants site autonomy to participating organizations, and scales to millions of sites and tril-
lions of objects. Further, it offers a framework that is well suited to providing mechanisms
for high performance, security, fault tolerance, and commerce.

Legion specifies the functionality, not the implementation, of the system’s core objects.
The Legion system designers cannot predict the many and varied needs of users. There-
fore, the object core will consist of extensible, replaceable components. The Legion
project will provide implementations of the objects that comprise the core, but users will
not be obligated to use them. Instead, Legion users will be encouraged to select or con-
struct objects that implement mechanisms and policies that meet the users’ own specific
requirements.

A single persistent name space unites the objects in the Legion system. This makes remote
files and data more easily accessible, thereby facilitating the construction of applications
that span multiple sites.

Site autonomy is provided in the object model by logically partitioning Legion resources
into possibly non-disjoint sets, calledJURISDICTIONS, and by distributing control of these
resources among an extensible set of Legion objects, calledMAGISTRATES. Controlling a
resource includes making decisions about which Legion objects can access it, and to what
extent. Placing this responsibility in the hands of objects that users can build themselves
gives sites the autonomy that they properly require.

The Legion system is fully scalable. Although the object model includes, and relies on, a
few single logical Legion objects, access to these objects will be limited due to heavy
caching and hierarchical organization of lower level objects. Legion objects can be repli-
cated to further reduce contention. Thus, the system will be configured such that an
increase in the number of Legion computing resources will not impact contention for the
few “centralized” Legion objects.

1. For more information about Legion, see our Web page at http://www.cs.virginia.edu/~legion/

The Core Legion Object Model August 30, 1995 3

Security and fault tolerance have had significant impact on the design of the object model,
which enables the realization of both objectives. The Legion security model is described
in detail in [8], and fault tolerance is addressed in [6].

The remainder of this document describes the core Legion object model, characterizes its
main components, presents an implementation model for its realization, describes the
mechanism it is intended to support, and argues that the model scales well. We describe an
evolving model that includes several aspects that have yet to be addressed in detail, not a
model that is set in stone.

2 Overview

Legion is an object-oriented system comprised of independent, address space disjoint
objects that communicate with one another via method invocation. Method calls are non-
blocking and may be accepted in any order by the called object. Each method has a signa-
ture that describes the parameters and return value, if any, of the method. The complete set
of method signatures for an object fully describes that object’s interface, which is inher-
ited from its class. Legion class interfaces can be described in an Interface Description
Language (IDL).1 An instance of Legion is partitioned into autonomous Jurisdictions,
each of which consists of a set of hosts and associated storage. Jurisdictions manipulate
object representations and state directly.

2.1 Object model

In the Legion object model, each Legion object belongs to a class, and each class is itself a
Legion object. All Legion objects export a common set of OBJECT-MANDATORY member
functions, including MayI(), SaveState(), and RestoreState(). Class objects export an addi-
tional set of CLASS-MANDATORY member functions, including Create(), Derive(), and
InheritFrom(). A class object is responsible for creating and locating its instances (non-
class objects) and subclasses (other class objects). A new class object is created by calling

1. At least two different IDL’s will be supported by Legion: the CORBA IDL Interface
Definition Language[2], and the Mentat Programming Language (MPL)[5].

The Core Legion Object Model August 30, 1995 4

the Derive() member function on an existing class object. Similarly, a new non-class
object is created by calling the Create() member function on an existing class object.

FIGURE 1. Objects A-G are class objects. D and E are derived from A, F is derived from C, and G is
derived from E. Each of the other objects is a non-class object—an instance of its class. This figure does
not depict multiple inheritance, which is supported in Legion.

A class that is derived from another class inherits the superclass’s member functions and
variables.1 Multiple inheritance is fully supported in Legion via the class-mandatory
member function InheritFrom(). Invoking InheritFrom() on an existing class object A, and
passing the name of an existing class object B, causes A to inherit from B. Thus, inherit-
ance in Legion is an active process that is carried out at run-time.

2.1.1 Relationships between Legion objects

The class-mandatory member functions Create(), Derive(), and InheritFrom(), define three
different relations that can exist between Legion objects: theIS-A relation, theKIND-OF

relation, and theINHERITS-FROM relation, respectively. Figure 2 introduces the Legion
conventions for graphically depicting these three types of relationships.

FIGURE 2. Conventions for depicting relationships between objects in Legion. A thin solid arrow from
non-class object O to class object C indicates that O is-a C. A thick solid arrow from class object D to
class object C indicates that D is a kind-of C. A thick dotted arrow from class object C to class object B
indicates that C inherits-from B.

Each type of relation is described below:

1. Legion may allow a class to select the components that it wishes to inherit from its superclass.

BA C

D E F

G

B1 C1

D1 E1 F1 F2 F3

C

O

C

D

B

C

is-a kind-of inherits-from

The Core Legion Object Model August 30, 1995 5

• is-a: The is-a relationship can exist between a non-class object and a class object. The
is-a relationship results from instantiating new Legion non-class objects. This happens
as a result of invoking the Create() member function on an existing class object. Sup-
pose C is the class object whose Create() function is invoked. C creates an instance of
itself as non-class object O, which then exports the interface that C defines. We say that
O is an instance of class C, or equivalently, that O is-a C. Non-class object O inherits
the Legion object-mandatory member functions, but not the Legion class-mandatory
member functions (since it is not a class). As O’s creator, C is responsible for being
able to locate O. Classes typically instantiate many objects, but an object belongs to
exactly one class.

FIGURE 3. Invoking the Create() member function on an existing class object C causes an instance, O,
to be created. We say that O is-a C.

• kind-of: The kind-of relationship can exist between two class objects. This happens
when the Derive() member function is invoked on an existing class object. Suppose C
is the class object whose Derive() function is invoked. C creates a new class object D
that inherits all of the Legion object- and class-mandatory member functions, and some
or all of the member functions and data structures particular to C. As D’s creator, C is
responsible for being able to locate D. We say that D is a subclass of C, that C is the
superclass of D, and equivalently, that D is a kind-of C. A class can be the superclass
for any number of different subclasses, but it is the subclass of exactly one superclass.

