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Abstract

Reinforcement learning (RL) is a human-designed framework for solving sequential
decision making problems. In this work, we demonstrate that, surprisingly, RL
emerges in LLM’s (Large Language Model) inference time — a phenomenon known
as in-context RL (ICRL). Specifically, we propose a novel multi-round prompting
framework called ICRL prompting. The goal is to prompt the LLM to complete a
task. After the LLM generates a response at the current round, we give numerical
scalar feedbacks for the response, called the rewards. At the next round, we
prompt the LLM again with the same task and a context consisting of all previous
responses and rewards. We observe that the quality of the LLM’s response increases
as the context grows. In other words, the LLM is able to maximize the scalar
reward signal in the inference time, just like an RL algorithm. We evaluate ICRL
prompting in three benchmarks (Game of 24, creative writing, and ScienceWorld)
and demonstrate significant performance improvements over baseline methods
such as Self-Refine and Reflexion. Surprisingly, in some experiments the reward
signals are generated by the LLM itself, yet performance improvements are still
observed from ICRL prompting, offering a promising paradigm for scaling test-time
compute.

1 Introduction

For Large Language Models (LLMs) to act as effective agents to solve novel tasks, the capacity for
LLMs to improve during the inference time is essential. Learning and search are the two general
methods that can leverage scaling computation for performance improvement (Sutton, 2019). Search
has been successfully applied to LLM’s self-improvement during the inference time, starting from
the simple Best-of-N (Stiennon et al., 2022) to Tree of Thoughts (Yao et al., 2023a) and Monte
Carlo Tree Search (Ding et al., 2024). Learning, however, has yet to receive the same attention for
LLM’s self-improvement during the inference time. In-context (supervised) learning (ICL, Brown
et al. (2020)), as a supervised learning paradigm during the inference time, cannot bring performance
higher than the (expert) demonstrations in the context. Therefore, ICL does not allow the LLM to
learn from its own experience (Silver and Sutton, 2024) to self-improve.

Reinforcement Learning (RL, Sutton and Barto (2018)) is perhaps the most successful human
designed framework for sequential decision making. In this work, we demonstrate that, surprisingly,
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RL also emerges in LLM’s inference time. Such inference-time reinforcement learning process is
commonly called in-context reinforcement learning (ICRL, Laskin et al. (2023); Moeini et al. (2025)).
In this paper, we propose a multi-round prompting framework called ICRL prompting, enabling
LLM’s self-improvement during the inference time through (reinforcement) learning. The goal of
ICRL prompting is to prompt the LLM to complete a task. Initially, the prompt is only the task
description. After the LLM generates a response, we give numerical scalar feedbacks for the response,
called the rewards. Then in the next round, we prompt the LLM again with the same task description
and a context consisting of all previous responses and rewards. So on and so forth. We observe
that the quality of the LLM’s response increases as the context grows. In other words, the LLM is
able to maximize the scalar reward signal during the inference time, just like an RL algorithm. This
demonstrates the potential of learning methods for LLM’s self-improvement during the inference
time. Notably, the scalar reward signal is the only feedback we provide to the LLM. This complies
with both the reward hypothesis (Sutton, 2004), “that all of what we mean by goals and purposes can
be well thought of as maximization of the expected value of the cumulative sum of a received scalar
signal (reward)”, and the “reward is enough” hypothesis (Silver et al., 2021), “intelligence, and its
associated abilities, can be understood as subserving the maximisation of reward”.

To summarize, this paper makes three contributions:

(1): We propose the ICRL prompting framework that demonstrates LLM’s inference-time self-
improvement through RL. One key technical challenge is designing this framework to be as minimal
as possible, ensuring that the observed improvements clearly stem from the LLM’s intrinsic capacity
of ICRL, rather than from auxiliary external code or additional engineered LLM interactions. Specifi-
cally, our framework avoids the use of techniques such as alternating different sampling temperatures
(Zhang et al., 2024), extra sampling steps (Yang et al., 2024), any form of prioritized experience
replay (e.g., subsampling, selecting or re-ordering past trials based on rewards), textual descriptions
of reward or textual gradients (Yuksekgonul et al., 2025) from additional LLM nodes. By adhering to
this minimal design, we provide strong evidence that by merely providing instructions on exploration
and exploitation, we can elicit the ICRL capabilities from the pretrained LLM itself.

(2): We provide strong evidence suggesting the emergence of RL in LLM’s inference time when
the ICRL prompting framework is used. Specifically, we demonstrate the maximisation of the
scalar reward signal, the exploration-exploitation trade-off in LLM’s inference time, the performance
improvements from the growth of the context, the performance drop with short context, and the
performance drop when the reward is absent. All those observations are well expected for an RL
algorithm. Essentially, this is a “duck test” (Heim, 2007)> for the inference process.

(3): We demonstrate significant performance improvements of ICLR prompting over baseline meth-
ods like Self-Refine (Madaan et al., 2023) and Reflexion (Shinn et al., 2023), in three different
benchmarks including Game of 24, creative writing, and ScienceWorld. In Game of 24 and creative
writing, the scalar reward signal is generated by the LLM itself. Yet performance improvements are
still observed.

