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HARDWARE SUPPORT FOR PARALLEL DISCRETE EVENT SIMULATIONS

Paul F. Reynolds, Jr. and Carmen M. Pancerella

This document describes the functional requirements and hardware-level assumptions for special-purpose hardware to
support efficient parallel discrete event simulation (PDES) [Fuji90] as well as other applications that can benefit from
rapid dissemination of synchronization information. We begin by presenting a brief overview of the synchronization
requirements of PDES and then describe in detail the requirements for hardware support. Following that, we describe a
hardware framework that satisfies these requirements.

1. INTRODUCTION

Recently Reynolds [Reyn92] proposed a novel framework for providing rapid

dissemination of critical synchronization information in all parallel discrete event simulation

(PDES) [Fuji90] implementations. This framework can produce a significant reduction in the

finishing times of parallel simulations. The strength of this framework lies in its use of special-

purpose, high-speed hardware, specifically a parallel reduction network (PRN) which computes

and disseminates results of global reduction operations. A global reduction operation is a binary,

associative operation performed on data across all processors.

Current parallel architectures do not support the rapid computation and dissemination of

results of binary, associative operations across all processors without a barrier synchronization.

In these machines, all host processors must coordinate before a computation can begin. Our

network separates the processors doing the application computation from those doing the

synchronization computation; therefore, a barrier synchronization is not necessary to compute

global operations. Furthermore, our hardware computes different binary, associative operations

across state vectors of values in order to keep logically related data together, to capture consistent

snapshots of the application, and to avoid race conditions.

In a system of a hundred processors, simple hardware based on the concept of a reduction

tree could compute and disseminate results of binary, associative operations on the order of 100’s

1



of nanoseconds, 150 nanoseconds * log2(n), n = 100 — three orders of magnitude faster than in

typical distributed memory architectures — without interfering with the work of the application

(host) processors. In terms of raw speed, the network continues to be beneficial for up to

hundreds of thousands of processors. Since the network is performing reductions on the

information fed into it, its advantage over typical host system communication times should

extend into the range of millions of processors.

PRN’s can disseminate global information many times faster than a communications

network in a typical distributed memory multicomputer. We estimate that a global operation can

be performed in 750 nanoseconds for a 32-processor machine using a PRN (assuming 150 ns. per

PRN stage as described later). The Thinking Machines’ CM-5 [Thin92] has comparable speeds

for performing arithmetic reduction operations, yet a PRN can compute and disseminate global

reduction results on state vectors without the coordination of the host processors. PRN’s can be

built and retrofitted to both existing parallel computers or to a tightly coupled network of high-

speed processors for a fraction of the cost of building the computers themselves. PRN’s will be

completely independent of the host interconnection network of the parallel machine or the

communications network in the distributed computing system. We propose using PRN’s in

conjunction with both shared memory and distributed memory parallel architectures as a means

of rapidly disseminating a small amount of critical synchronization information in a PDES.

This paper is a companion paper to [Reyn92]; it describes requirements for a PDES and

elaborates on the hardware implementation of the PRN that satisfies these requirements in

accordance with established correctness criteria. In Section 2 we explain the requirements for

PDES and briefly review the framework algorithms. In Section 3 we define the correctness

criteria that are necessary in a hardware implementation. In Section 4 we present an abstract

synchronization network. In Section 5 we outline the basic design of a pipelined PRN. In

Section 6 we discuss the interface between a host processor and its corresponding auxiliary
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network processor. In Section 7 we discuss the interface between the auxiliary processor and the

PRN. We show how both interfaces are designed to satisfy all correctness criteria. In Section 8

show how the PRN is also useful in enhancing a class of parallel algorithms that employ barrier

synchronization. In sections 9 and 10 we discuss related synchronization networks. Finally, we

describe a prototype PRN which is currently being designed and built by the Departments of

Computer Science and Electrical Engineering at the University of Virginia.

2. REQUIREMENTS FOR PARALLEL SIMULATION

A general model of a PDES is introduced in [Misr86]. A PDES consists of a set of logical

processes (LP’s) that model physical processes in a system. All interactions among physical

processes are modeled by event messages sent among LP’s. Each message contains a timestamp

indicating the logical time at which a scheduled event will occur. Each LP maintains a relative

counter, its logical clock, that denotes how far that LP has progressed. It is very likely that each

LP’s logical clock will differ, and this asynchronous property of parallel simulation can lead to

synchronization problems.

A causality error in a PDES occurs when event A depends on event B, and event A is

executed before event B. A parallel simulation will be correct if and only if each LP processes

events in nondecreasing timestamp order. Adherence to this local causality constraint is

sufficient, though not always necessary, to guarantee the absence of causality errors[Fuji90].

However, there is no way of guaranteeing that messages received by LPi occur in a specific order

due to both the asynchronous nature of LP’s logical clocks and communications delays in the

host network.

There are two common approaches to PDES synchronization protocols: non-aggressive and

aggressive. Non-aggressive protocols, as discussed in [ChMi79], must determine when it is safe
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to process an event in order to avoid causality errors. Aggressive approaches, the most well-

known is Time Warp based on Jefferson’s virtual time model [Jeff85], do not avoid causality

errors but rather detect them and correct them using rollback.