FIGURE 4. Invoking the Derive() member function on an existing class object C causes a new class
object, D, to be created. We say that D is a kind-of C.

• inherits-from: The inherits-from relationship can also exist between two class objects.
This happens when the InheritFrom() member function is invoked on an existing class
object. This function does not cause any new objects to be created; instead, it serves to
alter the composition of future instances of the class. Suppose C is the class object
whose InheritFrom() function is invoked with the name of class object B as an argu-
ment. This causes B’s member functions to be added to C’s interface. Unlike with the

C.Create() C

C

O

C.Derive() C

C

D

The Core Legion Object Model August 30, 1995 6

is-a and kind-of relations, B has no responsibility for locating C. We say that B is a base
class for C, or equivalently, that C inherits-from B. A class can inherit from, and be a
base class for, any number of other classes.

FIGURE 5. Invoking the InheritFrom() member function on an existing class object C, and passing the
name of another existing class B, causes C to inherit from B.

Thus, multiple inheritance in Legion is a two step process. First, the class is created by
calling Derive() on an existing class object. Second, the composition of future instances of
the class is set via calls to the InheritFrom() method in the new class object. When the
instances of the class are created via the Create() method, their composition reflects the
way the class was defined in the inheritance process.

FIGURE 6. Legion classes can be multiply derived from other Legion classes. In Legion terminology,
each class object has exactly one superclass, but can have multiple base classes. For example, C is F’s
superclass, while D and E serve as F’s base classes.

The Legion inheritance mechanism is still in the process of being designed. Thus, many
concepts are intentionally not addressed, or are discussed only in vague terms in this doc-
ument.

2.1.2 Legion class types

The creators of a Legion class may overload or redefine any of Create(), Derive(), and
InheritFrom() to be possibly empty member functions. This leads to three special types of
Legion classes. A class object whose Create() function is empty is said to be ABSTRACT;
no direct instances of an Abstract class can exist. A class object whose Derive() function
is empty is said to be PRIVATE; Private class objects can have no derived classes, just

C.InheritFrom(B)

B

C

B

C

A

EDC

B

F G

The Core Legion Object Model August 30, 1995 7

instances. A class object whose InheritFrom() function is empty is said to beFIXED; a
Fixed class inherits member functions and variables only from its superclass.

2.1.3 Legion’s core Abstract class objects

Legion defines the interface and functionality of several core Abstract class objects,
includingLegionObject, LegionClass, LegionHost, LegionMagistrate, andLegionBindin-
gAgent. Each of these is introduced below, and discussed in more detail in subsequent sec-
tions.

• LegionObject: LegionObject provides the full set of object-mandatory member func-
tions. The class object for LegionObject is the only sink in the graph that is implied by
the union of the kind-of and is-a relations. That is, all Legion objects are instances of
classes that are eventually derived from the class LegionObject, and thus they inherit
all of the member functions defined in LegionObject.

• LegionClass: LegionClass provides the full set of class-mandatory member functions.
All Legion classes are eventually derived from LegionClass, and thus they inherit all of
the member functions defined in LegionClass. LegionClass is derived from LegionOb-
ject; thus, classes are objects in Legion. Classes may alter the functionality of object- or
class-mandatory member functions by overloading them, by redefining them, or by
explicitly “re-inheriting” their implementation from class objects other than LegionOb-
ject and LegionClass.

FIGURE 7. Legion defines two Abstract base classes—LegionObject and LegionClass—that define the
object- and class-mandatory member functions respectively. LegionClass is derived from LegionObject;
thus, classes are objects in Legion.

• LegionHost: LegionHost models Legion hosts. To be included in Legion1, a host must
run a LegionHOST OBJECT, which is an instance of some class that is eventually
derived from LegionHost. For example, UnixHost and SPMDHost might be two differ-
ent Legion classes derived directly from class LegionHost. More specific Host classes

LegionObject

MayI()
SaveState()
RestoreState()
etc.

LegionClass

Create()
Derive()
InheritFrom()
etc.

The Core Legion Object Model August 30, 1995 8

might be derived from each of these, as shown in Figure 8. A Sun workstation might
run an instance of class UnixHost, whereas a Silicon Graphics Power Challenge might
run an instance of UnixSMMP, a class derived from UnixHost.

FIGURE 8. The Legion class LegionHost is the root of all classes whose instances are Legion Host
Objects. In this figure, UnixHost and SPMDHost are derived directly from LegionHost. UnixSMMP is
derived from UnixHost, and CM-5 and CrayT3D are derived from SPMDHost. The figure shows six
different Host Objects: two instances of both UnixHost and UnixSMMP, and one instance of both CM-5
and CrayT3D.

• LegionMagistrate: LegionMagistrate models Legion Magistrates—those objects that
manage the activation, deactivation, and migration of Legion objects in a particular
Jurisdiction. All Legion Magistrates are eventually derived from class LegionMagis-
trate. Resource providers can build Magistrates that meet their own security and
resource access requirements. For example, suppose the Department of Energy (DOE)
does not trust university graduate students to write a Magistrate class that adequately
protects its objects. The DOE can write its own Magistrate, and insist via the class
mechanism that all objects that the DOE owns execute only on Magistrates that it
trusts. Further, it can ensure that their Magistrates only use Host Objects that have been
certified by the DOE not to leak information. An additional benefit of this mechanism is
that users can choose their favorite service providers, potentially creating a market in

1. A host being “included in Legion” in this sense refers to Legion’s ability to execute objects on the host.
Legion also includes the notion of “client” hosts that can access Legion resources without themselves
being Legion resources.

SPMDHost

LegionHost

UnixHost

CM-5 CrayT3DUnixSMMP

U2

M1 T1

U1

S2S1

The Core Legion Object Model August 30, 1995 9

service provision. For example, national laboratories, who also may not trust university
graduate students, may choose to trust the DOE, and use the DOE implementations.
Alternatively, a commercial provider may be used.

FIGURE 9. DOEMagistrate, NASAMagistrate, and GradMagistrate are class objects derived directly
from LegionMagistrate. They will likely implement different security and resource access policies.

• LegionBindingAgent: LegionBindingAgent models Legion BINDING AGENTS—those

objects that map Legion names1 to physical addresses in order to enable inter-object
communication. The binding problem is discussed extensively later in the document.

