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Ahbstract

Qur application is a global change simulation that models the carbon cycle. This
model operates on dozens of parameters to calculate a measure of biological activity
called net primary productivity. Data used as inputs to this model span dramatically
different periods of time. To enable our application to reconcile differences in time
scales, we have developed an interval-based representation of data. In this paper,
we describe this representation, define operations on time intervals, and discuss how
these operations affect parameters associated with time intervals.

1 Introduction

In scientific studies, as well as in many other fields, physical measurements are typically
tied to temporal and spatial coordinates. A temperature measurement is usefﬁl only when
we know when and where the measurement was taken. A precipitation measurement hasg
greater meaning when we know over what time period the precipitation fell. We are
developing an interval-based representation of temporal-spatial data that will use the
ADAMS object-oriented database system {PF93] [PHFO8] to implement a global primary

productivity model [WSE95]. This representation includes a set of temporal operators



that are used to manipulate interval-based data.

The idea of an interval-based time representation is not new. Allen’s contributions
[A1183] [All91] [AF94] have been the foundation of other developments in this area [LG93).
It is quite different from those who treat time as a sequence of $ime ticks and represent
time using timestamps (”instants are points in time, intervals are sequences of temporally
consecutive points” [CDIT97], p. 182). In other formulations [ATSS93], intervals are
only a derivative concept consisting of that time between two timestamps that denote
the beginning and end of the interval. But our approach, which associates temporal
intervals with scientific and environmental processes, makes the interval central. Time
ticks and timestamps are almost incidental.

The global primary productivity application models the global carbon
cycle [PPE"90]. This model uses data gathered from different sources and recorded
over different time scales to calculate net primary productivity (the total carbon gener-
ated or consumed in a specific ecosystem). Some of the data are recorded from actual
measurements, while other data are estimations or derived values. Some data may be
complete, while other data points may be missing. Our challenge was to develop a system
of describing and manipulating temporal data such that we could maximize the utility

of the data we have available, and to make reasonable estimations for missing data.



2 An Interval-Based Representation of Time

Processes can be considered in terms of intervals of timé. If we consider a process to be
a series of transitions, beginning from some start state and ending in some final state,
then the associated time interval can be considered to be the span of time needed to
complete the process. Time intervals are bounded by their endpoints. However, it is not
necessa;r'y for the endpoints to be points of clock time. There may be cases where our
interval endpoints are not known, or are purely artificial. For example, in a chemical
process, a reaction may take only microseconds to complete. Assigning clock values to
the start and end of this reaction would most likely be artificial, and probably would not
be beneficial. A more reasonable approach would be to consider the interval as spanning
the time to complete the reaction. Time interval endpoints can simply be considered as
the start and end of some process, independent of any clock time measurement.

We consider time to have the following properties:

s Time is partially ordered.

o Time is not dense {if ¢t1 > 3, then there may not exist t2 such that t1 > ¢2 > ¢3).
o Comparison and difference operators are well defined.

H £l > £2, then 2 — t1 = 0. Negative time values are not allowed.

Display operators are necesgsary to map time values to recognizable forms.

*

Obviously, for some operations on time intervals, total ordering is necessary (i.e.
time interval composition). But in many applications, partial ordering is the best we

can achieve. In distributed computing applications, for example, partial ordering is



easily achieved, but establishing a total ordering is much more difficult due to clock
synchronization and communication delays [Lam78] [Mat89].

The second point is also counterintuitive. However, this follows from ocur definition of
time intervals in terms of processes. If time interval endpoints are taken to be the start
and end of some process, and this process cannot be subdivided, then subdividing the
underlying time interal makes no sense. There exists no identifiable ¢2 such that start >
t2 > end. Moreover, we are modelling temporal data. Suppose we are representing hourly
rainfall. To assert some intermediate interval for which we have no data is meaningless.

