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Abstract: Channel routing is a valuable VLSI routing technique thal requires the routing
region be divided into rectangular regions or channels. A new algorithm is proposed that
constructs the channels and determines the adjacencies between the channels in
O(nlogn +m ) time, where n is the number of modules in the circuil and m s the number
of channels that are created. In addition 1o its fast run-time, this algorithm has a
parameter & ihal permits control of the number of channels created.
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1. INTRODUCTION

Channel Routing is an important technique for routing interconnections in VLSI layouts. Iis
importance stems from its principal operating characteristics:

100-percent completion when given acyclic constrainis and adjustable heights;

low order polynomial run-time.
First proposed by Hashimoto and Stevens [HasH71] for realizing the interconnections on the
ILLIAC-IV computer, the channel routing method requires that the routing region be
.decomposed initially into a collection of rectangles or channels. .' From the channels, &
channel graph (V.E) is consiructed, where vertex set V' is the set of all channels and edge
set £ is the set of all unordered pairs of channels (x.v) such that v and v are contiguous
channels. Subsequent phases of the method perform a coarse routing that specifies the
chanﬁel sequence for each net and a fine Touling thal specifies physical paths within the
channels for each net. While there are numerous algorithms to delermine the coarse and
fine routings (e.g. [BURS84,RIVES3.YOSH82]), there are only a few informal algorithms 1o
consiruct the channels and the channe: graph. These informal algorithms are limited 1
construcling channel graphs with either O(n} or O(rn~, channels. where n is lhe number of
modules le.g. [CHIBS1.SOUKS0, ULLM84]).  Thev reouire Ouninen - and Oun”logn) lime 1o
construct channel graphs with respectively O(n) and O{n”) channels. The inierest in
channel 'grépils with more or less channels stems from characteristics of the particular
chan'nel I‘OU'LEll used 1o determine the coarse and fine routings. For example, the Magic
router performs better on channels that *are:.wsquare rather than simply rectangular [OUST84).
A heuristic 1o improve the Magic router's performance initially construcis O(n?) channels
and then applies a merging algori‘thm to selectivelyv collapse some of the channels tcgether
so the resuliing set of channels are more square [ULLMb 4]

We propose an Of(nlogn +m) algorithm for the consiruction of the channels and the
channel graph, where m is the number of channels that are created. Thus, our algorithm
is faster for channel graphs with O(n?) channels and as fast for graphs with O(n)

channels. Also, our-algorithm through an input % allows the user 1o conirol the number

-1-



of channels that are created. Throughout our discussion we assume that the circuit
perimeter and the modules are rectangular and represented by their horizontal and vertical
boundary segments. We also assume that all boundary segments have nonzero length and

are appropriately marked upper, lower, right, and left.

2. CHANNEL GRAPH CONSTRUCTION

To decompose the routing region into channels. the module boundary segments are extended
into the routing region until thev intersect another line segment. [These new line segments
Aare called exzension segments. An exiension segment is a/ways ended when it inlersects
another module boundary segment or a circuit perimetler segment. . However, depending on
the number of desired channels, an extension segm’em can also be ended when il intersects
another extension segment or more generally when it intefsects k extension segments. To
achieve O(n) channels, simply extend into the routing region all horizontal (vertical)

module boundary segments until they intersect a boundary segment. To achieve the

Figure 1 - Decomposing Routing Region into Channels with k=0




maximum number of channels, extend all horizontal and vertical module boundary segments
in;o the routing region until they intersect a boundary segment. To achieve O(kn)
édditional channels, extend all horizontal (vertical) module boundary segments into the
rouling region until they intersect a boundary segment and then extend all vertical
(horizontal) module boundary segments until they intersect k& segments or a boundary
segment whichever occurs first. Figures 1-3 show a simple circuit with 4 modules and
with respectively £=0. k=1, and k=n. As a result Figure 1 has 11 channels, Figure 2 has

B

23 channels. and Figure 3 has 40 channels.