The framework for PDES introduced in [Reyn92] is a low-level synchronization mechanism

that sits below a PDES synchronization protocol. It disseminates a small set of globally reduced

values. Operations are carried out in a synchronization network that is completely transparent to

LP’s.

The low-level framework for PDES computes four interesting global values across all LP’s,

i = 1,...,n, where n is the number of LP’s:

� T′η = MIN(T ηi
): Minimum next event time

� T′υ = MIN(T υi
): Minimum smallest unreceived message time

� T′ρ = MIN(T ρi
): Minimum received but unacknowledged message time

� T′τ = MIN(T τi
): Minimum acknowledged message time

These global values are computed from values maintained locally in each LPi: 1) T ηi
: the logical

time of the next event, 2) T υi
: the smallest time-valued unreceived message, namely, the

timestamp of the logically oldest outstanding unacknowledged message from LPi , 3) T ′ρ: the

smallest tagged message to acknowledge, and 4) T ′τ: the smallest tagged acknowledgement to

acknowledge. The globally reduced values for message acknowledgements were introduced in

[Panc92].

Without loss of generality, it is assumed that each LPi occupies a unique physical processor

PPi . The values local to each LPi , T ηi
, T υi

, T ρi
, and T τi

are pipelined into a reduction network,

and the network, in turn, computes the corresponding global values, T ′η , T ′υ , T ′ρ , and T ′τ . These

global values, together with the following synchronization algorithms (which appear in [Reyn92]

and [Panc92]), are sufficient to support deadlock-free parallel simulation, independent of the

application being simulated.
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TEST: IF [(T ηi
= T ′η) AND (T ηi

≤ T ′υ) ] --Identify the next event in system.
THEN LCi := T ηi

; -- Set local clock.
Perform event; SENDMSG if needed; --May send zero or more
Compute new T ηi

; -- messages.

SENDMSG: [ IF message time < T υi
--Update smallest unreceived message

THEN T υi
:= message time ] -- value if necessary.

Send Message, add [message time, message ID] to outstanding message sequence;

RCVMSG: [ IF message time < T ηi
--Set next event time

THEN T ηi
:= message time ]; -- if new msg is smallest valued.

Add [message time, message ID] to received message sequence;
[ IF T ρi

= [∞, —] --Set smallest unacknowledged msg
THEN T ρi

:= [message time, message ID] ]; -- time if no other acks

CHKACK: IF (T ′τ = T ρi
) AND (T ρi

≠ [∞,—]) --Receiver can remove ACK
THEN Update T ρi

;
Remove message ID from received message sequence;

IF ( T ′ρ has been sent to me) --Sender sees ACK and updates T υi

THEN IF ( T ′ρ is in outstanding message sequence)
THEN Mark message as acked in outstanding message sequence;

Remove any other acked ID’s from outstanding message sequence;
T τi

:= T ′ρ;
Update T υi

, if necessary;
ELSE T τi

:= [∞,—]; --Sender can remove double ACK
ELSE T τi

:= [∞,—]; --Sender can remove double ACK

Figure 1. Synchronization Algorithms.
�������������������������������������������������������������������������������������������������������������������������������������������������������

An instance of the algorithm seen in Figure 1 is executed asynchronously for each LPi . The

processes TEST, RCVMSG, and CHKACK execute concurrently, and SENDMSG is a

subprogram of TEST. Furthermore, it is assumed that the order of changes to T values in a given

LP is preserved in global counterparts. In other words, if LPi changes T υi
and next changes T ηi

,

the impact that T υi
has on T ′υ is seen by other LP’s no later than the impact of T ηi

on T ′η . This

ordering constraint prevents race conditions which can cause the global T values to reflect an

incorrect global state. Finally, LCi is LPi’s local clock.
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In LPi , TEST is assumed to execute at least each time either T ′η or T ′υ changes value and

the associated LP is blocked. In order to prevent deadlock, LPi must process an event if its local

next event time is both the smallest in the system (i.e., T ηi
= T ′η) and no greater than the

timestamp of the smallest outstanding message. This algorithm identifies the smallest next event

time even when there are outstanding messages in the PDES. This feature allows deadlock

prevention in a system when message traffic is always present.

When an LP sends an event message, the SENDMSG process maintains its sequence of

[message time, message ID] pairs of unacknowledged messages. T υi
is maintained as the

outstanding message with the smallest message time. When an LP receives an event message,

the RCVMSG process adjusts T ηi
, if necessary, and an entry of [message time, global message

ID] is made to the received message sequence, indicating a new message is received but

unacknowledged. The local value of T ρi
is updated immediately by LPi only if its current value

is equal to [∞, —], indicating no message is unacknowledged. T ρi
is an ordered pair of [message

time, global message ID] such that a minimum operation is performed on message times across

all LP’s and the global message ID is a unique tag which identifies a particular message in the

simulation.

In CHKACK each LP monitors the value of the global minimum unacknowledged message

T ′ρ . The ordered pairs emerging from the reduction network are equivalent to acknowledgement

messages. Once the ordered pair T ′ρ is recognized by LPs , the LP that sent the message and that

message is in its outstanding message sequence, then LPs marks the corresponding message in its

outstanding message sequence as acknowledged (but does not yet remove it from the sequence),

removes all other messages that have been marked as acknowledged from its outstanding

message sequence, modifies the value of T υs
accordingly, and sets T τs

, the acknowledgement

handshake. If LPs does not recognize the T ′ρ as a message sent by it, T τs
is set to [∞,—],
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indicating no handshake. If T ′τ = T ρr
, indicating that LPr’s acknowledgement has been

computed to be the minimum and also seen by the sender of the message, then T ρr
is updated and

the corresponding entry in the received message sequence pool is removed.