Having defined properties of time with respect to processes, we can now develop
a representation of time intervals. We consider time intervals to have the following
properties:

e Any interval can be recursively subdivided into subintervals.

o For any interval, the time-valued functions begin() and end() are well defined,
and the result of begin() is always less than or equal to the value of end().

o Associated with every interval is a non-negative quantity called the duration.

e The class of an interval is defined by the process parameters associated with the
interval.

We assume any interval can be arbitrarily subdivided. There is no smallest interval,
but, for practical purposes, this subdivision is limited by the precision of the represen-
tation, or by the nature of the process that we are subdividing.

The functions begin() and end() return a time value that represents the beginning

and the end of the time interval. For any time interval, these must return a valid value.



However, the time values do not need to be clock time stamps; they can be any consistent
measure of logical time.

Intervals cannot have a duration less than zero since a negative time interval does not
make sense, either frqm a traditional time standpoint or a process standpoint. However,
it is possible to have a time interval with duration equal to zero, where the start and end
points:are identical. This would represent an instant in time.

A time interval may have associated process parameters’, and it is the combination
of the interval and the set of its parameters that constitute the class of the interval
For example, if we have an interval I, and the parameters average temperature and total
rainfall are associated parameters, then I would belong to the class of intervals that are
associated with only those two process parameters.

The operations we will define on intervals are of two types: strictly temporal,
and class-dependent. Strictly temporal operations may be performed on any interval
regardless of class, and the result of the operation is independent of the class of the
operands. By contrast, the class of the operands affects the result of a class-dependent
operation.

Notational conventions used in this section will be:

e [: time interval
¢ {: time instant
¢ P: parameter

1Often, the process determining the interval is a data sensing/recording process



C: class

Param(C): The set of parameters that are members of class C.

: duration operator (6(I) — numeric)

superimposition operator (I * I — I)

composition operator ([ ol ~» I)

. decomposition operator (I¢y, > I, Ia, ... In)

: complement operator (I — I — I)

=, 3k, >, <, >, <! comparison operators {t(operator)t — Boolean)
- difference operator (¢ -t ~» I)

I.pi: A specific parameter of a particular interval.

=]

P& 2 %

* & & + & 0 & * @ @

Many of our operators are defined in terms of the duration function. The duration

function is a strictly temporal operator.

Duration: §(1) = end(l) — begin(I}

Duration is the measure of the length of a time interval that uses the previously defined
functions end() and begin(). The duration can be a measure of either clock time or
logical time, or a simply a measure of progress in a process.

The following are definitions of the class-dependent operations. As noted above, the -
result of a class-dependent operation depends on the class of the operands. These opera-
tions affect both the temporal aspects of intervals as well as their associated parameters.
We will define and discuss the temporal effects of the operations, then we will discuss
how each of these operations affect associated parameters.

Intervals can be recursively decomposed.

Decomposition (¢,): For all I where 6(I) > 0, I can be decomposed into n equal



subintervals (n > 1) such that:

o I; meets I; 41 = true (defined as end(l;) = begin(l;11) ), 1 =7 <n - 1.

¢ Fach subinterval I1...I, belongs to the same class as I and therefore has the
same parameter set as I.

e 6(I) =48(I1) +6(I2) + ...+ 8(1,).

o [ ... [, are composible into 1.

* 6(I;) is computable, since we know the values of begin(/;) and end(l;).

A decomposition creates a set of subintervals, all of equal duration, which completely
cover the span of the parent interval. Each subinterval has the same set of associated
parameters as the parent interval.

Intervals can also be composed.

Composition (o): Given any two intervals I; and I, where I; belongs to the class
C; and I belongs to the class Cy, their composition (I; o 1) yields I such that:

o begin{l) = min(begin{l;), begin{ly)).
v end(l) = mazx(end(l;), end(Iy)).

o [ belongs to the class Cy with parameters (Param(C;) N Param{Cy)).
¢ §(I) is computable, since we know the values of begin(l) and end([).

