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Abstract 
The distinction between requirements and specification is often confused in practice. This 

obstructs the system validation process, because it is unclear what exactly should be validated, 

and against what it should be validated. The reference model of Gunter et al. addresses this 

difficulty by providing a framework within which requirements can be distinguished from 

specification. It separates world phenomena from machine phenomena. However, it does not 

explain how the characterization can be used to help assure system validity. 

In this paper, we enhance the reference model to account for certain key elements that are 

necessary to expose and clarify the distinction and the link between requirements and 

specification. We use the enhanced version to present a more refined picture of validity, where 

validation has two steps that can be undertaken separately. We use this picture to question 

whether the “what the system will do, not how it will do it” paradigm is useful in describing how 

to construct a specification, and propose an alternative. Finally, we present the requirements and 

specification for an illustrative example based on a runway incursion prevention system, with the 

ArchiTRIO formal language in a UML-like environment, to show how this might be done in 

practice. 
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1 Introduction 
The earliest phases of the software lifecycle exert a large influence on software cost and quality, 

yet they are the least amenable to analysis and tend to be poorly understood. The distinction 

between requirements and specification in software engineering, for example, is often confused 

in practice (and even in some textbooks). This confusion translates into significant development 

difficulties; for example, it obstructs the system validation process because of a lack of clarity in 

what exactly should be validated and against what it should be validated. In many cases, 

practitioners produce a document called the “Requirements Specification”, where validity is 

considered only in an ad hoc manner, and where validity is difficult to show at all because 

system requirements and what amounts to system design are tightly coupled. 

In a similar way, validation and verification are often confused. This confusion occurs 

despite the fact that the concepts are distinct and that each requires different techniques for its 

conduct. Making the situation worse is that there are few techniques for validation, and those that 

are available usually serve more than one purpose. Testing, for example, is used in practice for 

both validation and verification, yet which test case does which or even if these goals are 

separable is rarely if ever clear. 

The reference model of Gunter et al. [GGJZ00] addresses these difficulties, in part, by 

providing a framework within which requirements are carefully distinguished from specification. 

It builds on earlier work by Zave and Jackson [ZJ97] that characterizes phenomena of interest to 

the system and separates world phenomena (those of the requirements) from machine 

phenomena (those of the specification). The reference model gives a detailed account of different 

classes of phenomena and the role they play in software development, but it does not explain 

how the characterization can be used in practice to support software development—for example, 

to help assure system validity. 
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In this paper, we introduce an enhanced reference model in which the distinction between 

requirements and specification is further refined and clarified. The refinement of the model 

enables us to construct a two-stage validation process, where each stage addresses a specific 

aspect of validity. We show how our validation process can be carried out with three different 

techniques, depending on how formal someone using the reference model chooses to be in 

creating system artifacts. 

Finally, we use this model to question whether the “what the system will do, not how it will 

do it” [IEEE98, Sec. 4.2] paradigm is a useful one in describing how to construct a specification. 

In the case of the argument presented here, requirements set out the effect the system must have 

on its environment and the specification details the functionality necessary to achieve the 

requirements. Thus, the specification of a system is a form of high-level design that has a 

specific role, similar to a software architecture that forms the design layer underneath the 

specification. 

These ideas are not purely theoretical, and in order to demonstrate their utility, we present the 

requirements and specification we developed for an illustrative example based on the Runway 

Safety Monitor (RSM) [Gre00], part of a system to prevent airport runway incursions, to show 

how our approach might be applied in practice. We constructed both the requirements and 

specification for the RSM, using the ArchiTRIO formal language [PRM05] in a UML-like 

environment. We describe the various artifacts produced and our experience producing them, 

giving concrete examples of artifacts and variables in the different categories of our enhanced 

reference model. 

The remainder of this paper is organized as follows. Section 2 explains the difference 

between requirements and specification, reviewing the Reference Model and its classes of 
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phenomena. Section 3 shows how the enhanced Reference Model clarifies the objectives of the 

validation process, while Section 4 questions the traditional perspective on “requirements vs. 

specification” in accordance with the enhancement to the Reference Model. Section 5 briefly 

introduces the TRIO formal language, and its UML-compatible derivative ArchiTRIO. Section 6 

presents the RSM illustrative example, and Sections 7 and 8 respectively describe how the RSM 

formal requirements and specification were constructed in our framework. Finally, Section 9 

concludes.  

2 Requirements vs. Specification 

2.1 Distinguishing Between the World and the Machine 
The fundamental idea underlying Gunter et al.’s reference model [GGJZ00], and the earlier work 

on which it is based [ZJ97], is that entities (phenomena) in a system’s requirements (world 

phenomena) are distinct from machine phenomena. This distinction is not an obvious one to 

many software professionals, because developers are used to working with a model of a system 

and substituting the model for reality. To clarify the distinction, we present an example based on 

the simple notion of an aircraft’s altitude. An aircraft’s altitude is a world phenomenon. The way 

that a computing system will be able to compute useful results using the aircraft’s altitude, 

however, is through its sensors, which are part of its control system. Aircraft software performs 

computations on the sensor reading (a machine phenomenon), not the actual altitude, because the 

software is not able to know the true altitude. 

Generally, the sensor readings are precise enough that substituting them for the actual 

altitude is sufficient. There are, nevertheless, two reasons why it is important to distinguish 

between the world value and the machine value in general. First, the world value might not be 

controllable or measurable directly. In this case, the way it is controlled or measured is part of 
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the design of the system, not its requirements. Domain experts should not be saddled with system 

design when developing requirements or assessing system validity, because this adds complexity 

to an already difficult job. 

The second reason why the distinction between world and machine variables is important is 

that the machine value can accrue error when combined with other machine values. The error for 

individual variables might be simple enough for a person to deal with unaided in constructing 

requirements, but the error composition can be more complex and might need analytical 

techniques for its computation. It is important that such differences be documented accurately 

and systematically. 

2.2 The Reference Model 
Gunter et al. [GGJZ00] present a reference model for distinguishing between classes of 

requirements artifacts and specification artifacts. Their model has five major classes of artifacts, 

as shown in Figure 1 (our figure differs in appearance from that presented by Gunter et al., 

although the content is identical). The artifacts are broken into two types: those representing the 

environment, and those representing the system. 

 

W M P S R 

eh ev sv sh 

 

Figure 1 - Gunter et al.’s Reference Model 

• W is the set of artifacts that describe assumptions that can be made about the 

environment. 