2 Background

Reinforcement Learning. RL uses Markov Decision Processes (MDPs) to model a task, consisting
of a state space S, an action space A, a reward function r : S — R, an initial distribution pg € A(S)
with A(S) denoting the set of probability distributions over S, and a transition functionp : § x A —
A(S). At time step 0, an initial state Sy sampled from pg. At time ¢, an agent at S; takes an action A;
according to its policy 7 : S — A(A) with A(A) denoting the set of probability distributions over
A, ie., A ~ 7(S;). The action A, is then executed, after which the agent transitions to a successor
state Syy1 ~ p(S, A¢) and recieves a reward R;y1 = 7(S¢+1). This agent-environment interaction
continues until a time 7", which marks the end of an episode. The goal of the agent is to adapt its

policy 7 such that the expected total rewards J(7) = ]E[Zg‘rzl R;] is maximized. In modern deep RL
(Mnih et al., 2015; Schulman et al., 2017), the policy 7 is usually parameterized by a neural network.
We use 6 to denote the network parameter and write the policy as 7g. Typically, RL algorithms update
0 to adapt its policy. For example, at time ¢, the action A; is sampled from 7y, (S;). The RL algorithm
then update 6, to 0y based on available information such as Sy, Ao, R1, ..., St, A¢, Ri11, Set1.
Then at time ¢ + 1, the action A, is sampled from the updated policy 7, , (S;41). Essentially, the
RL process is reflected in the udpates of {6;} and we call this in-weight RL.

21f it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.



In-Context Reinforcement Learning. ICRL (Moeini et al., 2025), first coined by Laskin et al.
(2023), is an emerging inference-time compute paradigm where the RL process occurs in the inference
time (i.e., the forward pass) of the network without any parameter update. In ICRL, the policy 7
is additionally conditioned on a context called C4, i.e., A; ~ wy(St, Ct). The construction of C;
is an active research area but one example is to use all previous state-action-reward pairs obtained
in the task. Notably, this usually includes state-action-reward pairs from all previous episodes,
not just the current episode (Laskin et al., 2023). In ICRL, there is a pretraining stage where the
network @ is pretrained in a wide range of tasks (MDPs). We use 6, to denote the parameter after
the pretraining. After the pretraining stage, the policy 7, is evaluated in new tasks. In other words,
in the new MDP, the action A; is sampled from 7y, (S¢, C;). Importantly, the 6, is kept fixed.
Nevertheless, it is observed that the quality of A; increases as C; grows in the new task. Since 6,
is fixed, this improvement can only from the increase of the context. This is thus called in-context
policy improvement. Notably, this in-context policy improvement is also observed even when the new
task is out of the distribution of the pretraining tasks, e.g., Laskin et al. (2023) demonstrate in-context
policy improvement in new bandit problems that have the opposite optimal arms to the pretraining
bandit problems. Thus this in-context policy improvement cannot be attributed to the hypothesis that
0. memorizes the pretraining tasks. The only plausible hypothesis seems to be that the forward pass
of the network parameterized by 6, implements some RL algorithm to process the information in the
context C; to generate the action A;. This inference-time (forward pass) RL is called in-context RL.
LLMs. The token generation process of LLMs can be modeled via RL. In short, the state is all
generated tokens and the action is the next token to generate. Namely, let V be the set of all possible
tokens. We consider a state space S = [ J;-, V" and an action space A = . At time step 0, an initial
prompt is given, denoted as Sy € S. In this work, Sy contains a description of a task. We refer to the
LLM with parameter 6 as my. At time ¢, given the current tokens .Sy, a new token A; is sampled from
mo(St). The new state is then Sy 1 = [S: Ay, i.e., the new state is obtained by concatenating current
tokens and the new token. A reward signal R; 1 = r(S;y1) is then emitted according to a reward
funciton r. This token generation process continues until a time 7', where either 7' is the maximal
allowed response length or Ay _; is a special end-of-sequence token. Either way, this marks the end
of an episode and the final state S, called the terminal state, contains both the initial task description
and the LLM’s response. There are two types of reward functions. One is sparse (the outcome reward
model, Ouyang et al. (2022)), where r(s) is nonzero only when s is a terminal state. The other
is dense (the progress reward model, Lightman et al. (2023)), where r(s) can also be nonzero for
non-terminal states.

3 In-Context Reinforcement Learning Prompting

We now present our main contribution, the ICRL prompting framework (Algorithm 1, Figure 1),
consisting of the following ingredients.

Algorithm 1 ICRL Prompting

Require: An LLM 7y. A reward function 7. Number of episodes K. An experience buffer B.
A task description sggx € S. The ICRL instruction sicrp, € S.

1: for k =1to K do

2:  Construct the initial prompt Sy by concatenating all the tokens in B, sy, and Sicrr-
3 t <— 0 // Execute the policy Ty starting from Sy

4:  while S; is not terminal do

5: At Nﬂg(st),st+1 = [Sf At},RtJ’_l iT(St_Fl),t(*tﬁ“l

6: end while

70 HN[AgAi, ..., Ar_1] is the LLM’s response to S at the current episode

8: Push (AQ,Rl,Al,RQ,AQ,Rg,...AT_l,RT) into B.

9: end for

LLM as the Policy. An LLM, denoted as 7y, serves as the policy network. The goal is to prompt the
LLM to solve a task. We assume a natural language description of the task is available and we denote
it as sy € S. At the beginning of each episode, we construct the initial prompt by concatenating
the LLM’s own previous attempts together with the corresponding rewards, the task description, and
some meta instruction denoted as sicrp. The details of the concatenation of previous attempts and the