A synchronization network that supports this framework must allow individual processors

of existing computers to asynchronously change local values that are reduced to compute

corresponding global values which are then disseminated to all processors. The actual network is

hidden from the applications software. The network should be able to be retrofitted to existing

parallel computers or tightly coupled computing networks with little effort. The network must be

easily realizable in hardware for a fraction of the cost of the machine itself. The network must

rapidly perform minimum calculations on tagged local values from all processors, such that the

corresponding tag of the minimum global value is equal to the tag of the minimum local value.

The network must also compute results of other binary, associative operations. It must be

completely independent of the host communications network. Finally, the network must operate

under the correctness criteria listed in the next section.

3. CORRECTNESS CRITERIA

Inspection of the algorithms just given reveals that there are certain properties that must be

ensured with respect to the order in which T values local to a given LP are used in reduction

operations in the reduction network. For example, in TEST and SENDMSG it is critical, when

an LP completes an event, that a change to T υi
"be seen" no later than changes to T ηi

. By "be

seen" we mean that the impact, if any, that a new T υi
has on its global counterpart, T ′υ , should

occur no later than when the new T ηi
has an impact on T ′η . If this were not guaranteed then it

would be possible for another LP, seeing changes to T ′υ and T ′η out of order, to determine it has

the smallest next event when in fact it does not.
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There are two situations in which ordering must be preserved: when values enter the

reduction network and when their globally reduced counterparts leave it. This suggests that the

interface between the LP’s and the network must be designed with great care.

We note initially that there is no simple way to guarantee that an LP will see global T

values in exactly the same order in which they had local changes submitted to them on an input

side of the network. For example, even if the network is designed to input local T values from an

LPi in the order in which LPi changes them, and therefore emit any changes to global T values in

the same order, when the network writes these values into output registers of a given LPi , there is

no simple way to guarantee that the values in the output registers will be read in the same order

by LPj . This is compounded further by the fact that a "well-intentioned" LP may not see changes

in global values in the desired order. This can occur with the following sequence of events:

LPi changes T υi
.

Reduction network reads T υi
.

LPi changes T ηi
.

Reduction network reads T ηi
.

LPj reads old T ′υ (i.e., without impact of T υi
).

Reduction network emits new T ′υ (i.e., with impact of T υi
)

Reduction network emits new T ′η .

LPj reads new T ′η .

Note, in this example, that LPj is reading global T values in the "proper order". Also note that

LPj will not always know the "proper reading order", i.e., it may not be the case that T υi
is

always changed before T ηi
. We conclude that we need to treat T values as a state vector where

we must guarantee that vectors of T values are always valid states.
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The atomicity and the ordering requirements of the framework algorithms shown in Figure

1 guarantee that an LP’s local T values, i.e., its local state vector, always reflect a valid state;

therefore, if the reduction network treats the global T values as a global state vector, then this

global vector will always be a valid global state for a PDES.

We now define two possible ways in which an LP can modify its local T values. It is

desirable that the hardware support these cases:

1) atomic write without overwrite — one or more of the local T values in the state vector

are changed effectively simultaneously and further changes to the local state vector are

not made until the network reads the local state vector; and

2) atomic write with overwrite — one or more of the local T values are changed

effectively simultaneously; further changes to the local state vector may be made prior to

the network reading the local state vector.

The framework algorithms are correct even if local T values are overwritten before they are

used in the computation of global T values. Therefore, the framework algorithms can operate

without overwrite (case 1), yet we recognize the second option as a desirable and relatively

inexpensive capability which may be necessary for future synchronization algorithms. The

framework does, however, require that a local T value be used in the computation of its global

counterpart until a new value is assigned to that local value.

In the following sections, we develop a parallel reduction network (PRN) that is consistent

with the requirements for PDES and also satisfies the correctness criteria that have just been

established.
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4. A SYNCHRONIZATION NETWORK

The block diagram of a network supporting efficient synchronization, as shown in Figure 2,

was given in [Reyn92]. In this figure, we see each physical processor PPi contributing a set of

input values to a synchronization network which in turn produces the results of four global

reduction operations. (Since we are focusing on the hardware implementation, we discuss

physical processors instead of logical processes in a PDES.) A global reduction operation is a

binary, associative operation applied over all n input values; in Figure 2, n = 8. Examples of

global reduction operations include minimum/maximum calculations, logical operations (e.g.,

AND and OR), and summations.

In this example, we show four register pairs such that each pair consists of an input register

and an output register. The input register contains a PP’s operand for a global reduction

operation, and the corresponding output register will eventually contain the result of that global
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operation across all PP’s. In general

out −,k := θk(in 1,k,in 2,k, . . . , inn,k) for k = 1,...,m

where m is the number of input value sets, n is the number of PP’s, out −,k represents the k th

output variable in each of the PP’s, and θk is the global reduction operator applied to the k th value

set.

We now extend this abstraction to introduce a pipelined PRN. In Sections 6 and 7 we show

how the pipelined PRN meets the correctness criteria discussed in Section 3. Furthermore, the

proposed PRN does not limit the size of m and is scalable for large n since it is an O (log n)

network.

