COMBINING ATOMIC ACTIONS
IN A RECOMBINING NETWORK

Craig Williams
Paul F. Reynolds, Jr.

Computer Science Report No. TR-91-33
November, 1991

Combining Atomic Actions in a Recombining Network

Craig Williams
Paul . Reynolds, Jr.

Abstract: Recombining networks have been proposed for the purpose of increasing the concurrency of accesses to
shared variables and reducing the incidence of hotspots within the network. A recombining network recursively com-
bines concurrently issued operations on the same variable and then fans out responses o the processes that issued the
operations. We describe the isotach network, a recombining network similar to a network proposed by Ranade, and
the isochron, a logically synchronous multicast based on the isotach network. The isochron directly supports a lim-
ited class of atomic actions, called flat atomic actions, in which all the operations can be issued as a batch. We show
operations from different isochrons that access the same variable can be combined within the interconnection net-
work consistently with the semantics of isochrons. The ability to combine isochrons means operations on the same
variable can be combined even though they come from different atomic actions. Previous work on recombining net-
works concerns only individual operations on shared variables.

1. INTRODUCTION

This paper describes how simple atomic actions can be combined within the interconnection net-
work (ICN) of a multiprocessor. ICN’s that can combine operations, called combining or recombining
networks, have been built or proposed for several machines, including the NYU Ultracomputer [GGK83],
IBM's RP3 [Pfi85], and the Yale Fluent [RBJ88}. The second generation Connection Machine [TuR88]
has a Hmited recombining network, capable of combining oprations but not of returning intermediate
results. The switches in a recombining network fan-in concurrently issued operations on the same vari-
able and fan-out responses to the processes that issued the operations.

Combining is a technique for maintaining good performance in the presence of multiple operations
concurrently accessing the same shared variable. On a multiprocessor with a conventional network, mul-
tiple concurrent operations on the same variable are executed serially at the memory module (MM) con-
taining the variable, If each operation is a read or write (or other associative operation, as described in
section 4), a recombining network can combine these operations so that the MM need execute only the
resultant composite operation. Assuming a network traversal time of O (log »), where # is the number of
processing elements (PE's), combining reduces the time for executing r combinable operations from
O (log n)+0(r) 10 O(og n)+0(1)= 0 (log n). Recombining networks also reduce network load and may
reduce the incidence of hot-spots [PIN85].

We explore combining operations that are part of different non-trivial atomic actions, i.e., atomic
actions that access more than one shared variable. This paper shows operations can be combined even
though they are from different, non-trivial atomic actions. This result is limited 10 a restricted type of
atomic action we call a flat atomic action. In a flar atomic action no operation depends on another opera-
tion in the same atomic action, i.e., all the operations can be issued as a batch.

Our proposal for combining operations from different atomic actions requires a recombining net-
work that is also an isorach network [RWW89]. An isotach network implements a logical time system
that relates communication time to communication distance. Each message in an isotach network
progresses towards its destination at the same rate: one switch per logical time unit. This characteristic
property of the isotach network, called the velocity invariant, makes the network a powerful coordinating

mechanism. We have used the isotach network as the basis for a logically synchronous multicast
[RWW89], for concurrency control techniques that work without operations on locks [WiR89], and for a
new family of highly concurrent cache coherence protocols [WiR90L.

The isotach networks describe in this paper are similar to a network proposed by Ranade
{Ran87, RBJ88]. Ranade uses a network conforming to our definition of an isotach network to support
efficient emulation of a concurrent-read concurrent-write parallel random access machine (CRCW-
PRAM). We defined the isotach network independently in a different context, concurrency control in
asynchronous computations, and we have abstracted the useful properties of the network from the particu-
lar application. Ranade’s work is important to this research both as an early use of the isotach network
for combining and as the basis for efficient combining switches. We retumn to Ranade’s algorithm below.

We show the isotach network supports a logically synchronous, sequentially consisient multicast
called the isochron. Operations in an isochron are executed atomically, i.e., they appear o be executed as
an indivisible step. Thus the isochron is a limited form of atomic action, limited because the process
must issue all the operations in an isochron as a batch. Execution of isochrons is also sequentially con-
sistent, i.e., isochrons issued by the same process appear to be executed in the order in which they were
issued. We show combining preserves the atomicity and sequential consistency of isochrons.

An isotach network supports isochrons by ensuring operations from different isochrons are executed
on all shared variables in a consistent order. Given this approach to ensuring atomicity, it is easy to see
how atomicity can be preserved by a recombining network that is also an isotach network. The switches
combine operations so that execution of the composite operation is equivalent to execution of the consti-
tuent operations in this original, consistent order.

We described isochrons and the isotach network in previous reports [RWWE9, WiR89, WiR90].
For completeness, we summarize these descriptions below, in sections 2 and 3. Section 4 describes previ-
ous work on recombining networks. Section 5 shows how operations can be combined in an isotach net-
work consistently with the semantics of isochrons.

2. ISOTACH NETWORKS

Isotach networks are based on a form of synchronization we call local synchrony. I a locally syn-
chronous system, each network node keeps its logical clock loosely synchronized with the logical clocks
of its neighbors. In more vivid terms, the network pulses like a heart. These pulses supply the timing
mechanism for a distributed logical clock. Local synchrony has been used by Ranade in a CRCW-PRAM
emulation, by Awerbuch to support execution of SIMD graph algorithms on asynchronous networks
[Awe85], and by Birk, et al., to support barrier synchronization [BGS89].