2.1.4 Trust and security

The fact that Legion’s core objects can be reimplemented by users reflects the Legion phi-
losophy on trust. In wide-area systems, trust is an important issue that contains several dif-
ferent aspects. Who do users trust? Who do physical resource owners trust? Who do soft-
resource (databases and applications) owners trust? Indeed, what exactly does it mean for
A to trust B? Is trust absolute, or is it relative?

There can be no single answer to the “who do you trust?” questions. In particular, we can-
not mandate that users and resource owners must trust “Legion.” If we do, then many will
not participate because we will be unable to convince them that Legion is trustworthy, that
there are no Trojan horses, that they have a legitimate copy of Legion, that we won’t leak
their persistent object state to other users, etc. Instead, Legion provides mechanism that

1. Legion “names” are described in Section 3.2.

NASAMagistrate

LegionMagistrate

DOEMagistrate

GradMagistrate

UVa IU Duke

LaRC JPLLLNLSNLLANL

The Core Legion Object Model August 30, 1995 10

allows each entity to choose who or what it trusts; in particular, resource owners can pro-
vide their own, trusted by them, implementations of Legion functions and objects. Thus,
users and resource owners may provide their own implementations of Magistrates, Host
Objects, and Binding Agents by deriving off of the Abstract classes described above.

2.2 Jurisdictions and Magistrates

Legion is divided into Jurisdictions. A Jurisdiction consists of some aggregate persistent
storage space and a set of Legion hosts. Jurisdictions are potentially non-disjoint; both
hosts and persistent storage may be contained in two or more Jurisdictions, and Jurisdic-
tions can be organized to form hierarchies. The union of all Jurisdictions comprises the
full Legion system.

FIGURE 10. Jurisdictions, which contain hosts and persistent storage, may overlap (e.g. A and B), may
be disjoint (e.g. A and C), or may form hierarchies (e.g. C, D, and E). Magistrates, one per Jurisdiction,
manage objects and resources; MA is the Magistrate for Jurisdiction A, MB is the Magistrate for
Jurisdiction B, etc. Typically, Jurisdictions will contain many more hosts and disks than shown in this
figure.

Jurisdictions are the mechanism by which Legion provides site autonomy to participating
organizations. Sites can offer their resources to Legion, and can insist that they be man-
aged only by objects that the sites trust. In particular, an organization may choose to
implement its own Magistrate to manage its Jurisdiction. Alternatively, it may trust
another, possibly commercial, organization’s Magistrate class, and choose an instance of
that class to manage its resources. The organization could also simply put its resources
under the control of another Magistrate. By providing each of these alternatives, Legion
allows an organization to ensure that its resources are protected to its satisfaction.

Jurisdictions also make the Legion system scalable and extensible. No single Magistrate is
responsible for managing the entire Legion system. Instead, control is completely decen-
tralized. Further, if a Jurisdiction’s resources impose a substantial load on its Magistrate,

Jurisdiction A Jurisdiction B

Jurisdiction D

Host 1

Host 2

Host 3Host 4

Host 5

Host 6

Disk J

Disk K

Jurisdiction E

Host 7

Disk L

Jurisdiction C

MC

Disk I

ME

MA

MD

MB

The Core Legion Object Model August 30, 1995 11

the Jurisdiction can be split, and a new Magistrate can be created to take over responsibil-
ity for some of the resources and objects.

2.3 Host Objects

A Host Object is a host’s representative to Legion. It is responsible for executing objects
on the host, reaping objects, and reporting object exceptions. Thus, the Host Object for a
host is ultimately responsible for deciding which objects can run on the host it represents.
Since Host Objects can be implemented by the users who offer their resources to Legion,
and since our security model is one in which security is built into the object by its imple-
mentor, Legion users can select the policy and mechanism that restrict access to their own
hosts. Further details about Host Objects are included in Section 3.9.

2.4 Security

Legion does not attempt to guarantee security to its users. Instead, we (1) are as precise as
possible about the degree of confidence that a user can have, (2) make that confidence
“good enough” and “cheap enough” for an interestingly large selection of users, and (3)
provide a context that allows the user to gain the additional confidence that she requires
with a cost that is intuitively proportional to the added confidence she gets.

Our security model is based on three principles: (1) as in the Hippocratic Oath, do no
harm, (2) caveat emptor, let the buyer beware, and (3) small is beautiful. In the final anal-
ysis, users are responsible for their own security. Legion provides a model and mechanism
that make it feasible, conceptually simple, and inexpensive in the default case. But in the
end, the user has the ultimate responsibility to determine what policy is to be enforced and
how vigorous that enforcement will be.

In the Legion security model, every object provides certain security-related member func-
tions, including MayI() and Iam(). These functions may default to empty for the case of no
security. User-defined objects play two security related roles—Responsible Agent (RA)
and Security Agent (SA). To play these roles, they provide additional member functions
that are known to Legion. Every method invocation is performed in an environment con-
sisting of a triple of object names—those of the operative Responsible Agent, the Security
Agent, and the Calling Agent. The general approach is that Legion will invoke the known
member functions to define and enforce security, thus giving objects the responsibility of
defining and ensuring the policy they choose.

The Legion security model is described in detail in [8].

The Core Legion Object Model August 30, 1995 12

3 Implementation model

3.1 Object states

The full set of Legion hosts will be unable to simultaneously provide each Legion object
with a process to implement the disjoint address space model. Therefore, a Legion object
can be in one of two different states, ACTIVE or INERT. When an object is Active, it is run-
ning as a process, or set of processes, on one or more of the hosts in a Jurisdiction, and is
described by an OBJECT ADDRESS (Section 3.4). When an object is Inert, it exists in per-
sistent storage somewhere in a Jurisdiction, is described by an OBJECT PERSISTENT REP-

RESENTATION, and can be located using an OBJECT PERSISTENT ADDRESS. Because of the
way that objects are suspended and restarted by Legion[3], all of a Jurisdiction’s persistent
storage space must be visible from each of its hosts. Magistrates are responsible for mov-
ing objects between Active and Inert states, and for migrating objects between Jurisdic-
tions.