• R is the set of artifacts that describe what the system is required to make true of the 

environment. 
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• P is the software program. 

• M is the machine on which the program operates. 

• S represents the specification which, as shown in the diagram, resides between the 

system and the environment. 

Within these artifacts, there are phenomena that belong to (and are controlled by) the 

environment (designated by the set e) and phenomena that belong to (and are controlled by) the 

system (designated by the set s). The term environment represents a broader view of the term 

world, where the world has been augmented with the requirements of the system that will be 

built. The term system represents a broader view of machine, where the system can also include a 

model of the machine’s interaction with its environment. The phenomena that are visible by both 

the environment and the system—and thus shared between the two—are designated by the 

subscript v, and those that are seen only by one or the other are designated by the subscript h. 

Thus, for example, the environmental variables that are visible to the system are designated as ev. 

The reference model of Gunter et al. is an excellent starting point for discussion of 

components of system development, but still leaves certain concepts slightly fuzzy. They state 

that the specification crosses the border between the environment and the system, since it is 

allowed to reference both visible machine variables and visible environment variables. We 

disagree and maintain that the specification is stated purely in terms of machine variables. The 

key to understanding our use of and extensions to the reference model is in seeing the difference 

between requirements and specification, as we explain in the next section. 

2.3 Formalizing Requirements 
Distinguishing clearly and explicitly between the world and the machine means that 

requirements and specification include two separate models that play two separate roles. Because 
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in the past the distinction has been blurred, many people think of requirements as an informal 

concept and specification as a formal one. This categorization, however, is an incidental one. R 

(in the model) can be formalized just as well as S can; it will simply use different variables 

representing different phenomena. It is also common practice to think of S’s variables as 

representing R’s phenomena, but that leads to the use of S’s variables as entities in computations. 

This means that S’s variables truly belong to S, and their link to R’s phenomena is actually never 

stated! If R’s phenomena, on the other hand, are represented formally, then the relationship of 

S’s variables to R’s phenomena can be stated formally as well. 

In terms of our earlier example of an aircraft’s altitude, imagine that in R is a requirement 

that an aircraft’s pilot be alerted if the aircraft’s altitude falls below a threshold that is defined to 

be safe. R now has three phenomena: r_alt, the actual altitude of the aircraft; r_altsafe, the 

minimum safe altitude of the aircraft; and r_alert, whether the system has issued an alert to the 

pilot. The requirement is now: 

r_alt < r_altsafe   ⇒   r_alert. 

The specification might say that if the measured altitude falls below the minimum safe altitude, 

then an alert is raised. The specification, then, also has three machine phenomena: s_alt, the 

aircraft’s measured altitude; s_altsafe, the constant in the program below which the measured 

altitude may not fall; and s_alert, whether the system has output a command for an alert to be 

raised. The specification is now: 

s_alt < s_altsafe   ⇒   s_alert 

With the requirement and specification both in place, we can determine whether the 

specification satisfies its requirement. Given our knowledge of the domain, we will make three 
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assumptions. In the first, we assume that the measured altitude is within three meters of the 

actual altitude: 

r_alt – 3 ≤  s_alt 

and  s_alt  ≤  r_alt + 3 

In the second, we assume that if the system signals an alert, an alert is raised: 

r_alert   =   s_alert 

and in the third we assume that the constant s_altsafe is the same as r_altsafe 

s_altsafe   =   r_altsafe 

The observant reader will have noted the mistake in the specification. Because of the error 

present in the altitude measurement, we cannot know precisely when the aircraft passes the 

minimum threshold. We must, instead, change s_altsafe to be equal to r_altsafe + 3 in order to 

ensure that the requirement is satisfied. While this mistake might seem trivial, such mistakes 

have the potential for causing failure in any system. Indeed, many embedded systems have a 

much smaller margin of safety than is suggested by our simple example. 

In current practice, people claim that the goal of a specification is to enable developers and 

domain experts to state what the system must do at a high level of abstraction, giving them 

support for validating the specified system operations without bringing in design and other 

development decisions. The problem with this view is that within it specifications typically are a 

mix of requirements written using world variables and design written using machine variables, 

with no clear delineation or relationship between the two sets. 

Thinking of requirements as an entity that is entirely separate from the specification 

introduces the possibility of achieving the stated goal of the specification, because it separates 

the world variables (and thus the requirements) from the machine variables (the design 
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component of the specification). Consider, for instance, the following change to our altitude 

example. If instead of raising an alert we specified that control surfaces be altered automatically 

to force the aircraft to gain altitude (as might occur with an autopilot), we could change the 

requirement to the invariant: 

r_alt   >   r_altsafe. 

The control algorithms of the aircraft would then have to be related to the physical altitude of the 

aircraft through control equations if we are to claim that the specification implemented its 

requirement. Those algorithms would not, however, need to be considered by the requirements 

analyst—which they are in many cases today. 

2.4 The Enhanced Reference Model 
In order to support the strict separation of requirements and specification that we seek, we make 

two fundamental changes to the model of Gunter et al. The enhanced model that we propose is 

shown in Figure 2. 

 

W M P S R 

eh ev sv sh rv 

A 

 

Figure 2 - Enhanced Reference Model 

First, we do not include any variable which is shared a priori between the environment and 

the system: the relationship between visible environment and system variables has to be stated 

explicitly. Thus, we do not allow S to use any variables from the environment. The original 

reference model assumes that environment visible values can be referenced directly in the 

specification, which corresponds to assuming that they can be measured exactly. This direct use 
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of the environment values also implies that the specified artifact can monitor or affect directly 

the environment. Instead, we place a middle layer between S and R, enabling us to cleanly and 

explicitly separate the actual values from measured values, but still be able to speak about their 

relationship. We call this layer the set A. A is a set of axioms, as seen from the specification’s 

perspective, or assumptions, as seen from the requirements’ perspective. It relates symbols in the 

formal specification model to symbols in the formal requirements. In our altitude example above, 

the set A is: 

          { r_alt – 3 ≤ s_alt 

     s_alt  ≤ r_alt + 3 

     r_alert  = s_alert, 

     s_altsafe = r_altsafe  }. 

