
Adam Soroka and Tim Stevens

University of Virginia – Online Library Environment

TwoStore operates over multiple filesystems and is

agnostic as to how those filesystems are assembled

and mounted to repository servers.

Subheading Goes Here

How it gets STARTED… How it gets WORSE…

Subheading Goes Here

How it gets SOLVED!

TwoStore : An Akubra-based extensible storage architecture for Fedora

 A new Akubra IDMapper translates external URIs into a

simple hash value consisting of a binary string and an URL-

encoded filename, by a fast hashing algorithm

implemented in only a few lines of Java.

 A new Akubra BlobStore/BlobStoreConnection pair

multiplexes together two subsidiary BlobStores based on

the beginning of the binary string.

 Concrete BlobStores are connected through the

aforementioned multiplexing BlobStore.

 A utility separates any FSBlobStore using this type of

internal URI into two other FSBlobStores, each of which

contains half of the original Blobs, using the same decision

that the multiplexing BlobStore uses in operation.

Together they are used to form a binary tree that is

quickly traversed for storage and retrieval.

“Hey, IT…I need MORE space.

Perhaps another 10 Terabytes?

It still has to have a single mount point.

Pretty Please.”

Congratulations! It looks like you have a very successful

repository -- so popular, in fact, that you are about to

run out of storage space.

You will encounter a never ending cycle of data

migrations that frustrate IT departments and put your

data at serious risk of corruption.

This construction offers a number of advantages:

 New storage can be added quickly by using our utility to

migrate a pre-existing BlobStore into a multiplexing store

with the original BlobStore as one child and the new

BlobStore as the other. The migration can occur while a

repository is operating.

 No special metadata is included inside the concrete

BlobStores, which simplifies management operations. Any

filesystem that supports POSIX filesystems will do.

 The total amount of storage available to a repository is

232 BlobStores over the quantity of storage available

from the concrete BlobStores. This is an extraordinarily

large amount for such a simple plan which uses no

complicated grid machinery.

 As new BlobStores are introduced, more of the

storage/retrieval decision tree is traversed in memory,

which provides good scaling characteristics.

New Challenges:

• A complex configuration of symlinks could be used for the

volumes to appear as unified storage. A hack at best, but

the only answer for many.

• With some repositories, the volumes themselves contain

metadata required to differentiate the volumes and locate

the files.

• If volumes contain their own metadata, the disks cannot

be restored independently of each other and if one fails

the entire structure may be rendered unusable.

TwoStore operates over multiple filesystems and is

agnostic as to how those filesystems are assembled

and mounted to repository servers.

 A new Akubra IDMapper translates external URIs into a

simple hash value consisting of a binary string and an URL-

encoded filename, by a fast hashing algorithm

implemented in only a few lines of Java.

 A new Akubra BlobStore/BlobStoreConnection pair

multiplexes together two subsidiary BlobStores based on

the beginning of the binary string.

 Concrete BlobStores are connected through the

aforementioned multiplexing BlobStore.

 A utility separates any FSBlobStore using this type of

internal URI into two other FSBlobStores, each of which

contains half of the original Blobs, using the same decision

that the multiplexing BlobStore uses in operation.

Together they are used to form a binary tree that is

quickly traversed for storage and retrieval.

This construction offers a number of advantages:

 New storage can be added quickly by using our utility to

migrate a pre-existing BlobStore into a multiplexing store

with the original BlobStore as one child and the new

BlobStore as the other. The migration can occur while a

repository is operating.

 No special metadata is included inside the concrete

BlobStores, which simplifies management operations. Any

filesystem that supports POSIX semantics will do.

 The total amount of storage available to a repository is

2^32 BlobStores over the quantity of storage available

from the concrete BlobStores. This is an extraordinarily

large amount for such a simple plan which uses no

complicated grid machinery.

 As new BlobStores are introduced, more of the

storage/retrieval decision tree is traversed in memory,

which provides good scaling characteristics.

How it gets SOLVED…

“Hey, IT…can I have 10 Terabytes?

In a single volume?

Oh, and my repo needs one mount point.

Please.”

According to Moore’s Law, the number of transistors on a

chip roughly doubles every two years. As a result, the

scale gets smaller and the chips run faster. While this

statement applies to processors, the same concept

should be applied (and anticipated) when planning your

digital repository storage needs.

Your actual factor will depend on your organization, but

your storage needs will never get smaller. Without

proper planning and infrastructure will only run slower.

Initial Challenges:

• Many organizations simply do not have the available

hardware and management resources to provide the

necessary space.

• For those with the resources, even today, providing

massive storage in single volumes is difficult or

impossible.

• The larger the volume, the longer it takes to copy and

backup or to restore in the event of a catastrophic disk

failure.

How it STARTS…

Object Store

(or datastream

store)

URI Hashing Mapper TwoStore

TwoStore

Filesystem Store

TwoStore

Filesystem

Store

etc…

etc… The TwoStore Process

