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Abstract

Thermal effects are becoming a limiting factor in high-performance circuit design due to the strong temperature-dependence of leakage
power, circuit performance, IC package cost and reliability. Temperature-aware design tries to maximize performance under a given thermal
envelope through various static and dynamic approaches. While existing interconnect reliability models assume a constant temperature,
this paper presents a technique for probabilistically estimating interconnect lifetime for any time-varying temperature profile. With this
formulation, interconnect lifetime can be modeled as a resource that is consumed over time, with the rate of consumption being a function
of temperature. As a result, designers may be more aggressive in the temperature profiles that are allowed on a chip instead of using static
worst-case assumptions. For example, performance (hence power and temperature) may be increased beyond what is allowed by worst-case
restrictions for short periods as long as the increase is compensated for later by lower activity. With this model, temperature-aware designs
will achieve higher overall performance while satisfying lifetime requirements.This report is superseded by TR CS-2004-08.

I. Introduction

Due to increasing system complexities and clock frequencies, temperature has become a major concern in integrated
circuit design. Higher temperatures not only degrade system performance, raise packaging costs, and increase leakage
power, but they also affect system reliability [1] by increasing interconnect electromigration (EM) and gate oxide failure
rates.

As a result, the field of temperature-aware design has emerged, which seeks to maximize system performance under
lifetime constraints. Considering system lifetime as a resource that is consumed over time as a function of temperature,
dynamic thermal management (DTM) techniques [10], [11], [6] are being developed to best manage this consumption.
While the dynamic temperature profile of a system is workload-dependent [10], [11], several efficient and accurate
techniques have been proposed to simulate transient chip-wide temperature distribution [10], [12], [3], providing design-
time knowledge of the thermal behavior of different design alternatives.

To best evaluate these techniques and explore the design space under system lifetime constraints, a reliability analysis
method based on thermal information is needed. Black [2] proposed a semi-empirical temperature-dependent model for
EM failures:
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kT

)

(1)

where Tf is the time to failure, A is a constant based on the interconnect geometry and material, j is the current density,
Q is the activation energy, and kT is the thermal energy. Black’s model is widely used in thermal reliability analysis and
design. For example, Banerjee et al. [1] derived a self-consistent allowable current density upper bound for achieving a
reliability goal by taking into account interconnect self-heating effects using Black’s model.

However, Black’s model assumes a constant temperature. Thus, a worst-case temperature profile is usually used when
applying this model, resulting in pessimistic estimations and more a restrictive design space. Lall et al. [9] showed that
many failure mechanisms are not due to high steady-state temperature. Rather, temperature gradients, temperature
cycle magnitude and temperature rates of change play a more prominent role.

In this paper, we present a simple formula to probabilistically estimate interconnect lifetime based on EM failures
with a time-varying temperature distribution. (The effects of variable temperatures on gate oxide will be the subject
of future work.) When incorporated into analysis tools, temperature-driven design can more accurately evaluate DTM
techniques to maximize system performance under lifetime constraints. In addition, designers may more aggressively
explore the design space, as previous static worst-case temperature restrictions may be violated as long as the violations
are compensated for later in the system?s lifetime.

This paper is organized as follows. Section II introduces a constant temperature analytic model for electromigration.
In Section III, we apply this model to address time-varying temperature, and we derive a formula to estimate interconnect
lifetime, which we analyze in Section IV. Finally, we summarize the paper in Section V.

II. Analytic model for electromigration with constant temperature

Clement [5] provides a review of 1-D analytic EM models. In this paper, we only discuss the EM-induced stress build-
up model [4], [7], which fits well with reality. Electromigration is the process of self-diffusion due to the momentum
exchange between electrons and atoms. The dislocation of atoms causes stress build-up according to the following
equation [4], [7].
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where σ(x, t) is the stress function; Da is the diffusivity of atoms, a function of temperature; B is the appropriate elastic
modulus, depending on the properties of the metal and the surrounding material and the line aspect ratio; Ω is the atom
volume; ε is the ratio of the line cross-sectional area to the area of the diffusion path; l is the characteristic length of the
metal line; q is the effective charge; and E is the applied electric field, which is equal to ρj, the product of resistivity and
current density. The term qlE

Ω corresponds to the atom flux due to the electric field, while ∂σ
∂x

corresponds to a backflow
flux created by the stress gradient to counter-balance the EM flux. This equation assumes that the temperature is
uniform across the interconnect line. If we let β(T ) = Da

(

BΩ
kT l2ε

)

and α(j) = qlE
Ω , we will obtain the following simplified

version:
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Some example values for β under different temperatures are calculated using the data found in [4], [7], and shown in
Table I. The meaning of β(T ) will be discussed later.

