Challenges for the Remote Operation of Vehicles Poster number: 20-05779 Noah J. Goodall, Ph.D., P.E.

BACKGROUND

BACKGROUND

Vehicles can be operated from a remote location

- \Rightarrow First done in 1925 by radio control
- \Rightarrow Used in mining, agriculture, drone warfare, and dockless scooters
- \Rightarrow At least six AV developers and five startups can remotely operate road vehicles
- Allows Level 4 AVs to operate as Level 5

Questions remain for remote operation of vehicles on public roads in the United States

- \Rightarrow Is it legal?
- \Rightarrow Is it technically feasible?
- \Rightarrow Is it practical?

LEGAL ASPECTS

• Driver's Physical Presence in the Vehicle

- \Rightarrow No state statutes expressly require physical presence of a driver as of 2014
- \Rightarrow Other rules *imply* presence
- Unattended vehicles, abandoned vehicles, crash obligations, safety belts, driver sight, driver interference
- \Rightarrow Uniform Vehicle Code (basis for many state motor vehicle codes) states that "no person ... shall drive ... without a valid driver's license" but do not make the opposite requirement that vehicles must be driven by person with valid license. Without opposite requirement, there is no driver to regulate and rules of the road may not apply.

• Remote Operator's Physical Presence within the United States

- States recognize driver's licenses from other states.
- ⇒ Driver's licenses from foreign countries are generally recognized. Some states require an International Driver's License.

State	Title	Driver's License	Physical Location	
California	Testing of Autonomous Vehicles	Valid driver's license required, jurisdiction not specified.	Not specified.	
Florida	House Bill 311	U.S. driver's license required.	United States.	
Alabama	Senate Bill 47	Valid driver's license required, jurisdiction not specified.	Not specified.	
Vermont	Senate Bill 149	Valid driver's license required, jurisdiction not specified.	Not specified.	
Utah	House Bill 101	Valid driver's license required, jurisdiction not specified.	Not specified.	
State laws and regulations addressing remote operation of road vehicles				

State laws and regulations addressing remote operation of road vehicles

REFERENCES

ämäläinen, M. Garcia-Lozano, and G. David González. On the Feasibility of Remote Driving Application over Dense 5G Roadside Networks. Presented at the 2019 16th International Symposium on Wireless Communication Systems (ISWCS), 2019.

2. Kang, L., W. Zhao, B. Qi, and S. Banerjee. Augmenting Self-Driving with Remote Control: Challenges and Directions. Presented at the 19th International Workshop on Mobile Computing Systems & Applications, New York, NY, USA, 2018.

TECHNICAL FEASIBILTY

- LTE networks *barely* support demonstrations
 - 100ms delay
 - \Rightarrow Field tests require more than one provider

• 5G networks supports demonstrations

- \Rightarrow A few successful demos
- \Rightarrow 10ms delay

Large deployments might not be feasible (1)

- Require 20 Mbps upload rate with 99.999% probability
- Interference becomes an issue in dense \implies deployments
- \Rightarrow Could be restricted to high-value corridors

REMOTE OPERATION STAFFING MODEL

Erlang C Formula

Used in queueing theory to predict number of operators needed to manage a call load while meeting a performance target.

$$P_{C}(m,a) = \frac{\frac{a^{m}m}{m!(m-a)}}{\sum_{i=0}^{m-1}\frac{a^{i}}{i!} + \frac{a^{m}m}{m!(m-a)}}$$
$$a = \frac{\lambda}{u} \qquad \lambda = r_{v}n_{v}$$

 $P_C(m,a)$ = probability that an incoming request cannot be immediately served a = request load

m = number of agents

 λ = average number of requests per unit time

 μ = average number of requests that can be serviced by a single operator per unit time r_v = disengagement rate of automated driving system

 n_{v} = number of vehicles in the fleet

Parameter	Symbol	Value	Source
Requests	a	Varies	Calculated
Operators	m	Varies	Calculated
Request rate	λ	$r_v n_v$	CADMV
Service rate	μ	6, 12, 60 / hr	Assumption
Target failure rate	r _t	2.53×10 ⁻⁷	Medical event rate
Vehicles on road during shift peak hour	n _v	25.3 million day 17.7 million night	FHWA, Urban Mo- bility Report

Erlang C model parameters

MODEL

Network	Delay	Details
LTE	100ms	MPEG-4, frame rate 10, 640p
Wi-Fi	50ms	MPEG-4, frame rate 10, 640p

LTE and Wi-Fi latency (2)

