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Abstract

This paper describes the design, implementation, and eval-
uation of Physicalnet, a framework allowing the programming
and concurrent execution of applications that span multiple
sensor and actuator networks. Physicalnet uses a service ori-
ented architecture to make node services globally accessible
and interoperable. Within this architecture, dedicated pro-
cesses list the services available at a given geographical site,
allow the concurrent access to these services, and enforce spec-
ified user access rights. On top of this architecture, Physical-
net provides the Bundle Abstraction, which allows the concise
manipulation of abstract sets of nodes with dynamic member-
ship. Physicalnet has been especially designed with mobility in
mind: nodes are globally localized and their function dynami-
cally changes according to their location.

To evaluate the Physicalnet framework, we provide a com-
plete implementation in TinyOS and Java. We deploy two geo-
graphically separated testbeds, each composed of PCs and MI-
CAzs forming a multi-hop wireless network. We study 5 appli-
cations that span multiple testbeds and run them concurrently
to demonstrate the utility of our solution. We conclude that
programming is concise, and that execution speed meets appli-
cation requirements.

1 Introduction

Early sensor network research focussed primarily on gath-
ering sensor data both efficiently and reliably. More recent
projects have identified novel directions for sensor network re-
search. Some projects require sensors to be globally accessible
[13]. Others require resource constrained sensors to interact
with actuators and more powerful devices such as PCs, PDAs,
and cellular phones. Some work requires sensor networks to
support concurrent application execution [24]. Also, numerous
research papers note that sensor networks are difficult to pro-
gram and identify a need for powerful and flexible program-
ming abstractions [19].

In this paper, we seek to satisfy these requirements simulta-
neously, within a unified sensor and actuator framework. Our
vision is that of a world where many sites are equipped with one
or more multi-hop, wireless networks of sensors and actuators.
In our vision, the users of such networks want the following:
1) they want their resource-constrained wireless nodes to in-
teract with more powerful Internet-connected devices such as
PCs, PDAs, and cellular phones. For instance, in the case of a
fire alarm application, if sensors detect a fire, users require an
alert message to be displayed on all the PCs, PDAs, and cel-
lular phones of the building. 2) Because user needs change as

time passes, users want to be able to create and run novel appli-
cations that use the existing sensor and actuator infrastructure.
3) Users want to be able to create applications that span sev-
eral independently deployed sensor networks. For instance, a
police officer may want to monitor all the buildings of a uni-
versity for possible intruders. 4) Users want to be able to run
their applications concurrently and continuously, even if these
applications use the same sensors and actuators. For instance,
if user A wants to run a temperature monitoring application,
user B a fire alarm application, and user C a temperature regu-
lation application, all in the same building, the three users need
an architectural framework that will alow them to use the same
temperature sensors continuously and simultaneously. 5) The
owners of the sensors and actuators want to be able to spec-
ify who can use their nodes and how. 6) Programmers need
high level programming abstractions that allow them to man-
age large sets of sensors and actuators and their interactions.

Our solution for satisfying this set of requirements is Phys-
icalnet. Physicalnet is composed of three key elements. First,
Physicalnet uses a service oriented architecture to make node
services globally accessible and interoperable. Second, within
this architecture, dedicated processes called negotiators list the
services available at a given geographical site, make possible
the concurrent access to these services, allow the specification
of user access rights, and enforce these access rights. Third, on
top of this architecture, Physicalnet provides a programming
abstraction called a bundle that allows the concise manipula-
tion of abstract sets of nodes with dynamic membership. Phys-
icalnet provides extensive mobility support: nodes are globally
localized and, as our example applications reveal, the bundle
abstractions is particularly useful to specify location aware ap-
plications that involve mobile nodes.

To evaluate Physicalnet, we created a complete implementa-
tion using Java and TinyOS. We deployed two geographically
separated sensor and actuator networks composed of MICAzs,
MTS310 sensor boards, and PCs. We provide code excerpts
from 5 applications to demonstrate the conciseness of the Bun-
dle programming abstraction. We provide results concerning
application code size, installation time, and responsiveness to
environmental stimuli. Our results show that programming
is concise, and that execution time meets application require-
ments, even when multiple applications run concurrently.

The remainder of this paper is organized as follows. In Sec-
tion 2, we give an overview of Physicalnet. In Section 3, we
detail its implementation. In Section 4, we provide a qualita-
tive and quantitative evaluation of the proposed framework. In
Section 5, we discuss related work before concluding in Sec-
tion 6.



Figure 1. Physicalnet Architecture.
2 Overview of the Physicalnet Framework

Physicalnet allows two types of nodes to interact. The first
type of nodes, the Java nodes, run a Java virtual machine. They
have an IP address and can connect to the Internet. Examples
of Java nodes include PDAs, desktop PCs, laptop PCs, Stargate
gateways, and cellular phones. The second type of nodes, the
TinyOS nodes, are relatively more resource constrained. They
do not directly connect to the Internet but rather form a multi-
hop wireless network, and use a multi-hop wireless network-
ing protocol to communicate with a gateway, this gateway hav-
ing access to the Internet. Examples of TinyOS nodes are MI-
CAz nodes, Telos nodes, and XSM nodes. To give an idea of
what we mean by ”resource constrained”, a MICAz node has a
7.37MHz processor, 4KB or RAM, 250kbps of bandwidth, and
relies on two AA batteries for power supply. We now describe
the three key elements of Physicalnet, which are represented in
Figure 1.

2.1 A Service Oriented Architecture for In-
teroperability and Global Accessibility

The first key element of Physicalnet is its service oriented ar-
chitecture that makes node services globally accessible and in-
teroperable. The Physicalnet service architecture is composed
of service providers, gateways, negotiators, and applications.

A provider process controls the services of the network node
on which it runs. A service can for instance be the temperature
sensor of a MICAz node, the beeper of a XSM node, a light
actuator, the display screen of a PC, or the speakers of a PDA.
A provider registers the services of its node with one and only
one negotiator, and executes the commands issued by this ne-
gotiator.

A negotiator lists all the services that are available at a given
geographical site in its service directory. It informs applica-
tions of the services that it lists, but only of those services that
the application is allowed to access. A negotiator allows sev-
eral application to access the same service concurrently and
resolves possible conflicts. There is only one negotiator for
each service, and this negotiator remotely controls the service
according the needs of currently executing applications.

While Java service providers and applications communicate
directly with negotiators using TCP/IP, TinyOS providers do
so through a gateway. They communicate with the gateway
using a multi-hop networking protocol, and the gateway relays
provider packets to the the negotiator using TCP/IP.

At startup, a Physicalnet application connects to one or more
negotiators. The application specifies the services it needs as
well as the state these services should be in. As the application
executes, these needs may vary depending on the current sensor
and actuator states, and the application dynamically informs the
negotiators of the changes in its requirements.

The Physicalnet architecture is different from other service
oriented architectures such as Jini [3] because it is specifically
targeted to networks of sensors and actuators. Recently, Arch
Rock [1] undertook to expose sensor network functionality as
Web Service. The Physicalnet service architecture is different
in that it allows the concurrent access of sensors and actuators,
and manages their access rights.

2.2 Negotiators for Resource Sharing and
Access Right Enforcement

The second key element of Physicalnet are negotiators.
Concurrent applications dynamically inform negotiators of the
services they need, and request these services to be in a specific
state. The negotiator first filters application requests by enforc-
ing user access rights. Each application is associated with a
user name. For each application, the negotiator looks up the
access rights of the application user and determines whether
the application has access to a given service, whether it has ac-
cess to the location of the service, whether it can modify or
read the states of the service, and whether it can listen to events
generated by the service.

If several applications are allowed to access a service and
concurrently formulate incompatible requirements, the nego-
tiator reaction depends on a service specific resolver specified
by the service owner. For instance, in the case of a temperature
sensor, if application 1 requests a sampling period of 10s, and
application 2 requests a sampling period of 15s, the resolver
may select the minimum sampling rate so that all applications
obtain a number of samples greater or equal to the number they
requested. In the case of a light actuator, if application 1 re-
quests the light to be on, and application 2 requests the light to
be off, the resolver may only satisfy the highest priority request.