Isotach networks can be implemented on a variety of topologies and for many different purposes.
For simplicity, we restrict this discussion to the traditional context for discussing recombining networks:
shared memeory model (SMM) computations on equidistant networks such as the network shown in Fig-
ure 1. In an equidistant network, sometimes called a dance hall network, the length of every path from a
PE to an MM is the same. Figure 1 shows an equidistant network with reverse baseline topology. This
network, under renumbering of inputs and outputs, is equivalent to many other common networks includ-
ing the omega and indirect binary cube [Wu80]. Each link illustrated in Fig, 1 is bidirectional, i.e., it
represents two channels, one in each direction. We require that each channel be FIFO. For simplicity, we
assume each element, i.e., each PE or MM, is connected to the network via a switch interface unit (SIU)
and each process executes on its own PE,

We assume processes communicate only by accessing shared memory (we ignore interrupis). An
operation is an instruction accessing a shared variable and a response is the reply to an operation. A mes-
sage, i.e., an operation or a response, is emitted when the SIU for the source element submits it to the ICN
and is received when the SIU for the destination element accepts it from the ICN.

With each SIU we associate a local logical clock, a function that assigns monotonically increasing
times to local emit and receive events. In general, each logical time is an ordered pair

MM’s
MM-SIU’s

ICN

PE-SIU’s
PE’s

Figure 1. An Equidistant Network

(pulse time_within_pulse), where the first component is an integer and the second an n-tuple of integers. In
the logical time system used in this paper, each logical time is a 4-tuple of integers, where the first is the
pulse component. Logical times can be compared component-wise and are lexicographically ordered.
Logical time can be elastic in relation to physical time, as it is in the implementation described below. A
unit of logical time is not necessarily of any fixed duration according to physical time.

In an isotach network each message is received exactly DIST pulses after it is emitted, where DIST
is the number of switches through which the message is routed, i.., a message emitted at ime fom: =
(iv,jk) is received at ime fueve = (+DISTv,j k). An isotach network maintains the following
velocity invariant:

DIST | (troceive — tomir) = L switch/pulse

All messages in an isotach network travel at the same velocity in logical time — one switch per pulse.
The time at which a message is received in an isotach network is thus completely determined by the time
at which it is emitted. Note, however, that though logical message delivery times are deterministic, physi-
cal delivery times are not.

This logical time system has precursors in the system of logical clocks proposed by Lamport
[L.am78] and extended by Mattern [Mat88] and Fidge [Fid91]. These other logical time systems are
designed to assign times that are consistent with potential causality, i.e., if event a can affect event b then
the time assigned to event ¢ is less than the time assigned to event b. The system of logical time realized
by the isotach network differs from these other logical fime systems in that events are assigned times con-
sistent with both causality and the velocity invariant.

An isotach network can be implemented on a network with FIFO communication links between
neighboring switches and elements. Switches exchange control signals called tokens with neighboring
switches. Initially each switch emits a foken pulse, i.¢., it emits a token on each output. After the initial
pulse, each switch emits token pulse i after receiving token i1 on all inputs. Thus each switch is loosely
synchronized with its neighbors. The token pulses also drive the clocks at the SIU’s. In each token pulse,
a switch emits a token on each output, including the output to each adjacent SIU, if any, and it receives a

token on each input, including the input from each adjacent SIU, if any, before emitting the next token
pulse. When it receives token ¢ from the ICN, the SIU sets its local clock to (7,0,0,0) and sends the token
back to the ICN. The pulse component of the time at each SIU is the number of tokens that have passed
through the SIU.

Between tokens, the SIU for a PE (PE-SIU) may emit zero or more operations. Before emitting
each pulse of operations, a PE-SIU first sorts the operations in increasing order by address of the variable
accessed, using a stable sort to preserve the issue order among operations on the same variable. Each
operation receives a timestamp. The timestamp for operation OP;, denoted is(0F:), is the 4-tuple
(pulse var pId rank), where pulse is the pulse in which op; is emitted by the PE-SIU, var is the variable
accessed, pld is the identifier of the issuing PE, and rank is OP;’s issue rank within the pulse, i.e., the rank
component of the timestamp for OF; is j if OP; is the jth operation emitted by that PE-SIU in the current
pulse. Note that a PE-SIU emits operations in timestamp order and that timestamps are unique. This
technique for assigning unique timestamps without centralized control is widely used in database con-
currency control [Ree83,RSL78]. When a PE-SIU emits an operation it updates the local clock, setting
the clock equal to the timestamp of the operation. Each PE-SIU emits operations in timestamp order so
each PE-SIU’s clock moves forward monotonically.

Between token pulses, each switch routes operations as usual except it chooses messages to route in
timestamp order. A switch with j inputs and k outputs is continuously merging the j sorted lists arriving
on its inputs to produce k sorted output lists. When it routes a message, the swiich increments the pulse
component of the message’s timestamp. Since each SIU emils operations in timestamp order and times-
tamp order is maintained at each switch and across each link, operations are received at each MM in
timestamp order. Consider the tree of switches rooted at a given MM with leaves at each PE-SIU. A
simple induction on the depth of the tree shows that operations arrive at the root MM in strictly increasing
order by timestamp. (See lemma 2 in section 5.4.)

Each SIU for an MM (MM-SIU) maintains a local clock in the same way as a PE-SIU, except an
MM-SIU updates its clock for receive events. When it receives an operation, an MM-SIU sends the
operation to the associated MM and emits the response before receiving the next operation. Thus the exe-
cution time of operation OP; and the emit time #,; of the response to OF; both equal tecme for OP;. Each
response carries a timestamp and is returned to the PE in order by timestamp in the same way that opera-
tions are delivered to the MM’s in order by timestamp. Since the response to operation OP; inherits its
timestamp from OP;, responses are received at each PE in the order in which the corresponding operations
were emitted.