A is similar to the idea of domain knowledge, represented by K in the previous work of Zave 

and Jackson [ZJ97]. We have introduced a separate set because domain knowledge typically 

encompasses much more than the formal relationships between variables in R and variables in S 

that we need to link the two formalisms. A is, in essence, a way of encapsulating the formal 

relationships between the phenomena in R and those in S. While we could define the mapping 

between these phenomena to be a trivial one (i.e., particular phenomena in R are essentially 

equivalent to particular phenomena in S), as was implicitly done in the original reference model, 

we feel that this is not the most effective approach to take in the engineering of large systems. 

The main reason lies in the environment: with the ability to introduce a complex mapping in A, 

environmental phenomena used in the requirements no longer need be restricted to those in ev. 

Instead, the relationship between eh and sv can be set out in A. This advantage is discussed in 

more detail below. 
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The second fundamental change that we make to the reference model is that we distinguish 

between the model of the environment used in the requirements and the requirements 

themselves. Requirements are conceptual entities created in a customer’s mind; they are 

fundamentally informal, and there is no way to be sure that any representation of them will 

convey the desired concept to others completely and correctly. When those requirements are 

enunciated, a distinction is created between the concepts of the user and the information that is 

described to the developer or set out in the requirements document and the concepts that exist in 

the mind of the customer. We call the enunciated concepts the model of the requirements. For 

instance, altitude is a concept, but r_alt might be a value corresponding to an aircraft’s altitude 

above ground level, as measured in meters. s_alt would then be the system’s measurement of the 

aircraft’s true altitude above ground level in meters. If the requirements are not represented 

formally, then the model is the informal information conveyed in whatever form the system’s 

statement of requirements takes. 

The distinction between the requirements and their model essentially defines the classic 

validation problem: whether what the system does—which is defined by the logic of its 

software—is what was intended of it. To make this distinction, we introduce in the enhanced 

reference model a new set of phenomena: rv. rv is the documented model of the phenomena in ev. 

In the example above, altitude is a member of ev, r_alt is a member of rv, and s_alt is a member 

of sv. We make this distinction to support validation, as explained in Section 3. 

2.5 The Four-Variable Model and Related Work 
Some aspects of our enhanced reference model are similar to Parnas and Madey’s four-variable 

model for documenting computing systems [PM95], and extensions thereof [MT01]. Both our 

work and Parnas and Madey’s set out a precise distinction between different documents of a 
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developed system. More precisely, Parnas and Madey’s notion of Software Behavior 

Specification, represented by a relation named SOF, is akin our notion of specification, as they 

both refer to machine variables only. Also, the two relations IN and OUT in the four-variable 

model constitute an explicit link between input/output (machine) variables and environment 

variables, and thus are analogous to our notion of set A. Notice that IN and OUT are said to 

document system design in [PM95]. 

There are four main differences between the four-variable model and our enhanced reference 

model. First, whereas Parnas and Madey’s model is presented in a mostly theoretical way, 

relying on the existence of mathematical relations between variables—which may be too 

restrictive in practice—our model presents unambiguously a clear distinction between 

requirements and specification without relying a priori on any formal assumption. As Gunter et 

al. note in their paper [GGJZ00], Parnas and Madey’s model can be regarded as a specific 

instance of the more general reference model. 

Second, our enhanced reference model makes a distinction between the environment and the 

formal model of the environment. NAT and REQ—in the four-variable model—are both formal 

relations; they are unable to express informal requirements concepts and so do not support the 

two-stage validation process discussed in Section 3. 

Third, our model does not force a distinction between observed and monitored environment 

variables, contrarily to the four-variable model. Not requiring such a distinction is more natural 

when dealing with very abstract descriptions such as requirements, where such a partition may 

still be difficult to make. 

Finally, the four-variable model refers the description of all system and environment 

variables to an absolute real time, which is implicitly assumed to be the same throughout 
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requirements and specification. On the contrary, our model can deal with the subtleties of the 

relationship between the physical real time and the “implemented” time as seen by a machine: 

the former is an environment variable, whereas the latter is a machine variable, so that 

requirements are referred to the former, while specification to the latter. Although we will not 

analyze the consequences of this important distinction in the present paper, they will be tackled 

extensively in a companion paper [FRSMK]. 

In addition, the present work bears some similarities with [JHJ06], in which Jackson's 

problem frames [Jac00] are augmented with formulas written in Duration Calculus [CHR91] to 

provide a mean to formalize requirements and specification of systems that are embedded in the 

“physical world”. In particular, [JHJ06] has a notion of variables “bridging” specification and 

requirements; however, [JHJ06] does not make systematic use of these variables, which must in 

fact disappear from the requirements to make the specification implementable (see [JHJ06], 

Section 3.7). The present work, on the contrary, makes such variables first-class citizens of the 

model, and uses them to lay out in full detail the relationship between requirements and 

specification. Also, [JHJ06] deals to some extent with the problem of time approximation and 

uncertainty, which we treat in Section 8 of the present paper (and also in greater depth in the 

companion paper [FRSMK]). 

Hall and Rapanotti have also extended the original reference model, with mechanisms to 

capture and analyze system behavior over time [HR03]. While a major focus of this paper is on 

timing properties, they are real-time system properties expressed within the reference model 

rather than overall system timing properties and so are different from the class of timing 

properties addressed by Hall and Rapanotti’s work. Their work, and the proof obligations that 

accompany their analysis, could be applied to our system. Our focus, however, was on basic 



 14

requirements and specification concerns in production systems, and so we leave application of 

their more complex analyses to future work. 

We notice that the original reference model has been the object of other works aiming at 

providing a way to make the validation process systematic and properly integrated with the other 

phases of software development. Among others, we note the work by Hall et al. [HRJ05] with 

reference to Jackson’s problem frames notation [Jac00]. 

3 A New Perspective on Validation 

3.1 The Two Parts of Validation 
A significant advantage in practice of this viewpoint on requirements and specification appears 

when validating a system. Traditionally, validation is the process of deciding whether a software 

system does what its customer wants it to do. This is a very vague notion, and it is therefore hard 

to achieve. While clarifying the notion does not mean it is now easy to achieve, it does convey a 

more complete structure for thinking about how to tackle the problem. 

