A Tutorial for SUIT
The Simple User Interface Toolkit

Mathew Conway,
Randy Pausch and
Kimberly Passarella

Computer Science Report No. TR-91-24
October, 1991

A Tutorial For SUIT
The Simple User Interface Toolkit

Matthew Conway,
Randy Pausch
Kimberly Passarella

Computer Science Department, University of Virginia
SUIT © Copyright 1990, 1991, 1992 The University of Virginia

We hereby grant permission for this document to be reproduced

at-acommercial-location for-use by academicand non=profit-organizations-only:
Commercial reproduction businesses may require proof of non-profit status and
may charge for the cost of the reproduction.

For-profit organizations may make copies of this document only with the express written
permission of the SUIT developers. You may contact them through electronic mail at:

suit@uuacs.cs.Virginia. EDU

Welcome To SUIT

SUIT, the Simple User Interface Toolkit, is a subroutine library which helps
C programmers create graphical user interfaces that may be modified
interactively. SUIT acts as a window manager for screen objects such as
buttons, scroll bars, and menus. As SUIT-based programs execute, users
may change attributes of the screen objects including an object’s location
and appearance. The changes to these attributes are then saved with the

program.

Thanks for SUIT are due to its original author, Nathaniel Young, and to
Roderic Collins, Matt Conway, Tom Crea, Jim Defay, Pramod Dwivedi,
Robert Deline, Brandon Furlich, Rich Gossweiler, Drew Kessler, Chris
Long, William McClennan, Kim Passarella and Anne Shackelford. Thanks
are also due to the UVa User Interface Group and the entire UVa CS
department for their help in the extensive user testing that went into SUIT
and the SUIT tutorial.

This work was supported in part by the National Science Foundation, the
United Cerebral Palsy Foundation, the Virginia Engineering Foundation,
the Virginia Center for Innovative Technology, and SAIC.

We would like to hear from you. Feel free to send electronic mail to:
suit@uvacs.cs.Virginia.EDU

with any comments you might have. We are especially interested in mail
describing any errors, unclear sections, or omissions you find.

IMPORTANT: Before You Run This Tutorial

Installation Notes:

g

1. We strongly suggest that you go through this tutorial with a friend.
Learning a toolkit is always easier if there is someone else to consult.

2. There are several files you will need in order to run this tutorial. If you
are running on a UNIX machine at the University of Virginia, you can
install these files automatically by typing:

/users/sult/bin/InstallTutorial <machine type>

where <machine type> is one of: sun3
sparc

This program will create a directory for you and will copy the following
example files into that directory: Makefile, empty.c, poly.sui, 3cell.sui,
demo.sui, poly, 3cell, and demo.

Things You Need To Run This Tutorial

* Be sitting at a (preferably color) display

* Know the C programming language and know how to compile C
programs on your system

¢ Be familiar with a text editor (emacs, vi, etc.)
e Have SUIT installed
» Have a copy of the tutorial files properly installed (see above).

e If you don’t understand external control, you may wish to read the
article entitled "An Introduction to External Control" included at the end
of this tutorial.

SUIT Tutorial Page 2of 16
Last Modified: February 26, 1992 1:29 pm

A Simple SUIT Program: poly

To see what a SUIT application looks like, change into the tutorial direc-
tory and run the program poly, a simple program that draws regular
polygons. (If you are working on a UNIX machine, make sure you are run-
ning the X window system first.) You should see something like Figure 1.

SUIT applications contain screen objects called widgets. The object on the
left is a bounded value widget which controls the number of sides in the
polygon. The object in the lower right hand corner of Figure 1 is a button
widget which allows you to exit the program. To change the number of
sides in the polygon:

1. Move the mouse cursor over the bounded value. Either press and

release any mouse button (click), or hold any mouse button down and

Fioure 1 voly contains four move the cursor up and down (drag). Try making the polygon have

wgi?geis: ,(7;0; to bottofm left to seven sides. Note that the bounded value has a minimum setting of
’ three.

right) A label, a bounded value, a
polygon, and a button.

How to Modify a SUIT Interface

SUIT gives you the ability to move and resize widgets while the application
is running.

Moving Widgets
1. Hold down both the SHIFT and CONTROL keys with one hand

2. With the other hand, move the cursor near the center of the widget
you'd like to move. Press and hold down the leftmost mouse button.

A dashed outline of the widget should appear and follow the cursor until
you release the mouse button, at which point the widget will be placed at
the new location, and you can release the SHIFT and CONTROL keys. Move
the bounded value to the right of the polygon, so that the interface looks
like figure 2.