The velocity invariant holds because a message with timestamp (i.vj &) armriving at a switch in
pulse i (after the ith token received on the input on which the message arrives) leaves with timestamp
(i+1,v,j &) in pulse i+1 (after the i+1st token pulse). Since traveling through a switch adds 1 to the pulse
component of a message’s timestamp and does not otherwise change the timestamp, a message emitted at
time (i ,v,j &) is received at time (G+DIST v ,j k).

The implementation described here is an abstract implementation intended to be useful in reasoning
about the isotach network, but is not an implementation we recommend for an actual system. Though the
tokens are necessary, the timestamps and logical clocks are not. Operations need carry only the informa-
tion they carry in conventional networks. To decouple the routing of operations from the routing of
responses and to make wormhole routing possible, an actual implementation would also divide this net-
work of bidirectional channels into two virtual networks of unidirectional channels, one for operations
and the other for responses.

3. ISOCHRONS

The isotach network supports a logically synchronous multicast called the isochron. An isochron is
a group of operations issued by the same process where execution is atomic and sequentially consistent.
The operations in an isochron must be issued as a batch, The isochron can thus also be described as a

sequentially consistent, flar atomic action.

The atomicity of isochron execution means operations in an isochron appear to be executed simul-
taneously, i.e., as an indivisible step. Typically, atomicity is ensured by obtaining locks on the accessed
variables, although locking heavily accessed variables lessens concurrency and may create bottlenecks,
The isotach network ensures atomicity on multiple shared variables without requiring locks. Operations
in an isochron are executed atomically without obtaining exclusive access rights to the accessed variables
beyond that implied by the MM hardware. Assuming an MM can execute only one operation at a time,
each operation, whether it is part of an atomic action or not, effectively locks the MM. In a combining
network, even this MM-level source of serialization can be eliminated to the extent it is ¢reated by opera-
tions on the same variable.

Sequential consistency means the order in which accesses are executed is consistent with the order
specified by each individual process’s sequential program [Lam79]. Maintaining sequential consistency
is a problem in multiprocessors because stochastic delays in the ICN allow operations issued by the same
process 1o arrive at the MM’s in an order inconsistent with the order in which the operations were issued.
The simplest solution, disallowing pipelining of memory accesses, is undesirable since pipelining is an
important way to lessen effective memory latency. An isotach network allows operations to be pipelined
while ensuring operations within each isochron appear to be executed in the order specified and isochrons
issued by the same process appear to be executed in the order in which they are issued.

Syntactically, an isochron is a list of one or more operations terminated by a semicolon in which
adjacent operations are separated by double bars *“11.”" For example, in the following code segment

read{a,a} }| read(B,b}:;
write{A,b}:;

the first isochron assigns the value of shared variables A and B to local variables ¢ and b, respectively.
The second isochron, a singleton isochron containing only one operation, assigns A the value returned by
the read on B in the first isochron, Execution is sequentially consistent in that the read operation on A is
executed before the write on A and is atomic in that the first isochron returns a consistent view of A and B,
If a second process concurrenily executes the isochron write(a,5) || write (B, 5); the first process
will read either the old value, before execution of the second process’s writes, for both a and 8 or the new
value for both A and B,

Note that atomic execution of the assignment A := B, where & and B are shared variables, cannot
be expressed as an isochron, i.e., the assignment is not a flat atomic action. Execution of this assignment
requires two operations, a read to B and a write to A, but the operations cannot be issued as a batch
because the write cannot be issued until after the read is executed. Despite this limitation, isochrons are
powerful enough 1o allow processes to obtain a consistent view of multiple shared variables and to make
consistent updates.

Implementation of isochrons is based on the velocity invariant. If a PE-SIU knows DIST, the dis-
tance an operation travels to memory, the PE-SIU can control freceve by its choice of femi. To ensure
atomic, sequentially consistent execution of isochrons, each PE-SIU emits operations issued by the asso-
ciated process in accordance with the following emission rules:

Aromicrty. Emit operations from the same isochron so they are received (and thus executed) in
the same pulse.

SEQUENTIAL CONSISTENCY. Emit each operation so it is received in a pulse equal to or greater
than that of the operation issued before it.

For equidistant networks, application of the emission rules is especially simple. A PE-SIU emits all
operations from the same isochron in the same logical pulse and emits operations in the order in which
they are issued by the associated process.

Execution of isochrons is atomic and sequentially consistent because parallel execution of a pro-
gram on an isotach network is equivalent to a serial execution in which 1) operations in each isochron are
executed without interleaving with operations from other isochrons, and 2) operations issued by the same
process are execuied in the order in which they were issued. Two executions of the same program are
equivalent if every variable is accessed by the same operations and conflicting operations are executed in
the same order in both executions, where operations conflict if they access the same variable and at least
one is a write [Pap86]. Since in a parallel execution on an isotach network operations on each variable
are executed in order by the first, third, and last components of their timestamp, execution is equivalent to
a serial execution in which the same operations are executed in order by the first, third, and last com-
ponents of their timestamp. Thus isochrons emiited in different pulses appear to be executed in order by
the pulse component, isochrons emitted in the same pulse by different PE’s appear to be executed in order
by the pld of the issuing PE, and operations issued by the same PE in the same pulse appear 10 be exe-
cuted in the order in which they are issued.