Some Physicalnet applications execute on a best effort ba-
sis i.e., even though they formulate specific requests for some
services, they do not take action if these requests are not satis-
fied. For instance, an application may request samples from all
the temperature sensors in a building and continue execution
despite the fact that it does not have access to some of these
sensors. Other Physicalnet applications may have more strin-
gent requirements and need to verify that their needs are met
at any time during execution. Consider the example of a fire
alarm application that does not have access to the alarms! To
verify that their needs are met, applications can dynamically
inspect their access rights and check that their requests are sat-
isfied. Applications can then take any programmatically speci-
fiable action if they deem their access rights to be insufficient.
For instance, they can terminate or display a warning message
for the application user.

2.3 Concise Programming with Bundles

The third key element of Physicalnet is an abstraction called
a bundle. A bundle is a set of service references. It is a general-
ization of previous abstractions that have been proposed in the
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wireless sensor network literature. Like Abstract Regions [20]
and Hoods [21], bundles can be used to refer to the nodes in a
particular spatial zone. However, and this is the first originality
of the bundle abstraction, the membership of a bundle can be
much more complex. The membership of a bundle is described
using a logical predicate written using the Java programming
language. This means that the expression of the bundle mem-
bership can be arbitrarily complex, involving as many condi-
tions as the programmer desires. Bundle membership can span
multiple sites. Membership conditions can involve the service
location, the service interface, the access rights to the service,
and sensory data. Bundle membership can also depend on the
characteristics of a service that is not part of the bundle, on an-
other bundle, and on any application variable. For instance it
is possible to create the bundle of all the light actuators that
are in a room that contains either a motion sensor or an acous-
tic sensor that has been triggered in the last five minutes. Note
however that, unlike Abstract Regions and Hoods, bundles can-
not be used for low level sensor network programming. For
instance, bundles cannot be used to program a networking pro-
tocol for sensor networks.

The second originality of the bundle abstraction is its dy-
namic aspect. The bundle membership is updated periodically
so as to respect the membership specification. Programmers
specify the state in which bundle members must be. For in-
stance, a programmer can specify that all the members of a
bundle must sense the temperature with a period of 2 seconds.
If a service leaves the bundle, the state requirements of the ap-
plication are automatically canceled. If a service joins the bun-
dle, it automatically modifies its state according to application
requirements.

3 Physicalnet Design and Implementation

In this Section, we describe the Physicalnet implementation,
which is summarized in Figure 1.

3.1 Prerequisites

3.1.1 Implementation Languages

Physicalnet is entirely implemented using nesC, TinyOS, and
Java. NesC and TinyOS are used to implement MICAz ser-
vice providers. NesC is a language derived from C that has
been designed especially for embedded programming. It allows
programmers to create components and to define the relations
among them. TinyOS is a tiny operating system that supports a
lightweight and event driven computation model.

The negotiator code, the gateway code, the service provider
code for the PC platform, and the Physicalnet programming
API (including the bundle abstraction) are implemented in
Java. The Physicalnet API uses many of the features of Java
1.5.0: generics, generic methods, and reflection. These lan-
guage features allow us to make the API concise and practi-
cal. As the Physicalnet API is in Java, programming sensor
and actuator networks using Physicalnet does not require pro-
grammers to learn a new, purpose specific language. More-
over, Java provides many features that facilitate code organiza-
tion and conciseness such as object oriented programming and
generics. It also allows programmers to create applications that
use the Physicalnet API at the same time as some of the pow-
erful Java libraries that are available. For instance, within the
same program, it is possible to use Physicalnet to manipulate
sensors, and Jini [3] to manipulate more traditional software
services.

3.1.2 Networking Protocols

Negotiators, application, gateways, and PC service providers
communicate using Java remote method invocation (RMI [5])
over TCP/IP. MICAz service providers form a multi-hop wire-
less network and use the collection and dissemination network-
ing protocols available in the latest TinyOS 2.0 distribution to
communicate with their gateway. The gateways forward the
packets of MICAz providers to their negotiators, and the nego-
tiator updates to the MICAz providers.

Let us give more details about collection and dissemination.
Dissemination is an epidemic networking protocol that reliably
transports data from the gateway to the MICAz providers. Col-
lection builds a spanning tree allowing the MICAz providers to
send acknowledgments, data, and events to the gateway. This
spanning tree is rebuilt only when necessary. Collection and
dissemination allow MICAz providers and gateways to reliably
communicate without imposing a high overhead on the MICAz
providers. One problem with dissemination is that it floods the
whole wireless network even if a message must be sent to only
one node. In the future, we plan to study in detail the kind
of traffic that Physicalnet generates, and to find protocols with
lower bandwidth usage that are still reliable and that still have
low memory overhead.

3.2 Description of Physicalnet Operation

We summarize the interactions between Physicalnet pro-
cesses in Figure 2. In this figure, each set of circles connected
by light arrows represents a thread. Circles represent the states
of the threads. Light arrows represent state transitions. Heavy
arrows represent communications between processes. Double-
circles represents the starting states of the threads. Dashed lines
separate the processes (composed of several threads) of a MI-
CAz (i.e. a TinyOS service provider), a gateway, a negotiator,
and an application. Physicalnet operates as follows:

Beaconing of MICAz Provider: Service providers are reg-
istered with one (and only one) negotiator that manages their
state. Providers have a global identifier of the form Negotia-
tor IP address:Negotiator TCP port:Local Identifier. To sig-
nal their functioning, providers periodically send beacons to a
gateway. The beacon contains the provider global identifier,
the current location of the provider, an acknowledgement num-
ber for the last message received from the negotiator, and sam-
pled values (such as temperature or photometric samples) if the
provider is currently sensing.

Provider Beacon Forwarding by the Gateway: When a gate-
way receives a provider beacon, it reads the provider global
identifier, infers the negotiator IP address and TCP port and
forwards the beacon to the negotiator. The negotiator verifies
that the provider is registered with it, updates the location of
the provider in its database, and records the sampled values.
The negotiator uses the acknowledgement numbers included in
the beacons to infer whether the messages that command the
provider to change state have been received.

Provider State Update Request by the Gateway: Periodi-
cally, the gateway asks the negotiators of the providers it re-
cently heard of for state updates. The negotiators check the
identifiers of the providers, read their database to infer whether
provider state is inconsistent with application requirements,
and returns required state updates to the gateway. The gate-
way forwards these state updates one by one to each provider
using the dissemination sensor network protocol. Upon recep-
tion of an update, providers record the acknowledgment num-
ber that they will include in their next beacon, and launch tasks
of which the execution is dictated by the modification of their
state (for instance, they start sensing the temperature if the
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Figure 2. Physicalnet State Diagram.
sense temperature state is set to true).

Service Update Request by the Application: Periodically,
applications request updates about the actual state of services
from negotiators (e.g., is the sensor on? What is the loca-
tion of the sounder?). With updated service information, ap-
plications update their KML (Keyhole Markup Language) out-
put which allows the display of service information in Google
Earth. Then, the application recomputes its service require-
ments. For instance, if the application programmer specified
than the sounders in the bathroom should be on, the applica-
tion redetermines which sounders are in the bathroom using
the updated service locations received from the negotiator. The
application then uploads its requirements to the negotiator. The
negotiators verify the access rights of the application and, tak-

ing into consideration the requirements of all the applications,
updates the desired service states.

Several Physicalnet operations are not represented in Fig-
ure 2. They include:

Java Provider Operations: A Java provider roughly behaves
like a MICAz provider and a gateway that run in the same pro-
cess. It contacts the negotiator directly to obtain desired state
updates and upload samples.

Detection of Missing Providers by the Negotiator: If a ne-
gotiator does not receive provider beacons for a configurable
duration, it assumes that the provider is turned off.

Garbage Collection of Applications by the Negotiator: Ap-
plications periodically send small heartbeat messages to inform
the negotiator that they are still running. If the negotiator does
not receive heartbeat messages for a configurable duration, it
assumes that the application ungracefully terminated and re-
moves all the application requirements from its database.