With the enhanced reference model, validation can now be split into two parts. The first part 

is matching the formal requirements model, expressed using the variables in rv, to the informal 

customer desires that are formulated using phenomena in ev and eh. This is the most difficult part 

of validation because: (1) it can only be done informally; and (2) often the customer does not 

have a particularly clear picture of what he or she truly wants. In our example above, the user 

might not have remembered to document that altitude is measured from ground level, and the 

developer might have assumed that all altitudes in the domain are measured relative to the mean 

sea level of the Earth. This part of the validation problem is made easier, however, by limiting 

the phenomena of interest to only those present in the environment. As explained above, in a 
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control system for example, the system’s goal can be stated independently of the algorithms used 

to achieve the goal. 

The second part of validation is to ensure that a specification satisfies its requirements. In our 

formal requirements example, we showed how to construct a specification when the 

requirements are simple to implement and the specification can follow directly from the 

requirements. In more complex systems, the specification will be a very high-level system 

design; in a control system, for example, the specification would be the control algorithms to be 

implemented. 

By separating the two parts, we can isolate the second component of validation and complete 

it in whatever manner makes most sense for the system—but separate from the original 

requirements elicitation and validation process. We explained above how this worked for our 

altitude example, and we explain next how other techniques could be used to accomplish this. 

3.2 Completing the Validation Process 
The enhanced reference model enables a variety of techniques to be used to complete the second 

part of the validation process. Here we briefly review three techniques, which are not mutually 

exclusive and can be applied in practice according to different “recipes”. 

3.2.1 Formal Verification 

If both requirements and specification are formalized, then the second part of validation can be 

based on proof. This proof, although similar to that which is used in formal verification, might 

involve formalisms from the application domain. For example, in a control system the proof that 

a particular control algorithm in the specification meets a control property stated in the 

requirements might require analysis from the field of control theory. 
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3.2.2 Informal Argument 

Assurance can also be based on a rigorous but informal argument. To be effective, the argument 

would have to be complete, consistent, and accessible, and a candidate technology for 

constructing and documenting such arguments is the assurance case. A safety case is a specific 

type of assurance case that is used frequently to construct arguments about safety. An assurance 

case is a combination of a goal that has to be achieved and evidence, assumptions, context and 

argument strategies designed to convince the reader that the goal has been met. If the system 

requirements are stated as the goal, then an assurance case can be constructed from the details of 

the specification. 

3.2.3 Execution Time Monitoring 

The notion of monitoring certain desired properties of a system—or assumed properties of the 

environment—during operation and taking action if one or more is about to be violated has been 

advocated by researchers and applied by practitioners. Safety properties are an example, and this 

has led to the notion of a monitoring structure called a safety kernel [Rus89]. The safety kernel 

monitors the system for potential violations of safety polices and intercedes if a violation is about 

to occur. 

In practice, the properties of interest are, in fact, requirements and what a structure like a 

safety kernel is implementing is execution-time assurance that the implementation meets the 

requirements, i.e., a combination of the second part of validation and verification of the 

implementation. Thus a third approach to the second part of validation is to map the 

requirements into a specification that literally says “the requirements have to hold”, implement 

that specification, and execute it in parallel with the system with authority to act in some 

prescribed way if the system might violate some aspect of the requirements. 
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4 A New Perspective on “What vs. How” 
Software engineers routinely define a specification as “what the system will do, not how it will 

do it.” [IEEE98] The how is said to be the job of an implementation. 

Jackson has observed that this distinction is not as useful as it is claimed to be [Jac00]. He 

says that, rather than ask what or how, people should be asking where. He answers the question 

of where with either problem or solution. Problem loosely relates to requirements and solution 

loosely relates to specification, but the relationship is not as distinct as we would like. We 

answer the question of where with either requirements or specification directly, so that it can be 

used to help define the scope of the two documents. 

We believe that any departure from pure requirements is, in some sense, a part of the how. 

For example, setting s_altsafe equal to r_altsafe + 3 (in our altitude example above), is a design 

decision made to enable the system to satisfy its requirement in terms of r_alt. That design 

decision was made because of another design decision involving real-time aspects of the 

system’s sensing components. From this perspective, the specification is actually a very high 

level design of how the system will implement its requirements. Taking this perspective does not 

mean that the term specification is not a useful one; however, we need to look in more detail to 

find the most useful engineering interpretation of the word.  

In this paper, we present a rigorous definition of the term specification: a specification is a 

very abstract representation of a system expressed solely in variables that are visible to the 

system. We have briefly explained, and will elaborate below, how a specification can be derived 

from the associated system requirements. 

Our definition has two advantages over previous definitions. First, it provides a clear 

distinction between requirements and specification. This means that it is possible to determine 

whether a given entity is a specification: a human (in the case of informal documents) or a static 
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analyzer (in the case of formal documents) can tell whether the variables used in a specification 

are distinct from the variables used in the requirements. Current definitions provide no clear way 

to determine whether a document is a specification or merely a set of requirements. This 

definition of specification, along with the separation of a specification from its requirements, will 

help industrial developers understand the role of each document, even if the requirements are not 

formalized. 

The second major advantage of our definition of the terms, combined with our enhancement 

to the reference model, is the ability to push the requirements further in the world by adding 

additional domain knowledge. The original reference model states that the specification may not 

include variables used in eh. This is sensible in that model, since the system cannot measure 

values in eh. The requirements, however, may include members of eh; and, in fact, it is possible 

to expand our set A to include all of what one would consider to be in K. In other words, the 

requirements can be pushed arbitrarily far into the problem domain, given that enough members 

of A are added to link them to the specification. 

As an example of this second advantage, consider a piloted aircraft where the aircraft need 

take no trajectory action when it crosses a minimum altitude threshold, but it must ensure that the 

pilot knows the threshold has been passed. In current practice, the requirements would often state 

something like: 

“The system must raise an alert if the threshold is passed.” 

However, that is not the true requirement of the system. The real requirement is:  

“The system will cause the pilot to be aware that the threshold has been crossed.” 
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With the new requirement, the focus has shifted from system design (the alert) to the customer’s 

need (pilot awareness). The specification then might become: 

“The system must raise an alert if it detects that the threshold is passed.” 

Distinguishing between the two now exposes the need for attention to be paid to the user 

interface. The relationship between a system’s alert and pilot awareness is not known at this 

point; it must be stated explicitly as a member of A. In this way, it takes domain assumptions that 

are often left implicit—and are often incorrect—and forces them to be documented formally. 

5 Requirements and Specification in TRIO 
One advantage of separating requirements from specification is that two different languages can 

be used—one that is more suited to application engineers, and one more suited to software 

engineers. This does not have to be the case, however, and it is simpler to check properties over 

statements in the same formal language. With this in mind, we used TRIO—Tempo Reale 

ImplicitO, [CCCMMM99]—as both our formal requirements language and our formal 

specification language. 