4. RECOMBINING NETWORKS

Assume several PE’s concurrently issue operations accessing a given shared variable v located in
MM;. A recombining network avoids serial execution of these operations at MM; by using the tree of
switches rooted at MM; to fan-in operations on v and fan-out results to the PE’s that issued the operations.
When two operations on the same variable collide at a switch, the switch combines the operations and
forwards a single composite operation that has the same effect as a serial execution of the operations from
which it was created. The switch also stores information for use when the result of the operation retumns
to the switch from memory. The need to fan-out results imposes the requirement that each response must
return backwards along the path traversed by the corresponding operation. The stored combining infor-
mation, together with the value returned from memory, allows the switch to compute responses for each
of the combined operations. Combining is recursive, i.e., an operation combined at one stage may itself
be the product of combining at a previous stage.

We consider associative Read-Modify-Write (RMW) operations [KRS88}, also known as a
fetch—and—¢ operations [GGK83]. An RMW operation indivisibly reads a shared variable, assigns it a
new value that is a specified function of the old, and returns the old value. Reads and writes, as well as
swaps, test-and-sets, and fetch-and-adds, are all special cases of the RMW and are all combinable. Fora
read, the specified function is the identity function, f (x)=x, so that the read assigns the old value of v as
the new value of v. For a write, the function is the constant function, f (x)=c, where ¢ is the value sup-
plied by the write as an operand, and the returned value is ignored. A swap is a write in which the
returned value is used. In many cases unlike as well as like RMW operations can be combined. In partic-
ular, read, write, and swap operations on the same variable are combinable.

Let OP; be an associative RMW, f; be the function specified by 0P, including any operands sup-
plied by 0F;, and id; be a tag that uniquely identifies OP;,. Assuming the operations are combinable, a
switch can combine 0P; and OP; by forwarding a composite operation OP;;, where fi; = f; of;, the com-
position of f; and £;, Note that f; o f; designates the execution of f; before f;, i.e., fi(fi(v)), where v is
the variable accessed by oP; and OP;. When the response to OP; retums to the switch from memory, the
switch must send responses to both 0P; and 0p;. To enable it to do so, the switch must remember id; and
fi. In a standard recombining network, the switches use associative lookup queues to store this combin-
ing information. The switch stores id; and f;, with id; as the associated key. Assuming OPy; reaches
memory without being further combined and that v=val when 0Py is received, v = f;{f: (val) after execu-
tion of OPy and val is returned to the switch in response to OP;. When the response reaches the switch, it
retrieves the combining information, id; and f;, from its associative lookup queue using the tag of the
response it receives from memory, id;, as the search key. The switch can then send f;(val), tagged with
id;, as the response to OP; and val, the old value of v, tagged with id;, as the response 1o OP;. Thus the
results of executing 0Py are the same as the results of executing OP; after OP;.

When a switch combines a pair of operations, OF; and OP;, it gives the resultant composite opera-
tion, OP;; or OP;, an orientation. Operation OPy; is equivalent to OP; followed by oP;. The operation with
the reverse orientation, OF;, is equivalent to execution of oP; followed by 0P;. The orientation of the
operation that results from combining 0P; and 0P; depends on which information the switch forwards and
which it stores when it combines 0P; and 0P;. The switch forms OP; as described above. It forms opera-
tion OP; by storing id; and f; with the key id; and forwarding an operation tagged id; that specifies the
function (f; (f;(v)). In general, any pair of operations that can be combined can be combined in either
orientation [KRS88]. A read and a write can be combined, in that order, by forwarding a swap that
assigns the value supplied by the write and the read is satisfied by the value returned by the swap. The
read and write can be combined in the reverse orientation, i.e., as write followed by a read, by forwarding
the write. Memory need not return a value because the switch can satisfy the read with the value supplied
by the write.

Kruskal, Rudelph, and Snir prove this recombining network algorithm is correct by showing that the
result of executing each composite operation OP, is equivalent to the result of a serial execution of the
operations OP. represents [KRS88]. An original operation, ie., an operation issued by a process,
represents itself and a composite operation produced by combining OP; and OP; represents the operations
opP; and OP; represent. They prove furthermore that execution of 0P, is equivalent to not just any serial
execution, but to the serial execution that reflects the orientation of the original operations in oP.. If f; =
fu©fui0,..., 0f1, then execution of OP, is equivalent to the serial execution of op1,...,0pa, in that
order. In other words, execution of oP, is equivalent to serial execution of the operations OP. represents
in the reverse of the order in which the functions they specify appear in the composition of functions

represented by f. 1 We use this result below in proving the algorithm for combining atomic actions.

Ranade [Ran87] shows that associative lookup queues located at the switches can be replaced by
simple FIFO’s assuming the recombing network is essentially what we call an isotach network. A FIFO
is sufficient on an isotach network because the velocity invariant ensures responses return to a switch in
the same order the corresponding operations leave the switch. When a response returns to a switch from
memory, the combining information will be at the head of the FIFO. Ranade also shows that an isotach-
like recombining network need store less combining information. Instead of the identifying tags, the
switch can store two direction bits indicating on which outputs the switch should return responses.

Though not noted by Ranade, isotach recombining networks support a combining shori-cut not sup-
ported on conventional recombining networks. When a write is combined with a read in an isotach
recombining network the value written by the write (assuming its timestamp is less than the read’s) can
be returned immediately as the response to the read. In a conventional recombining network, the read
must be delayed at the switch where it was combined until a value returns from memory in response to
the forwarded write, Returning the read immediately can cause a violation of sequential consistency. If
the forwarded write is delayed in the ICN, a second read to the same variable that logically succeeds the
write may be executed before the write [DuS90, KRS88]. On an isotach network the read can be satisfied
immediately because any operation on the same variable that logically succeeds the write will have a
greater execution timestamp and so will be executed after the write. The short-cut comes at a cost — it is
inconsistent with the simple FIFO storage of combining information.