Garbage Collection of Samples by the Negotiator: Ne-
gotiators store provider samples (e.g., temperature samples)
and communicate them to applications when they request ser-
vice updates (which can happen very frequently such as every
200ms). Negotiators keep the samples in their memory only
for a configurable amount of time after which the samples are
erased.

Localization Beacons: To localize MICAz providers, we use
MICAz localization beacon nodes. These localization beacons
are configured with their latitude and longitude. They period-
ically broadcast their latitude and longitude. When a MICAz
provider receives a localization beacon, it assumes that its lo-
cation is equal to the location of the beacon. We set the beacon
broadcasting power so that the beacon range does not exceed
the dimensions of the room that contains it. With such a scheme
we obtain a localization scheme that can determines in which
room MICAz providers currently are located. In the future, we
plan to integrate more powerful localization algorithms with
Physicalnet.

To conclude, we want to emphasize two points. First,
providers have a unique global identifier allowing any appli-
cation to reach them through their negotiator. Second, MICAz
providers can communicate with their negotiator through any
gateway and are therefore not tied to a particular wireless sen-
sor network: they can move freely from one geographical loca-
tion to another.

3.3 The Physicalnet Programming API

To create a Physicalnet application, programmers inherit
from the Application class (see Figure 3). The application class
provides methods to 1) add a connection to a negotiator, 2) get a
reference to a service by specifying a provider global identifier
and a service name, 3) to launch the periodic reevaluation of
application requirements according to service states and sens-
ing samples, 4) to periodically output a KML description of the
services used by the application to a file of provided URL (the
KML description can then be visualized in Google Earth), 5) to
get the set of all the zones defined in the negotiators to which
the application is currently connected.

Programmers can create bundles of services by inheriting
from the bundle class and overriding the rule method and the
foreach method. The rule method specifies the membership
of the bundle. The foreach method specifies the application
requirements for the service states. A bundle is a dynamic
abstraction. Its membership is periodically recomputed. If a
service satisfies bundle membership conditions, it dynamically
joins the bundle and application requirements are sent for that
service to the negotiator. If a service does not satisfy the bun-
dle membership conditions anymore, it dynamically leaves the
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Figure 3. Physicalnet API.
bundle and the application cancels its requirements for that ser-
vice with the negotiator.

The membership conditions specified by overriding the rule
method can involve service position, service type, service vari-
ables, sensory data, other bundles, and any application variable.
For instance, it is possible to create a bundle of all the light ac-
tuators that still have more than half of their energy remaining,
that are in the same room of an acoustic sensor that has been
triggered in the last five minutes, and that are in a room with
low light intensity.

Note that bundle membership can span multiple geographi-
cally separated networks. The Physicalnet programming API is
such that running an application over an additional sensor and
actuator networks is as simple as invoking the add method of
the Application class one more time in the application code.

Within the rule and foreach method of bundles, program-
mers can specify membership conditions and requirements on
services using the general Service class and the specific ser-
vice classes that inherit from it. The Service class provides a
method to get the current location of the service and a method
to access information on the service provider (such as its global
identifier and the other services it provides). Any specific ser-
vice (such as a temperature sensor) is manipulated through a
class that inherits from the Service class. Such a class defines
states and/or events. For instance, the Temp class (see Fig-
ure 3), which inherits from the Service class, defines a period
state that is used to formulate requirements about the sampling
period of the temperature sensor. The Temp class also defines a
sense event. If an application sets an event to true, it means that
the application requires the provider to generate samples corre-
sponding to that event. The samples can be accesses through
the Physicalnet API using the whenNewSample method. The
state and event classes provide methods to 1) inquire the access
rights (read and right) of the application for a specific state or
event, 2) to set a requirement for a sate or event, 3) to get the

Application Provider Service S / E Requirement
A1 3001 sounder on true
A2 3001 sounder on false
A3 3001 sounder on true
A4 3001 sounder on false
A1 3001 temp period 10s
A2 3001 temp period 15s
A3 3001 temp period 20s
A4 3001 temp period 1s
A1 3001 temp sense true
A2 3001 temp sense true
A3 3001 temp sense false
A4 3001 temp sense false

Figure 4. Example of Requirement Table.
value of the last requirement that the application formulated for
a given state or event, 4) to get the actual value of the state or
event on the remote provider. The applications requirements
may differ from the actual values of the states and events on
the remote provider if the application does not have sufficient
access rights or has a lower priority than simultaneously exe-
cuting applications.

3.4 Enforcement of Application Require-
ments and Conflict Resolution

During execution, applications send their service require-
ments to the negotiators and update these requirements peri-
odically when they recompute bundle membership. The nego-
tiators receive requirements from multiple applications. They
store these requirements in a requirement table and remember
these requirements until the application cancels them, modifies
them, or terminates. Figure 4 gives an example of requirement
table where four applications have specified requirements for
the sounder and the temperature sensor of provider 3001. Let
us take the example of the temperature sensor service called
“temp” and of its state called “period”. Four applications, A1,
A2, A3, and A4 have specified requirements for the period of
the temperature sensor which are, respectively, 10s, 15s, 20s,
and 1s. The negotiator has to decide the value to which the
period of the temperature sensor is going to be set. To the set
of four requirements, the negotiator is first going to apply ac-
cess rights. Assuming that A4 does not have writing rights for
the period of the temperature sensor, its requirement will be
dismissed. Then, the negotiator is going to apply access pri-
orities. For instance if A1 and A2 have a higher priority than
A3, the requirements of A3 will be dismissed. If A1 and A2
have the same priority, there is a conflict as A1 requires a pe-
riod of 10s while A2 requires a period of 15s. To resolve this
situation, the negotiator uses a resolver. A resolver is a Java
object that takes as input a set of requirements and provides
as an output a single requirement. The default resolver uses
a first come first serve policy to resolve conflicts. Provider
owners can set a specific resolver for any state of the services
they own. For instance, if the owner of the temperature sen-
sor sets a MIN resolver for the sensing period, the minimum
period is selected (10s) to resolve the conflict. With a MIN
resolver for the sensing period, conflicting users get either the
number of samples they required or more. Physicalnet provides
a small library of resolvers including OR, AND (for boolean re-
quirements), MIN, MAX, FIRST COME FIRST SERVE and
LAST COME FIRST SERVE. Provider owners can also pro-
gram custom resolvers that behave exactly as they desire.

3.5 User Access Rights

Physicalnet users can use a shell to specify the access rights
of the service providers they own. The specifiable access rights
for a provider include visibility rights (the right to know that
the provider exists) and localization rights (the right to know
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Provider ID Service S / E User A User B User C
3001 temp period 1RW 2R- 3R-
3001 temp sense 1RW 2RW 3–

Figure 5. Example of Access Right Table.

Figure 6. Resource Visualizer Output.
where a provider is). For each state and each event of each ser-
vice, the owner can grant reading rights and/or writing rights.
Reading rights allow users to know the current value of a state,
and to obtain samples generated by an event. Writing rights al-
low users to modify the value of a state and to specify whether
an event must generates samples. Events and states also have
access priorities. When a high priority user application spec-
ifies a required value for a service state or event, the values
required by lower priority user applications are ignored. If two
user have the same priority and issue conflicting requirements,
service specific resolvers located on the negotiator decide the
resulting value of the state or event. Figure 5 provides an exam-
ple of access right table for a temperature sensor that is accessi-
ble to three users. The S/E column contains a state name or an
event name, W stands for writing rights, R stands for reading
rights, and the number preceding these letters is the priority. As
an example, we can see that user B can turn on the temperature
sensor and access the generated samples. On the other hand,
user B can only read the sampling period but cannot modify it.
Because of the priorities, if user A requires that the tempera-
ture sensor should be off while user B specifies that the sensor
should be on, the sensor will remain off.

3.6 System Tools

To facilitate network visualization and configuration, Phys-
icalnet providers several tools briefly described in this section.