choice of the meta instruction will be discussed shortly. With this initial prompt, the LLM generates
the response. Both the response and the rewards are stored in the buffer for future episodes.
Reward Function. A numerical scalar reward feedback is provided for each .S; in the episode.
Notably, the reward can be either sparse (i.e., only Ry is nonzero) or dense. The reward function can
be rule-based, learned separately, or instantiated via the same LLM for self-evaluation. The flexibility
of using LLM’s self-evaluation as the reward function allows the ICRL prompting framework to
be applied to a wide range of tasks. Notably, this scalar reward is the only feedback we provide to
the LLM. But we do tell the LLM that this scalar is a reward. We do so by explicitly writing down
the word “Reward” before this number when constructing the initial prompt. Notably, if the reward
function is rule-based and learned separately, the reward signal constitutes an external feedback. But
if the reward function is just the LLM’s own evaluation of the answer, there is no external feedback at
all in the ICRL prompting framework. Yet we still expect the LLM’s response to improve over the
episode. This is because of the widely believed hypothesis that evaluation is eaiser than generation.
But we do hypothesize that the ceiling with self-evaluation is lower than that with external feedback.
Memory for Experience. We use an experience buffer B to store the LLM’s responses and rewards
for the task in previous episodes. Our underlying hypothesis is that pretrained LLM already has
the ICRL ability. To use this innate ICRL ability to improve LLM’s response to the task, we
concatenate its previous attempts and rewards as many as the context window allows. We expect
that the LLM can reinforcement learn from the experiences in the context during the inference time.
ICRL Instructions. To facilitate LLM’s infer-
ence time RL, we additionally provide some
instructions in initial prompt Sy at each episode. 1
The instruction is in natural language and is
denoted as sicrL. We consider three types of
instructions: (1) the exploration instruction (Fig-
ure 4 in App. A), (2) the exploitation instruction
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(Figure 5 in App. A), (3) the exploration or ex- k+1 [A[R[A[R[A[R]
ploitation instruction (Figure 6 in App. A). For Concatenate
exploration instruction, the model is asked to Rewards
provide a response that is different from all its

previous responses. For exploitation instruction, o oo

the model is asked to generate the best response c’\> LLM %) ‘I' é LLM(/‘) OR @
based on the the previous responses with the ~0- ~O-

Generates

highest reward. We consider two strategies. (1)
ICRL Preset: We alternate between the explo-
ration and exploitation instructions. When the
episode number K is even, we use the explo- Figure 1: ICRL Prompting. At each episode % + 1,
ration instruction. When the episode number LLM generates action tokens based on previous ex-
K is odd, we use the exploitation instruction. periences up to k, and receives numerical rewards
(2) ICRL Autonomous: We always provide €ither from itself as the evaluator or from the en-
the “exploration or exploitation” instruction at vironment. At the end of the episode, the rewards
each episode and let the LLM itself to decide on  are then concatenated with the action tokens and
which to use. placed back into the context.

Reward Function

4 Related Works

4.1 In-Context Reinforcement Learning.

The study of inference time RL algorithms dates back to Duan et al. (2016); Wang et al. (2016) and
recently Laskin et al. (2023) coined the word “in-context reinforcement learning”, after which the
interest in [CRL grew quickly (Kirsch et al., 2023; Raparthy et al., 2023; Schmied et al., 2024; Lee
et al., 2024; Zisman et al., 2023; Grigsby et al., 2024; Lu et al., 2023; Bauer et al., 2023; Wang
et al., 2025; Cook et al., 2024; Xu et al., 2024; Shi et al., 2024; Huang et al., 2024; Liu and Abbeel,
2023; Dai et al., 2024) See Moeini et al. (2025) for a comprehensive survey. Most existing ICRL
works are essentially a subarea of meta RL (Beck et al., 2023). They use games or robotics as
benchmark and the network size is small (compared with pretrained LLMs like GPT-4.1). They
focus on algorithms to induce this ICRL capability and train sequence models from scratch. By
contrast, this work studies the ICRL capability of standard pretrained LLMs without any parameter
updates. Nevertheless, some existing ICRL works do include pretrained LLM. For example, Brooks



et al. (2024) use a pretrained LLM as a world model to simulate rollouts; Mirchandani et al. (2023)
treated LLMs as general sequence predictors. Closest works to ours study LLMs in bandit tasks,
specifically Multi-Arm Bandits (MAB) (Krishnamurthy et al., 2024; Nie et al., 2024; Park et al.,
2024) and Contextual Bandits (CB) (Nie et al., 2024; Monea et al., 2025). They show that artificial
interventions, such as including statistics commonly used in MAB algorithms in the context, can
improve LLM’s performance on various MAB and CB tasks. In particular, Monea et al. (2025)
reformulate a classification task as a CB problem by assigning a binary reward based on classification
correctness. Their comprehensive empirical results indicate that LLMs perform poorly on this
task without either prompts that encourage exploration or additional mechanisms to filter incorrect
actions from the context. Overall, these works demonstrate that LLMs remain uncompetitive with
algorithmic baselines for both CB and MAB, even after such interventions. We shift our focus away
from tasks solvable by classic analytic bandit algorithms and instead tackle text tasks that require
real-world knowledge about math, science, and linguistics, domains where LLMs uniquely excel. Our
experiments show that interaction history alone, when paired with numerical rewards, outperforms
baseline test-time self-improvement methods, including various prompting and sampling techniques.
Importantly, we do not filter any “failed” action with low rewards since a key characterization of RL
is to learn from failure as well.

Broadly speaking, ICRL can be viewed as a subarea of in-context learning (ICL, Brown et al. (2020))
if ICL is taken to encompass any inference-time learning paradigm. In practice, however, ICL
often refers specifically to in-context supervised learning (ICSL) (Brown et al., 2020). The key
difference between ICRL and ICSL is that in ICSL, the context consists of task-demonstration pairs,
where demonstrations are typically generated by an expert. In contrast, ICRL contexts contain tasks,
previous attempts, and associated rewards. Agarwal et al. (2024) show that scaling ICL with synthetic
answers can outperform few-shot expert ICL, but their rule-based verification assumes access to many
auxiliary problems drawn from the same distribution as the current task. In our setting we interact
only with the current task and receive either a synthetic or a ground truth scalar reward, without
access to expert or successful trajectories. Like any reinforcement learning method, ICRL exploits
both rewards and trajectories, allowing the model to improve on the current task by learning from all
of its prior failures.