5. A PIPELINED PARALLEL REDUCTION NETWORK

In Figure 3 we show the block diagram of a binary tree structured PRN supporting efficient

synchronization. Each stage of the PRN consists of half as many ALU’s as the stage above it,

with the first stage consisting of half the number of processors. The PRN shown supports four

inputs from eight PP’s and produces four output global reductions. If the in and out registers are

memory-mapped in the respective processors, the application process, in this case an LP in a

parallel simulation, could store and retrieve the T values without knowledge of the underlying

PRN.

The interface to the PRN from each processor is identical. Each processor has sets of

memory-mapped input registers and memory-mapped output registers. A processor can write to

the input registers and read from the output registers; the PRN will read values from the input

registers and write the corresponding global operation results into the output registers. This

memory-mapped interface is a possible source of memory contention if both the PRN and the

application process attempt to access the input or output registers simultaneously. Careful timing
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of accesses by the processor and the network can prevent this interference. In Section 7 we

discuss how the interface between the processor and the PRN can be constructed in order to

eliminate most memory contention.

Each node of the PRN is a simple arithmetic logic unit (ALU) which is capable of being

programmed to compute a sequence of simple binary, associative operations. Each input and

output register is actually a register pair consisting of a value register and tag register. These

register pairs are fed into the PRN. If the operation is a selective operation, e.g. minimum or

maximum, the tag of the "winner", e.g. the minimum or the maximum of two values, is sent with

the result to the next level of the PRN. If the operation is non-selective, e.g. addition or logical

�������������������������������������������������������������������������������������������������������������������������������������������������������������

PP 1
in out

PP 2
in out

PP 3
in out

PP 4
in out

PP 5
in out

PP 6
in out

PP 7
in out

PP 8
in out

ALU 1,1
�
���������������������������������� �

�
���������������������������������

ALU 1,2
�
���������������������������������� �

�
���������������������������������

ALU 1,3
�
���������������������������������� �

�
���������������������������������

ALU 1,4
�
���������������������������������� �

�
���������������������������������

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

ALU 2,1
�
������������������������������������

�
���������������������������������

ALU 2,2
�
������������������������������������

�
���������������������������������

ALU 3,1
�
���������������������������������� �

�
�����������������������������������

�
�
�
�

�����������������������������������������������������������������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 3. A Pipelined Parallel Reduction Network.
�������������������������������������������������������������������������������������������������������������������������������������������������������������

12



OR, the tag which is sent to the next level is chosen deterministically. Because of the PRN’s

binary tree properties, a global reduction operation can be computed and disseminated in

O (log n) time using the PRN.

A PRN major cycle is the time required for a value to be input into the PRN and its

corresponding output value to exit the PRN. A PRN minor cycle is the time required for a value

to move from one stage of the pipelined PRN to the next. A PRN major cycle is therefore equal

to log n minor cycles. A complete PRN input cycle is the time required for m values to be input

to the PRN; a complete PRN output cycle is the time required for m output values to exit the

PRN, where m is the total number of input registers to the PRN. (A complete input cycle and a

complete output cycle should be approximately equal; the functionality, however, is different:

the input cycle assumes m values are read and the output cycle assumes m values are written.)

We estimate that a PRN minor cycle, the time required for computation of one reduction

operation plus the delay incurred between stages, will take 150 ns., assuming current hardware

technology.

Pipelining is employed in order to use this network efficiently: the partial results will be

pipelined through the log n stages of the PRN such that each ALU is always busy. By pipelining

sets of values through the PRN, a set of updates for all output registers is available, assuming

steady state of the PRN, every mc units, where m is the number of input value sets and c is the

minor cycle time. (There is an added transitional cost of C for network startup, where C is the

major cycle time.) The PRN can be viewed as a synchronous network that continually produces

results of m global reduction operations, where each physical processor has m input registers to

the PRN. The tree structure of the PRN facilitates the pipelining since a tree circuit is easier to

synchronize than other structures [Blel89]. The PRN, however, operates asynchronously to the

PP’s, and it does not block if an input register has not been updated during the previous major

cycle.
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Each node of the PRN operates asynchronously. As input values and their corresponding

operation code are available, the ALU computes a resulting value and outputs that value. This

asynchronous design facilitates the addition of floating point processors at each ALU node. In

this case a floating point operation forms a "bubble" in the pipeline. Another advantage of the

asynchronous node design is the PRN is scalable to large sizes since communication between

nodes in the PRN can controlled with hardware handshakes. This eliminates the need for a central

clock in the PRN, so there is no concern about clock skew in a large network.

A PRN can be constructed with any number of input registers; however, if there are less

than log n registers, where n is the number of processors, it is guaranteed that a global reduction

on each input register will be performed within one major cycle of the PRN. If there are more

than log n input registers, then all global synchronization values are not calculated and

disseminated within one major cycle of the PRN. For example, if there are O (n) input registers

and n is sufficiently large, then the additional delay in disseminating information can approach

the expected communications delay in a typically slower host network and the PRN becomes a

bottleneck rather than a performance enhancement.