FIGURE 11. A sample Jurisdiction comprised of three disks (I, J, and K) and three hosts (1, 2, and 3); all
three hosts can access all three disks directly. Objects A and B belong to the Jurisdiction and are moved
between Active and Inert states by the Magistrate. Object A has been deactivated into an Object
Persistent Representation on Disk I, and B has been migrated from Host 2 to Host 3 through Disk I.

3.1.1 Object Persistent Representations and Addresses

An Object Persistent Representation is a sequential set of bytes that represents an Inert
object, and that can be used by a Magistrate to activate the object. An executable file could
be an Object Persistent Representation for an object that has yet to become Active. How-
ever, once an object is activated, it may acquire state information that would need to be
stored as part of the Object Persistent Representation. Every Legion object will export
functions to save and restore its state, and Magistrates will call these functions to create
and interpret an Object Persistent Representation of the object. The mechanism for saving
and restoring state is described in [3].

Disk I

Host 1

Host 2

ACTIVEINERT

Disk J

Disk K

A

B

B
B

ADeactivate()

Activate()

Deactivate()

M

Host 3

Jurisdiction

The Core Legion Object Model August 30, 1995 13

The Object Persistent Address of an Inert object is analogous to the Object Address of an
Active object. An Object Persistent Addresses will typically be a file name, and will only
be meaningful within the Jurisdiction in which it resides.

3.2 Legion Object Identifiers

Every Legion object is named by a LEGION OBJECT IDENTIFIER (LOID). The 128 high
order bits are separated into CLASS IDENTIFIER (64 bits) and CLASS SPECIFIC (64 bits)
parts. The P low order bits comprise the PUBLIC KEY of the object and will be used for
security purposes.1

FIGURE 12. An LOID is comprised of a 64 bit Class Identifier, a 64 bit Class Specific field, and a P bit
Public Key.

LegionClass is responsible for handing out unique Class Identifiers to each new class. The
Class Specific portion is set to zero for all class objects, and can be used by classes to pro-
vide a unique LOID to each instance of the class. While it is likely that the Class Specific
field will often be used by classes as a sequence number to guarantee the generation of
unique LOID’s, Legion does not restrict how any particular class sets this portion of an
LOID that it generates.

3.3 The binding problem

Legion uses standard protocols and the communication facilities of host operating systems
to support communication between Legion objects. However, Legion object names—
LOID’s—have meaning only at the Legion level. Consequently, Legion must provide a
mechanism by which LOID’s can be bound to names that have meaning to the underlying
protocols and communication facilities. The general problem, depicted in Figure 13, is
that one object, A, has the LOID of another object, B, and A wishes to invoke member
functions on B. A physical Object Address for B must be obtained before the communica-
tion can take place.

FIGURE 13. Object A has the LOID for object B, and must bind it to an Object Address to communicate
directly with B.

1. P is a constant whose size has yet to be determined.

Class
Specific

Class
Identifier

Public
Key

P bits64 bits64 bits

Object A Object B

LOID for B

The Core Legion Object Model August 30, 1995 14

To solve the binding problem, Legion defines Object Addresses and bindings, and speci-
fies the core functionality of Binding Agents, Magistrates, Host Objects, and class objects,
which combine to locate and manage the objects in the system. These components are
described in the sections below.

3.4 Object Addresses

An OBJECT ADDRESS ELEMENT contains, at the highest level, two basic parts: a 32 bit
address type field, and 256 bits of address specific information. The address type field
names the type of address (e.g. IP, XTP, etc.) that is contained in the other 256 bits. We
envision that the first and most common type of address will be IP. For a normal IP
address, 48 of the 256 bits will be utilized: 32 bits for the IP address, and 16 bits for a port
number. On multiprocessors, a 32 bit platform-specific internal node number may be used
to distinguish each particular processor.

An Object Address is a list of Object Address Elements, along with semantic information
that describes how to utilize the list. The address semantic is intended to encapsulate vari-
ous forms of multicast communication. For example, the semantic could specify that all
addresses should be sent to, that one of the addresses should be chosen at random, that k of
the N addresses in the list should be used, etc. The composition and meaning of the full set
of options that will be defined by Legion have not yet been identified, but provisions for
extending the list with user-definable options will likely be made.

FIGURE 14. An Object Address is comprised of a list of physical addresses along with semantic
information that describes how the list is to be used.

3.5 Bindings

BINDINGS from LOID’s to Object Addresses in Legion are implemented as simple triples.
A binding consists of an LOID, an Object Address, and a field that specifies the time that
the binding becomes invalid. This field may be set to some value that indicates that the
binding will never become explicitly invalid. Bindings are first class entities that can be
passed around the system and cached within objects.

address semantic

address type address

number of addrs

address type address

{
{

{
32 bits 256 bits

Object
Address
Elements

Object
Address

The Core Legion Object Model August 30, 1995 15

3.6 Binding Agents

Binding Agents are derived from the Abstract class LegionBindingAgent. A Binding
Agent acts on behalf of other Legion objects to bind LOID’s to Object Addresses. That is,
given an LOID for an object, a Binding Agent is responsible for returning a binding to an
Object Address for the object that the LOID names. The persistent state of each Legion
object contains the Object Address of its Binding Agent.

Legion does not mandate how any particular Binding Agent performs its duty. Typically,
however, a Binding Agent will maintain a cache of bindings that it will consult in response
to binding requests from other objects; LegionBindingAgent’s member functions reflect
this fact. But any particular Binding Agent may also consult other Binding Agents, and
may employ any other means to locate a binding for a given LOID. If all else fails, the
Binding Agent can consult the class of the object1 which must be able to return a binding
if one exists. A more in-depth discussion of a typical binding procedure is included in
Section 4.1.

FIGURE 15. A typical Binding Agent maintains a cache of bindings, and responds to member function
calls to add, return, and invalidate bindings.

LegionBindingAgent has the following member functions:

• binding GetBinding(LOID), binding GetBinding(binding): The overloaded method
GetBinding() is passed an LOID or a binding, and returns a binding. Passing an LOID
as the parameter requests that the Binding Agent bind it to an Object Address. Passing
a binding requests that the Binding Agent return a different binding than the one passed
as a parameter. For instance, if the Object Address in the binding parameter matches
the one in the Binding Agent’s local cache, the Binding Agent might contact the class
object for an updated binding. Thus, the object employing the Binding Agent can
explicitly request that a binding be refreshed; it will typically do so when the binding
that it has doesn’t work. Further details about the binding process are included in
Section 4.1.