4.2 Inference-Time LLM Self-Improvement

Chain-of-Though (CoT) (Wei et al., 2022) is the most commonly used method for inference-time
improvement, where the LLM is prompted to reason step by step. Long CoT (OpenAl, 2024;
DeepSeek-Al et al., 2025) extends this idea by training a LLM to generate extensive, multi-step
reasoning processes to tackle complex problems. It has demonstrated that performance increases
with the number of tokens generated at test time (OpenAl, 2024). Best-of-N is a simple yet effective
way of optimizing LLM’s output at inference time. At each query, the model draws IV independent
samples, evaluates each candidate with a numerical score, and then selects the highest-scoring output.
ReAct (Yao et al., 2023b) is a prompting method for long trajectory decision making. In ReAct, the
LLM is prompted to complete a task through multiple steps. At each step, the LLM first generates
a “thought”, reflecting on the problem, then decides on an “action” to gather new information or
update state, and finally ingests the action’s result into its next thought. ReAct alternates between
reasoning and action to complete a single trial (i.e., one episode in Algorithm 1) for the task. Our
ICRL prompting is orthogonal to ReAct in that we study inference-time RL through multiple episodes.
Self-Refine (Madaan et al., 2023) is the closest to our work and is a multi-round self-improvement
method to improve the LLM’s response iteratively. First, the LLM generates an initial response to
a prompt. Then, the same LLM provides verbal feedback on its own output, identifying areas for
improvement. Finally, the LLM uses this feedback to revise and refine its previous response. This
cycle is repeated until the output meets a desired quality or a stopping condition is reached. Our ICRL
prompting is different from Self-Refine in two aspects. First, Self-Refine uses the LLM’s own natural
language feedback. By contrast, ICRL prompting uses a numerical scalar feedback (from either the
LLM itself or external if available). Second, our ICRL prompting additionally provides instructions
to elicit exploration and exploitation behavior. One of our key contribution is to demonstrate the
effectiveness of scalar feedback over verbal feedback. Reflexion (Shinn et al., 2023) is a multi-round
self-improvement method for LLMs. At each iteration, the model generates an answer, receives an
external feedback signal (e.g., a correctness score or error flag), and is then prompted to “reflect”
on what went wrong and propose a plan for trying again. Those reflections are stored in a simple



memory and prepended to the next prompt. Ideally, in the next round, Reflexion proposes to provide
all previous reflections in the new prompt. But in practice, since the reflection is long, usually only 3
most recent reflections are provided in the new prompt. Furthermore, the new prompt does not include
the feedback signal (i.e., the rewards) nor the previous responses. By contrast, our ICRL prompting
provides all previous responses and rewards in the new prompt. Textual Gradient (Yuksekgonul
et al., 2025) prompts an LLM for an answer, then directs it to generate verbal feedback by comparing
its output to a ground-truth evaluation. This verbal feedback is subsequently used to revise the prompt
itself for future attempts. While Textual Gradient can use numerical scores as ground truth, their role
is to inform the generation of this verbal feedback, and only the verbal feedback is used to refine
the prompt. By contrast, our framework keeps the original task prompt unchanged. ICRL improves
performance solely by growing the context by appending the complete history of previous responses
along with their rewards.

A parallel line of research employs search-based methods for inference-time improvement in LLMs.
Examples include Tree-of-Thoughts (ToT) (Yao et al., 2023a), Graph-of-Thoughts (GoT) (Besta
et al., 2024), Monte Carlo Tree Search (MCTS) (Ding et al., 2024), and more recently, Intelligent
Go-Explore (Lu et al., 2025). In general, their performance heavily relies on externally engineered
components, such as search heuristics or memory management mechanisms, rather than directly
harnessing the intrinsic learning capabilities within LLMs. Our work is also related to LLM as
optimizers. Previous work on prompt optimization (Yang et al., 2024) shows that LLMs can leverage
numerical scores to improve prompts, however, Yang et al. (2024) rely on selecting the top 20 prompts
and filtering out error cases in context, thereby aligning it more with in-context supervised learning
(e.g., filtered behavior cloning, Grigsby et al. (2024)) than ICRL. Again, one key characterization of
our ICRL prompting is that we allow learning from failure.

5 Experiment

We evaluate ICRL prompting on three benchmarks: Game of 24, creative writing from Yao et al.
(2023a), and ScienceWorld (Wang et al., 2022). We compare several baselines including CoT-only,
Long-CoT style prompting, Best-of-N, Self-Refine, and Reflexion. Notably, in all the experiments,
we allow the prompt of Self-Refine and Reflexion to grow as long as the LLM allows.
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Figure 2: Baseline Method Comparison. (Left) Mean Success Rate on Game of 24. (Middle)
Mean Coherence Reward on Creative Writing. Both ICRL Preset and Self-Refine went through an
additional run of 50 episodes. (Right) Mean Return on Science World. A running max version of the
plots is available in Figure 13 in App. B. This plot shows quality of the response at the current trial
while the running max version shows the quality of the best response until now.
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5.1 Game of 24

Task Setup. Given four input numbers, the model must use each number exactly once and apply
only addition, subtraction, multiplication, or division in any order to reach 24. We choose the
GPT-4.1 model for this experiment because of its excellent long-context capacity (OpenAl, 2025),
accessed through api calls. Following Yao et al. (2023a), we use CoT prompting to elicit the
model to provide a step-by-step solution, where each step the model picks two numbers from the
remaining numbers and an operation to perform the calculation, and obtains one complete solution
per LLM query, containing a total of 4 thinking steps. To encure that the LLM generates response



with correct format, we additionally provide 5 in-context supervised learning demonstrations. The
CoT instruction and the 5 demonstrations together form the task description sy, (Figure 7 in App. A).