Note that there is no termporal restriction on the relationship between intervals that
are to be composed. Two intervals involved in a composition may or may not meet,
they may or may not overlap, they may or may not be equal, and in fact they may even
gap. There are also no class restrictions on composing intervals. Intervals from different
classes may be composed, and the resulting interval may belong to an entirely different

class than the classes of either of the composing intervals.



The superimposition of two intervals yields an interval that corresponds to the overlap

of the two original intervals.

Superimposition (+): Given any two intervals I; and Iy, where I; belongs to the
class C; and I belongs to the class Cy, and begin(l;) < begin(l) and I; meets I, = true
or I; overlaps Iy, = true, I; * Iy yields I such that:

¢ begin(I}) = max((begin{l;), begin(Iy)).
e end(l) = min(end(l;), end(I})).

o I belongs to the class Cr with parameters (Param(C;) N Param(Cy)).
» §(I) is computable, since we know the values of begin(I) and end(I).

The superimposition of two intervals that meet will be an interval with a duration =
0. Intervals that gap cannot be superimposed.

Complement (—): Given any two intervals I; and Iy, where I; belongs to the class
C; and I, belongs to the class Cy, and Iy is either a prefix or a suffix of I}, I; — I, yields

I such that:

o If I}, is a prefix of I;, then: begin(l) = end(l}), and end(I) = end(l;).

o otherwise, Iy is a suffix of I3, so: begin(l) = begin(l;), and end(I) = begin(ly).
e [ belongs to the class C7 with parameters (Param(C;) N Param(Cy))

o 5(I) = 8(1;) - 6(1y).

e ]o E = Ij.

In order to simplify the use and implementation of the complement operator, I must
be either a prefix or suffix of I;.
Next, we define the other strictly temporal operators. As stated previously, strictly

temporal operations may be performed on any interval regardless of clags, and the result



of the operation is independent of the class of the operands. The following are Boolean

relationship operators that test the temporal relationship between two time intervals.

equals: I; equals Iy, ~» Boolean
true if 6(1; = I} = 6(1;) = o(1y).

meets: I; meets Iy, — Boolean
true if 8(1; = Iy) = 0, and 6(I; o Iy) = §{I;) + §(1x).
In order for two intervals to meet, they cannot overlap, and there must be no gap

between them.
overlaps: I overlaps Iy, ~» Boolean
true if 6(I; » Iy) > 0, and 0(I; o Iyy) < 8(1;) + 6(1).
Two intervals overlap if the duration of their superimposition is not zero, and if the
duration of their composition is greater than the sum of their durations. Intervals that

span exactly the same time are not said to overlap, but are instead equal.

gaps: I; gaps I — Boolean
true if I; overlaps It = false, and I; meets I = false.

If I; and Iy gap, then there exists some interval I’ with 6(I') > 0, such that end(l;) =
begin(1'), and begin(ly) = end(l’).
includes: I; includes I — Boolean
true if I; » [, = Iy, and I; o I}, = I;.
For the definitions of the prefizes and suf fizes operations, I; is the larger interval,

while I, is the subinterval.



prefizes: I prefizes I; — Boolean
true if I; includes Iy, and begin(l;) = begin{ly).

suffizes:  Ij suf fives I; — Boolean
true if Ij includes Iy, and end(I;) = end(I}).

Figure 1 displays a graphic representation of these relationships. It should be noted

that time instants (as ticks or stamps) play no role in these boolean operators.

I} W ]
- . b equals 1,
® Y i meats Iy
» » [J- overiaps I,
L, < 1 I gaps I,
> » Iy dnchides T,
& » L prefizes
P » L suffires 1

Figure 1: Boolean Operations on Time Intervals

3 Associated Data and Interval Classes

Environmental data is generally location and time-dependent. Weather data is reported
as a set of parameter values measured at a particular place at a specific date or time.
Similarly, researchers in other fields such as oceanography, glaciology, and limnology

report data that are bound to a time and place. When examining data, the temporal
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Figure 2: Cumulative and Daily Precipitation for Richmond, Virginia, December 1998

and spatial dimensions provide a context to permit the comparison of data points and
the development of interpretations of the data. Time intervals can provide the temporal
dimension necessary to provide such a context for data.