1. For details about how the appropriate class object can be found, refer to Section 4.1.3.

Binding Agent

LOID OA

Binding Cache

AddBinding()

GetBinding()

InvalidateBinding()

binding
LOID

LOID

?

binding

The Core Legion Object Model August 30, 1995 16

• InvalidateBinding(LOID), InvalidateBinding(binding): The overloaded method Invali-
dateBinding() tells the Binding Agent to remove bindings from its cache. The first form
requests that the Binding Agent remove an LOID’s binding, if any exists, from its
cache. The second form requests that it remove a binding if it matches exactly the bind-
ing that is passed as an argument.

• AddBinding(binding): AddBinding() is used to add a binding to the cache of bindings
that the Binding Agent maintains. It can be used by Binding Agents, or any other
Legion objects, to explicitly propagate binding information for performance purposes.

3.7 Class objects

Each class object exports class-mandatory member functions to create new instances (Cre-
ate()) and subclasses (Derive()), to delete instances and subclasses (Delete()), and to find
instances and subclasses (GetBinding()). A class object is responsible for assigning
LOID’s to its instances and subclasses upon their creation. For its instances (non-class
objects), the class object can construct the LOID completely locally; it assigns the Class
Identifier portion to match its own Class Identifier, and uses the Class Specific field in any
way it sees fit, most likely as a sequence number to guarantee that all LOID’s are unique.
To assign an LOID to a new subclass, the class object contacts LegionClass to obtain a
new Class Identifier. This allows LegionClass to be an authority for finding class objects.
Conventionally, the Class Specific portion of a class object’s LOID is set to zero.

To perform the functions for which it is responsible, each class object must logically main-
tain the table depicted in Figure 16. In practice, the class object may employ other Legion
objects, such as database servers, to maintain some or all of the information that class
objects are required to maintain in what we refer to as the “logical table.”.

FIGURE 16. The logical table that Legion class objects maintain to keep appropriate information about
instances and subclasses of the class.

Each row in the table corresponds to an object that the class object created—an instance or
a subclass. The intended uses of each field are described below:

• LOID: The LOID names the object for which the entry contains information.

• Object Address: The Object Address field contains either the Object Address of the
object (if the object is currently Active and the class knows its Object Address), or NIL
(if the object is currently Inert, or if the object is Active but the class doesn’t know the
Object Address). This field is used to respond to GetBinding() requests from Binding
Agents and other Legion objects.

LOID
Object
Address

Current
Magistrate
List

Scheduling
Agent

Candidate
Magistrate
List

The Core Legion Object Model August 30, 1995 17

• Current Magistrate List: The Current Magistrate List field contains a list of Magistrates
that currently have Object Persistent Representations for an object. Typically, only one
Magistrate will have a copy of the Object Persistent Representation of an object. If the
class object receives a GetBinding() request and the Object Address field is empty, the
class object can consult a Magistrate in this list to get a binding for the object in ques-
tion.

• Scheduling Agent: The Scheduling Agent field contains the LOID of the object that is
responsible for scheduling the object entered in the table. Scheduling is intentionally
left out of the core object model, except for a few “hooks” (including this one) that
allow other Legion objects to suggest scheduling policies to Magistrates. It is expected
that each class will have a default Scheduling Agent that is inherited by each of its
objects unless a different Scheduling Agent is explicitly specified.

• Candidate Magistrate List: The Candidate Magistrate List field indicates the Magis-
trates that may be given responsibility for the object. This field could be implemented
as a simple list, but more likely it will need to encapsulate more sophisticated informa-
tion, such as “no restriction” or “all Magistrates with a given security policy.” There-
fore, a language mechanism that names or restricts sets of Magistrates might be
appropriate; details of this mechanism have not been formulated.

Objects may be given the opportunity by their class to directly manipulate these fields. In
this way, the Legion class mechanism is reminiscent of reflective architectures.

The full set of class-mandatory member functions has yet to be formulated. However, it
will include at least Create(), Derive(), InheritFrom(), Delete(), GetBinding(), and GetInt-
erface().

3.8 Magistrates

A Magistrate is in charge of a Jurisdiction. Thus, a Magistrate manages a set of hosts and
some aggregate persistent storage. The purpose of a Magistrate is to perform the activa-
tion, deactivation, and migration of the Legion objects under its control.

Magistrates have member functions that allow other objects to suggest how to schedule
the objects in the Jurisdiction, and when and how to move objects between Active and
Inert states. Magistrates are not intended to be complex decision making entities. Instead,
they should act as mechanisms by which other Legion objects implement policies and
algorithms. As a likely security boundary for the objects it manages, a Magistrate has the
authority to reject requests.

The member functions exported by a Magistrate include (but will certainly not be limited
to) the following:

• binding Activate(LOID), binding Activate(LOID,LOID): The overloaded Activate()
function takes the LOID of the object to activate, and causes it to become a running
process on one of the hosts in the Jurisdiction if the object isn’t already Active. The
LOID of a Host Object in the Jurisdiction of the Magistrate can be passed as a parame-

The Core Legion Object Model August 30, 1995 18

ter to allow a Scheduling Agent (or any other Legion object) to provide suggestions
about where to run the object. The Activate() function returns a binding that contains
the Object Address of the object once it has been activated.

• Deactivate(LOID): The Deactivate() function takes the LOID of the object to deacti-
vate, and causes it to be removed from the host on which it is running, and to be placed
on persistent storage in an Object Persistent Representation. The method by which this
is done is described in [3].

• Delete(LOID): The Delete() function removes the object with the given LOID from
existence. Both Active and Inert copies of the object are removed from the system.
After a Delete() function is successfully executed, future attempts to bind the LOID to
an Object Address will be unsuccessful. Stale bindings may exist, but will be eventu-
ally removed as objects unsuccessfully try to use them.

• Copy(LOID,LOID): The Copy() function can be used to tell the Magistrate to copy the
object with the given LOID to another Magistrate which is named by the second
parameter. This function causes the Magistrate to deactivate the object, creating an
Object Persistent Representation, and to send the Object Persistent Representation to
the other Magistrate. This function, along with Move(), is used to migrate objects
between Jurisdictions.