Evaluation. To verify the correctness of the solutions, we leverage SymPy (Meurer et al., 2017),
a library for symbolic mathematics, by extracting operands and operators and evaluating the
reconstructed expression to confirm it equals 24, and report the mean success rate over the 100
problems. This rule-based success rate is referred to as r, (i.e., the ground truth reward function)
in the rest of the paper. We use r to denote the reward function that the algorithms actually have
access to. In particular, we use GPT-4.1 as the r, the same LLM as the policy LLM but prompted
differently (see Figure 12 in App. A). After the policy LLM generates the response, for each thinking
step, GPT-4.1 scores the likelihood of reaching 24 with the remaining numbers on a 0-3 scale (0 =
impossible, 3 = sure). The task in challenging in that no algorithm has access to r,. Instead, they
have to rely on their own (possibly imperfect) evaluation, generated by the same LLM, to improve
the response.

Baselines. We compare our method with CoT-only, Long-CoT style prompting, Best-of-N,
Reflexion, and Self-Refine. In CoT-only prompting, the model receives only the task description
Swsk and produces a single step-by-step solution. In Long-CoT style prompting, we explicitly
ask the LLM to generate a long chain-of-thought, and keep retrying if the solution is incorrect in
"<think>...</think>" tags, before finally providing the answer. Although GPT-4.1 is not specifically
trained for long-form CoT reasoning, we find that Long-CoT style prompting can elicit significantly
longer and self-correcting thought traces compared to zero-shot prompting, making it a strong
baseline for the Game of 24. Both methods cannot make use of a reward signal and are run for one
pass. For Best-of-N, to make it even stronger, we use the ground truth reward r, to select the best
response. Self-Refine does not require a reward function. It instead asks the LLM itself to provide
textual verbal feedback. Reflexion generates reflection according to 7. ICRL prompting is different
from Self-Refine and Reflexion in that it uses the reward r directly, without any verbal feedback. So
the comparision between ICRL prompting and Self-Refine / Reflexion is essentially the comparision
between scalar feedback and verbal feedback.

ICRL prompting. As discussed before, both 7y and r in Algorithm 1 are the same LLM GPT-4.1
(prompted differently). We now clarify how we compute Sy at each episode. Since each action is a
token, not all actions receive a reward. In fact, since we use CoT to prompt the LLM for 4 thinking
steps, only 4 rewards are available for each episode. We thus only include those 4 rewards in Sy.
We add a “Reward: ” tag before the actual scalar reward and then concatenate the tagged reward
immediately after the corresponding action (i.e., token).

Results. The success rate (i.e., r.) against

the number of trials (i.e., the episodes in Al- Typle 1: Game of 24 Success Rate. The running

gorithm 1) is reported in Figure 2. The ICRL ' max success rate of the last episode is reported.
Preset method achieves the highest performance,

and the observed oscillations in success rate re- Method Success Rate
flect the model’s alternating phases of explo-

ration and exploitation. The mean of running CoT-only 6%
max is also plotted in Figure 13 in App. B. For Long-CoT 47%
each problem, we compute its running maxi- Reflexion 44%
mum success rate up to each episode and then Best-of-N 49%
average these values across all problems at ev- Self-Refine 47%
ery episode. As summarized in Table 1, after ICRL Preset (Ours) 90%
50 trials, our methods achieve a success rate ICRL Autonomous (Ours) 84%

of 90% which is significantly higher than 49%
from Best-of-N sampling, 47% from Self-Refine, and 44% from Reflexion.

5.2 Creative Writing

Task Setup. We consider the creative writing task from Yao et al. (2023a), where four sentences
are randomly sampled from a pool of sentences. The task for LLMs is to generate four paragraphs,
each ending with a sentence, while ensuring that the generated passage is coherent. This is a difficult
task, as it challenges the LLMs to craft a unified storyline that logically justifies each of the four
sampled sentences by weaving them into a single narrative. A total of 100 problems are evaluated.



An example of sy is in Figure 8 in App. A.

Evaluation. We evaluated model outputs using the Length-Controlled Alpaca-Eval 2 (Tatsu Lab,
2025) framework, an automated evaluation tool that is widely used as a proxy for human annotators
(Hong et al., 2024; Ethayarajh et al., 2024; Meng et al., 2024) and has demonstrated a Pearson
correlation of up to 0.98 with human judgments. For each of the 100 creative writing problems,
we present the instruction alongside each method’s top response. For Reflexion and Best-of-N, the
top response is selected as the one that receives the highest reward r among 50 trials. For ICRL
prompting and Self-Refine, we simply use the response generated in the 50th episode. The pairwise
length-controlled win rates are then computed by the Alpaca-eval framework and is denoted as the
reward function r,. We now introduce the reward function r that the algorithms have access to. We
find prompting the LLM to directly provide an absolute numerical score to a response, even with
explicit rubrics, induces a lot of variance in the reward values. Therefore, we follow the standard
practice of pairwise comparison of LLM-as-a-judge (Zheng et al., 2023) for evaluating a numerical
score from 1-10 with a reference answer. Since this particular creative writing task is especially
challenging for coherence, we query GPT-4.1 to generate a coherent paragraph to create a single
reference answer for all pairwise comparisons, serving as a reliable foundation for reward signals (see
Figure 11 in App. A). This pairwise comparision reward function is denoted as r. Notably, although
both r and r, use an LLM as a judge, they are prompted very differently. The reward function r
evaluates responses to 100 questions against a single, coherent base text. By contrast, r, performs
pairwise comparison between two responses generated by our method and a baseline method. In
addition, r is prompted to specifically focus on coherence rating, which is the main challenge of this
task. Empirically, we found that directly learning from r, is difficult for the LLM, potentially due to
the unstable quality of the different base texts.