At its core, TRIO is a temporal logic with a linear notion of time, and was designed 

specifically to support documentation of requirements in terms of physical, i.e., real-world, time. 

It provides facilities for constructing formulas that describe the required/admissible behavior of 

phenomena, and hence constrain what may happen at particular time instants or over time 

intervals. In TRIO, the perspective on time is always in terms of the implicit now, with other 

points in time described in terms of their distance from now using the Dist operator. For 

example, let us consider the altitude example introduced in Section 2, and suppose that there is in 

fact a fixed delay D between when an altitude value is true in the real world and when such value 
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is actually made available to the application. Such delay could be described by the following 

TRIO formula: 

all a(r_alt = a -> Dist(s_alt = a, D)); 

Dist is the only basic temporal operator of the TRIO language; however, a number of derived 

operators are defined from Dist, through the usual first-order logic constructs. For example, the 

Alw operator is used to state that a property holds in every instant (i.e. always), while the 

WithinF (WithinP) operator is used to state that some property must hold (have held) within a 

certain future (past) interval (a more detailed list of the TRIO operators is available elsewhere 

[CCCMMM99]). For example, if the delay between when an altitude value is true in the real 

world and when this is made available to the application were not exactly D, but were simply 

bounded by a constant D, one could describe this dynamics through the following TRIO formula: 

Alw(r_alt = a -> WithinF(s_alt = a, D));1 

One of the major advantages of TRIO is its ability to document real-time requirements in an 

elegant way. In this work, we use TRIO axioms to document real-time properties, and compose 

them into ArchiTRIO modules for easier comprehension of the structure of the components and 

properties stated in the requirements. ArchiTRIO [PRM05] is a UML-oriented extension of 

TRIO; it uses a subset of UML2 [OMG05] concepts and notations (e.g. structured class, port, 

interface) to define structural features of systems, and TRIO formulas to describe their dynamics. 
                                                 

1 In a TRIO formula, all free variables are implicitly universally quantified; this holds also for the implicit time, 

which entails that TRIO formulas are implicitly temporally closed with the Alw operator. Hence, the two formulas of 

this Section could have been written as "r_alt = a -> Dist(s_alt = a, D)), and  

"r_alt = a -> WithinF(s_alt = a, D)", respectively. 
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In fact, as it will be pointed out in Section 7, from a graphical point of view there is very little 

difference between UML and ArchiTRIO, and all graphical elements that ArchiTRIO retains 

from UML have the same meaning as in the latter language (albeit in ArchiTRIO such meaning 

is defined formally). Then, the modular structure of ArchiTRIO enables system components to 

be represented and their interfaces clearly defined; and the temporal model of TRIO then enables 

a developer writing the specification to set out the requirements’ real-time properties very 

precisely. 

6 Illustrative Example: Runway Safety Monitor 
In order to illustrate our theory of requirements and specification, and to show how formalization 

of the two can be used in practice to improve developed software, we applied the theory to a 

“real-life” example: NASA’s Runway Safety Monitor (RSM) [Gre00]. We describe the 

application briefly here, and in the remainder of the paper we discuss the construction of the 

system’s requirements and specification and how the different elements fit the enhanced 

reference model. 

The RSM is part of a larger system, the Runway Incursion Prevention System (RIPS). RIPS 

is a prototype system designed to address the problem of runway incursions, situations where 

obstacles are present on a runway in such a way that they could interfere with aircraft taking off 

or landing. The key goal is to assist pilots in maintaining adequate separation of their aircraft, in 

other words, to maintain adequate distance between each aircraft and any obstacles in its flight 

path. The distance required for separation depends on various factors, including relative size of 

two aircraft, but these factors are largely abstracted away in our model. The specific rules 

defining when separation has been violated are set out in the algorithm implemented in the RSM, 

documented elsewhere [Gre00]. 
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We began work on our example problem by constructing the requirements for the RSM 

system. We had two major documents available to us: (1) a NASA technical report by David 

Green, the system’s developer, describing the problem of incursion, the algorithm used to detect 

incursions, and flight test results of the implemented system [Gre00]; and (2) the C source code 

for the implemented prototype system, provided to us by NASA. We chose to reverse engineer 

the source code, with guidance from the technical report, to separate the requirements from the 

specification and the implementation. 

7 RSM Requirements 

7.1 eh, ev, and rv 
The requirements, as documented for the system in the technical report, can be loosely conveyed 

by the following excerpt from the technical report [Gre00]: 

The Runway Safety Monitor (RSM) was developed by Lockheed Martin in support of NASA’s 

Runway Incursion Prevention System (RIPS) research. ... RSM was developed as a component of the 

Integrated Display System (IDS), an experimental avionics software system for terminal area and 

surface operations developed by Lockheed Martin [1]2. ... The advanced capabilities of IDS and RSM 

provide pilots with enhanced situational awareness, supplemental guidance cues, a real-time display 

of traffic information, and warnings of runway incursions in order to reduce the possibility of runway 

incursions while also improving operational capability. ... 

A runway incursion is defined by the Federal Aviation Administration (FAA) as: “any occurrence 

at an airport involving an aircraft, vehicle, person, or object on the ground, that creates a collision 

hazard or results in the loss of separation with an aircraft taking off, intending to take off, landing, or 

                                                 

2 See [BGHJ98]. 
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intending to land.” In other words, a runway incursion occurs when the use of a runway results in a 

conflict between an aircraft taking off or landing and other traffic, i.e., aircraft, vehicle, person, 

object, that may lead to a collision or loss of separation. An incursion is not an accident; it is a 

hazardous situation that could cause an accident. Consequently, a runway incursion alert, as defined 

by RSM, is not necessarily a warning of an impending collision. It is a means of notifying the pilot 

when a hazardous situation on the runway (i.e., incursion) is detected so that evasive action can be 

taken to avoid an accident. 

RSM does not “prevent” incursions but detects incursions as defined above by the FAA and alerts 

the pilot via IDS visual displays and aural warnings. ... 