• Move(LOID,LOID): The Move() function is equivalent to Copy() then Delete(). It
serves to change the Magistrate that manages a given object. The first parameter names
the object to move, and the second names the Magistrate to which to move it.

There will likely be many other member functions, especially having to do with schedul-
ing, that all Magistrates will export. Magistrates will have some default scheduling behav-
ior, but complex scheduling policies are intended to be implemented outside of the
Magistrate in Scheduling Agents. The Scheduling Agents will implement their policies by
making calls on the primitive scheduling functions exported by the Magistrates. The right
set of functions has yet to be identified and defined.

Since a Magistrate is a likely security boundary for the objects it manages, it may choose
to refuse to service any of the requests it is issued, depending on the security policy that it
enforces. In this sense, member function calls on Magistrates should be thought of as
requests rather than commands.

3.9 Host Objects

As described in Figure 2.3, a Host Object runs on each host that is included in the Legion
system. It is likely that a Host Object will implement a security mechanism that will
attempt to ensure that its member functions will be invoked only by its Magistrate. In a
Unix-like implementation, all Legion objects that execute on a host will execute with the
same privilege as the Host Object. Therefore, Host Objects will typically execute with
minimal privilege. Individual sites may choose to grant Host Objects a higher privilege if
they desire.

The Core Legion Object Model August 30, 1995 19

Host Objects are started from outside Legion, for example from a command line or shell
script in the host operating system. Host Objects are responsible for contacting Legion-
Host to notify it of the Host Object’s existence and address. Host Objects are started exter-
nal to Legion because they are the mechanism by which objects are started; there is no
Legion object to start Host Objects (see Section 4.2.1).

Host Objects export member functions that start or restart processes, that suspend pro-
cesses that are currently running, and that restrict access to the host. The full set of mem-
ber functions that a Host Object exports will include at least the following, Activate(),
Deactivate(), SetCPULoad(), SetMemoryUsage(), and GetState().

4 Mechanism

4.1 Binding

This section describes a typical process by which a Legion Object Identifier gets bound to
an Object Address. Recall from Section 3.3 that LOID’s are meaningful only at the Legion
level, and that the underlying communication facilities upon which Legion relies must be
given lower level names in order to allow objects to communicate. Thus, LOID’s must be
bound to Object Addresses, which can in fact encapsulate names that are meaningful to
underlying facilities.

The binding process is intended to be completely hidden from the vast majority of Legion
users. Thus, it will typically be carried out by the various compilers and run-time systems
that comprise Legion. A user will write a Legion application program in her favorite lan-
guage, and will typically name Legion objects with string names. The program is com-
piled within a particular “context” by a Legion-aware compiler. The compiler uses the
context to map string names to LOID’s, which then become embedded within Legion exe-
cutable programs. At run-time, the run-time system interprets the LOID’s and binds them
to Object Addresses as described below.

4.1.1 Model

A class is ultimately responsible for providing bindings to its instances and subclasses.
But to make the binding process scalable, and to distribute functionality, control, and
responsibility appropriately, the object model introduces other objects to the binding pro-
cess. Suppose, as in Figure 13, that object A wishes to bind the LOID for object B, which
is an instance or subclass of class C. The following Legion objects are potentially
involved in the binding process: A, A’s Binding Agent, C, LegionClass, B’s Magistrate,
and the Host Object for the host on which B is currently Active. The role of each of these
objects is described below.

The Core Legion Object Model August 30, 1995 20

4.1.2 Details

Object A begins the binding process by generating a reference to the LOID of B. Since A
is a Legion object, it contains a Legion-aware communication layer which may implement
a binding cache. Therefore, A will often have a cached binding for B, and external objects
will be unnecessary. If A does not contain a cached binding, it invokes the GetBinding()
member function on its Binding Agent, for which it already has an Object Address as part
of its persistent state. The Binding Agent may have a binding for B’s LOID in its cache, in
which case it simply responds to A with a binding for B. If the Binding Agent does not
have a cached binding, it may undertake any process it wishes in order to generate or
locate a binding for B’s LOID. In particular, the Binding Agent may consult other Binding
Agents, which may be organized in a hierarchy to allow the binding process to scale.

Sometimes, a Binding Agent will be unable to locate a binding for B by any means other
than contacting class object C. Recall that B is an instance or subclass of C, which is there-
fore responsible for finding B. We delay the discussion of how to find C until
Section 4.1.3, and assume for now that it can be done. A’s Binding Agent invokes the Get-
Binding() member function on C, which in turn consults its logical table (Section 3.7). If
the Object Address field for the appropriate entry in the logical table is not empty, then C
can construct and return a binding. If the field is empty, then C can consult B’s Magistrate,
whose LOID is contained in the Current Magistrate List field. C invokes the Activate()
method on the Magistrate, which returns a binding for B. Thus, referring to the LOID of

The Core Legion Object Model August 30, 1995 21

an Inert object can cause the object to be activated. The returned binding is passed back
through the objects, each of which may cache it.

FIGURE 17. A typical binding process. Object A generates a reference to B, and contacts its Binding
Agent for a binding. The Binding Agent checks its local cache, and then consults C, the class that created
B. C may have to contact B’s Magistrate M via the Activate() member function, and M may in turn have
to activate B. Table entries that are filled with diagonal lines show the places where a binding for B may
be cached.

4.1.3 Finding the responsible class object

Omitted from the above discussion is an explanation of how C, the class responsible for
locating B, is itself located. At first glance, this would seem to be as difficult as finding B.
However, several characteristics of the object creation process and of Legion classes com-
bine to make it a different problem—one that can be solved in a efficient and scalable
fashion.