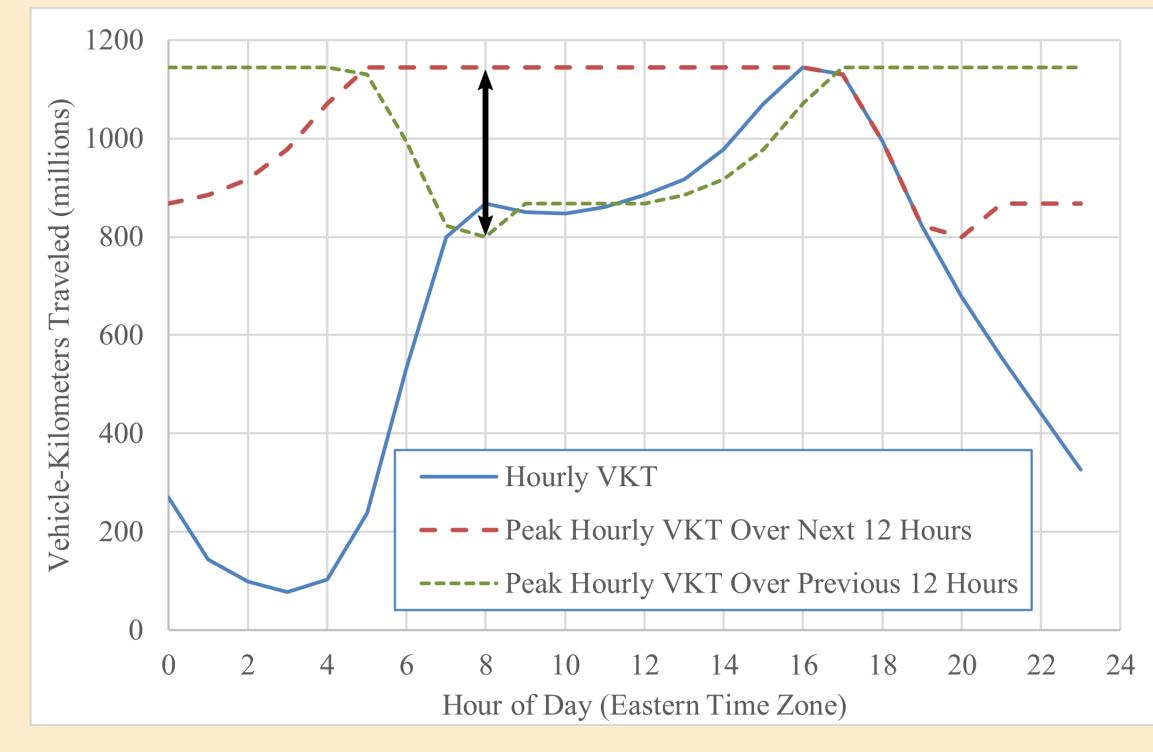
Demonstration	Year	Network	Range	Details
Huawei and Shanghai Automotive Industry Corporation	2017	5G	30 km	240 degree HD video, 10ms delay
Telefonica and Ericsson	2017	5G	70 km	Mobile World Congress
Phantom Auto	2018	LTE	600 km	Simultaneous AT&T and Verizon networks

Road vehicle remote operation demonstrations

Performance Target Selection

Ensure that combined ADS and remote operator at least as reliable as a dedicated human driver.

Assistance Request Rate × Prob. Missed Call ≤ Human Driver Failure Rate


 $r_{v} \times P_{C}(m, a) \leq r_{t}$

- Assistance Request Rate, r_v: No available data. Can use California DMV disengagement reporting as surrogates, supplementing with potential rates.
- Human driver failure rate, r_t = probability of human medical event
- \Rightarrow Commercial airline pilots have 0.058 incapacitating medical event per 100,000 flight hours
- \Rightarrow At 2.5 pilots per flight, medical event rate $r_t = 2.32 \times 10^{-7}$ / hour

Description	Average hours between disengagements	Disengagement rate per hour per s ^a vehicle, r _v		
Once per hour	1	1		
Once per 10 hours	10	10 ⁻¹		
Waymo 2017	44	2.27×10 ⁻²		
GM Cruise 2018	185	5.41×10 ⁻³		
Waymo 2018	397	2.52×10 ⁻³		
Once per year for average driver	480	2.08×10 ⁻³		
Once per 1,000 hours	1,000	10-3		
Once per 10,000 hours	10,000	10 ⁻⁴		
Once per 100,000 hours	100,000	10 ⁻⁵		
^a Converted from distance using National Household Travel Study average speed of 45 km/hr.				