Our algorithm for constructing the channels and channel graph is a two-phase
algorithm. The first phase constructs the horizental exiension seg.memsz the second phase
constiructs the channels and the channel graph. Without loss of generality; our description
of I‘he phases assumes that & controls the number of horizontal exiension segmenis a

vertical exiension segment can intersect.
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Figure 2 - Decomposing Routing Region into Channels with k=1
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Figure 3 - Decomposing Routing Region into Channels with & =n

Horizontal Extension Segment Construction

An algorithm HESC is given in Figure 4 1o construct the horizonmtal exiensions segments.
The set of horizonial exiensions segmentis K is determined DY periorming & i€ii-1o-Tight line
sweep of the vertical boundarv segments V [BENT79]. The sweep is accomplished by
accessingl the set of vertical boundaryv segments V after they have been arranged in non-
decreasing order with x-coordinate as the primary key and lower y-coordinalte as the
secondary key. Each vertical boundar; se;gxﬁent is considered in turn as the terminalion
- point for horizontal exiension segments extending left and as the initiation point of
horizontal extension segments extending right. The time to arrange V' in line sweep order

is O(nlogn), as IV is O(n).
The following notation is used in the algorithm.

The upper endpoint of a vertical segment v is (v,,v,). The lower endpoint of a

vertical segment v is (v,,v).



A vertical boundary segment v covers point (a.b) iff v is the vertical boundary
’éegment with the minimal x-coordinate greater than a such that & lies in the open interval

(v, v, ). Note from the definition, if v covers point (a.b) then b is not equal 10 v; or v,.

The type of tree used by the algorithm is a B¥—iree [COME79]. A BT—tree allows
insertions and deletions in O(logp) time, where p is the number of elements in the tree.
In addition. a B —tree allows the successor or predecessor of an element to be found in
constant time. The tree maintains those endpoints of horizontal segments that have not yet
-been cc;\-fered by & vertical boundary segment. The keyv used to 'plcimce an endpoint is its v-
coordinate. Note that a right vertical module boundary segmeﬁt cannot cover anyv of the
endpoints in the tree. Instead it introduces twoc-new poinls to be inserted inio the tree
(step 4). However, a left vertical module boundary segment or the right circuit perimeter
segmém can cover points in the tree. When computing the sel 'dl points § covered by
vertical segment v in step 6. there is an Of(logn) cost 1o find the covered point with

maximal v-coordinate. (Note that S can be empty and there can be no such point). The

remaining points in S (if any) can be found in O(!S') time by following predecessor

1. H «~ &

2. for each vertical segment v €V (in line sweep order) do

3. if v is a right module boundary segment or is a left circuil perimeter segmert then
4, CInsert (v, ay) and (v, ., ) into tree

5. else

6. S .— points covered by v (sorted by y-coordinate)

7. for each {a.b)€S do

5. H — H Ulhorizontal segment from (a.b) 1o v}

9. end for R

10. Delete S from 1ree '

11. if v is a left module boundary segment then

12. (¢c.d) «— point in tree with minimal v-coordinate 2 v,
13. (e.f ) — point in tree with maximal v-coordinate. & 1
14. H «— H Uf{horizontal segment ((c.v,).(v, v, })

15. - H — HU{horizontal segment ((e,v;).(v, .v;))i

16. end if

17. end if .
18. end for

Figure 4 - Algorithm HESC for Horizontal Extension Segments Construction




pointers. As the tree is a B¥—tree, the points in S can all be deleted from the tree in

O(logn) time [AHO74].

In addition to the O(ISI) horizontal exlension segments exlending right (step 8), if +
is- a left vertical boundary segment then there are two horizontal exlension segments
extending left from v's endpoints (steps 12-15). The points (c.d) and (e.f) can be found
in constant time from S. If S is not empty then the predecessor of highest point in § is
(a.b) and the successor of the lower point in S is (c.dJ). Otherwise. the search that
.delermined S is empty can be made lo lerminate at {(a.b ] \\-’heré (a.b1's predecessor for

this case is necessarily (c.d).