We expect a PRN to be beneficial to a shared memory multiprocessor, a distributed memory

multicomputer, and a tightly coupled network of high-speed processors as a complementary

network to the host communications network. In a distributed memory machine, such as a

hypercube, the time required to disseminate global information can be orders of magnitude more

than the cost of performing a simple floating point operation, due only to delays in the

communication network. The PRN can reduce the amount of message traffic needed in a

computation; furthermore, global synchronization information can be distributed to all processors

much faster. In a shared memory machine, the frequent update of a small amount of global

information can be a source of memory contention or hot spots [PfNo85]. The PRN eliminates

the synchronization traffic both in the interconnection network and at the global memory.
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6. AN AUXILIARY NETWORK PROCESSOR

Auxiliary, general-purpose processors are added at the interface of the reduction network,

one processor per host processor, in order to manage the high-speed I/O with the PRN. The

high-speed synchronization activity is moved to these dedicated processors in order to increase

the efficiency of synchronization algorithms such as the PDES framework. The host processor is

solely responsible for application processing, e.g., executing events and sending/receiving event

messages in a parallel simulation. The auxiliary processor (AP) is responsible for executing

synchronization algorithms, i.e., the framework algorithms in Figure 1, and for interfacing with

both the parallel reduction network (PRN) and the host processor. The PRN and the

synchronization algorithms are completely transparent to the host processor.

A block diagram of the interface between a host processor and its auxiliary processor can be

seen in Figure 4. The AP is programmable and will execute synchronization algorithms that have

been loaded into its program store. This processor writes to the PRN input registers and reads the

PRN output registers; the specific interface between the reduction network and the AP is

discussed in the next section. The auxiliary processor monitors the reduction network and writes

the global synchronization values into single cell registers readable by the host processor; the

host processor executes the TEST process from the framework algorithms and performs all

simulation events. The single cell registers are treated as a single state vector output from the

reduction network. The host processor can compute global virtual time (GVT) [Jeff85] and make

adaptive processing decisions based on the global synchronization values.

In addition to executing the SENDMSG and RCVMSG algorithms in Figure 1, the auxiliary

processor executes all message acknowledgement algorithms, such as CHKACK in Figure 1.

This increases the speed at which messages can be acknowledged through the PRN. Efficient

message acknowledgements through the reduction network was a motivating force behind the
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addition of a dedicated processor at the output stage of the PRN. This is discussed in greater

detail in [Panc92].

As seen in Figure 4, an ordered buffer of tagged messages is used for communication from

the host processor to the auxiliary processor. The host processor writes into the buffer while the

AP reads from the buffer. Entries into the buffer preserve ordering and are tagged so that the

auxiliary processor correctly processes the information. We can identify three cases in a PDES

operating within the framework where the host processor must communicate to the auxiliary

processor: when an event message is sent, when an event message is received, and when the next

event time changes as a result of the completion of an event or receipt of a message. We expect
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these to be low frequency events as compared to the frequency of I/O activity between the

auxiliary processor and the PRN.

The addition of auxiliary processors at the input and output stages of the PRN mainly

facilitates the management of high-frequency data coming out of the PRN. The auxiliary

processors are responsible for inserting data into the PRN as well but with much lower frequency.

By adding auxiliary processors the interface between the PRN and the host processors is as

simple as possible. Furthermore, the portability of the reduction network to other parallel

processors is enhanced. We assume each AP boots up in a state in which it ultimately listens to

its host processor interface. The host processor sends its auxiliary processor data representing a

program to load and execute. The mechanism for downloading these programs can be kept

simple.

We assume that one of the host processors in the system and its corresponding auxiliary

processor is designated as a master pair of processors. The master HP communicates PRN

programming information to a state machine which controls the PRN. Critical information to be

passed to the state machine includes the number of components in a state vector and the

operations to be performed on components; for example, it can be specified that all first

components are to be summed, all second components OR’ed, and the minimum it to be taken on

all third components in a three component state vector.

Note that the master host processor can send new PRN programming information to its

auxiliary processor at any time. Similarly, host processors can pass data to their respective

auxiliary processors indicating that they are to receive new programs to execute. This will permit

dynamic reprogramming of the AP’s and the PRN. We assume that applications running on the

HP’s and programs running on the AP’s are sufficiently robust to support this dynamic

reprogramming.
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7. INTERFACE BETWEEN AN AUXILIARY PROCESSOR AND THE PRN

As mentioned in Section 3, there are certain properties that must be ensured with respect to

the order in which values local to a given AP are used in PRN reduction operations in order to

correctly support the PDES framework.

The network interface between the PRN and each processor, depicted in Figure 5, is

identical. It is designed to treat both local input values and global output values as state vectors.

It preserves the validity of state vectors both when the local values enter the reduction network

and when their globally reduced counterparts leave it. Values are viewed as vectors since the

network reads the input registers one by one as a group (if the local input values represent a valid

local state) and emits the output registers as a reduction on the same group (so that the global

output values will represent a valid global state). Valid state vectors are guaranteed by clocking a

valid local state vector into the registers read by the PRN after every complete PRN input cycle

and clocking a valid global state vector into the registers read by an AP after every complete PRN

output cycle. Without loss of generality, we assume a complete PRN cycle begins with register

Rm −1 and ends with register R 0 .