Zone Configuration Tool: The zone configuration tool al-
lows users to upload Google Earth KML files describing zones
such as rooms and building into the negotiators. It is then easy
to use these zone description with the Physicalnet API to, for
instance, create the bundle of all the service contained in a spe-
cific room.

Resource Visualizer: The resource visualizer allows users to
connect to a set of negotiators and to obtain a KML file describ-
ing the providers, services, states, events, and zones available
through those negotiators. The visualizer can periodically up-
date the KML file, which can be loaded in Google Earth (see
Figure 6).

Physicalnet Shell: The Physicalnet shell connects to a ne-
gotiator, asks for a username and password and allows users
to configure service providers, specifying their interface, their
resolvers, their identifier, and their access rights.

Localization Beacon Configuration Tool: The localization

Figure 7. Hardware Used in the Evaluation.
beacon configuration tool allows users to turn a Google Earth
KML file describing the location of beacons and the TinyOS
identifiers of beacons into a file that, when installed on the bea-
cons, configures them with the specified location depending on
the TinyOS identifier.

4 Evaluation

In the previous section, we described both the design and
implementation of Physicalnet. In this section, we evaluate
Physicalnet. We describe our testbed, discuss examples of ap-
plication code, and provide a quantitative evaluation.

4.1 Testbed

Sites and Hardware: To complete our experiments, we use
two geographically separated sites that are approximately 1
mile apart. The hardware configuration at each site depends
on the experiment and is described in corresponding sections.
The total hardware available for the experiments includes a) 52
MICAz sensor nodes, which draw their energy from 2 AA bat-
teries, which have a radio data rate of 250kbps, a 128KB pro-
grammable Flash Memory, 521KB of flash memory for data
storage, 4KB of RAM, a 4MHz CPU, and 3 LEDs. b) 38
MTS310 sensor boards, which connect to the MICAzs and em-
bed a temperature sensor, a photometric sensor, an accelerome-
ter, a microphone, and a sounder. c) 2 desktop PCs (one at each
geographical location) and a laptop. d) 2 MIB510s that connect
MICAz base stations to a PC. Part of the available hardware is
shown in Figure 7.

Creating a Physicalnet: Before application programmers
can start programming Physicalnet applications from a com-
puter connected to the Internet, network administrators need to
create a Physicalnet. Creating a Physicalnet includes the fol-
lowing steps: a) The MICAzs with MTS310 sensor boards that
assume the role of TinyOS service providers must run the Phys-
icalnet TinyOS provider sofware, configured with their global
identifier (which includes the IP address and TCP port of their
negotiator). b) The MICAzs that assume the role of location
beacons must be loaded with the Physicalnet TinyOS beacon
binary properly configured to include the location (latitude and
longitude) of the beacon. c) The MICAzs that assume the role
of base stations must run the Physicalnet TinyOS base station
sofware, must be connected to a PC with a MIB510, and that
PC must run the Physicalnet Java gateway program. d) The
Physicalnet Java negotiator software must run on the PCs that
play the role of negotiators. Gateways do not need to know the
address of the negotiators as they can infer it from the global
identifier of the MICAz providers. Negotiators must be config-
ured with the coordinates of the zones (rooms, buildings) that
are to be used in applications. Negotiators must also be con-
figured with the id and the type of the service providers they
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manage. e) Computers that provide services to the Physical-
net (such as a music player, or a message board) must run the
Physicalnet Java provider software (which implements the ser-
vices), configured with a global identifier. At this point, appli-
cation users can launch their applications. The application then
connect to one or more negotiators and these negotiator update
provider services according to application requirements. Note
that Java providers, gateways, negotiators, and applications all
run as individual processes communicating through RMI. It is,
therefore, possible to install several of these components on the
same PC (e.g., an application, a gateway, and a negotiator can
all run on the same PC). Creating a Physicalnet is like creating
a local area Internet network in that it is a one time process af-
ter which anyone connected to the Internet can use services of
the sensor and actuator network.

4.2 Application Examples

In this section, we provide the description and Java code of
representative applications. The first application, FireAlarm,
was chosen for its simplicity to introduce Physicalnet pro-
gramming. The second application, Tracker, is interesting in
that it demonstrates how seamlessly Java service providers and
TinyOS service providers can interact. The third application,
NeighborhoodWatch, is a more complex application involving
multiple sensing modalities. We slightly simplified the Java
code by omitting language features such as access level mod-
ifiers and package declarations. We also replaced some nu-
merical constants by more meaningful identifiers (e.g., 1000 is
replaced by UPDATE PERIOD).

4.2.1 The FireAlarm Application

Figure 8 shows the code for the FireAlarm application. This
application has been chosen to demonstrate how to implement
reusable operations for groups of nodes using the Bundle API.
FireAlarm computes the average temperature in each room de-
scribed (in terms of longitude and latitude) in the negotiators
it connects to. If the average temperature in a room exceeds
a specified threshold, all the sounders of that room must ring.
Some interesting properties of the FireAlarm application are:
a) If sensor nodes change rooms, their temperature samples au-
tomatically start contributing to the temperature average of the
new room. b) Physicalnet finds all the temperature sensors that
are indoors and the programmer does not need to know their
global identifers. c) During a fire alarm, if a sounder enters a
room where a fire is detected, it automatically starts ringing.
Conversely, if a sounder is removed from a room where a fire
is detected, it automatically stops ringing. d) The application
uses all the services that have the temperature sensor interface
and the sounder interface: the implementing platform is trans-
parent to the programmer and can be a Java sensor node or a
TinyOS sensor node. e) If during application execution, a new
sensor node is turned on, it automatically starts sampling the
temperature. f) If during application execution, the user gains
access rights to a new sensor, it automatically starts sampling
the temperature. These two last features are very important
for sensor network applications that must run for a long time
(months, years) in networks where sensors and actuators can
be moved, removed, and/or added. Using Physicalnet, nodes
automatically adapt to application requirements over time.

In the FireAlarm code of Figure 8, we first create a cus-
tom operation for a set of temperature sensors by creating the
TempBundle class that inherits from a bundle of services that
have the Temp interface. We add a method that computes the
average temperature of a set of temperature sensors. We then
create the FireAlarm application class by inheriting from the

Figure 8. The FireAlarm Application.

Application class. We connect to two negotiators by specifying
the IP hostname, TCP port, user name, and passwords for these
negotiators. The FireAlarm application uses the nodes of those
two negotiators, which are the nodes located in two building
that are one mile apart. We then obtain the set of zones stored
in those negotiators. For each zone of type Room, we create
the set of all temperature sensor nodes contained in that room
by overriding the rule method. We specify that these sensors
must sense the temperature every one second by overriding the
foreach method. For each room, we then define the bundle of
all the sounders in that room if the average temperature in that
room is higher than a specified threshold. Note that this bun-
dle does not contain any elements if the average temperature
does not exceed the specified threshold. We then specify that
the sounders that are part of the bundle must be turned on. Fi-
nally, we call the execute method of the Application superclass
to set the period with which the bundle membership will be
reevaluated, and with which the application requirements will
be recomputed and uploaded to the negotiators. Some interest-
ing features of this code are that: a) the TempBundle class that
defines the averaging operation can be reused in any applica-
tion to compute over time the average temperature over an arbi-
trary set of nodes with dynamic membership. b) We can easily
add new negotiators to run the FireAlarm application over more
buildings. c) If TEMPERATURE THRESHOLD is a variable,
the membership of the bundle of sounders is computed using
the latest value of the variable, not the value at the time of the
bundle definition. As a consequence, we could easily create a
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Figure 9. The Tracker Application.
graphical interface allowing users to dynamically change the
temperature threshold.

For complete understanding of the code, we consider the
example of the sounder service. The “on” state of a sounder
can have one of three values: TRUE, FALSE, or NULL. TRUE
means that the application wants the sounder to be on. FALSE
means that the application wants the sounder to be off. NULL
means that the application has no requirement for the sounder.
The NULL value is very different from the FALSE value in
this case. If the application specifies NULL, the sounder can
be used freely by other applications. If the application spec-
ifies FALSE, and if another application specifies ON, Physi-
calnet uses its conflict resolution mechanisms (priorities and
resolvers) to resolve the conflict. If all applications specify
NULL, the sounder returns to its default state (on = FALSE),
which is determined by the negotiator. When services join a
bundle, the application code determines what are the state re-
quirements for those services (e.g., on = TRUE). When ser-
vices leave a bundle, the state requirements are all nullified
(e.g., on = NULL).