5. COMBINING ATOMIC ACTIONS

We show that operations can be combined within an isotach network in a manner consistent with
the semantics of isochrons. This means operations from different flat atomic actions can be correctly
combined in the ICN of a multiprocessor, increasing the concurrency of access to shared variables over
that previously possible. This section describes the algorithm for combining operations in an isotach net-
work and proves the correctness of the algorithm by showing it does not change the order in which

! "This statement of the result differs from that in original paper [KRS88] because we use f; o f; to denote £ {(f (X)) whereas in the
original paper it denotes Ji (fix)).

operations are effectively executed.

5.1. Convexity
We consider convex isotach networks. A network is convex if

(1) The routable paths for each shared variable v form a tree, called V’s routing tree, with the MM con-
taining v at the root, a PE-SIU at each leaf, and an ICN switch at each interior node; and

(2) For each variable v, and for each interior node S in v’s routing tree, there is an interval of pld’s
[i.jl, i £j, such that for all k, i <k </, all operations (in a combining network, all operations
representing operations) on v from PE; go through §. This interval is §'s pld~interval for v,

A routable path is a path consistent with the network’s routing algorithm. Depending on the routing algo-
rithm, some physical paths may not be routable paths. The reverse baseline network (see Fig. 1) is con-
vex as are all networks equivalent to the reverse baseline network under renumbering of inputs and out-
puts. Some non-convex networks can be made convex by changing the routing algorithm or the pid
assignment, but some networks, such as the network in Figure 2, are inherently non-convex. The 1st PE
numbering shown is satisfactory for V1, but not for V, and the 2nd for V3, but not for V. No numbering
satisfies the second convexity condition for both V' and V.

Convexity is important because it allows switches to make local decisions about whether operations
can be combined. In a non-convex isotach network, a switch § cannot decide whether OP; and OP; can be
combined safely because there may be an intervening operation OP;, i.e., an operation with a timestamp
between that of 0P; and OF;, that does not go through §. If § combines OP; and OP; anyway, a later
switch may receive both op; and oP,. Since combining is irreversible after the combined operation
leaves the the switch where it was created, a later switch cannot correct the error. In a convex network a
switch § can safely decide whether to combine operations from the same pulse on the same variable
because all operations with intervening timestamps also go through § in the same puise.

5.2. The Combining Algorithm

On an isotach combining network, the timestamp of each operation is not a single logical time but
an interval of logical time. The timestamp for any operation OP; is an ordered pair (s 5.) tip < tie. 1L OP;
is an original operation, fp =, and ¢ is the timestamp OP; would receive in a non-combining isotach
network, as described in section 3. Operation 0Py formed by combining OP;, with timestamp (¢ .), and

PE’s
ist 2nd)
1 1
2 3
3 2 [e e e R | 2 |
4 4

Figure 2. A Non-Convex Network

OP;, with timestamp (¢ .t), With the orientation OP; followed by OP;, has timestamp (tis tje)-

Each switch § routes operations using the same rule as in a non-combining isotach network (section
2), adapted to accommodate the different timestamp format: § routes 0P; before OP, if # < 3. (Later
we show <t = i <tp, 1.€., that timestamps of different operations that go through the same switch
specify disjoint ranges of logical times.) Switch § combines operations under the same conditions and in
the same way as in other combining networks (section 4) except

(1) Operations can be combined only if they arrive at § in the same pulse and only if, in the absence of
combining, § would emit them one after the other, with no intervening operation. If § combines
oP; and OP;, there is no operation OP,, such that OP, goes through § and 7, <ty <t . Since any
operation such as 0P, must arrive in the same pulse and access the same variable as OP; and OF;,
compliance with this rule is easily ensured.

(2) If§ combines OP; and OP;, it creates OPy; if t;, <t and OP; otherwise. (It will be shown that f;=¢;
cannot occur.) The orientation is important. Changing the orientation changes the effective order in
which operations are executed and could cause operations from different isochrons to be executed in
an inconsistent order at different variables. Requiring that switches combine operations in order by
the pld4’s of the issuing PE’s has been proposed by other researchers as a way to compute parallel
prefixes within the ICN [KRS$8,RBJSS].

We require operation 0P; formed by combining OP; and OP; be routed on the same path OP; would
take if the combining had not occurred. Since the routing paths for v form a routing tree, this path is also
the same as the path for 0P;. This requirement means that any operation representing any original opera-
tion OP; takes the same path OP; would take in the absence of combining. Thus combining preserves con-
vexity.

Figure 3 shows the resultant timestamps and functions produced by combining six concurrently
emmited operations on the same variable v. The operation with timestamp ((4,v,0,1),(4,v ,6,3)) executed at

o moizol) i,

(-\ ((2:"!0:1):(2:":]:1»
)
{(1v,11),(1v1,]
o wLI(Iv41) | fof, & (O350
4
G f,0(f, of,)
o ((2,v.3.6)(2.%.3.6))
L7/
((1,93,6)(193,6))
Chaie ” AR BLAroDEE3)
O L7
b er32052) Usolotsotyofy)
A %
| ((3v.5,2){3..63))
(Iv83)(1v83)) [, ®
G f,; o fS
5 ((2,V,6,3),(2,V,6,3)) : ..
® . (0P = (1,0,)
O 6

t = (pulse,var,pldrank)

Figure 3. Combining Operations on v

memory represents all six operations. Note that the functions specified by the original operations appear
in the composition of functions specified by this composite operation in reverse order by timestamp of the
original operation.

5.3, Proof Preliminaries

Intuitively, combining works because it preserves the effective execution order of operations on the
same variable. Before proving the isotach combining algorithm, we describe our notation, define a few
termas, and list some basic properties of isotach combining networks.