We inferred that the key world phenomenon in question was incursion. The wording in the 

excerpt, however, is ambiguous with respect to the exact meaning of the word incursion (as is 

often the case with natural language requirements). The FAA definition quoted in the excerpt 

implies that incursions are a subset of losses of separation, where the subset is defined by 

whether the loss of separation involves takeoff or landing of some aircraft. The definition is itself 

unclear because the notion of loss of separation is intended to clarify what constitutes a collision 

hazard, and these two seem to be distinct concepts in the definition. However, this discrepancy is 

not inconsistent with the view that, according to the FAA, a collision is a hidden environmental 

phenomenon (it cannot be measured directly) that should be prevented; a loss of separation is a 

visible environmental phenomenon that should be prevented if possible and dealt with if it 

occurs; and an incursion is a type of loss of separation (making it a visible environmental 

phenomenon by definition) that should be prevented or dealt with in a particular way. 

Green, the report’s author, interprets the definition to mean that an incursion is a situation in 

which a collision or loss of separation might occur. Collision and loss of separation seem to 
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have the meanings we have ascribed to them, but incursion is different. While our interpretation 

of the FAA definition differs from Green’s, his is based on more extensive analysis of supporting 

literature (including that from the National Transportation Safety Board), and so is likely a more 

comprehensive view of what the term means to all the stakeholders involved. Because of this, 

and because reconciling the source code with our formalized requirements would be extremely 

difficult if our requirements differed from the requirements on which the code was based, we 

adopt Green’s interpretation. 

Given this interpretation, we must now determine whether an incursion is a member of eh or 

of ev. In the report, Green effectively defines an incursion in terms of the algorithm used to detect 

it. In general, algorithms are viewed as part of design (e.g., used in a specification) rather than 

requirements, and so we had to determine whether the algorithm implemented by the RSM is a 

part of the requirements or a part of the specification. 

Because the algorithm is the formal model of what Green means by incursion, it embodies rv 

and, thus, is a member of ev. In practice, there are many instances where requirements are 

defined formally but are not recognized as such. The classic instance of this is putative theorems, 

i.e., theorems about properties of a system that are expected to hold if the specification is correct. 

In developing putative theorems, system designers: (1) construct a specification; (2) determine 

properties they want to be true over that specification; and (3) prove that the specification 

satisfies those properties. The theorems represent what the specifier postulates the customer 

requires, and the specification sets out how the system will achieve it. The proof is a proof that 

the specified system will achieve the particular requirement defined by the theorem. 
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Figure 3 - RSM concepts in the Enhanced Reference Model 

It is relatively easy to see how the terms collision and loss of separation fit into our enhanced 

reference model. A collision is a hidden environmental phenomenon, i.e., a member of eh, that 

might be approximately measured by using various specific sensors introduced for the purpose. 

A loss of separation is a visible environmental phenomenon, i.e., a member of ev, because it is 

defined within the domain in such a way that any of the various measurement techniques for 

determining position is adequate to detect it. A loss of separation is a necessary precursor to a 

collision. Their relationship to an incursion, however, is unclear. To define this relationship, we 

must introduce a member of eh from which all of these notions stem: a collision hazard. The 

collision hazard is a situation in which, if nothing else in the airspace system changes, a collision 

will occur within an unacceptably short period of time if no evasive maneuvers are taken. Before 

a collision hazard leads to a collision, it will lead to a loss of separation. A collision hazard leads 

to an incursion in particular situations with respect to runways, where loss of separation is a 

poorer predictor but can be used as one element of whether an incursion exists. The relationships 

among these concepts are illustrated in Figure 3. 

Our formalized requirements are written solely in terms of ev since, in this case, we were not 

able to capture all of the rationale that went into the development of the algorithm. An analysis 
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of the requirements from the domain perspective could formalize the requirement in terms of the 

hidden variables, introducing additional members of A to show how the specification relates to 

the more abstract requirements. 

The above analysis of eh and ev was lengthy, and one might ask whether such analysis is 

useful. Our analysis (or some less formal version of it) is what anyone validating the system 

would need to do (whether they realize it or not) in order to determine whether the system 

achieves its overall goals. If the relationships among incursion, loss of separation, and collision 

are unclear, then it is impossible to tell whether the algorithm defining an incursion is sufficient.  

7.2 Requirements Components 
When extracting our formal requirements model from the existing documents, we were faced 

with the question of how the components of the source code mapped into the requirements and 

specification that we were developing. For the requirements, only the aircraft and airport 

structure were important. There are several other components of the system that we introduce 

below when discussing the specification, but these components served only to enable the system 

to detect incursions—not to define what an incursion is and when it must be detected. 

We also had to determine the underlying real-time requirements for the system. The system 

has a requirement that incursions be detected in a timely manner. In the implemented system, a 

design decision has been made to execute the algorithm periodically in order to meet this 

requirement. In practice, this type of requirement is often stated in terms of periodicity and not in 

terms that are of strict value to the user. The periodicity of the system is a design decision, 

however, and having a user specify it as part of the requirements is not appropriate for two 

primary reasons. First, it introduces an unnecessary—and potentially error-prone—weaving 

together of the user’s true desires and the way that the system will eventually operate. Second, it 
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overconstrains potential system designs. A more effective place to document such a decision is 

in the specification: the specification will lay out how requirements will be achieved by the high-

level system design which is, in this case, through periodicity. 

We expressed the timing requirement for the RSM in terms of the time between when an 

incursion occurs in the real world and the time the RSM onboard component raises an alarm in 

the real world. 

7.3 Formal Requirements Model 
Having separated the system’s requirements, its specification, and its detailed design, we then 

constructed a formal model of those requirements in ArchiTRIO. The main components of our 

requirements model are represented through the ArchiTRIO classes shown in Figure 4. The most 

fundamental one is Vehicle, representing the state of each vehicle over time. Class Vehicle 

represents both aircraft running the RSM program and potential obstacles on the ground. 

Incursions are detected on each individual vehicle through the RSM component (represented by 

the ArchiTRIO class with the same name) of that vehicle. As specified by the association 

between classes RSM and Vehicle, every vehicle capable of detecting incursions runs an instance 

of the RSM algorithm. 
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Figure 4 - ArchiTRIO classes representing the core elements of the RSM requirements model. 

The elements appearing inside the ArchiTRIO classes (e.g. veh_incursion_R) represent the 

world phenomena associated with the entity modeled by the class; that is, they are variables 

belonging to the set rv of Figure 2. The stereotype «TD» (where TD stands for “time-dependent”) 

that appears next to the name of these elements indicates that they are not to be intended as UML 

attributes or operations, but as logic predicates and functions (or, in typical TRIO terms, as 

“items”); these logic items represent the values of phenomena, i.e. variables in ev, over time, and 

will then appear in the ArchiTRIO formulas that formalize the requirements of the application. 