4.2.2 The Tracker Application

Figure 9 shows the code for the Tracker application. This ap-
plication has been chosen to demonstrate how TinyOS service
providers can seamlessly interact with Java service providers:
the end-user does not need to have any knowledge about the
platform that implements the services. Tracker assumes that a
user moves around his home with two MICAz nodes. One is
called the mediaTag, the other the lightTag. If the mediaTag is

on, Tracker turns on the televisions that are in the same room
as the user. If there is no television in a room, Tracker turns
on all the music players that are within a specified distance of
the user. If the lightTag is on, Tracker turns on all the lights
that are in the same room as the user. Some interesting features
of this application are that: a) the user can turn the mediaTag
off to automatically turn off all televisions and music players.
b) The user can turn the lightTag off to automatically turn off
all lights. c) If new televisions, music players, and lights are
introduced in the network, they automatically start satisfying
application requirements as long as they run the Physicalnet
provider platform specific software. d) If users, lights, tele-
visions, music players move from one room to another, their
state is automatically modified to satisfy application require-
ments i.e. state constraints based on location and distance to
the mediaTag and lightTag. e) As service providers are not tied
to a particular gateway and can communicate with their nego-
tiator through the Internet, the application still works if network
nodes are moved from one building to a another one, as long as
each building possesses Physicalnet gateways.

Note that in our implementation, we use the yellow LED of
MICAzs as room lights as we do not have real light actuators.
The music player service is implenented using a Physicalnet
Java service provider that runs on a PC and that turns a mp3
player on or off. The television service is implemented using
a Physicalnet Java service provider that runs on a PC and that
turns a video player on or off.

In the Tracker code of Figure 9, we first connect to two ne-
gotiators. The Tracker application runs over the nodes of the
two buildings that report to those negotiators. We create a ref-
erence to the MICAz used as the mediaTag and to the MICAz
used as the lightTag by specifying their global identifier. For
each zone of type room, we create the bundle of all the tele-
visions in that room if the room contains the mediaTag. This
bundle has no members if the room does not contain the medi-
aTag. The televisions that are member of the bundle must be
turned on and display the favorite channel of the user. For each
room, we then create the bundle of all the music players that
are within a specified distance of the mediaTag, if there is no
television turned on in that room. This bundle has no members
if the room contains a television that is on. The music players
that are member of the bundle must be turned on and play the
favorite playlist of the user. Finally, for each room, we create
the bundle of all the lights that are in the same room as the
lightTag. These lights must be on. Some interesting features
of this code are that: a) the networkTag and lightTag can move
from one wireless network to another and, as long as there are
Phyiscalnet gateways connecting the tags to their negotiators,
the music, television shows, and lights will follow the wearer of
the tags wherever he/she goes. b) Several Physicalnet users can
run the Tracker application simultaneously. If two users have
conflicting requirements, for instance if they require a differ-
ent television channel, Physicalnet applies its conflict resolu-
tion mechanisms using priorities and service specific resolvers.

4.2.3 The NeighborhoodWatch Application

Figure 10 shows the code for the NeighborhoodWatch applica-
tion. This application has been chosen to demonstrate multi-
modal sensing. NeighborhoodWatch is a collaborative surveil-
lance application that alerts a set of neighbors if an intruder
is detected in one of their houses. In our implementation, we
consider two neighbors (Mary and John) that wear MICAzs
equipped with sounders. We refer to those MICAZs as the se-
curity tags. If there are no security tags in one of the houses, all
the accelerators in that house are turned on. If any of those ac-
celerators triggers, the sounders of Mary and John ring for ten
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Figure 10. NeighborhoodWatch.
minutes so that they are informed that an intrusion may be in
progress. Accelerators can be triggered when an intruder tries
to steal a television on which it is placed. Also, if there are
no security tags in one of the houses, all the light sensors are
turned on. If a difference in measured light intensity is detected
while Mary and John are away, the sounder of Mary and John
ring so that they are informed of the intrusion. A difference
in measured light intensity can occur when the intruder opens
a closed cupboard in which a MICAz is placed. As for other
applications, the sensors and tags can be moved / turned on /
turned off at any time during application execution and they
will automatically update their state to conform to application
requirements.

In the NeighborhoodWatch code of Figure 10, we first con-
nect to two negotiators contained in the house of Mary and
John. We create references to the sounders of the security tags
of Mary and John. For each building, we create the bundle of
all the accelerometers that are in that building, if neither Mary
nor John sounders are in that building. This bundle does not
contain any member if the sounder of either Mary or John is in
the building. The accelerometers that are members of the bun-
dle are turned on and marked as triggered if their acceleration

Application Lines of Code
FireAlarm 72
PhotoAlarm 72
RoomOccupancy 90
NeighborhoodWatch 143
Tracker 111

Figure 11. Code Sizes for 5 Applications.
level exceed a specified threshold. For each building, we cre-
ate the bundle of all the photometric sensors in that building, if
neither Mary nor John sounders are in that building. This bun-
dle does not contain any member if the sounder of either Mary
or John is in the building. The photometric sensors are turned
on and the samples are recorded. Periodically, we check the
number of accelerometers that have been triggered within the
last minute and the number of photometric sensors that have
detected light anomalies. If either number is greater than 1,
the sounders of Mary and John are triggered. Note that the
sounders of Mary and John must be explicitly turned off when
the intruder alert is over. Only the application requirements for
the services that participate in a bundle are canceled automat-
ically when they leave the bundle. One interesting feature of
the NeighborhoodWatch application is that it is easy to extend
it to many neighbors and many houses. A whole neighborhood
can then watch each others’ houses. In case sounders are trig-
gered, neighbors can know in which house the intruder entered
by launching GoogleEarth and loading the KML file that Phys-
icalnet applications generate.

Note that we do not show all the code for Neighborhood-
Watch in Figure 10. We did not include the declarations of the
MyAccel, MyPhoto, AccelBundle and PhotoBundle classes.
MyAccel inherits from the Accel service class and defines a
settriggered operation for an accelerometer. MyPhoto inher-
its from the Photo service class and defines a member called
“samples” of which the add method stores samples, generate
a timestamp for each sample, and delete old samples. Accel-
Bundle inherits from a bundle of accelerometers and defines
a method to get the number of triggered sensors contained in
the bundle. PhotoBundle inherits from a bundle of photometric
sensors and defines a method to get the number of sensors that
have detected light variations in the recent past.

4.2.4 PhotoAlarm and RoomOccupancy

Our performance evaluation includes two additional applica-
tions of which we do not show the code because of space
constraints. The fourth application is RoomOccupancy, which
turns on all the acoustic sensors of the negotiators it connects
to, and infers that a room is occupied if two or more acoustic
sensors are triggered in that room. RoomOccupancy periodi-
cally displays occupancy statistics in the standard output of the
terminal in which it is running.

The fifth application, PhotoAlarm is identical to FireAlarm
except that it uses photometric sensors instead of tempera-
ture sensors. It is interesting to compare the performance of
PhotoAlarm and FireAlarm because the temperature sensor
of the MICAz adapts very slowly to the ambient temperature
(minutes) while the photometric sensor of the MICAz adapts
promptly to the ambient light intensity (seconds).

4.3 Code Sizes

In this section, we evaluate the code size of the five appli-
cation that we previously specified. The results are presented
in Figure 11. The code sizes reported here are slightly greater
than the code sizes that can be observed in the previous section.
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Figure 12. PhotoAlarm Execution Timeline.
Indeed, in the previous section, we used a more compact code
representation and omitted some lines of code such as package
declarations. We observe that all applications are implemented
in less than 150 lines of code. This is a key result given the
dynamic nature of our applications that adapt to node mobil-
ity and that span multiple, geographically separated sensor net-
works. Also, note that Physicalnet can let all these applications
run simultaneously even if they use the same sensors and ac-
tuators. Different users can even run distinct instances of each
application from any computer connected to the Internet.