From the above discussions, we see that for each of the O(n) iterations of step 2
there is a search with Of(logn) cost. The time spent in processing an individual § is

O(iS 1) which throughout the course of the algorithm sums to O(n). Therefore, the run-

time of HESC is Olnlogn i

Channel Graph Construction

The comsiruciion ¢f 1hs channels and channel graph is similar 1o the construction of the
horizonie! exiension segments.  In Figure 5 an algorithm CCG s given formally that
consirucls the channels and channel graph from lefi-te-right. Informally, the algorithm
operatesdn' the following manner. A line sweep of the vertical ‘boundary segments V o is
agaiﬁ performed. During the line sweep. the verlical boundary segments ' are grouped by
identical x-coordinates. The groups are tonsidered left-to-right witbvthe current group being
denoted 7. The segments within 7 are ordered from bottom-to-lop. As V' is arranged in
line sweep order from algorithm HESC . each successive T is readily determined in OCIT 1)

time.  (This . grouping of segments in V' is for pedagogic purposes. An actual

agre

implementation does not require that 7 exists as an entity). The segments in 7 are used
to determine the right boundaries of channels. The left boundaries of the channels are
determined from the horizontal extension segments. The functions pred and succ used in

the algorithm determine respectively the predecessor and successor of a point in the tree.
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C

S « {Segments in H that abut left vertical perimeter boundary segment w |
U f{upper and lower circuit perimeter segmems}

3. Initialize tree with S

4.V « V—{w]

5. repeat

6 x «— minimal x-coordinate of segments in

7. T « segments in V with x-coordinate x

8 r o~ (x,ymin)

9 for v €T (in line sweep order) do
10, o +< point in tree with yv-coordinate v, |
11. B — point in tree with v-coordinate V;

12. p < B

13. while number of segments inlersected <k and pred (p) exists

’ and pred (p) is not below r do

14. g ~— pred{(p)

15. C « C Uf{rectangle defined by g and (x,p;)}

16. . Update ¢ in tree

17— - Py

15, if p is a biocking point then exit while-loop

19. end while

20. P < a

21. while number of segments intersected <k and succ(p) exists do
22. g — succ(p)

23 C « CUlrectangle defined by p and (x.g. )i

A D

25, —_—

2¢. if ¢ s o= v ocsing point then exit while-loop

27 end while

28. ro— r

28. ~if v 15 nou e right vertical module boundary segment then
- 30. < P - a

31.. . while p =B do

32. ¢ — pred(p)

33. C — CUlrectangle defined by ¢ and (x.p, )}
34. P =9 R

35. end while

36. Delete points between a and B {rom tree

37. end if

3. Update @ and B in 1tree

36, end for

40. S +— segments in A with left x-coordinate x

41. Update tree with S

42, Ve VT

43. until V=@
Figure 5 - Algorithm CCG to Construct Channels and Channel Graph
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Prior to sweeping the current group of vertical segments I' with x-coordinate x, the
élgorithm processes those horizontal extension segments S with x as their left endpoint's x-
coordinate (steps 2-3 and 40-41). By arranging H in line sweep order, S can be
determined in O(iS!) time. The processing of .S requires that the left endpoint of the
segments in S be inserted into a B*—tree if it is not already there. The left endpoint is
present alreadv in the tree if its segment was constructed by extending a horizontal module
boundary segment right. The points in the tree are ordered by their y-coordinate. Each
Point in the tree will have two labels. One label is either blocking or passing. A blocking
point indicates that & veriical exiension segment cannot extend beyond the y-coordinate of

the point: a passing point indicates that a vertical extension segment can extend bevond the

oo

y-coordinate of the point. Except for the two endpoints introduced by the lower and
upper circuit perimeter segments, all inserted points are initially 13;6‘]‘3\) passing. The-other
label of a point is either réd or green. A red point indicates that the roint is the lower
left corner of a channel whose right boundary is as vel undeterminec. A green label
indicates that the point is not a lower left corner of a channel. The red points thus serve
as & wav 1o identifv or specify a particular channel. FEach red point heads @ linked-list
that records ils channel adjacencies. Anyv point in tlhe 1iree thal liex either on tihe upper
circuil perimeter éegmem or on a lower module boundary segment cannot be the lower leit
- corner of a channel. Hence all such poinits are labeled green. From tihe algorithms
operation, if a point in the 1ree lies on an exlension segmentl, On an upper module boundary
segmeﬁl, or on the lower circuil perimeter segment then the point is a lower left corner of

art

a channel. Hence 2l! such poinis are labeled red.