Recall that B is either an instance or a subclass of C. Therefore, C is a class object with an
associated unique Class Identifier, which was assigned by LegionClass. Thus, Legion-
Class can be the authority for locating class objects. LegionClass does not directly main-
tain the bindings; instead, it delegates that responsibility to other class objects. To do so,
LegionClass maintains a mapping of LOID pairs. The existence of pair <X,Y> indicates
that X is responsible for locating Y. When a new class object D is created, the creating
class C contacts LegionClass for a new Class Identifier to assign to the class. At this time,

LOID OA

Binding Cache

Object A
BA

Binding Agent BA

LOID OA

Binding Cache

BA.GetBinding(B)

Object B

Class C

BA

LOID OA

Logical Table

C.GetBinding(B)
M.Activate(B)

Magistrate M

LOID OA

Object Table

B

Mag.

M

LOID for B

B

The Core Legion Object Model August 30, 1995 22

LegionClass can record that C is responsible for locating D by constructing and maintain-
ing the pair <C,D>. When objects are trying to locate class object D, LegionClass can
point them toward C. When objects are trying to locate a non-class object N, the process is
even simpler; the LOID of the responsible class can be determined by setting the Class
Identifier field to match that of N, and by setting the Class Specific field to zero.

Notice that we now have the LOID of the responsible class C. Thus, the binding process
may need to be repeated in order to locate C, and again to locate C’s superclass, and so on.
Since all classes are eventually derived from LegionClass, the process can end when the
responsible class is LegionClass itself. In this case, LegionClass simply hands out the
appropriate binding which, as a class object, it is responsible for maintaining.

While this process may seem to scale poorly, extensive caching of both bindings and
“responsibility pairs” ensures that the vast majority of accesses occurs locally. A more
extensive argument for the scalability of the binding process is included in Section 5.

4.1.4 Stale bindings

Legion expects the presence of stale bindings—cached bindings containing Object
Addresses that are no longer valid. Object Addresses can become invalid as a result of an
object migrating, being deactivated, or being removed from the system. When an object
attempts to communicate with an invalid Object Address, the Legion communication layer
of the object is expected to detect that it has become invalid. When it does, it will likely
request that the binding be refreshed. Some classes may even attempt to reduce the num-
ber of stale bindings by explicitly propagating news of an object’s migration or removal.

4.2 Object creation

As with the binding process described above, the creation of Legion objects is intended to
be initiated by normal Legion programs via the mechanisms that the programs’ implemen-
tation languages support. In C++, for instance, the creation of a non-class object might be
triggered by the use of the keyword “new.” The creation of a new class object might result
from using the C++ inheritance mechanism to derive a new class. The Legion-aware com-
piler for the language creates code to call the Create() or Derive() member function on the
appropriate class object, most likely using the local context to map a string name to the
intended Legion LOID.

When a class object receives a request to create a new instance or subclass, it must do so
with the cooperation of the Magistrate for the Jurisdiction in which the new object will ini-
tially reside, and of the Host Object for the host on which the new object will initially run.
Selecting these two objects is a scheduling decision that is left up to the class, which may
choose to employ the services of a Scheduling Agent. Some classes may allow the creat-
ing object to suggest a Magistrate, a Host Object, or both. At any rate, the actual creation
of the object is carried out by the Magistrate and Host Object, which are given enough
information by the class to allow them to create the new object. This information may take
the form of an executable program, the name of an executable, a list of steps to follow, etc.
Details about exactly how this will be done have yet to be completely formulated.

The Core Legion Object Model August 30, 1995 23

4.2.1 Bootstrapping: bringing up core objects

Legion contains a set of core objects and object types that implement the mechanism by
which Legion objects are created and activated. For this reason, the creation and activation
of this set of objects must be carried out by mechanisms different from those used for nor-
mal Legion objects. For instance, all objects are activated on a host by the representative
Host Object; however, the Host Object obviously cannot activate itself before it exists.
The core objects, including the core Abstract classes (LegionObject, LegionClass, etc.),
Host Objects, and Magistrates, are intended to be started from the command line or shell
script in the host operating system.

When Host Objects come alive, they contact the existing class object named LegionHost
to tell it of their existence. Thus, once they are alive, Host Objects can be located via the
same mechanism that is used to locate other types of Legion objects; that is, the class of
the object can be consulted. Magistrates also get started “outside” of Legion, and they too
contact their class, LegionMagistrate. New Host Objects and Magistrates will be added as
the Legion system expands to include new hosts and Jurisdictions. The Abstract class
objects are started exactly once—when the Legion system comes alive.

4.3 Object replication

Section 3.4 describes the composition of a Legion Object Address, which is a list of phys-
ical addresses (Object Address Elements) along with semantic information that describes
how the list is to be utilized. This design enables object replication at the Legion system
level. That is, a Legion object—an entity named by a single LOID—can be implemented
as a set of processes without changing the application-level semantics for communicating
with the object. Replicating an object at the Legion level is a matter of creating an Object
Address with multiple physical addresses in its list, assigning the address semantic appro-
priately, and binding the LOID of the object to this Object Address.

This design does not preclude the replication of objects at the Legion application level
instead of, or in congruence with, replication at the system level. In other words, multiple
Legion objects, each with its own LOID, can work together to perform a single logical
function, but in this case the management of the “object group” and the semantics of com-
munication with the group is left to the application programmer.

Object A1
Host a

Host c

Host b

A1
A1

A1

A1

1
2

3

4

1A
LOID

Object Address

IP
IP
IP
IP

use all
4

<a,1>
<a,2>
<b,1>
<c,1>

FIGURE 1. An LOID names Legion Object A1, which is implemented as a replicated object consisting
of four processes, A11—A14, residing at four different physical addresses, <a,1>, <a,2>, <b,1>, and
<c,1>. The Object Address for A1 includes each of the address elements.

The Core Legion Object Model August 30, 1995 24

5 Scalability

Scalability is an important challenge to a system that is intended to contain millions of
sites and trillions of objects. Before a system can be described as scalable, a precise defini-
tion of exactly what it means to be scalable must be formulated—scalability is a term that
is used in different ways by different people.

5.1 What is “scalability”?

Typically, a scalable architecture refers to one that has the property that as the number of
processors increases, the granularity of computation does not need to increase to keep the
machine balanced. Thus, the machine can be scaled up to an arbitrary number of proces-
sors. Architectural scalability is claimed by many different architectures, including hyper-
cubes, meshes, tori, and rings. But as Reed[7] points out, scalability of an architecture
must be claimed with respect to a particular application and the communication patterns
that the application exhibits. For example, a two dimensional torus or mesh is scalable
with respect to 2-D nearest-neighbor stencil applications such as computational fluid
dynamics. However, the architectures are not scalable with respect to applications that
exhibit random communication patterns. The hypercube, however, is scalable with respect
to random communication.