For example, item state_R of class Vehicle is a variable whose value varies over time (hence 

the stereotype TD), and which represents the real world state of the vehicle (position, altitude, 

speed, etc.); in addition, item veh_incursion_R of class Vehicle is a predicate that represents 

when an incursion occurs with the specific vehicle represented by parameter v. 

The basic requirement for when an incursion is detected can be expressed as the following 

TRIO axiom of class Vehicle (where ex is the existential quantifier, and Lasts is a temporal 

operator such that Lasts(F, d) defines that F holds for (at least) d time units starting from the 

current instant): 

incursion_detection_R: 
  Lasts(veh_incursion_R(v), L_INC) -> 
  ex a (WithinF(rsm.incursionAlert_R = a, D_INC)); 

Essentially, this requirement says that whenever there is a “significant” incursion (i.e., an 

incursion that lasts at least L_INC time units, with L_INC an application-dependent constant), an 

incursion alert is raised by the RSM component within D_INC time units of when the incursion 

originally occurs. 
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The above formula introduces two constants that do not seem to follow from the 

requirements as we have analyzed them so far. L_INC implies that brief incursions (where the 

definition of “brief” depends on constant L_INC) can be safely ignored, and D_INC implies that 

incursion alerts do not have to be raised immediately. These constants must be introduced 

because the available system components cannot measure environment values perfectly, and so 

the system is not able to immediately detect or respond to incursions. 

In practice, requirements analysts might not realize that these delays are necessary and so 

might omit such constants. In such cases, the specification will not be able to satisfy the 

requirements because the system cannot be omniscient. This means that the specifier would have 

to negotiate with the customer to relax the requirements. Currently, the relaxation process would 

happen with the specification through retrenchment [BP98]. Precisely identifying the 

requirements enables that relaxation to be assessed in terms of the problem domain instead of the 

system design.  

Finally, we remark that veh_incursion_R and incursionAlert_R are members of rv 

representing visible phenomena of the environment (members of ev). They are not specification 

variables. In the next section, we will introduce specification variables to represent whether the 

machine knows an incursion has happened and whether the machine has ordered an alert to be 

raised, but in this section we are defining the requirements, i.e., whether an incursion has 

happened and whether an alert has been raised. While these concepts are very similar, a number 

of system elements can cause them to diverge. For instance, if the software orders an aural alert 

to be raised, and the speaker malfunctions, then the logical values of these two formal symbols 

are not the same. The differences must be carefully analyzed by system designers and domain 

experts if an argument is to be made about the system’s validity. 
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8 RSM Specification 

8.1 Specification Variables 
To construct our RSM specification, we created a separate formal model. Because the system 

does not automatically know its state or the state of other vehicles, the specification contains 

three significant new system components to acquire this information and transmit it through the 

system: (1) sensors on each aircraft that determine the aircraft’s position; (2) a broadcast 

mechanism that transmits the aircraft’s report of its position to other aircraft and receives the 

incoming broadcast data from other aircraft; and (3) the IntegratedDisplaySystem component 

that shows alerts to pilots. These components are design decisions at the system level. 

Here, we present an excerpt of the specification by focusing on the Vehicle class and its 

components, looking at their different elements. Figure 5 shows the UML2/ArchiTRIO Structure 

Diagram detailing the components of class Vehicle. The machine variables of the specification 

Vehicle class (i.e., its specification variables) are spread through its components. For example, 

the RSM class contains the following machine variables: 

• isIncursion_S, which represents whether, at a given time instant, the RSM 

component detects an incursion; 

• target_S, which is the set of data concerning “target” vehicles (i.e., those other than 

the one running the RSM) that is used by the RSM to detect incursions; 

• ownship_S, which is the data concerning the vehicle running the RSM that is 

collected by the RSM itself (through the vehicle’s sensors). 
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Figure 5 - Structure of class Vehicle. 

 

These variables are those that convey the system’s knowledge of the requirements 

phenomena (i.e., the variables of the requirements Vehicle class): 

• state_R, which represents, for each vehicle, its relevant data (i.e. altitude, position, 

etc.); 

• veh_incursion_R, which represents whether, at a given time instant, there is an 

incursion (independent of whether this is detected). 

Note that some of these variables are closely related to the variables of the Vehicle class in 

the requirements. The similarity in naming reflects the linked purposes of these variables: 

variables ending in _R are members of rv, and variables ending in _S are members of sv that 
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model the same members of rv. Some variables in sv do not map—either directly or as a group—

to any requirements variables; for instance, the operations offered and required by the various 

components through their ports3 (e.g., operation broadcastData, which is exported by class RSM 

through interface DataBroadcast of its in_world port). These represent additional details in the 

system description that are introduced in the specification to make it both sufficiently detailed to 

meet the requirements and a realistic, abstract description of the system behavior. 

8.2 Uncertainty Introduced in the Specification 
As we explained above, the definition we use for specification includes the high-level structure 

of system components that enables the system to meet its requirements. The RSM’s requirements 

state the conditions under which vehicles are considered to be in an incursion situation. The 

specification states the conditions under which vehicles will detect the incursion. This is why we 

had to relax the original requirement: there is some uncertainty introduced because of the error in 

each vehicle’s knowledge about the state of the system. Because of our separation between 

requirements and specification, we enable customers to define when a system is in an incursion, 

and the bound on error within which the system must detect the incursion. The specifier, then, 

will architect the system to meet the requirement. 

In the RSM system architecture, the vehicles share information about each other through a 

broadcast mechanism. Each vehicle periodically polls its sensors to detect its state and 

periodically sends its state to the broadcast mechanism, which in turn periodically broadcasts the 

state of all vehicles in the system to all of those vehicles. Thus, error due to staleness of data is 

introduced basically in three places: 
                                                 

3 We note that the concepts of “port”, “interface” and “operation” in ArchiTRIO are the same as in UML2, the 

only difference being that in ArchiTRIO they have been given a formal semantics [PRM05]. 
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1.  the delay between when the state was true of the vehicle and when the vehicle is able to 

use the data (the data has been transmitted by the sensors); 

2.  the delay between when the data is available for use by the vehicle and when the vehicle 

sends it to the broadcast mechanism; and 

3.  the delay between when the broadcast mechanism receives the data and when the other 

vehicles receive the periodic broadcast. 