Whern considering the curreni vertical segment v from 7 there are three actions that
must be atiempled: exlending 1 downward to form the right boundary of channels (stepé
12-19); extending v upward to form the right boundary of channels (steps 20-27); and
recognizing the channels whose right boundary is a subsegment of v (steps 30-36). The

last action is performed if v is not a right module boundary segment. Prior to these three

actions, two searches are made in B*—tree 1o find the points o and B whose y-coordinates
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are respectively v, and v, (steps 10-11). The points a« and B are used to initialize the
loop variables. The searches to find a and B can be done in O(logn) time. (One search
of the tree suffices with rearrangement of the step 21 while statement after step 37 and by

using the successor links).

Each point ¢ considered in the body of the while loops of sieps 13 and 31 and each

point p considered in the body of the while loop of step 21 is a red point. Once the

channel associated with the red point has been determined in the while loops of steps 13

)

. 16 and 24). The update of ¢ resets its x-coordinate 1o X.

]

-and 21, ¢ is updated (step

1

Since the updated ¢ lies on the same segment as before, it keeps its previous labels of
passing or blocking and red or green. Each point ¢ considered in the while loop of step 31
is not updated but, rather it is deleted (step 36). It is deleted since the channel identified

with it has been determined and since the right boundary of the channel abuls & moduie

boundary or the circuit perimeter.

The point r is used during the processing of 7 to prevent duplicate chennels from
occurring. Peint r's v-coordinate is that of the highest segment that has been reached when

T
/
4

extending one of 7 's vertical segments. As the segments in 7 are considered from beitom-
10-10p. 'S use m the step 13 while loop ensures that no duplicate channels are issued
when extending the next vertical boundary segment upward. Point r is initialized for the
iteration as (x amin ), where x is the value of the x-coordinate of the segments in 7 and
ymin is the wvalue of the y-coordinate for the lower circuil perimeter boundary segment
(step 8). Point r is updated after proc;ssing kthe current vertical boundarv segment v (step
28).

The points e and B are updated after exiending the vertical boundary segment in -'5011;
directions and after determining whether it forms the right boundary of a channel(s). Like

the updates of ¢ in steps 16 and 24, the x-coordinates of o and B are set to x. However,

the updated o« and B are labeled blocking if v is a left module boundary segment since



there must be horizontal boundary segments extending right from v's endpoints’. If v is
not & left module boundary segment then the updated points are labeled passing. The
updated o is labeled red and the updated B is labelec green since a and B now lie

respectively on an upper and lower module boundary segments.

After considering the current vertical boundary segmenis 7 and processing the
horizontal exlension segments S, the repeat loop of siep 5§ is iterated so that the line sweep
of the next group of vertical boundary segments can proceed. The processing ceases after

'

-all vertical boundary segmenis have been considered (step 43).

A vertical boundary segment v can be processed in O(logn +5) time, where s is the
rnumber of right channel boundaries that are determined with v. This run-time follows

from previous discussion and the three remarks below.

For each: veriical segmenis there are 2 searches made in the B”—iree each of which
)

can be performed in Ofllogn ) time.

Each iteration of the while loops of steps 13, 21, and 31 determines the right
boundarv of a new channel

The points between & and 8 can be deleted in Ofllogr ) time [AHO74].

An individual norizonlal segmenl 72 in S is processed in Of{legn) iime. This follows
as a search 1s periormed 1o see il 4 is already in the tree. And if 7t 15 notl in lbe tree, It
is then inserted. Thus, the time spent processing H is O(nlogn).

As the verlical segmenis are processed in O(nlogn +m) tlime, and as the horizontal
segments [ are processed in O(nlogn) Ume algorithm CCG constructs the channels in
O{nlogn +m ) iime.

Construction of ihe graph can proceed simultaneously with construction of the chax.mel's
by expanding the actions that are performed when inserting or .updating points in the

B*—tree 1o include recording the channel adjacencies. We demonsirate below that expanding

these actions does not alter algorithm CCG's O(nlogn +m) time complexity.