Baselines. We compare our method with Best-of-N, Reflexion, and Self-Refine. We allow Best-of-N,
Reflexion and ICRL prompting to use r. Self-Refine do not use r and instead asks GPT-4.1 to provide
verbal feedback. Since it is hard to distinguish CoT and Long-CoT style prompting for this task, we
include Long-CoT style prompting as the baseline.

ICRL prompting. GPT-4.1 is used as both the policy LLM 7y and the reward model  in Algorithm 1.
At each episode, the initial prompt S is constructed by concatenating all of the previous generations
along with their coherence scores from r. Notably, this reward is sparse and only Rz can be nonzero.
We, therefore, only include Ry in constructing Sj.

Results. Our method achieves a length-controlled win rate

of 59.48% against Reflexion, 78.36 % against Long-CoT  Taple 2: Length-Controlled Win Rate
style prompting, 86.32 % against Self-Refine, and 93.81 (LC) and Standard Error (SE) from
% against Best-of-N as shown in Table 2. This shows the  Alpaca-Eval 2.0 on Creative Writing.
responses generated by our method outperform the ones by
baselines in terms of following the instruction to write co-  Comparison LC + SE (%)
herent paragraphs and achieving better human preference. -

The return curve from reward model 7 is plotted in Figure =~ Ours vs Reflexion  59.48 £ 3.47
2, and a running max of the return is plotted in Figure 13~ Ours vs Long CoT  78.36 & 1.99
in App. B. Although Self-Refine initially matches ICRL in ~ Ours vs Self-Refine  86.32 4 3.03
terms of coherence reward, extending both methods by 50~ Ours vs Best-of-N 93.81 &+ 1.01
additional episodes, our methods keep improving, whereas

self-refine first plateaus, then declines, likely due to the significant growth of its context.

5.3 ScienceWorld

Task Setup. ScienceWorld (Wang et al., 2022) is an interactive, text-based benchmark consisting
of 30 science-experiment tasks set in a multi-room environment populated with diverse objects. An
agent is given a task such as "Grow an apple by cross-pollination" or "Experiment and find the surface
with the highest friction”, and can perform actions like "Move to workshop" or "Use lighter on wood".
The environment is challenging due to sparse rewards, large action spaces, and the requirement
for scientific knowledge and efficient exploration. At each step, the agent observes the result of its
action and receives zero reward unless it completes a predefined subgoal. This reward signal is used
both for evaluation and for inference-time self-improvement (i.e., r and r, are identical in this task).
Completing all subgoals yields a cumulative reward of 100 and marks the episode as successful.
An episode ends in failure if the agent either reaches the maximum number of steps or executes an
incorrect terminating action. The input s, provided to the agent describes the environment, the task,
and the template of all possible actions. An example of s is provided in App. A



Evaluation. We use the environment-provided reward function for each task both to construct the
trajectories used in the context (r), and to evaluate the model (r*). We benchmark each method on all
30 tasks and aggregate the results. GPT-4.1 mini is used as the policy for all compared algorithms.
Baselines. In Reflexion, at the end of each episode, the agent is prompted to reflect on its attempt.
The reflection is then sanitized and appended to a reflection buffer, which is formatted into the context
for subsequent trials. Self-Refine similarly generates self-feedback, but appends it to a trajectory
summary, which is then added to the buffer. To ensure a fair comparison, we allow these methods
access to the reward signals of the current episode (unlike ICRL) before prompting for reflection.
ICRL Setup. Each trial corresponds to a single episode in the environment. After the trial, the new
trajectory added to the buffer is constructed by concatenating the actions, observations, rewards, and
the final outcome (success or failure). As each episode typically yields only a few rewards, we include
only those. At the start of each trial, Sy is constructed by concatenating the task description S, the
collected trajectories, and then the instruction Sicrr. An example of Sy is provided in App.A.
Results. The mean return at each trial, is presented in Figure 2 Right. Steady improvements are
observed for methods that make use of some form of history of interactions similar to [ICRL prompting.
However, ICRL prompting outperforms baseline methods by about 20% after enough iterations. To
make the comparison fair for efficient baselines such as Best-of-N, in App. B, we compare baslines
as we scale test-time compute budget and observe that ICRL also scales better than the baselines not
only in terms of number of trials but also the test-time compute budget (in dollar amounts).

5.4 Ablation Study

To better understand ICRL prompting, we consider following ablations. (1) Zero Rewards: We set
all rewards to 0. (2) Short Context: In Algorithm 1, the buffer 5 is essentially a queue of infinite
length. Instead, we now make it a deque of length 3. In other words, only the recent 3 episodes are
used in constructing Sy. (3) Exploration Only. We simply ask the LLM to provide a different
response than the ones in context, using the exploration instruction as sjcrr, wWithout the reward
signal. (4) Exploitation Only. We always use the exploitation instruction as sicrr, with the reward
signal. (5) No E&E. We entirely remove sjcgp.-

o
®

°
o
~

o
Y
@

Running Max Return

—— ICRL Preset (Ours) —— ICRL Preset (Ours)

ICRL Autonomous (Ours)

Running Max Success Rate

w

0 10 20 30 40 50 0 10 20 30 40 50 o 5 10 15 20 25 30 35
Trial Number Trial Number Trial Number
Figure 3: Ablation Studies (Running Max). (Left) The mean of running max success rate on Game
of 24. (Middle) The mean of running max coherence reward on creative criting. (Right). The mean
of running max return on ScienceWorld.