Temperature(K) 350 370 400 420 440 450
β(T ) 0.0029e-8 0.0080e-8 0.0302e-8 0.0659e-8 0.1336e-8 0.1857e-8

TABLE I

Some values of β at different temperature. Interconnect length of 100µm is used.

Clement [4] investigated the effect of current density on stress build-up using Equation (3), assuming that temperature
is unchanged (i.e. β(T ) = constant), for several different boundary conditions. He found that the time to failure derived
from this analytic model had exactly the same form as Black’s equation (1). He also found that the exponential
component in Black’s equation was due to atom diffusivity’s (Da’s) dependency on temperature by the well-known
Arrhenius equation:

Da = Daoexp

(

−Q

kT

)

(4)
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Fig. 1. EM stress build-up for different boundary conditions and α values. All processes have β = 1.

Applying the parabolic maximum principles [8] to the above partial differential equation (3), we know that at any
time t, the maximum stress along a metal line can be found at the boundaries of the interconnect line. Figure 1 shows
the numerical solutions for equation (3) at one end of the line (i.e. x = 0) for different boundary conditions and α
values, with all having β = 1. The three boundary conditions shown here are similar to those discussed in [4] for finite
length interconnect lines. It clearly indicates that both boundary conditions and current density (i.e.α) affect the stress
build-up rate. Also seen from the figure is that the stress build-up saturates at a certain point. This is because, in
saturation, the atom flux caused by electromigration is completely counterbalanced by the flux created by the stress
gradient along the metal line. In our discussion, we assume that the critical stress for EM failure is below these saturated
values.

III. Electromigration under time-varying temperature

If both current density and temperature change over the time, Equation (3) can be still used to model the EM stress
build-up in the interconnect line. Clement [4] found that in the case where temperature is kept constant, the average
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current density should be used in Black’s equation. In the case where temperature varies over time, we can assume that
the average current density is used (i.e. α is a constant), while the temperature is a function of time (i.e. β(t)).

Since temperature may be an arbitrary function of time, it is impossible to directly solve the stress build-up equation.
Instead, we solve the problem indirectly based on the following theorem.

Theorem 1: Consider the stress build-up equation (3) with constant values for β and α. Let σ1(x, t) be the solution
for the equation with β = β1 under certain initial and boundary conditions, σ2(x, t) be the solution with β = β2 for
the same initial and boundary conditions. If the solutions for Equation (3) are unique for those initial and boundary
conditions, we have

σ2(x, t) = σ1(x,

(

β2

β1

)

t) (5)

This theorem can be easily proved by plugging in Equation (3) with σ2(x, t) (Equation (5)) and β2 respectively, and
checking the satisfiability for the initial and boundary conditions.

Theorem (1) tells us that the stress build-up processes in the interconnect are independent of the value of β in Equation

(3). The value of β only determines the build-up speed of the process. For example, at time
(

β2

β1

)

t, stress build-up in

process 1 (i.e. β = β1) sees the stress build-up in process 2 (i.e. β = β2) at time t. If we are only concerned with the
stress build-up at a fixed point on the line (e.g., at one end of the line, which always has the maximum stress at any
time), we have the following corollary.

Corollary 1.1: For all stress build-up processes on the same metal line specified by Equation (3), with the only
difference in the value of β, the stress build-up at a fixed point is only decided by the product of time and the value of
β:

σ = f(βiti) (6)

where f is a function independent of temperature.
The corollary can be proven using Equation (5) with x fixed. Let σi denote the stress build-up at a specific point

of the interconnect for the process with βi. Corollary (1.1) shows that σ1(t1) = σ2(t2) = σ3(t3) = . . ., as long as
β1t1 = β2t2 = β3t3 = . . ..
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Fig. 2. EM stress build-up at one end of the interconnect for different β values as a function of βt.

Figure 2 illustrates Equation (6) by showing the stress build-up at one end of the metal line for several different values
of β, with the same initial and boundary conditions. As expected from Equation (6), the stress is a unique function of
βt, in spite of the different values of β.