We now discuss the interface on the input side of the PRN; as seen in Figure 5, there are

three rows of input registers. The first row of registers is written by APi , and any of these

registers may be written zero or more times prior to being fed into the PRN, provided that the

state vector is overwritable. The third row of registers is read by the PRN. The second row is an

intermediate row of input registers which facilitates both performing non-overwrite writes and

capturing snapshots of valid local state vectors. When APi completes its write(s) to its input

registers, it sets a valid bit, indicating that the AP input registers contain a valid state and can be

clocked into the intermediate input registers. An auxiliary processor cannot write to its AP input

registers until the valid bit is reset to zero, indicating that the intermediate input registers have
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been written. If the write is non-overwritable, the AP also sets an overwrite bit that follows the

AP input registers into the intermediate input registers when the AP registers are clocked into the

intermediate registers; the intermediate registers will not be updated again until they are clocked

into the PRN input registers. An AP, therefore, does not need to halt its processing once the

intermediate registers are set for non-overwrite until a second write to the the AP input registers

occurs. Due to the expected speed of the register banks, we do not expect AP’s to ever have to

wait. The AP input registers are only clocked into the intermediate input registers when they

represent a valid state (i.e., the valid bit is set). The coordination between the AP input registers

and the intermediate input registers is accomplished by a hardware handshake mechanism.

Intermediate input registers are only clocked into the PRN input registers at the end of a complete
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PRN input cycle, depicted by the dotted arrow on the input side in Figure 5. The registers never

block the PRN, and flow through the three register banks guarantees this. The PRN will read the

PRN input registers nondestructively since we expect it will read them multiple times due to

speed differences between the PRN and the slower auxiliary processor. Both the intermediate

and the PRN input registers represent valid state vectors of APi at all times because if the AP

input registers contain a valid state vector when the valid bit is set after an atomic write, the

registers preserve the integrity of the state vector.

In Figure 5 there are also three rows of registers on the output side on the PRN. The first

row of registers is read by APi . The third row of registers is written by the PRN. The second row

of registers is an intermediate output register bank that is used to prevent interference between

APi and the reduction network. The PRN output registers are only clocked into the intermediate

registers at the end of a complete PRN output cycle, depicted by the dotted arrow on the output

side in Figure 5. Intermediate output registers can be clocked into the AP output registers

whenever the AP is done reading the state vector represented by the AP output registers.

Intermediate output registers are not necessary for algorithm correctness. If intermediate registers

were not employed, the PRN would have to skip writing a new vector into the AP output registers

until the AP has read the entire state vector from the AP output registers. Both the intermediate

and AP output registers represent valid global state vectors at all times; the PRN output registers

contain a valid global state only at the end of a complete PRN output cycle. The output sweep is

not synchronous to the input sweep; the sweep differs by log n modulo m, where m is the number

of inputs to the PRN.

The PRN continuously writes values into the PRN output registers. Once a valid state

vector is formed in the PRN output stage, a line is raised to enable the clocking mechanism

between the PRN stage and the intermediate stage and at the same time, disable the clocking

mechanism between the intermediate output stage and the AP output stage. However, the actual
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writing of intermediate registers takes place after some small delay, to allow any clocking

between the intermediate and AP stages, which may have already been initiated, to complete. The

line is then lowered, disabling the clocking mechanism between the PRN output registers and the

intermediate output registers and enabling the clocking mechanism between the intermediate

output registers and the AP output registers. This line serves as a master control to the individual

clocking mechanisms of each set of AP registers; disabling it will disable all of them and

enabling it will enable all of them. The clocking mechanism for each set of AP registers is

enabled by this master line as well as a line controlled by the auxiliary processor. Thus, when an

auxiliary processor wishes to read its processor output registers, it disables the clocking

mechanism for its processor output registers by lowering the line. This may cause the processor

to miss some of the outputs, but under most synchronization algorithms, this is acceptable.

8. APPLICATIONS OF THE PRN BEYOND PARALLEL SIMULATION

We have introduced the PRN as a hardware network supporting PDES. Besides supporting

the parallel simulation framework, there are several ways in which a PRN can support PDES

implementations. Non-aggressive protocols can be enhanced by disseminating minimum

lookahead [Fuji88] values through the PRN. Iterative PDES algorithms often require the rapid

computation and dissemination of ceiling values or fault values. (See [Dick90], [Luba88],

[Luba89], [SoSH89], [SoBW88], [Ayan89].) Aggressive protocols [Jeff85] can be enhanced by

the efficient computation of GVT and by limiting aggressive processing without the simulation

deadlocking. Furthermore, by rapidly disseminating GVT and by limiting aggressive processing,

the PRN can benefit a PDES that uses the rollback chip [FuTG88a, FuTG88b], a high-speed

memory device which enhances a Time Warp simulation; the PRN provides accurate state

information which facilitates fossil collection on the rollback chip. Finally, global termination

conditions (e.g. sums and boolean operations) in a PDES [AbRi91] can be calculated and
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disseminated in the PRN.

The applicability of PRN’s is not limited to parallel simulation; PRN’s can be efficiently

used in many application areas that require the rapid dissemination of global synchronization

results. For example, the PRN can support a variety of parallel numerical computations. One is

solving linear equations using numerical iterative algorithms, such as the Jacobi iterative method

or the SOR iterative method. The PRN can be used to disseminate information about a process’s

iteration number or convergence information. A local iteration counter, ICi , can be submitted to

the PRN and a process can block or continue based on how many iterations ahead of the global

minimum iteration counter IC ′ it has advanced. Any iterative numerical method needs a

convergence test; the PRN can efficiently perform and disseminate convergence tests without

using message broadcasts. High-speed convergence evaluation can be easily accomplished as

follows. Each PP is performing iterative calculations, a convergence evaluation of internal errors

in each PP is obtained by computing the maximum error within each PP, this local error is

submitted to the PRN, a global maximum error is computed using the PRN, and this global error

is compared to the criterion for the convergence test. Other convergence tests require each PP to

perform a local convergence test and a global convergence test is performed as the logical-AND

of all tests; the PRN supports this logical computation.