Results. The running max results of the ablation study are plotted in Figure 3. Both our two
methods and the exploitation only with reward signals demonstrate the best-performing curves. This
demonstrates our ICRL prompting framework is quite robust to the different prompts setup. We have
also observed performance drop with short context and performance drop when the reward is absent.
A key finding is that the “exploration only without reward signal” method (shown in green) performs
significantly worse than our approach when comparing the maximum performance achieved over
time (running max). This demonstrates that our method’s improvement is not just due to exploring
various responses and then picking the best one previously seen as doing a Best-of-N. Instead, ICRL
can genuinely generate novel responses that are better than the ones during the exploration phase.
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6 Conclusion

This work proposes a novel ICRL prompting framework for inference-time LLM self-improvement,
using LLM’s inherent ICRL ability to maximize a scalar reward signal. Most prior works (Section 4.2)
instead rely on verbal textual reflections, which rely primarily on LLM’s pretrained parametric
knowledge, essentially making them more like a knowledge-guided search instead of (reinforcement)
learning (Liu et al., 2025). While it seems that textual descriptions would be the more natural option as
feedback for LLMs, it is shown that such textual LLM self-verifications are filled with hallucinations
and misleading feedbacks and lead to performance collapse over self-correcting iterations (Stechly
et al., 2025). Given the proven success of numerical feedbacks in RL (Sutton, 2004; Silver et al., 2021)
and the demonstrated performance improvement over baselines in our experiments, we conjecture
that the numerical feedback might be a competing alternative for the verbal feedback.
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A Prompt Examples

Instruction: Examine all the <attempt>...</attempt> examples, each showing a candidate Response, and
the Rewards for each step of the Response. Provide a response that is completely different for any steps
from every single one of the previous attempts demonstrated in the context.

Figure 4: The Exploration Instruction (sjcrr)-

Instruction: You will be given multiple <attempt>...</attempt> examples, each showing a candidate
Response, and the Rewards for each step of the Response. Your task: Based on the previous attempts,
try your best to produce a response that can achieve higher rewards.

Figure 5: The Exploitation Instruction (sicrr)-

Instruction: Examine all the <attempt>...</attempt> examples, each showing a candidate Response and
its Reward. You have two options: exploration or exploitation.

For exploration, provide a response that is completely different for any steps from every sin-
gle one of the previous attempts demonstrated in the context, while making sure it correctly follows the

task instruction.

For exploitation, based on the previous attempts, try your best to produce a response that can
achieve higher rewards.

Pick one option to follow.

Figure 6: The Exploration or Exploitation Instruction (sjcry)-

Prompt: Write a coherent passage of 4 short paragraphs. The end sentence of each paragraph must be:
For some unfathomable reason, the response team didn’t consider a lack of milk for my cereal as a
proper emergency. You realize you’re not alone as you sit in your bedroom massaging your calves after
a long day of playing tug-of-war with Grandpa Joe in the hospital. He poured rocks in the dungeon of
his mind. I’'m a living furnace. Make a plan then write. Your output should be of the following format:
Plan: Your plan here. Passage: Your passage here.

Figure 8: An example of s, for creative writing.
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<attempt>

Input: 44 6 8

Stepl: 4 + 8 = 12 (left: 4 6 12)
Step2: 6 - 4 =2 (left: 2 12)
Step3: 2 * 12 = 24 (left: 24)
Answer: (6-4) * (4 +8)=24
</attempt>

<attempt>

Input: 2910 12

Stepl: 12 * 2 =24 (left: 9 10 24)
Step2: 10-9 =1 (left: 124)
Step3: 24 * 1 =24 (left: 24)
Answer: (12*2) * (10-9) =24
</attempt>

<attempt>

Input: 4910 13

Stepl: 13- 10 =3 (left: 34 9)
Step2: 9 -3 =6 (left: 4 6)
Step3: 4 * 6 = 24 (left: 24)
Answer: 4 * (9-(13-10)) =24
</attempt>

<attempt>

Input: 1488

Stepl: 8 /4 =2 (left: 12 8)
Step2: 1 +2 =3 (left: 3 8)
Step3: 3 * 8 = 24 (left: 24)
Answer: (1 +8/4)*8=24
</attempt>

<attempt>

Input: 5559

Stepl: 5+ 5 =10 (left: 59 10)
Step2: 10 +5 =15 (left: 9 15)
Step3: 15 + 9 =24 (left: 24)
Answer: (5+5)+5)+9=24
</attempt>

**Task**: Use numbers and basic arithmetic operations (+ - * /) to obtain 24. Put your an-
swer in this format ‘<answer>**Response** Stepl: ... (left: ...) Step2: ... (left: ...) Step3: ... (left:
...) *¥*Answer**: <math operations of the 4 input numbers, even if it does not equal 24></answer>*.

Whether it is correct or not, do not try again.

**Prompt**: Input: 1 8 10 11

Figure 7: An example of sg,sx for Game of 24 with few-shot CoT prompting.
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You are a helpful assistant to do some scientific experiment in an environment.

<Environment description> # s

In the environment, there are several rooms: kitchen, foundry, workshop, bathroom, outside, living
room, bedroom, greenhouse, art studio, hallway

You should explore the environment and find the items you need to complete the experiment.

The available actions are: Available Actions

FOCUS is a extremely critical action that can be only used the number of times "focus’ is mentioned in
the task description. Using it more than that or inappropiately (such as on a wrong object) will terminate
the session and the task WILL FAIL.

Task Description:

Your task is to change the state of matter of water. First, focus on the substance. Then, take actions that
will cause it to change its state of matter.