Consider that temperature varies over time. We can divide time into segments, such that temperature is constant
within each time segment. In other words, β in Equation (3) is a segment-wise function, described as:

β(t) =






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


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
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β1, t ∈ [0, ∆t1]
β2, t ∈ (∆t1, ∆t1 + ∆t2]
. . .

βi, t ∈
(

∑i−1
k=1 ∆tk,

∑i
k=1 ∆tk

]

. . .

Since we are only concerned with the maximum stress build-up, let σi(t) denote the distinct stress build-up at the end of
a metal line with a constant value of βi, and let σ(t) be the stress build-up with the time-varying function β(t). During
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the first time segment, the stress builds up the same as process σ1(t). At the end of this time segment, which is denoted
by t1 (i.e., t1 = ∆t1), we have σ(t1) = σ1(t1) = f(β1∆t1) = σ2(

β1

β2

∆t1), from Corollary (1.1). Also at time t1, according

to Theorem (1), the stress distribution along the metal line is the same as that for the process σ2(x, t) at time
(

β1

β2

)

∆t1.

Since during the second time segment, β(t) = β2, the stress build-up (i.e.(∆t1, ∆t1 + ∆t2]) is exactly the same as that

in process σ2(t) during the time interval
((

β1

β2

)

∆t1,
(

β1

β2

)

∆t1 + ∆t2

]

. So at the end of the second time segment (i.e.

t = t2 = ∆t1 + ∆t2), we have

σ(t2) = σ2

((

β1

β2

)

∆t1 + ∆t2

)

= f
(

β2

(

β1

β2

∆t1 + ∆t2

))

= f (β1∆t1 + β2∆t2) , again due to Equation (6). Similar

analysis can be applied to other time segments. It follows then that at the end the ith time segment, the stress is
specified as:

σ(ti) = f

(

i
∑

k=1

βk∆tk

)

(7)

where f is defined in Corollary (1.1).
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Fig. 3. EM stress build-up at one end of the interconnect with time-varying temperature. Also shown are the build-ups with invariant
temperatures.

As an example, a numerical solution for Equation (3) with three different temperatures (i.e. β1 = 1.3, β2 = 0.5, β3 =
2.5) over time is plotted in Figure 3. Also shown in the figure are the build-ups with time-invariant temperatures. As
clearly indicated in the figure, the stress build-up process in each time segment is a shifted version of the corresponding
process with time-invariant temperature. This figure is consistent with the above analysis.

As ∆ti→dt, βi → β(T (t)), we obtain the integral version for the stress build-up function:

σ(t) = f

(∫ t

0

β(T (t))dt

)

(8)

If we assume that the stress build-up reaches a certain threshold (σth) when an EM failure occurs, we have:

∫ tfailure

0

β(T (t))dt = ϕth (9)

where ϕth is decided by the critical stress (i.e. ϕth = f−1 (σth)). If an average value of β(t) exists, we obtain a closed
form for the time to failure:

tfailure =
ϕth

E(β(T (t)))
(10)

where E(β(t)) is the expected value for β(t), and β(t) is a function of temperature having the form:

β(T (t)) = A





exp
(

−
Q

kT (t)

)

kT (t)



 (11)

where A is a constant.
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One way to interpret Equation (9) is to consider interconnect time to failure (i.e. interconnect lifetime) as an available
resource, which is consumed by the system over time. Then the β(t) function is the rate at which the resource is
consumed, which provides the probabilistic analysis for temperature-aware design.

Let MTF (T ) be the time to failure with a constant temperature T . We have β(T ) = ϕth

MTF (T ) by Equation (10).

Substitute this relation in Equation (10) again and consider the time-varying temperature, and we obtain an alternative
form for Equation (10):

tfailure =
1

E(1/MTF (T ))
(12)

Equation (12) can be used to derive the absolute time to failure provided that we know the time to failure for different
constant temperatures (e.g. data from experiments).

IV. Reliability analysis under time-varying temperature

In this section, we apply the above derived formula to evaluate the EM reliability under time-varying temperature.
It is interesting to compare the reliability of constant temperature with that of fluctuating temperature. By calculating
the second derivative of β(T ) as a function of temperature (i.e. Equation (11)), it can be verified that β(T ) is a convex
function within the operational temperatures. By applying Jensen’s inequality, we have

E(β(T )) ≥ β(E(T ))

which, according to Equation (10), leads to our first observation: constant temperature is always better in terms
of EM reliability than oscillating around that temperature (with the average temperature the same as the constant
temperature).