Another numerical method that can be performed using the PRN is an inner product

computation. On a parallel machine, an inner product computation typically requires a fan-in

computation followed by a broadcast of the result. The inner product computation and broadcast

can be done efficiently in the PRN. The conjugate gradient method, which is a popular iterative

method for solving linear equations, is an example of an algorithm which benefits from an

efficient inner product computation. The PRN can also support the same numerical applications

for which the Finite Element Machine (FEM) [CrKn85] was developed.
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The PRN as defined above can also support barrier synchronization as defined in [Ston90].

Each processor can submit a flag to the PRN, and all processes can block until the global

reduction operation (a logical operation, in this case) reflects when the barrier has been reached

by all processors. The PRN also supports barrier synchronization among a set of all processors

since non-participating processors can simply contribute a positive flag to the logical reduction

operation and not block execution. Furthermore, the PRN supports multiple barriers [Ston90]

efficiently without additional hardware [HeRS89] since the PRN already has a set of input

registers.

A PRN-like network can support an approach to load sharing we call Waterfall Load

Sharing (WFLS). WFLS takes into account the distance a relocated process’s remote data

accesses (back to its home processor) must traverse. So, given a linear sequence of three

processors with the following loads: (2 1 0), a conventional load sharing algorithm would take the

surplus process from the first processor and give it to the third, creating the load (1 1 1). WFLS

would achieve the same distribution but by taking the first processor’s surplus and assigning it to

the second processor and by taking the second processor’s original process and assigning it to the

third processor. The difference between the two approaches is that with the conventional

approach one process must access data on its home processor across two communication links,

while with WFLS there are two processes, each of which must access its data one communication

link away. There are cases where WFLS will produce shorter finishing times for a set of

processes than that produced by a conventional approach.

WFLS algorithms can use the PRN to provide near perfect state information about

processor loads. Furthermore, the PRN can be used to support the computation of a global

minimum load, a global load average, as well as more "target specific" information for subsets of

processors. These values can be used to implement a WFLS algorithm. The design of the PRN

as presented here does not support the generation and dissemination of target specific information
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in the general case. However, there are cases where it does and these cases may be good enough

to support WFLS. Of courses, advances made in dissemination of target specific of information

would be beneficial as well. As noted, this latter activity is an open research issue.

The trend in distributed memory parallel architectures is a mesh-connected communication

topology; Intel’s Touchstone DELTA machine [Lill91] is one such example. While this

architecture is scalable to a larger number of processors than a hypercube, the number of hops

between two processors can exceed log n, where n is the total number of processors. This

suggests a greater need for the efficient dissemination of global synchronization information in

the future.

9. HARDWARE SUPPORT FOR PARALLEL SIMULATION

The computation requirements for PDES continue to grow. The simulation of large

communication networks and battlefield scenarios, for example, both require a significant amount

of computation time. In addition, simulation programs, especially those employing aggressive

processing, often utilize a large amount of memory. Therefore, future research in the area of

hardware support for PDES is important.

The use of special-purpose hardware to improve the performance of simulation programs is

not novel. Lubachevsky [Luba88] suggests using a binary tree implemented in hardware in order

to support synchronization barriers and to compute and broadcast a minimum next event time in a

bounded lag PDES. His control synchronization network is presented strictly in support of the

bounded lag protocol; nonetheless, this has served as a motivating factor in our approach.

Hardware enhancements for Time Warp have been prevalent in the research; for example,

Livny and Manber suggested using token rings for disseminating GVT [LiMa85]. The current

trend in this area of research, however, is to design a high performance, discrete event simulation
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engine. Fujimoto initially targeted the Virtual Time Machine [Fuji89] as hardware support for

discrete event simulation, but this machine is now intended to utilize an aggressive style of

execution in a general purpose parallel computer. Fujimoto, et. al., developed the rollback chip

[FuTG88a, FuTG88b] as a hardware enhancement to a Time Warp engine. The rollback chip is a

memory management unit that facilitates the state saving and restoration that is inherent in

aggressive protocols such as Time Warp. As reported in [BuRo90] the chip has excellent

performance capabilities.

At about the same time that Reynolds introduced the framework, Filoque, et.al., [FiGP91]

proposed the use of a processor network with programmable logic for efficient global

computations, such as the computation of GVT in a Time Warp simulation. This hardware is not

a single network like the PRN; it is, however, a distributed system of sockets, one per processor.

The reprogrammable sockets are connected in a pipelined ring, forming the computation engine.

A token is inserted into the ring by a designated control socket. It travels around the ring,

performing partial computations at each socket. When the token returns to the controller, the

global computation is complete. Therefore, their proposed hardware performs global

computations in O (n) time whereas the PRN performs the same computations in O (logn) time.