5.2 Scalability in Legion

In the distributed systems realm, scalability is best summed up by the “distributed systems
principle”—that is, the number of requests to any particular system component must not
be an increasing function of the number of hosts in the system. Our claim is that as the
number of Legion hosts and objects increases, no component will become a bottleneck
that limits performance and restricts growth.

We make two assumptions about the Legion system. First, we assume that most accesses
will be local. By local, we mean within the same organization, for instance within a
department or university campus. If this assumption does not hold, then the scalability of
Legion will depend on the scalability of the underlying interconnect. We do not expect the
underlying NII to be scalable in the parallel architecture sense. The second assumption is
that class objects will not migrate frequently, and further, that they will tend to stay active
for long periods of time relative to instance objects.

With these assumptions in mind, let us examine where communication and interaction in
Legion occur. First, consider inter user-level object communication that occurs inside of
an application. This communication may or may not contain a bottleneck. The user may
have chosen an implementation with a centralized object that acts as shared memory for a
large number of workers. The object could very easily become a bottleneck and limit
application performance. This does not mean that Legion is not scalable; it simply means
that the application is not scalable. Legion does not guarantee that all applications written
using Legion as the underlying fabric will be scalable.

The Core Legion Object Model August 30, 1995 25

Instead, our claim to scalability refers to communication traffic that is required as a part of
the Legion implementation model. This traffic is concentrated in two areas—LOID bind-
ing lookups from objects to Binding Agents, and Binding Agent traffic required to satisfy
object binding requests. We consider each separately below.

5.2.1 Object to Binding Agent traffic

Each Legion object will maintain a cache of bindings. Therefore, an object’s Binding
Agent will only be consulted on a local cache miss, or when a stale binding is encoun-
tered. The Legion system will include many Binding Agents, and each object may select
its Binding Agent based on its charge rate, its performance, or other criteria. As the load
on a particular Binding Agent increases, or as the domain serviced by a particular agent
enlarges, more Binding Agents may be created. Thus, each Binding Agent can be set up to
service a bounded number of clients.

5.2.2 Traffic induced by Binding Agents

Recall that on a cache miss, a Binding Agent must find a binding. If all requests went to a
single “master” Binding Agent, the system would not scale. Instead the Binding Agent
consults the class object of the object for which it needs a binding. Thus, the load is dis-
tributed to the class objects. This raised two concerns: (1) Given the way that class objects
are located, won’t LegionClass become a bottleneck, and (2) Won’t commonly used
classes—for instance file classes—also become a bottleneck?

The Binding Agent can acquire the binding for a class object by consulting LegionClass,
or by consulting another Binding Agent. Under the assumptions that class bindings
change very slowly and Binding Agents cache class object bindings, the traffic to Legion-
Class will be reduced. Further, by constructing a k-ary tree of Binding Agents, eliminating
traffic from “leaf” Binding Agents to LegionClass, we can arbitrarily reduce the load
placed on LegionClass. In essence, Binding Agents could be organized to implement a
software combining tree[9].

The problem of popular class objects becoming bottlenecks can be alleviated by “cloning”
class objects when they become heavily used. The cloned class is derived from the heavily
used class without changing the interface in any way. New instantiation and derivation
requests are passed to the cloned object, making it responsible for the new objects. Fur-
ther, several clones can exist simultaneously, with the different clones residing in different
domains.

Thus, Legion is scalable in the sense that the underlying mechanisms mandated by the
system model have implementations that will scale to an arbitrary number of hosts and
objects. However, it does not promise scalability for all applications—no architecture can
do that.

The Core Legion Object Model August 30, 1995 26

6 Conclusions

This document has described the core Legion object model. The model places system-
level responsibility in the hands of classes and objects that users can create and define
themselves. Legion specifies the intended functionality of the core objects—LegionOb-
ject, LegionClass, Host Objects, Magistrates, and Binding Agents—which cooperate to
create, locate, and manage the objects in the system. But Legion encourages users to
implement and select replacements that meet the users’ own particular requirements. This
policy, in concert with the Legion security model, enables site autonomy by allowing
resource providers to control their own resources. The Legion naming system—comprised
of LOID’s, Object Addresses, and bindings—unites the objects in the system, thereby
facilitating access to remote files and data. The system scales to millions of sites and tril-
lions of objects.

References

1) Grady Booch, Object Oriented Design with Applications, The Benjamin/Cummings
Publishing Company, Inc., Redwood City, California, 1991.

2) Digital Equipment Corporation, Hewlett-Packard Company, HyperDesk Corporation,
NCR Corporation, Object Design, Inc., SunSoft, Inc., The Common Object Request
Broker: Architecture and Specification, OMG Document Number 93.xx.yy, Revision
1.2, Draft 29, December 1993.

3) Adam J. Ferrari, Andrew Grimshaw, Persistent Object State Management in Legion,
University of Virginia Computer Science Technical Report CS-95-36, in progress.

4) Adele Goldberg, Smalltalk-80: The Language and its Implementation, Addison-Wes-
ley, Reading, Massachusetts, 1983.

5) The Mentat Research Group, Mentat 2.8 Programming Language Reference Manual,
Department of Computer Science, University of Virginia, 1995.

6) Anh Nguyen-Tuong, Andrew Grimshaw, [Fault tolerance in Legion], University of
Virginia Computer Science Technical Report CS-??-??, in progress.

7) Daniel A. Reed, Richard M. Fujimoto, Multicomputer Networks: Message-Based Par-
allel Processing, The MIT Press, Cambridge, Massachusetts, 1985.

8) William A. Wulf, Chenxi Wang, Darrell Kienzle, A New Model of Security for Distrib-
uted Systems, University of Virginia Computer Science Technical Report CS-95-34,
August 1995.

9) Pen-Chung Yew, Nian-Feng Tzeng, Duncan H. Lawrie, Distributing Hot-Spot Address-
ing in Large-Scale Multiprocessors, IEEE Transactions on Computers, vol. C-36(4),
April 1987.