We have already briefly mentioned interval classes. The class of a time interval
is defined by the set of process parameters that are associated with it. For exampie,
if we have an interval, spanning from #; to to, and associated with that interval are
values of average temperature and total precipitation, then its class includes all infervals
that contain the exactly the same parameter set. The class is not dependent upon any
property of the interval other than its associated parameters, so intervals may have
dramatically different durations but still belong to the same class.

We classify data as one of two types, cumulative and distributive. We consider

11
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Figure 3: Daily and Average Monthly Temperature for Richmond, Virginia, December
1998

that cumulative data are those measurements that are typically examined as totals over
a period of time. For example, total monthly rainfall is a cumulative parameter, since
it is simply the sum of the daily rainfall measurements. Figure 2 shows an example of
curaulative precipitation over one month. Similarly, we consider distributive data to be
those measurements that are typically examined as an average over a time period, e.g.
monthly average temperature. Figure 3 shows an example of temperature measurements
over one mouth. This distinction between parameter types is necessary since our temporal
operators affect parameter values differently depending on whether the parameter is
distributive or cumulative.

We can consider constant data as a special case of distribuiive data, where the dis-

12



tribution of values over time is uniform. If, however, the constant represents an extreme
measurement,this uniform assumption is seldom correct.

In our global change model, we are using data from many different sources, and the
time intervals that the data cover are often inconsistent, or do not correspond neatly
to the intervals we require for the model. For example, if we need data on three pa-
rameters. (i.e. average temperature, average hours of sunlight, and total precipitation)
for December 1998, but all that is available is daily measurements for one parameter,
monthly measurements for another parameter, and seasonal measurements for the third
parameter, it is going to be difficult to extract the data we need, and it will also be
difficult to assess how confident we can be with the our results. Our interval operators

provide a mechanism to obtain the data needed by the global change model.

4 Manpulating Inverval-Based Data

To make interval operators useful, the operations must yield the best possible data. Ob-
served data are naturally preferred, but in thejr absence, we must be able to obtain either
derived values or a best estimate. An operation that generates a parameter value for any
interval must not alter existing observed data. In this section, we present methods of de-
termining parameter values that are generated as the result of applying class-dependent

operators on time intervals.
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In oxder to apply temporal operators to physical measurements, we need to know how
these measurements relate to time. Some relationships are intrinsic to the parameter
as indicated by its dimension (e.g. velocity in feet/second). Other relationships are
artifacts of the measuring process, as in rainfall measured in, for example, inches per
day (or month, or year). Our approach is to describe a set of operations that can be
applied to process parameters, and then determine, based on the nature of those process

parameters, which operations apply. The rules we abide by in our operations are:

1. Observed data are not modified.
2. Derived data are flagged as such.
3. Estimated data are flagged as well.

Previously, we discussed two classifications of data: cumulative and distributive. A
characteristic of cumulative data is the parameter value in any given subinterval will
never be greater than that parameter value in its parent interval. However, other than
that, we often are not certain as to the nature of the change over time. If we have a
monthly rainfall measurement of 30 inches, unless we have additional information we
cannot know if the 30 inches fell in a day or if one inch fell every day for 30 days, or if
it fell in some other manner.

Distributive data is similar in that often we do not know the nature of the distribution
of the parameter values over time. Our approach is to use what data we do have to
make an approximation, and flag it as such. Here, we present an example of how a

decomposition might affect associated parameters:
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As defined earlier, decomposition is the division of a time interval into n subintervals.

The process to perform a decomposition is as follows:

1. Create a set S of n subintervals () from the parent interval () by determining
the temporal boundaries on the new subintervals. The boundaries are calculated
using a simple division of 1.