ADS disengagement rates as surrogates for assistance request rates

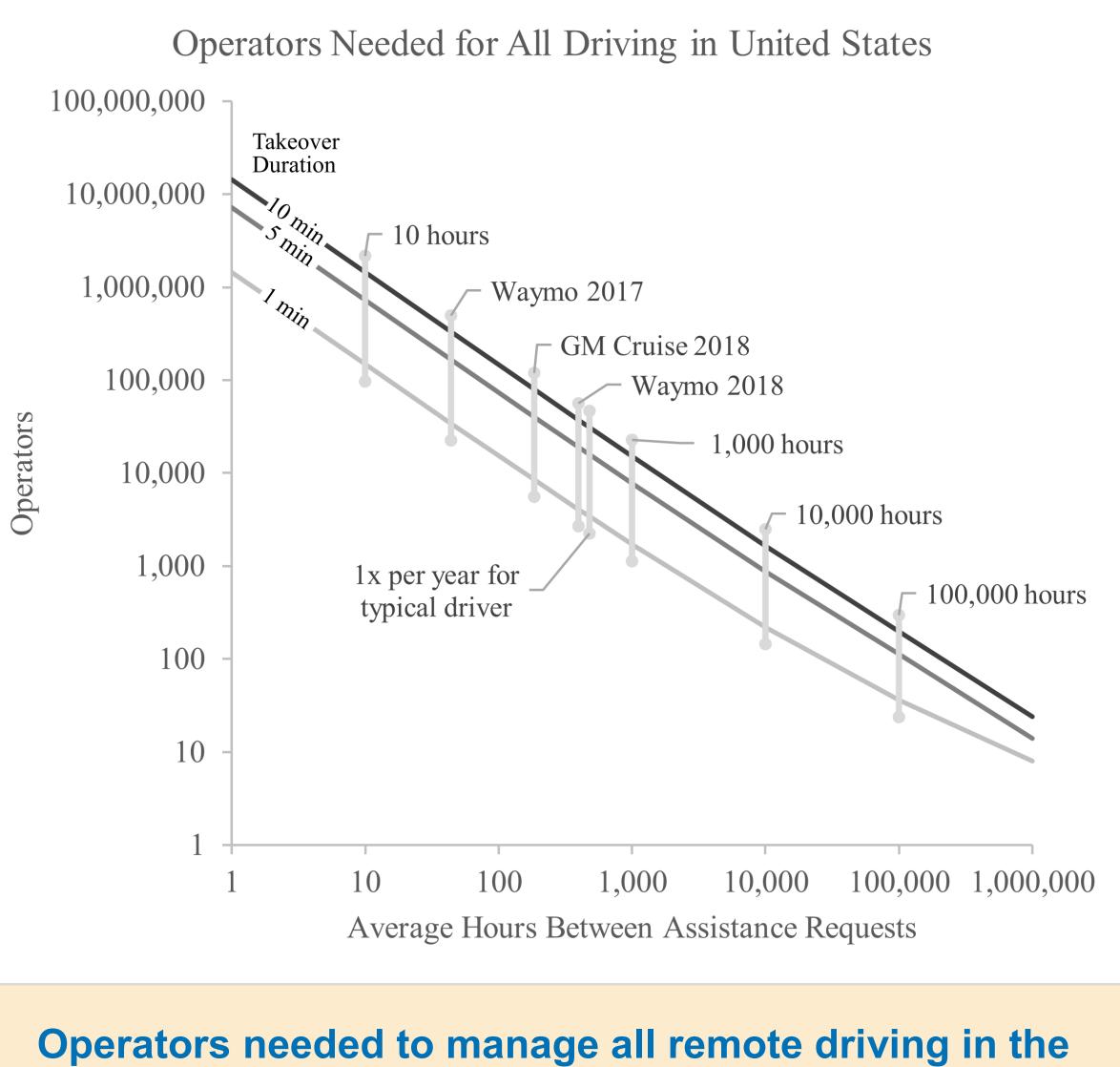
STAFFING REQUIREMENTS

Hourly vehicle-kilometers traveled (VKT) for a typical Friday in the United States.

Average Hours Between Disengage- ment Requests	Operators Needed to Manage all U.S. Driving			
	1 min/request	5 min/request	10 min/request	
1	1,445,392	7,193,604	14,371,422	
10	146,812	724,424	1,444,296	
(Waymo 2017) 44	34,126	166,328	330,628	
(GM Cruise '18) 185	8,452	40,298	79,676	
(Waymo 2018) 397	4,074	19,072	37,538	
(1x/driver/year) 480	3,402	15,846	31,150	
1,000	1,710	7,772	15,184	
10,000	220	878	1,658	
100,000	36	112	198	
1,000,000	8	14	24	

CONCLUSIONS

- regulators and researchers.
- be physically located in the United States.
- United States.


ACKNOWLEDGEMENTS

Michael Fontaine and Ramkumar Venkatanarayana reviewed drafts of this paper. Joseph Keogh contributed analysis.

RESULTS

United States

Staffing assumptions Rotating 12-hour shifts Four days on, four days off Staff needed = (Night shift + Day Shift) × 2

• Remote operation of vehicles on public roads is somewhat common in industry, yet has received little attention from

• Remote operation is not prohibited by most state motor vehicle codes, nor is it prohibited under most definitions of driver/operator. Other state laws imply a driver's physical presence.

• Of five reviewed states that address remote operation in their AV laws, only one requires that a remote operator must

• Queueing theory was used to estimate the number of remote operators needed to manage a large fleet of AVs requesting occasional takeover. At Waymo's 2018 disengagement rate, all driving in the United States could be managed by 4,000 to 37,000 operators working in shifts. For comparison, 4.4 million are employed as drivers in the