</Environment description>

<Instruction> sjcrr. </Instruction>

<Attempts> # Buffer

Attempt n:

teleport to bathroom -> Observation: You teleport to the bathroom. (reward=3)

-> focus on substance in toilet -> Observation: You focus on the water. (reward=66)

-> use cup on substance in toilet -> Observation: I’'m not sure how to do that. (reward=0)
-> activate sink -> Observation: The sink is now activated. (reward=0)

-> dunk cup into sink -> Observation: No known action matches that input. (reward=0)
->move cup to sink -> Observation: You move the glass cup to the sink. (reward=0)

-> teleport to kitchen -> Observation: You teleport to the kitchen. (reward=0)

-> use cup on stove -> Observation: I’'m not sure how to do that. (reward=0)

-> activate stove -> Observation: The stove is now activated. (reward=2)

->move cup to table -> Observation: You move the glass cup to the chair. (reward=0)

-> examine cup -> Observation: a glass cup (containing nothing) (reward=0)

Task Failed. You have exceeded the maximum number of steps. (reward=0) Total reward: 71

Attempt n + 1:

teleport to bathroom -> Observation: You teleport to the bathroom. (reward=3)

-> focus on substance in toilet -> Observation: You focus on the water. (reward=66)

-> pick up cup -> Observation: You move the glass cup to the inventory. (reward=0)

-> move cup to sink -> Observation: You move the glass cup to the sink. (reward=0)

-> activate sink -> Observation: The sink is now activated. (reward=0)

-> dunk cup into sink -> Observation: No known action matches that input. (reward=0)

-> pour substance in cup into sink -> Observation: You pour the water into the sink. (reward=0)

-> activate stove -> Your generated action “activate stove” cannot be matched to a valid action. (re-
ward=0)

-> teleport to kitchen -> Observation: You teleport to the kitchen. (reward=0)

-> pick up cup containing nothing in table -> Observation: You move the glass cup to the inventory.
(reward=0)

-> activate sink -> Observation: The sink is now activated. (reward=0)

Task Failed. You have exceeded the maximum number of steps. (reward=0) Total reward: 69

</Attempts>

Figure 9: An example of Sy from ScienceWorld.
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# Buffer:

<attempt>

Input: 49 10 13.

Response:

Stepl: 10-4 =6 (left: 69 13) <Reward: 3.00>
Step2: 13-6=7 (left: 79) <Reward: 0.00>

Step3: 9 * 7 =63 (left: 63) <Reward: 0.00>
*Answer**: (13-(10-4)) *9=63 <Reward: 3.00>
</attempt>

<attempt>

Input: 49 10 13.

Response:

Stepl: 10 + 4 = 14 (left: 913 14) <Reward: 0.00>
Step2: 14 + 9 =23 (left: 13 23) <Reward: 0.00>
Step3: 23 + 13 = 36 (left: 36) <Reward: 0.00>
*Answer**: (10+4+9)+13=36 <Reward: 0.00>
</attempt>

<attempt>

Input: 49 10 13.

Response:

Stepl: 9+ 10 =19 (left: 4 1319) <Reward: 3.00>
Step2: 19 - 13 =6 (left: 4 6) <Reward: 3.00>

Step3: 6 + 4 =10 (left: 10) <Reward: 0.00>
*Answer**: (9+10)-13)+4=10 <Reward: 6.00>
</attempt>

SICRL

Stask

Figure 10: An example of Sy from Game of 24.

Instruction: You are a seasoned text coherence evaluator. Read the TEXT below and rate its overall
coherence on a scale from 1 to 10, where 1 means significantly less coherent than the Base Answer,
5 means equally coherent, and 10 means significantly more coherent. Be a strict and conservative
evaluator-only assign high scores when the TEXT is clearly better than the Base Answer.

Base Answer:

{At dawn, golden light slips past pale curtains, rousing the world in quiet
celebration. A lone robin greets the morning with a clear, cheerful trill,
its song drifting across dew-laden grass. A gentle breeze stirs the leaves,
carrying the fresh, earthy scent of new growth. Nearby, rooftops and empty
streets lie poised between night’s calm and the city’s stirring pulse,
promising simple comforts like a warm cup of coffee. In this tranquil pause,
one senses life’s renewal and the gentle invitation to greet the day with
hope and gratitude.}

TEXT: { model_answer}

Return your answer in exactly this format: Coherency score: <integer 1-10>.
Response:

Figure 11: Prompt for Pairwise Coherence Evaluation for Reward Model 7.
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Rule of the Game of 24: Use all four numbers provided in the input, without repetition, and only basic
arithmetic operations (+, —, X, +) to obtain 24. Only three steps are allowed.

Given the following two remaining numbers from a previous step in the Game of 24, the current step is:
{step}. Evaluate this step.

Examine the numbers shown in each “left: ...” after the step and reason whether it is still possible to
reach 24: * Sure — 3 ¢ Likely — 1 « Impossible — 0

Return the score in the following format: **Answer**: <integer score>

Response:

Figure 12: Prompt for single-step evaluation used in the reward model r for Game of 24.

Additional Experimental Results
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Figure 13: Benchmark results: Mean of Running Max. (Left) The mean of running max success
rate on Game of 24. (Middle) The mean of running max coherence reward on creative writing. Both
ICRL Preset and Self-Refine went through an additional run of 50 episodes. (Right). The mean of
running max return on ScienceWorld.
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Figure 14: Ablation study results: Original Curves. (Left) The mean of success rate on Game of
24 ablation studies. (Middle) The mean of coherence reward on creative writing ablation studies.
(Right). The mean return on ScienceWorld ablation studies.
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Table 3: Running max of return averaged over all the tasks in ScienceWorld.

Method Return (max = 100)
ReAct 69+t14
Reflexion 74 + 1.1
Best-of-N 75+1.2
Self-Refine 83 +09
ICRL Preset (Ours) 88 +0.7
ICRL Autonomous (Ours) 87 £0.8
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Figure 15: Additional ScienceWorld Results. (Left) Although ICRL’s context (comprising the
experience buffer) is longer than that of random sampling methods, it still outperforms them and
other experience-based approaches given additional compute budget. (Right) ICRL’s superior return
improvement as seen in other results, also leads to a greater increase in success rate.
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