Also, as explained earlier with our altitude example, any system (such as the RSM) that 

makes control decisions based on data coming from sensors is susceptible to measurement 

errors; that is, its behavior is (possibly significantly) influenced by the differences that exist 

between the value read by the sensor and the actual value of the quantity when the measurement 

is taken. While in this paper we do not deal with measurement errors, they could be easily 

included in a further, more refined specification of the RSM system. 

We take into account timing and measurement errors when linking the sets rv and sv through 

the set A. A is stated as a further set of TRIO formulas that document the relationships between 

related variables in the two sets. These formulas state the potential error in the variables of sv as 

compared to the phenomena whose variables are modeled in rv. We describe the way that we link 

A to the specification in more detail below. 

8.3 Form of the Specification 
The RSM specification is a separate entity from the requirements. It has a similar form to the 

requirements, and even a number of components that map directly to requirements components, 

such as the Vehicle and RSM classes that appear in both the requirements class diagram of Figure 

4 and among the specification classes. When they occur, direct mappings help the verification 
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stage, but they are a coincidence and are not necessary. The broadcast mechanism, for example, 

is a component that exists only in the RSM specification. 

We chose to distribute the formulas of A across the different classes in the specification to 

take advantage of ArchiTRIO’s support for separation of concerns. To be able to state the 

relationships, variables from both the requirements and the specification had to be included in 

the formulas of A associated with the specification classes. For example, the following formula 

(which belongs to class RSM) links the real-world event that the RSM’s state variable 

incursionAlert_R takes on a defined value, a, with the system event that the RSM component 

invokes an operation raiseAlert (of which out_rA is an instance) of port out_alert: 

incursion_alert_def_A: 
  incursionAlert_R = a <-> ex out_rA (out_rA.recv(a)); 

As another example, consider the following. Each aircraft’s sensors will estimate the real-

world state values of that aircraft and then send these estimates to the RSM algorithm and to the 

broadcast system within D_DS seconds of their being true of the aircraft. This axiom is formalized 

in the ArchiTRIO formula below, where rsm_rD is an instance of operation recData of Sensor's 

port out_rsm; rsm_rD.invoke is the operation’s invocation event; vd is the actual state of the 

vehicle (which corresponds to the value represented by item state_R of class Vehicle shown in 

Figure 4); and d denotes the vehicle’s state: 

data_sent_def_A: 
  rsm_rD.invoke(d) -> WithinP(vd_A = d, D_DS); 

This axiom is included in the ArchiTRIO class for the Sensor specification component. 

Similarly, other delay axioms are introduced for other time components at the appropriate places 

in the specification, completing the set A for the RSM and distributing it where it can be easily 
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validated against its corresponding element in the system design (such as the use of a particular 

sensor). 

Notice that the specification of a vehicle includes a Sensor component, which does not 

appear in the system requirements; this is possible since, as mentioned above, the components of 

the specification need not be in a direct relationship with those of the requirements. However, as 

formalized by axiom data_sent_def_A, a sensor needs to “read” the real-world state of the 

vehicle in order to then send appropriate data to the RSM; to formally state this property, 

variable state_R of Vehicle needs to be made “available” in the appropriate class (in this case, 

class Sensor). This is formally achieved through variable vd_A of class Sensor, which is 

equivalent to variable state_R of its containing class Vehicle (as shown in Figure 5, where the 

two elements are linked through a connector). As the suffix indicates, vd_A is in fact an element 

of set A, since it formally bridges specification and requirements. One can refer to such elements 

when there is no direct mapping from the elements of the requirements to those of the 

specification, but a correspondence between the variables is necessary. 

The distinction between the two different types of formulas—those that are members of S 

and those that are members of A—is straightforward: those that include any requirements 

variable are members of A, and those that include only specification variables are members of S. 

An implementer wanting to study only S, without any reference to A, could use a filter to remove 

these formulas.  

Any omitted delays can be detected through review of these axioms: if the sensor 

specification did not include a delay, then the axiom would say that the state is transmitted 

instantaneously, a situation that a sensor designer could identify as a false assumption. If the 

specification alone were written, there would be no formal need to create the axiom, and 
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identifying the implicit assumption that sensor state was updated and broadcast instantaneously 

would be much more difficult. If the mistake were then not detected through an informal 

validation process, it: (1) might be caught when the source code was written and corrected in the 

program but not the specification, leaving the specification out of date and possibly failing to 

identify all of the ramifications of the change; (2) might be caught during testing and changed at 

great expense; or (3) might not be caught, possibly leading to a failure of the system. 

Finally, while specifications are written using members of sv, if the system is not yet 

implemented, the exact values for those variables may not be known. For instance, the broadcast 

mechanism will introduce some delay, but the specific delay it introduces depends on which 

hardware is used. Specifying exact numbers at this stage can overconstrain potential system 

designs, and so introducing variables with necessary constraints (such as a maximum value for a 

delay) but without specific values can be useful. Our RSM specification includes a number of 

these variables that represent the delays described above. These constraints are also members of 

A since they relate specification variables to requirements variables, but they are not axiomatic 

constraints because they must be made true by the system. Instead, we document them as TRIO 

assumptions, whose semantics require that the assumptions be shown to be true of a lower-level 

design [FRMM06]. These formulas can be assumed in validation activities undertaken before 

design is complete, even though their exact values might not be known. 

9 Conclusion 
Current use of the terms requirements and specification does not clearly distinguish between the 

two. Because of this, validation—one of the most difficult problems in software engineering—is 

a harder problem than need be. Separating the two documents and structuring their roles and 

relationship has the potential to profoundly improve software development practice. 
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This paper has made two contributions. The first is to refine the reference model of Gunter et 

al. into one that cleanly separates concepts as they exist in the world and the representation of 

those concepts in the system. We then added a new set, A, into the reference model to enable 

domain experts to document the relationship between each concept and its representation. 

The second contribution is to show how the concept of validation can be decomposed, and 

show some of the ways that it can be accomplished. We described three potential strategies for 

validation. In a companion paper [FRSMK] we discuss the complementary issue of further 

exploiting formal methods by raising the level of formalization up to the requirements level and 

by formally verifying the correctness of the specification against the requirements. 
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