The relations include, disjoint, overlap, less than (<), greater than (>p), and equals (=y), over inter-
vals where the starting and ending values are integers or lexicographically ordered integer tuples are
defined as the reader would expect: for any two such intervals, INV; = [vip .. vie], vip <Vie, and INV; = {v ..
Viels Vjp<Vje, INV; includes INV; if vy <vp and v, <vi.. Interval INV; < INV; if vie <vip, INV; >p INV; if
Vib >V, and INV; =g INV; if vp=vj, and vi=vj. INV; and INV; are disjoint if either is less (<} than the
other, and overlap unless they are disjoint.

For any logical time ¢, pulse(t) denotes the pulse component of ¢, The var, pld, and rank com-
ponents are denoted similarly. Also, prefix(¢) denotes the first two components of ¢, i.e., prefix(t) =
(pulse (t),var (t)). Similarly, suffix(t) = (pld (¢),rank(1)).

The term operation refers to both original and composite operations. For any operation 0P,
pulsep(OP:) = [pulse (1) .. pulse (t;.)]. The ts (timestamp), var, pld, rank, prefix, and suf fix intervals are
defined and denoted similarly. For example, tsg(OP:) = [t .. 4] and prefixg(OP;) = [prefix(tp) ..
prefix(6:.)) = [(pulse (6w)var (1)) .. (pulse (t;),var (.))). Figure 4 illustrates the intervals defined over an
operation’s timestamp. We say OP; and OP; are disjoint if their timestamp intervals are disjoint. Simi-
larly OP; <y OP; if ts(OP;) < tsp(OP;) and OP; >y OP; if tsg(OP;) >y tsp(OP;).

pulseg;(opy) prefixpj(opy)
pldp(op) suffixp(opy
v |
pulse(tivy [: v
5 preﬁx(tib) ...-n..5

var(tip) Pl :
pId(t.) '..'..é.‘.‘.“.“ : tib -----------

i P suffix(y) pee
rank(i;,) : : : :

: tspy(opy)
ulse(t; : <——J

p (tie) prefix(tie) preee H :
var(tic) :
pId(t-e) : L [

L suffix(t;e)
rank(l;e)

Figure 4. Intervals for Operation 02; with Timestamp (£, .4,)-

10

DEFINITION, For any operation OP;, let OP; denote an operation that represents O7;, and let ob;
denote the operation representing OF; that is executed at the MM. Recall an operation represents
itself, If op; is received by the MM without being (further) combined, OP;=08;.

DeriniTION. For any operation OP;, the target execution time (or timestamp) for OP;, denoted
turges (OP1), is the execution timestamp OP; would have in the absence of combining, i.e.,
temir (OP;) + DIST , where DIST is as defined before. On a non-combining isotach network, the
actual and the target execution timestamps are the same.

DEFINITION. The recursive expansion of OP; is the sequence of original operations represented by
OP; in the order in which they are executed in the serial execution equivalent to 0P;.

DEFINITION. For any two operations, OP; and OP;, on the same variable, OP; effectively precedes
op;, if 1) 0P;#0#; and 0P; is executed before OP; or 2) 0Pi=0P; and OP; precedes OP; in the
recursive expansion of of;.

DerFNiTioN. For any two switches, §;, and §;, S; is the immediate predecessor of §; if there is a
direct link from §; to S; and operations are routed over that link. If §; is the immediate predeces-
. sorof §;, then §; is the immediate successor of §;.

We list several basic properties of timestamps and the pld-intervals of switches that follow directly
from the convexity of the network and the rules for combining operations, in particular the rule that a
switch can combine operations only in the proper orientation and only if these operations access the same
variable and arrive at the switch in the same pulse:

P1. The pld-intervals of all immediate predecessors of any switch are disjoint.
P2, For any operation OF;, prefix(ts) = prefix(t.) and tp St .

P3. For any variable V, any switch §, and operation OP; on v that goes through §, the pld-interval
of § for V includes pld(OF:). ‘

P4. For any operation OP;, suf fixg(0P;) includes suf fix(OP:) includes suf fixp(OP:).
P5. For any operation OF;, pref ixj(treceive (0F)) = prefixg(tirge (OP:)).

5.4. Proof

We show combining operations in an isotach network preserves the effective execution order of
operations. Therefore, combining is done invisibly and does not affect the semantics of isochrons.

LemMA 1. Any two operations, QP,- and OP;, arriving at any switch § are disjoint.

Proo¥. Either prefix (i) # prefix (1) (case 1) or prefix (t5) = prefix (4) (case 2).

Case 1. Since prefix(ti) = prefix(t;) and prefix(4) = prefix (4.) (by P2), the prefix-intervals of OF;
and oP; are disjoint. Therefore 0P; and OP; are disjoint, -

Case 2. The prefix-intervals of OP; and OP; are the same (by P2), Therefore OP; and OP; access the -
same variable v and arrive at § in the same pulse. Either they arrive on different inputs (case 2a) or on
the same input (case 2b).

Case 2a. Since the pid-intervals for v of §'s immediate predecessors are digjoint (P1) and the pld-
interval for v of a switch includes the pld-interval of any operation on v emitted by the switch (P3), the
pld-intervals of OP; and OP; are disjoint. Since their prefix-intervals are the same and their pld -intervais

11

are disjoint, OP; and OF; are disjoint.