Furthermore, the proposed synchronization algorithms for computing GVT in [FiGP91] rely on

the host communication network for message acknowledgements and our framework uses the

PRN. The goals of both approaches are similar, but our framework is more efficient, more

flexible, and more scalable.

10. RELATED SYNCHRONIZATION NETWORKS

The proposal of using a separate synchronization network for improving system

performance is not new. The IBM RP3 [PfBG85] was designed as a shared memory

multiprocessor that houses both a combining network for synchronization traffic and a low
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latency network for regular message traffic. Our proposed special-purpose hardware is not as

complex or expensive as a combining network, yet it performs global synchronization operations

very efficiently.

The Finite Element Machine, a NASA prototype, utilizes a binary tree-structured

max/summation network to perform the global sum and maximum calculations necessary to

support structural analysis algorithms based on the finite element method [CrKn85, JoSc79].

Like the hardware we propose, the sum and max calculations in the FEM are calculated

alternately without processor synchronization. Our hardware design, however, employs a small

set of input and output registers, whereas the network in the FEM uses a single input and a single

output register. Furthermore, our proposed synchronization network is also enhanced to satisfy

correctness criteria for our PDES framework.

Global operations on the Intel iPSC/2 [Inte89] are provided for arithmetic and logical

binary associative operations where each processor contributes a value and all processors receive

the result. They require the complete synchronization of all processors; all processors must

contribute a new value to each global operation and a global operation blocks until all processors

enter one. Our approach is asynchronous (i.e., allows stale data to be contributed to global

operations).

The CM-5 [Thin92] contains two separate networks for different types of communication

and synchronization: the data network is the primary message-passing network in the machine

and the control network provides hardware support for common cooperative operations. The

control network supports "soft" barrier synchronization, arithmetic and logical reduction

operations, parallel prefix operations, and segmented parallel prefix operations. Like the Intel

iPSC/2, the reduction operations require processors to call global operation functions with

specific values; in contrast our PRN performs global operations continuously. Furthermore, our
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hardware design employs auxiliary processors to manage the high-speed data emitted from the

PRN, and the PRN computes reductions on state vectors.

Several researchers have proposed the use of hardware to implement barrier

synchronization. In Hoshino’s PAX Computer [Hosh85] barrier synchronization is accomplished

by each processor setting a single bit such that the collection of bits is fed into an AND gate and

an OR gate, and the outputs of both gates are bussed to all processors. Stone [Ston90] suggests

the use of global busses to find the maximum value in a set and to implement Fetch-and-

increment as a synchronization technique. Researchers at IBM have constructed a configuration

of barrier synchronization modules [HeRS89] as a low-cost device for barrier synchronization.

The hardware that we propose, on the other hand, provides support for a larger class of algorithms

than barrier synchronization algorithms.

Blelloch [Blel89] proposed a tree-structured hardware implementation of parallel prefix

operations. One of our future goals is to enhance our hardware design to calculate and

disseminate "target specific" synchronization information in a PDES. Parallel prefix

computations may be useful in realizing that goal.

11. A PROTOTYPE PRN

We are in the process of building a prototype PRN, of size 4, which interfaces with a Sparc

Cluster. The Sparc Cluster contains Sparc processors connected to a VME backplane. The

interface between the Sparc processor and the auxiliary processor will have an S-bus connection

and a dual-ported RAM interface. Management of the dual-ported RAM is through software

resident on host and auxiliary processors. The S-bus has a bandwidth of about 100 megabytes for

32-bit words. We expect a throughput of 25 MB/second from host to auxiliary processor.
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The auxiliary processor is a 32-bit general purpose processor, specifically a 25 MHz

Motorola 68020. Each auxiliary processor will have one megabyte of RAM. The interface

between an auxiliary processor and the PRN contains input and output state vectors of size 8,

where each element of the vector is a 32-bit value/32-bit tag pair.

The PRN provides 32-bit fixed point arithmetic. The ALU’s require 40 nanoseconds for a

fixed point addition. The PRN requires two operations to perform selective operations such as

minimum and maximum. In a selective operation, the tag of the "winner", e.g. the minimum or

the maximum of two input values, is passed to the next level of ALU’s. One minor cycle of the

PRN will take 150 nanoseconds.

12. CONCLUSIONS AND FUTURE WORK

We have introduced an augmented parallel reduction network for disseminating small

amounts of global synchronization information in a parallel MIMD computer. This network is

easily realized in hardware, cost-efficient, and scalable. Furthermore, this network can be useful

in a shared memory multiprocessor or a distributed memory multicomputer. In [Reyn92], it was

shown how the PRN can effectively support PDES. We have also shown how the PRN can

support parallel numerical calculations and barrier synchronization. We feel that this network

can effectively improve the running time of many other loosely synchronous computations

[FoJL88] that periodically require a small amount of global synchronization information to be

disseminated.

The novel features of this network are a network interface which preserves state vectors and

the use of an auxiliary processor to manage high-frequency data asynchronously to the host

processor’s computation. We predict that the framework algorithms and the PRN will produce a

significant reduction in the finishing times of parallel simulations.
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A PRN, as described in this paper, provides hardware support for global synchronization.

Many PDES’s can benefit from target specific synchronization since simulation topologies are

often static and LP’s typically communicate with a small set of LP’s. In the future, we plan to

investigate hardware support for the rapid dissemination of target specific synchronization

information.
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