4.4 Performance Evaluation

In this section, we evaluate the performance of Physicalnet
applications. Our metrics are installation time and responsive-
ness to environmental events. We evaluate various system con-
figurations, each configuration using either one wireless sensor
and actuator network or two geographically separated sensor
and actuator networks.

4.4.1 Execution Timeline

In Figure 12, we show the timeline of the execution of the Pho-
toAlarm application. This timeline displays the percentage of
satisfied requirements over time. The percentage of satisfied re-
quirements is defined as follows. When an application starts, it
contacts the negotiators specified in the source code to ask for
service information. At this point, the application decides on
its initial set of requirements. For instance, FireAlarm decides
that all the temperature sensors should be on and should sample
with a period of 1s. The requirements are sent to the negotia-
tors and the state of the service providers (e.g., MICAzs with
MTS310) is subsequently modified. The nodes acknowledge
that they modified their state to the negotiator. When the appli-
cation asks for updates about the service states to the negotia-
tor, it is then informed that its requirements are now satisfied. A
percentage of satisfied requirements of 100% indicates that all
the application requirements are satisfied and that the applica-
tion knows about it (i.e. the acknowledgements traveled from
the service providers to the application passing by the gate-
way and the negotiator). A percentage of satisfied requirements
of less than 100% means that some of the application require-
ments are not satisfied yet, or that the service provider state is
consistent with application requirements but that the applica-
tion has not received the acknowledgements yet. A percentage
of satisfied requirements of more than 100% means that an ap-
plication has canceled some of its requirements (e.g., it does
not want the sounders to be ringing anymore) but that this has
not yet been taken into consideration by the service providers
(or that the acknowledgements have not yet been received).

For this experiment, we run a single instance of PhotoAlarm
on a desktop PC. The PC also runs a negotiator process and
a gateway process. We use 12 MICAz service providers
equipped with MTS310 sensor boards distributed in three dif-
ferent rooms (4 MICAzs per room), and 3 MICAz localization

Figure 13. Installation Time as a Function of
Network Size

beacons (1 per room). PhotoAlarm connects to a single nego-
tiator in this experiment.

At time A (see Figure 12), we start PhotoAlarm. All the
initial application requirements are satisfied within 3.8 seconds
for this particular run (and all acknowledgements have traveled
back from the MICAzs to the application). The time elapsed
between point A and point B is called the application installa-
tion time. This installation time is a metric that we use in the
following sections. At points C, G, and K, we turn the light on
in one of the rooms (the application then requires the sounders
in that room to be turned on), while at points E and I, we turn
the light off in the same room (the application then requires
the sounders in that room to be turned off). We observe that
after these events, it takes from 3 to 5 seconds for node states
to become consistent with application requirements and for the
application to be informed of the state modification. At time M,
we remove two nodes from a room where the light is off to put
them in a room where the light is on (they must start ringing).
We observe that the system seems a little confused for a short
amount of time, increasing and then decreasing the number of
requirements before reaching an equilibrium. This can be ex-
plained by the fact that when we move two nodes from one
room to another, It takes a couple of seconds for the new node
location to be updated on the negotiator. During that time, the
application uses the light measurements of the sensor as if they
were coming from the previous room, and changes sounder re-
quirement accordingly. In other words, moving nodes from a
dark room to a lit room temporarily increases the computed
average light in the dark room and, at the same time, reduces
the computed average light in the lit room. This happens be-
cause of localization delays. After a few seconds however, the
negotiator obtains correct location values and can accurately
enforce application requirements. We make a similar observa-
tion at point O, when we move two nodes from one lit room to
a dark room.

4.4.2 Relation Between Installation Time and Network
Size

In Figure 13, we show the impact of network size on applica-
tion installation time. The installation time (as defined in the
previous section) is the duration between the time at which the
application starts and the time at which the service providers
satisfy application requirements and have successfully sent ac-
knowledgements.

In this experiment, we run four applications (FireAlarm,
NeighborhoodWatch, RoomOccupancy, and Tracker). Each
run is independent from one another, i.e. applications do not
run simultaneously. We run each application 10 times for each
network configuration and measure the installation time. There
are three network configurations. All configurations use a sin-
gle PC that runs the application, a negotiator, a gateway, and
a Java service provider for the Tracker application. The first
network configuration uses 6 MICAzs with MTS310 boards
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Figure 14. Comparison of Local, Remote, and
Multi-Network Installation Times.

distributed in 6 rooms (1 per room) and 6 location beacons (1
per room). The second network configuration uses 18 MICAzs
with MTS310 boards distributed in 6 rooms (3 per room) and 6
location beacons (1 per room). The third network configuration
uses 30 MICAzs with MTS310 boards distributed in 6 rooms
(3 per room) and 6 location beacons (1 per room). In this ex-
periment each application connects to a single negotiator.

Figure 13 shows the installation time as a function of net-
work size along with error bars of length that is twice the stan-
dard deviation. We observe that installation time increases sig-
nificantly with network size. For instance, for Neighborhood-
Watch, the installation time varies from 2.4s for a network of
6 sensors, to 13.1s for a network of 18 sensors, to 32.4s for a
network of 30 sensors. Such an increase could be expected as
all packets must pass through a single base station connected to
the PC.

We also observe that the Tracker applications performs con-
sistently better than the others. This is due to the fact that the
Tracker application needs only, at installation time, to turn on
the LEDs of the nodes that are in the same room as two MI-
CAzs specified in the application code. By comparison, Fire-
Alarm need to turn on all the temperature sensors.

4.4.3 Remote and Multi-Network Execution

In this experiment we study the relationship between instal-
lation time and whether we run applications on a local net-
work, a remote network, or multiple sensor and actuator net-
works. We run four applications (FireAlarm, Neighborhood-
Watch, RoomOccupancy, and Tracker). Each run is indepen-
dent from one another, i.e. applications do not run simultane-
ously. We run each application 10 times for each network con-
figuration and measure the installation time. There are three
network configurations. The first configuration, named the lo-
cal configuration, uses one PC that runs the application, the
negotiator, the gateway, and the Java service provider. It uses
18 MICAzs with MTS310 boards distributed in 6 rooms (3 per
room) located at the same site as the PC, and 6 location beacons
(1 per room). The second configuration, named the remote con-
figuration, uses two PCs. The first PC runs only the application.
The second PC, located 1 mile away from the first PC, runs the
negotiator, the gateway, and the service provider. It uses 18
MICAzs with MTS310 boards distributed over 6 rooms (3 per
room) at the same site as the second PC, and 6 location beacons
(1 per room). The third configuration, named the local+remote
configuration, uses two PCs. The first PC runs the application,
a negotiator, a gateway, and a Java service provider. The sec-
ond PC, located 1 mile away from the first PC, runs a negotia-
tor, a gateway, and a Java service provider. Both sites have 18
MICAzs with MTS310 boards distributed over 6 rooms (3 per
room), and 6 location beacons (1 per room), for a total of 48
nodes distributed across 12 rooms. In the local configuration
and the remote configuration, applications connect to one ne-
gotiator, while in the local+remote configuration, applications
connect to two negotiators. The PCs on both sites are connected

Figure 15. Installation Time and Application
Concurrency.

to the Internet through a cable connection.
Figure 14 compares the installation times for the local, re-

mote, and local+remote configurations and shows error bars of
length that is twice the standard deviation. We first observe that
connection to a remote sensor network rather than a local one
has little impact on installation performance. For all four ap-
plications, the average installation time increases by no more
than 2 seconds. This could be expected as the performance
bottleneck of our system is located at the sensor network base
station. Second, we observe that the local+remote configura-
tion performs nearly as well as the local configuration. Indeed,
for all four applications, the average installation time increases
by no more than 3 seconds. This is a key result: the application
can control twice as many nodes at little cost. This could be ex-
pected as the performance bottleneck of our system is located
at the sensor network base station. These results mean that the
problem observed in the previous section (the significant in-
crease in installation time with network size) can be resolved
by introducing more sensor network gateways.