Case 2b. Since opP; and OP; arrive at § on the same input, they are emitted by the same immediate
predecessor of §. Since they have the same prefix-interval, they access the same variable v. 'We show
op; and OP; are disjoint by proving any two operations on v emitted by the same node §* in Vv’s routing
tree are disjoint. The proof is by induction on the height of §” in v’s routing tree, where the height of $” is
01if §’is aleaf node and is 1 plus the height of its highest immediate predecessor otherwise.

Inductive Hypothesis: Any two operations, OP; and OP;, on the same shared variable v emitted by the same
node S are disjoint.

Basis: The hypothesis is true for §* at height 0 because a node at height 0 is a PE-SIU and all operations
emitted by any PE-SIU are disjoint.

Inductive Step: Assuming the hypothesis is true for §7 at height < £, it is true for §* at height £+1. For any
node §” at height k+1 all operations arriving at §* on different inputs are disjoint by case 2a and all opera-
tions arriving on the same input are emitted by nodes at height £ or less and are disjoint by the inductive
hypothesis, Thus all operations received at §* are disjoint. Every operation emitted by §* is received by
§’ except those operations created by combining operations received at §*. Thus all operations emitted by
§* are disjoint, unless §’ combines disjoint operations to create an operation that overlaps another opera-
tion it emits. By the combining algorithm, if 0P; and OP; are combined by §°, there is no operation OP,
received by §° such that OP; <y OP, <y OP;. Therefore no combining by §” can create an operation that
overlaps any other operation it emits and all operations emitted by §* are disjoint. L]

Lrmma 2. For any variable v, all operations on v are received at the MM containing v in times-
tamp order.

Proor. We show each MM-SIU receives operation in timestamp order by an inductive argument
similar to that in lemma 1.
Inductive Hypothesis: For any node § in v's routing tree and any pair of operations 0p; and opP; on v that
both go through §, § emits oP; and OP; in timestamp order.
Basis: The hypothesis is true for § at height O because a node at height 0 is a PE-SIU and each PE-SIU
emits all operations on v in timestamp order.
Inductive Step: Assuming the hypothesis is true for § at height <k, it is true for § at height £+1, where
height is as defined in lemma 1. Since each input on which § receives operations on v is the output of a
node in v’s routing tree at height k& or less and since each channel is FIFO all operations on v arrive on
each input in timestamp order. In a non-combining isotach network, the switch merges the streams of
operations arriving on its inputs by waiting until there is a token or operation on each input and choosing
the operation with the lowest timestamp for routing. Thus in the absense of combining, § emits opera-
tions on v in timestamp order. In a combining isotach network, the timestamps are intervals of logical
time. If § does not combine OP; and OP; then § routes OP; before OP; if ¢, < 7. Since all operations
received at a switch are disjoint (lemma 1), £ < 1, = OP; <g OP;. If § combines OP; and OF;, then for
any other operation OP; that goes through §, OP, is either less than OP; and § emits OP, before OP; or
OP, is greater than OP; and § emits 0P, after OP;. Therefore § emits operations on v in timestamp order.

LemMA 3. For any two operations, OP; and OP;, on the same shared variable v, 0Pi#0f; and
target (OP1) <1 ttarget (OP;) =9 troceive (OP1) <[troceive (0Pf;). In other words, if OP; and OP; are not combined
into the same operation and if OP; would, in the absense of combining, have an earlier execution times-
tamp than oP;, then the operation representing OP; is executed before the operation representing OP;.

PrOOF. Either prefixp(turge: (OP:)) <y prefixy (harge (OP))) (case 1) or prefixp(turees (OP;)) = prefixy
(rtarger (OP_;)) (case 2).

Case 1. By PS’ prefixﬂ(irarget (OPI')) <0 prefix[] (frargel (OPJ')) = prefix[](treceive (OP,)) <§§ P"efix[] (treceive
(OPJ))' Therefore trecex've (OPJ) <§} trecgivg (Opj).

Case 2. Since the prefix-intervals of tigge: (OP:), treceive (OP:), tiarges (OP;), 80 trecoive (OF;) are all the

samie (PS)! Freceive (OP,') <N tregeive (opj) if Suffix[](trecaive (OP'.)) <§] Suffix[}(treceive (Opj))~ Since lreceive (OP;) and
treceive (OP;) are disjoint (lemma 1) and their prefix-intervals are the same, their suffix-intervals are disjoint.

12

By P4, suffix(treceie (OB1)) includes suffix(tirge (OP:)) and suffixp(treceive (OF;)) includes suffixg(tirge
(0P;)). Since turg (OP:) <[turge(OP;) and the prefix-intervals of tuye (OP:) tiarger (OP;) are the same
SUFF 1% (tiarger (OP:)) <1y SUFFix ((tiarges (OP;)). Therefore suffixpy(treceive (0P:)) <pp suf fix (treceive (OP;)). There-
fore freceive (OP i) <i Treceive (OP) } d

LEmMA 4. For any two operations, OP; and OP;, on the same shared variable v, OP=0P; and
tiarget (OP:) <) target (OP;) => OP; precedes OP; in the recursive expansion of 08;. In other words, if OP; and
op; are combined into the same operation, 0#;, and, in the absence of combining, 0P; would have an ear-
lier execution timestamp than OP;, then execution of 02; is equivalent to a serial execution of some
sequence of operations in which OF; comes before (not necessarily immediately before) OF;.