2. Assign the class of all subintervals I} to be equal to the class of . All subintervals
I ; now have the same parameter set as I,

3. For: each subinterval (I}, 1 €37 < n)in S, determine if there exists any other
interval (J”) in our database with the same temporal and spatial coordinates. If
there exists a parameter py, in I" that is also in I; and the value of py, is not flagged
as estimated, then the value of I".p; is assigned to I;.pg.

4. After assigning parameter values for each of the subintervals from existing data, we
then estimate the values of the remaining parameters. Where a newly estimated
value is of higher guality than the existing value, or if no previously determined
value exists, the newly estimated value is assigned to that parameter. If the newly
estimated value is of lesser gquality than the existing value, then the newly estimated
value is discarded.

For the estimation of cumulative data under decomposition, we assume that param-
eter values increase linearly with time. For each parameter pg, if n is the total number
of subintervals in the decomposition, j is the number of subintervals that were assigned
values for py in step 3 above, S is the sum of the values of p;, assigned in step 3, and I.p;
is the value of parameter p; for the parent interval I, then we can estimate the value of
Pk in each subinterval I’ that was not assigned a value in step 3 above:

' W(I-pk_s)
R
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Figure 4: Actual and Estimated Daily Precipitation for Richmond, Virginia, December
1998

Example: For Richmond, Virginia, we have monthly total rainfall data and daily
data for those days where the rainfall was at least 1 inch. We wish to decompose the
interval corresponding to December 1998 into 31 daily intervals.

In December 1998, total rainfall in Richmond was 5.02 inches. On the 13th, there
was 1.84 inches of rain. All other days had less than 1 inch of rain. We can estimate
the daily rainfall in Richmond to be 5%%}%5—4, or (106 inches, except for the 13th where
we know the rainfall to be 1.84 inches. Figure 4 shows graphically the results of this
decomposition. With no daily data, the result of this decomposition is at best a crude

estimate. As we include additional daily data, the estimate improves. In Figure 5, we

show the result of the decomposition when all daily rainfall totals greater than 0.5 inches
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Figure 5: Actual and Refined Estimated Daily Precipitation for Richmond, Virginia,
December 1988

are included in the calculation.

In our application, it is not unusual for our data to be incomplete in this manner.
For example, we might have an annual rainfall measurement, and additional data only
for catastrophic or unusual events such as hurricanes or monsoons. Other normal rainfall
events may be missing. Since our global change model employs rainfall on a daily basis,
we must estimate rainfall values as closely as possible. This mechanism provides a
reasonable method of estimation.

For the decomposition of intervals that include distributive data, we perform a process
simnilar to the above four steps. However, we use a different calculation to estimate the

value of distributive data where the data set is incomplete. In the worst case, when we
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have no data for the subintervals, we assign the same value for distributive data in the
parent inferval to all subintervals. In cases where we have some supporting data, we can
refine the estimate. The assumption we make for decomposing intervals with associated
distributive data is that the average of the values of a parameter for all subintervals will
equal the value in the parent interval. For each parameter p;, if n is the total number
of subintervals in the decomposition, j is the number of subintervals that were assigned
values for py, in step 3 above, S is the sum of the values of p; assigned in step 3, and I.py
is the value of parameter p; for the parent interval I, then we can estimate the value of
Pr in each subinterval I’ that was not assigned a value in step 3 above:

(Ipxxn)—S

oo == .
Pk (n—7)

The other operations act in similar ways. Since there is such a rich set of operations
and relations or time intervals, and since we need to be aware of how the data is affected

by these operations, there remains much more work to be done in this area.

5 Conclusion

The global change simulation embraces 65,875 biologically active land elements, each
with different process characteristics. Modeling this, even assuming a parallel database

implementation as described in [PHF98}, is computationally intensive. Qur represen-
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tation of process parameters with respect to natural process intervals is a key step to

managing this computational complexity. While development of these operators is still

in the early stages, we believe that they will provide additional flexibility in manipulat-

ing temporal data. In particular, we are exploring a re-entrant capability that allows

selective subdivision of the simulation interval over specified critical regions.
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