4.4.4 Remote and Simultaneous Execution

In this experiment, we study the impact of simultaneous ap-
plication execution on installation performance. We use the
remote configuration described in the previous section. The
experiment has two parts. In the first part, we execute five
applications independently (no application is running when a
new one is launched). In the second part, we execute all ap-
plications simultaneously. FireAlarm starts at time t=0s, Neib-
horhoodWatch at time t=60s, RoomOccupancy at time t=120s,
Tracker at time t=180s, and PhotoAlarm at time t=240s. When
PhotoAlarm is launched, the four other applications are still
running. Each experiment is repeated 10 times.

The left graph of Figure 15 shows the installation time for
each application for both the independent execution and the si-
multaneous execution. The length of error bars is of twice the
standard deviation. For the independent execution, we observe
performance characteristics similar to the ones of the previous
section. For the simultaneous execution, performance is sim-
ilar to the independent execution, except for PhotoAlarm that
has a very small execution time (1.2s). To explain the simi-
lar execution times, let’s take the example of RoomOccupancy.
In the independent execution case, RoomOccupancy must turn
on all the acoustic sensors and set their sampling period. In
the simultaneous execution case, RoomOccupancy must do the
same. In the simultaneous execution, the fact that sensors al-
ready send temperature samples, accelerometer samples, and
photometric samples back to the base station when RoomOc-
cupancy starts its execution does not impact performance sig-
nificantly because the samples are added to the beacon that the
sensor periodically sends to its negotiator through a gateway.

Now, why is the installation of PhotoAlarm so fast when
it executes while all the other applications are running? It is
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Figure 16. Responsiveness to Environmental
Stimuli.

because when PhotoAlarm starts, it requires all the photomet-
ric sensors to sample the light intensity. However, these re-
quirements are immediately satisfied when PhotoAlarm starts
as NeighborhoodWatch already started the sensors: the nego-
tiator does not need to contact any of the sensor network nodes
when PhotoAlarm starts as all the requirements of this applica-
tion are already satisfied.

This phenomenon can be better observed in the right graph
of Figure 15. In this experiment, four different users start
RoomOccupancy at t=0min, t=1min, t=2min, and t=3min. Af-
ter minute 4, the four users can observe room occupancy statis-
tics on their computer. Only the first run of RoomOccupancy
takes a significant amount of time (13.7s) because the nego-
tiator must reconfigure all the nodes of the remote network so
that they start their acoustic sensor. During the subsequent ex-
ecutions, the negotiator does not need to contact the sensor
network as all application requirements are already satisfied.
The negotiator will only need to forward the acoustic samples
to four instances of RoomOccupancy instead of one. In other
words, the overhead of simultaneous application execution is
here on the negotiator, not on the sensor network. As the sensor
network is the performance bottleneck, simultaneous applica-
tion execution does not significantly impact performance.

For complete understandability, we here emphasize that the
acoustic and acceleration samples sent by the acoustic and ac-
celerometer services of the MICAzs are the standard deviation
of 50 actual samples. This standard deviation can be used to
quantify the amount of environmental noise in the case of the
acoustic sensor, and to quantify the amount of acceleration of
the sensor node in the case of the accelerometer.

4.4.5 Responsiveness to Environmental Stimuli During
Remote and Simultaneous Execution

In this experiment, we study the responsiveness of Phyiscal-
net applications to environmental phenomena. We use the re-
mote configuration described in Section 4.4.3. We use five ap-
plications: FireAlarm, RoomOccupancy, PhotoAlarm, Neigb-
horWatch, and Tracker. For each application, we define four
events. A responsiveness measurement is the time elapsed from
the time at which an environmental stimulus is applied to the
network to the time at which the predictable consequences of
the environmental stimuli are observed. For instance, if an op-
erator turns on the light and PhotoAlarm is running, the re-
sponsiveness is the time necessary for all the alarm sounders
to be turned on. In these experiments, we measure durations
using a time watch. Whenever necessary, we modify the MI-
CAz service provider binary so that it turns on a chosen LED
to reveal a state we are interested in. That way, we can for in-
stance be sure that all sounders are turned on rather than only
a couple. The five applications execute simultaneously on the

remote sensor network. Measurements start when application
installation for the five applications is finished. Each event is
reproduced ten times, sequentially. The results are displayed in
Figure 16 along with error bars that have the length of twice the
standard deviation.

The environmental stimuli we study are application specific.
For FireAlarm, the studied stimuli are: a) InOven: the time
it takes for all the sounders of a room to be turned on when
the sensors of that room are put on the open door of an oven
heating at a temperature of 200 Fahrenheit degrees. b) Chang-
eRoom: the time it takes for all the sounders of 3 nodes to be
turned off when they are moved from the oven to another room.
c) ReturnRoom: the time it takes for the same sounders to be
turned on when they are moved back to the oven door. d) Out-
Oven: the time it takes for the same sounders to be turned off
when they are moved out of the oven door to the floor. In this
experiment, we observe that the responsiveness is very slow,
ranging from 18.8s to 63.6s. However, this bad performance is
not due to Phyiscalnet but rather is due to the duration the sen-
sor needs to adapt to changing temperatures. We confirm this
fact by experimenting with PhotoAlarm, which has exactly the
same application logic as FireAlarm except that it uses pho-
tometric sensors instead of temperature sensors. When using
PhotoAlarm, the responsiveness drops to less than 3 seconds
for all four stimuli.

For the Tracker application, the studied stimuli are: a) Light-
Tracker: the time it takes for all the yellow LEDs of a room to
be turned on when the lightTag specified in the application code
enters that room. b) RadioTracker: the time it takes for the mu-
sic player on a laptop in a room to be turned on when the me-
diaTag enters that room. c) MoveNodes: the time it takes for
the yellow LEDs of 3 MICAzs to be turned on when they are
moved to the room where the lightTag is. d) MoveTv: the time
it takes for the video player on a laptop to be turned on when
the laptop is moved to the room where the mediaTag is. For
this last stimulus, the laptop is connected to a MICAz that can
read packets sent by location beacons and forward them to the
laptop Java provider.

For the NeighborhoodWatch application, the studied stimuli
are: a) LeaveHouse: the time it takes for the 18 accelerome-
ters and the 18 photometric sensors of a house to be turned on
when the neighbors leave the house (along with the sounders
used to pinpoint their location). Note that in this experiment
we need to add an additional beacon outdoors so that the neigh-
bors’ sounders can notify to the negotiator that they are outside
the house. Note also that despite the house walls, the two MI-
CAzs that the neighbors are wearing remain connected with the
sensor network during the experiment. b) StartShake: the time
it takes for the neighbors’ sounders to start ringing after a MI-
CAz sensing acceleration has been shaken. c) StopShake: the
time it takes for the neighbors’ sounders to stop ringing after
the shaking of the MICAz stops. d) LightOn: the time it takes
for the neighbors’ sounders to start ringing when the light is
turned on in one room of the house.

For the RoomOccupancy application, the studied stimuli
are: a) ChangeRoom: the time it takes for 3 acoustic sensors
to adapt their state when they are moved from one room to an-
other. b) NewNodes: the time it takes for 3 acoustic sensors
to start sensing when they are turned on in on of the rooms. c)
NoiseStart: the time it takes for a room to be marked as busy on
the PC display when noise is made in that room. d) NoiseEnd:
the time it takes for a room to be marked as non-busy on the
PC display when noise is stopped in that room.

We observe that reponsiveness is less than 4 seconds for 13
out 20 stimuli. We already explained why the responsiveness
is slower for the four FireAlarm stimuli. For StopShake, the
responsiveness is of about one minute because we specified in
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the Tracker application code that the sounders should ring if
the accelerometers have been triggered during the last minute.
For NoiseEnd, the responsiveness is of about one minute be-
cause we specified in the RoomOccupancy code that a room
should be marked as busy if two or more acoustic sensors have
been triggered in the last minute. For LeaveHouse, the respon-
siveness is 14.1s because all the accelerometers and photomet-
ric sensors must be turned on (by contrast, most other stimuli
change the state of three or less sensors).