PROOF. Since 0f; = 0F;, there is some switch § that combines an operation OF; representing OP;
and an operation OF; representing Op;. Since they access the same variable and arrive in the same pulse,
prefix(OP;) =g prefix(OP;). By the argument used in case 2 of lemma 3, suf fix(OP;) < suffix;(OF)).
Therefore, OP; <y OP; and § combines these operations to create 0P, where f, =f; o fi, i.e., OP. is
equivalent to execution of OP; before OP;. Later switches can further combine OP; but cannot change the
orientation of OP; and OP; within it. Since f; precedes f; in the composition of functions specified by
0P, oP; precedes OP; in the recursive expansion of 0f; [KRS88], Therefore execution of 08; is
equivalent to a serial execution in which 0F; is executed before or;. [0

THEOREM Operations can be combined in an isotach network consistently with the semantics of iso-
chrons.

Proor. Two executions of the same program are equivalent if each shared variable is accessed by
the same operations in the same order in both executions, By lemmas 3 and 4, for any two operations,
op; and OP;, on the same variable, OF; effectively precedes OP; in an execution on an isotach combining
network iff op; effectively precedes 0P; on a non-combining isotach network. Therefore, for each execu-
tion E. on an isotach combining network there is an equivalent execution E; on a non-combining isotach
network, Execution E, is the execution in which the same operations are emitted at the same logical times
asink.. O

6. CONCLUSION

This paper shows that operations from different atomic actions can be combined in a recombining
network, The result is limited to flar atomic actions, atomic actions in which all the operations on shared
variables can be issned as a batch. In another paper [WiR89], we show how to execute other types of
atomic actions using isochrons by splitting each access to a shared variable into a scheduling and an
assignment step. Our current work includes investigating the combinability of split operations as a way
to extend the class of atomic actions that can be combined within a recombining network.

ACKNOWLEDGEMENTS. This work is supported in part by DARPA, NASA, and the University
of Maryland and in part by JPL Contract #957721. The authors acknowledge the help of Ray R. Wagner,
Jr., in naming local synchrony and in contributing a counterexample leading to the convexity requirement.

REFERENCES

[AweB5] B. Awerbuch, Complexity of Network Synchronization, J. ACM 32,4 (October 1985), 804-
423,

[BGS89] Y. Birk, P. B. Gibbons, J. L. C. Sanz and D. Soroker, A Simple Mechanism for Efficient
Barrier Synchronization in MIMD Machines, Tech. Rep. RJ 7078 (67141), IBM, October
1989,

[DuS%0] M. Dubeois and C. Scheurich, Memory Access Dependencies in Shared-Memory
Muliiprocessors, I[EEE Trans. on Software Eng, 16,6 (June 1990), 660-673.

13

[Fido1]
[GGK83]
[KRS88]
iLam78]
{Lam79]
[Mat83]
[Pap86]
[PIN85]
[Pfi85]
{Ran87]
[RBISE]
[Ree83]
[RWW8g9]
[RSL78]
[TuR88]

[WiR8&9]

[WiRS0]

[Wu80]

C. Fidge, Logical Time in Distributed Computing Systems, Computer, August 1991, 28-33.

A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph and M. Snir, The NYU
Ultracomputer --- Designing an MIMD Shared Memory Parallel Computer, /EEE
Transactions on Computers 32,2 (February 1983), 175-189.

C. P. Kruskal, L. Rudolph and M. Snir, Efficient Synchronization on Multicomputers with
Shared Memory, ACM Trans. Prog. Lang. and Systems 104 (October 1988), 579-601.

L. Lamport, Time, Clocks, and the Ordering of Events in a Distributed System, Comm. ACM
21,7 (July 1978), 558-565.

L. Lamport, How to Make a Multiprocessor Computer That Correcily Executes
Multiprocessor Programs, IEEE Trans. on Computers 28(1979), 690-691.

F. Mattern, Virtual Time and Global States of Distributed Systems, Parallel and Distributed
Algorithms, 1988, 215-226.

C. Papadimitriou, Database Concurrency Control, Computer Science Press, 1986.

G. F. Plister and V. A. Norton, Hot Spot Contention and Combining in Multistage

Interconnection Networks, JEEE Transactions on Computers 34,10 (October, 1985), 943-
948,

G. F. Pfister, et al., The IBM Research Parallel Processor Prototype (RP3): Introduction and
Architecture, Int. Conf. on Parallel Processing, 1985, 764-771.

A. G. Ranade, How to Emulate Shared Memory, JEEE Annual Symp. on Foundations of
Computer Science, Los Angeles, 1987, 185-194.

A. G. Ranade, S. N. Bhatt and S. L. Johnson, The Fluent Abstract Machine, Tech, Rep. 573,
Yale University, Dept. of Computer Science, Jaruary, 1988,

D. Reed, Implementing Atomic Actions on Decentralized Data, ACM Trans. Computer
Systems 1,1 (February, 1983), 3-23.

P. F. Reynolds, Jr., C, Williams and R. R. Wagner, Jr., Parallel Operations, Tech. Rep. 89-16,
University of Virginia, Department of Computer Science, December, 1989,

D. Rosenkrantz, R. Stearns and P. Lewis, System-level Concurrency Control for Distributed
Data Bases, ACM Transaction on Database Systems 3,2 (1978), 178-98.

L. W. Tucker and G. G. Robertson, Architecture and Applications of the Connection
Machine, Computer 21,8 (August 1988), 26-38,

C. Williams and P. F. Reynolds, Jr., On Variables as Access Sequences in Parallel
Asynchronous Computations, Tech. Rep. 89-17, University of Virginia, Department of
Computer Science, December, 1989,

C. Williams and P. F. Reynolds, Jr., Delta-Cache Protocols: A New Class of Cache
Coherence Protocols, Tech. Rep. 90-34, University of Virginia, Department of Computer
Science, December, 1990,

C. Wu and T. Feng, On a Class of Multistage Interconnection Networks, IEEE Trans. on
Computers 29,8 (August 1980), 694-702.

14