Using Equation (10) or (12), we can easily compare the EM reliability for any two temporal temperature profiles by:

MTF (T1(t))

MTF (T2(t))
=

E(β(T2(t)))

E(β(T1(t)))
(13)

where MTF (T1(t)) is the time to failure under time-varying temperature profile T1(t).
Due to the duality between heat transfer and electrical phenomena, temperature varies exponentially. Heomoo et

al. [6] investigated the effect of activity migration on thermal and power management, which explicitly created cyclic
temperature waves. We use an exponential function similar to that in Heomoo et al.’s work to model the temperature
fluctuation as follows.

T (t) =

{

A1exp
(

−
t−mP

τ

)

+ A2, mP < t ≤ mP + rP

A3exp
(

−
t−(m+r)P

τ

)

+ A4, (m + r)P < t ≤ (m + 1)P

where m = 0, 1, 2, . . .; A1, A2, A3 and A4 are constants; P is the cycle period; τ is the thermal constant; and r is the
duty factor. Figure 4 shows an example waveform for temperature modeled by the above exponential function.
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Fig. 4. Temperature wave modeled by the exponential function.

Using Equation (10), we can evaluate the EM reliability with the temperature function described above and compare
it with that of a constant temperature. Figure 5 presents the results for temperatures varying with different high and
low temperatures, with 50% duty cycles. In this figure, MTF1 is the time to failure with a cyclic waveform, while MTF2

is the time to failure with a constant temperature equal to the average temperature. Agreeing with the discussion above,
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Fig. 5. EM reliability for cyclic temperature waveforms of different high and low temperatures, with duty factor r = 0.5. MTF1 is the time
to failure with a cyclic temperature, and MTF2 is the time to failure with a constant temperature equal to the average temperature.

Figure 5 shows that constant temperature is always more reliable. When the temperature changes within a small range,
as we may expect, the time to failure is almost equal to that of a constant temperature. The degradation of reliability is
mostly decided by the fluctuation amplitude of the temperature wave. Larger cycle magnitude degrades the reliability
faster.
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Another interesting question is how the temperature duty factor affects reliability. Figure 6 plots the reliability
comparison for various duty factors. Although half duty factor is always the worst case for reliability, the difference
due to duty factor seems to be small. On the other hand, increasing the cycle magnitude by 5 degrees will reduce the
relative reliability by 2% in the case shown in the figure.

As discussed above, β(t) provides the designer an opportunity to control how the circuit lifetime is consumed. Using
existing techniques, a worst-case temperature is specified to meet a certain lifetime goal. However, our model shows it
is possible to overshoot the temperature threshold and compensate the lifetime “consumption” with lower temperatures
later. Table II gives the reliability-equivalent constant temperature for different temperature cycle magnitudes. For
example, if the temperature threshold is 361.5K, we can achieve the same lifetime with an oscillating temperature of
up to 370K for half of the circuit’s lifetime. This enables temperature-aware designers to more aggressively explore the
design space, resulting in higher performance systems that still meet specified lifetime constraints.

High Tempera-
ture(K)

360 365 370 375 380

Temperature Cycle
Magnitude(K)

10 15 20 25 30

Reliability Equivalent
Temperature(K)

355.5 358.2 361.5 364.8 368

TABLE II

EM reliability equivalent temperatures. A 50% duty cycle is used for the temperature cycles.
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V. Conclusions and future work

Due to recent developments in design automation, integrated circuit designers can accurately model system runtime
characteristics at design time to better explore the design space and evaluate design options. This paper presented an
interconnect reliability model for EM failures with time-varying temperature, which will not only increase the accuracy
of probabilistic reliability estimates but will enable designers to more aggressively explore the design space. For example,
existing constant-temperature models require designers to observe a static worst-case temperature limit, but the model
presented here enables temperature-aware designers to evaluate DTM techniques that may violate worst-case limits but
still meet lifetime constraints by compensating with prior or future low temperature periods. Therefore, systems may
achieve overall performance improvements under lifetime constraints. Future work will include analyzing interconnect
EM reliability with a spatially non-uniform temperature distribution and the effect of time-varying temperature on gate
oxide, the other major temperature-related source of IC failure.
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