Note that the responsiveness for the ChangeRoom stimu-
lus of RoomOccupancy is 0 second because there is no re-
quirement changing in the state of an acoustic sensor when it
changes room during the execution of the RoomOccupancy ap-
plication (the sensor must just keep generating acoustic sam-
ples). Note also that the responsiveness to the MoveTv and
RadioTracker stimuli is particularly fast because these stimuli
change only the state of Java service providers.

5 Related Work

When we researched ways to satisfy simultaneously the set
of all proposed system requirements, our first step was to con-
sider research projects that address these requirements individ-
ually. We then investigated whether the proposed solutions
could be combined easily. From this investigation, we con-
cluded that such combinations are either impossible or require
significant modification of the solutions to individual require-
ments. A large amount of literature addresses one or more of
our system requirements. We now discuss a relevant and rep-
resentative subset of this literature. Given the size limit, our
survey cannot be comprehensive.

Global Accessibility and Interoperability: A large amount
of literature addresses the problem of making services acces-
sible through the Internet. This body of work includes service
oriented architectures and the technologies that enable it: RPC
[6], ERPC [22], RMI [5], CORBA [4], Jini [3], and WebSer-
vices [2]. We believe that service oriented architectures are a
practical way to make services both interoperable and globally
accessible. This is why the Physicalnet framework is based on
such an architecture. Note that Physicalnet does not aim at re-
placing existing service oriented architecture. Rather it aims to
complement them. Indeed, Physicalnet is especially designed
for sensors and actuators. Because the user interface of Phys-
icalnet is entirely in Java, programmers can, within the same
application, use Physicalnet to manipulate sensor and actuators,
and still use state of the art solutions such as Jini or WebSer-
vices to manipulate more traditional software services. Some
literature has also focussed on connecting resource constrained
sensors nodes with the Internet: Agimone [14], IrisNet [13],
and ArchRock Primer Pack [1]. These solutions do not address
the problems of resource sharing and access rights.

Dynamic Resource Sharing: A first way to satisfy the re-
source needs of several application simultaneously, is to treat
the network as a distributed database [16, 17]. This approach
however does not resolve the issue of conflicting requirement
as in the case of two users requiring different states for a light
actuator. Other solutions include Agilla [12], which uses agents
to efficiently implement motion tracking applications, and Sen-
sorWare [9], which focusses on platforms that have an order
of magnitude more resources than the typical sensor network
node. TinyCubus [18] has a different paradigm. It partitions
a sensor network so that each application has exclusive access
to one of the partitions. It does not support node-level concur-
rency. More recently, Melete [24] enables the execution of con-
current applications on a single sensor node. Melete and Phys-
icalnet are complementary approaches. Physicalnet focuses on

sharing existing node services (sensing, actuating) among a
large number of users. Within this context, Melete could be
used to dynamically add new services to a sensor node.

Access Rights: Few works (such as CodeBlue [15]) make
mention of user access rights for sensor and actuator networks.
Physicalnet access right management system is a main contri-
bution of this paper. It allows the fine-grained specification of
service accessibility.

Programming Abstractions and Languages: A lot of work
has focussed on programming abstractions for sensor networks.
For instance, Envirotrack [7] focusses on target tracking. Reg-
iment [19] introduces the region stream abstraction, which de-
rives from Abstract Regions [20]. Abstract Regions represents
a spatial and temporal distribution of node states. Related ab-
stractions include Hood [21], which allows the programming of
nodes in terms of neighborhoods rather than messaging proto-
cols. MetroSense [11] uses opportunistic tasking and sensing to
leverage the unpredictable mobility patterns of sensors. Spatial
Programming [8] allows the referencing of services using phys-
ical locations and/or service properties. Physicalnet bundles are
more general: they allow the definition of a set of services using
a logical predicate specified using the Java programming lan-
guage. The set can be defined according to an arbitrary set of
parameters including current sensor readings, location, contex-
tual information, and application variables. The membership of
the set may vary over time and the tasks that the nodes execute
vary accordingly. The membership of the set can include nodes
from multiple remote networks.

Semantic streams [23] is a framework that automatically in-
terprets sensor data to satisfy declarative queries. For instance,
a user can query the speed of a vehicle and the system decides
which sensor data and which operations to use to compute the
vehicle speed. In Physicalnet, programmers can use the pro-
vided abstractions to create code that compute the results of
such queries. This code is then reusable from one application
to another.

More recently, Chu et al. created a declarative language for
sensor networks, the SNLOG language [10], and determined
that a declarative approach is a good fit for sensor network pro-
gramming. We agree with this conclusion. In fact, even though
the Physicalnet API is implemented using an imperative lan-
guage (Java), it has a declarative flavor: it allows the user to
declare bundles, thereby specifying the state of sensors and ac-
tuators according to varying environmental conditions.

Note however that Physicalnet and SNLOG have completely
different goals and characteristics. Physicalnet is used to pro-
gram applications at a high level of abstraction, applications
that can span multiple networks, applications that can use the
same sensors and actuators concurrently. Physicalnet cannot
be used for the low level programming of sensor networks.
For instance, Physicalnet, unlike Hood, Abstract Regions, and
SNLOG, cannot be used to program a sensor network routing
protocol.

6 Conclusion

In this paper, we described the design, implementation, and
evaluation of Physicalnet, a framework that aims to facilitate
the programming of global, multi-user, dynamic networks of
sensors and actuators. Physicalnet uses a service oriented ar-
chitecture to make services globally accessible, and to allow re-
source constrained devices to interact seamlessly with Internet-
enabled platforms. Through its negotiators, Physicalnet allows
concurrently executing applications to dynamically share re-
sources, while enforcing access rights and access priorities.
The programming of large, dynamic networks is made prac-
tical through the use of bundles.
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To evaluate the Physicalnet implementation, we use a
testbed composed of MICAzs, MTS310 sensors boards, lap-
top PCs, and desktop PCs. The testbed is composed of two
geographically separated wireless networks located about one
mile from one another. During the experiments, testbed nodes
are moved, turned off and turned on. We report code excerpts,
number of lines of code, and performance results for five appli-
cations named FireAlarm, PhotoAlarm, NeighborhoodWatch,
RoomOccupancy, and Tracker. All these applications can be
deployed over one or several wireless networks. All these ap-
plications react to sensed phenomena by modifying the state
of a subset of the testbed nodes. Examples of sensed phenom-
ena include node mobility, node vibration (using accelerome-
ters), temperature (using temperature sensors), light intensity
(using photometric sensors), and noise intensity (using acous-
tic sensors). Performance metrics include installation time and
responsiveness to operator stimulus. Our first conclusion is
that application programming is concise: each application is
programmed in less than 150 lines of code. Our second con-
clusion is that Physicalnet performance satisfies application re-
quirements with a responsiveness of a few seconds, and with
installation times varying from less than 10 seconds to 30 sec-
onds depending on network size.

We are currently exploring whether Physicalnet satisfies the
needs of additional application domains such as medical, mil-
itary, environmental, and industrial. We plan to extend our
framework to integrate additional hardware platforms, more
advanced localization techniques, and additional networking
protocols. We also plan to investigate potential security threats
and to propose a secure Physicalnet implementation.

All sensor and actuator nodes that run the Physicalnet plat-
form specific software, communicate with the Internet through
a Physicalnet gateway, and register with a negotiator are part of
the Physicalnet. Programmers can create applications involv-
ing any number of nodes participating in the Physicalnet. This
could potentially give birth to world-wide applications such
as a weather forecast application requiring the participation of
a large number of environmental networks from all over the
world. Alternatively, the Physicalnet could host a large set of
smaller, cross-network, user specific applications that interact
with each other in complex ways, turning our planet into a sen-
sitive and responsive entity. Future research shall determine
the feasibility of such a vision and the means for it to become
a reality.
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