+ There are nc rectangles with sides of length O.
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Because all insertions introduce points in the tree that lie either on a right module
bopndar}f segment or on the left circuit perimeter segment, the region to the left of a
ﬁewly inserted point is not part of the routing region. Thus. the channel associated Wwith
the newiy inserted point has no horizonial adjacencies to its left. This allows horizontel
adjacencies 1o be determined only during updates (steps 16, 24. and 38). During these
update operations. the point in question has its x-coordinate reset to x. The updated point
then represents the lower left corner of a new channel and sc a horizontal adjacency does
occur between the channel represented by ihe point's previous location and the channel
represented by its current location. This adjacency can be recorded in the 1wo lists in

constant time.

The above discussion is demonstrated graphically in Figure 6. In the figure vertical
b(mn(."iar}' seement v is being extended downward. Point g is the predecessor of p in the
iree with p=8. The channel C defined by ¢ and (x.p,) is adjacent 1o the channel C' that
nas s (updated value of g) as its lower left cormer. If vertical segment (p.g) is a

subsegment of a vertical boundary segment ther there is no left adjacency from C.

Otherwise lhers would be such an adjacency.
\j
r=B e
I 1 !
I \*.C | C
bmmmmm e
c s

Figure 6 - Determining Horizonia: Adjacencies

Vertical adjacencies are delermined during both insertions (steps 3 and 41) and updates
(steps 16, 24, and 38). Below we consider the case when a newly inseried endpoint p has
both a predecessor and a successor in the tree. The cases where one or both of the

predecessor and successor do not exist can be handled similarly.



Let the predecessor and successor of p be respectively s and ¢. The points p and s
are readilv confirmed 1o be red points. As such, they are both the lower left corner of a
channel. Let C be the channel with lower left corner p. Let C' be the channel with
lower left corner s. Channels C and C' are adjacent. The adjacency is recorded in the
linked-lists of both p and 5: This is demonstrated graphically in Figure 7. In Figure 7 p,

s, and ¢ have the same x-coordinate, however this is not always the case.

td _
C '

D& ) Adjacent channels
C .

S B - - -

Figure 7 - Determining Vertical Adjacesicies During an Insertion

Ty

A . -} 3 - PR S -
Ac the left endpoinis o

=

he segments in S are inserted in line sweep ofder, the left

endpoint ¢ of the next extension segment in S {if one exisiss mav bi inserted between !

o]

and p depending on its v-coordinate. li & pomt ¢ € nsemied between ¢oand pothen iU IS
necessarily a- red point and the channel identifiec Wit ¢ :» adiatent 1¢ channel C. (This

adiacency is recorded when g is inseried in the iree;. If ¢ ig a red poinl and if there 1s

no point ¢ thal is 1o be inserted between ¢ and p. then channel C is adjacent to the

channel identified with ¢ and is recorded in the linked-lists of p and t. Otherwise. there
is no upper vertical adjacency 1o record bet%een r anc¢ endpoinis in the tree or in S. All
of the above actions can be performed in constant tlime for the givern inserted point p.

Determining vertical adjacencies as z resuli ©f updale are handled similarlv and left to-the
The above discussion demonstrales that there is a constant amount of work during
each update and insertion to record channel adjacencies. Thus, from previous remarks

concerning its run-tlime, we conclude that algorithm CCG is O(nlogn +m).



3. CONCLUSIONS

We have demonsirated an algorithm that rapidly constructs channel graphs. Through an
input parameter A, the algorithm allows the user 1o control the number of channels in the
channel graph. With & set to O, the algorithm constructs a channel graph with o)
channels. With k set to n, the algorithm constructs a channel graph with O(n?) channels.

ormer case the algorithm is as fast as previous algorithms. For the latter case the

g4}
by

For.ih
algoritam is faster than previous algorithms by a factor O(n ). With k£ set to some value

‘between O and n, the zlgorithm constructs a channel graph with O(k n) channels. We are

unaware of anyv previous algorithm with this capability.
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