Note that once you have moved the bounded value and released the SHIFT
and CONTROL keys, you can once again use the mouse to change the
bounded value’s value. Click on the bounded value until the polygon has

Figure 2: The poly application, five sides.
after moving some widgets. SHIFT and CONTROL: The SUIT-keys

The SHIFT and CONTROL keys are used as a signal to SUIT that you wish to
interact with the interface as the interface designer (letting you move and
resize things), not as a user of the application (letting you slide the
bounded value up and down). Whenever you are holding down the SHIFT
and CONTROL keys, you're “talking to SUIT” and whenever you are not,
you’re “talking to the application.” SUIT uses this strange two key combi-
nation so that it won’t interfere with any special keystrokes you might
want to use in your application.

In the rest of this tutorial, we will precede any operation which requires
you to use the SHIFT and CONTROL keys with the prefix “SUIT-". For exam-
ple, “SUIT-a” means “hold down the SHIFT and CONTROL keys and press
the letter ‘a‘on the keyboard.” Similarly, “SUIT-click” means “hold down
the SHIFT and CONTROL keys, and click the left mouse button.”

A table of the SUIT command keys appears at the end of this tutorial.

SUIT Tutorial Page 3 of 16
Last Modified: February 26, 1992 1:29 pm

Handles appear on a widget
when the widget is selected.
Dragging a side handle will
allow you to resize the wid-
get in that direction.

The display styles of the
bounded value widget "%

Selecting Widgets

SUIT provides several other means by which you can change the appear-
ance of widgets in your interface. All of these, however, require you to first
select the object you wish to change. To do this, SUIT-click on it.

Try selecting the bounded value. When the bounded value is selected, han-
dles appear around the edges.

Deselecting Widgets
An object may be deselected by SUIT-clicking again anywhere on the
screen. Try deselecting the bounded value. The handles will go away.

Resizing Widgets
In addition to moving widgets, you can also resize them.
1. SUIT-click on the bounded value to select it.

2. SUIT-drag one of the handles. Try resizing the bounded value to make
it tall and thin. Resize it again to make it square. Deselect the bounded
value by clicking anywhere on the screen.

When Widgets Don’t Resize
Buttons and labels are designed to “shrink to fit”, meaning that they
always remain slightly larger than the text they contain. In the upcoming
section on the property editor, you will see how to‘change this and other
properties of any widget so that you can make your battons and labels any
size you want.

Cycling Widgets Among Display Styles
The bounded value you have been manipulating allows you to specify the
number of sides for the polygon; in this case, a number from 3 to 20. There
are any number of ways that a bounded value like this might be displayed.
In addition to the vertical thermometer, SUIT provides five built-in display
styles for the bounded value widget:

: Speedometer Pie Chart
Vertical Thermometer Scroll Bar

To change a widget’s current display style, you cycle the widget:
1. Move the cursor to the center of the bounded value
2. TypeSUIT-c

Notice that as you cycle the bounded value from style to style, the current
value does not change; the only thing that changes is the way that the
value is displayed.

SUIT Tutorial Page 4 of 16
Last Modified: February 26, 1992 1:29 pm

The Widget Library: demo

Now is a good time to see all the widgets in the SUIT library, available for
use in any application.

1. Exit poly by pressing the DONE button. If you get a message that says
“Sorry, unable to update .sui file”, you can ignore the warning.

2. Run demo

Demo is a do-nothing application; it contains widgets you can poke at
without causing anything to happen. For fun, try playing with the other
widgets; see if you can guess what they do.

Widget Types
* Bounded Value: for allowing the user to select a floating point number
between some minimum value and a maximum.

e Menu: a collection of buttons.

e Scrollable List: Allows the user to select a textual item from a scrolling
list of choices.

e Radio Buttons: for choosing exactly one item out of many in a mutually
exclusive fashion.

e Text editor: simple emacs key bindings.

e Color Chips: for displaying a “currently selected color”
« Type in box: a one line text entry widget.

e On/ off switch: for toggling a boolean.

* Buttons: invoke functions when they are pressed.

SUIT Tutorial Page 50of 16
Last Modified: February 26, 1992 1:29 pm

Properties and the Property Editor

What if we wanted to change something about a widget other than its loca-
tion, such as its color? Each SUIT widget maintains information like this in
the form of a collection of variables or properties that govern the widget’s
appearance and functionality. To view or change any of the properties that
a widget has, you can invoke the SUIT property editor.You will notice that
properties, like variables, come in different types; SUIT supports a wide
variety of types including double, string, boolean, and more advanced
types like color, font, and enumeration.

WARNING: There might be a strong temptation to “play” with the prop-
ertiesyop. find in the SUIT. property editor, We recommend that vou no

Other useful “type in box”

commands are:

Delete a character
Forward a character
Back a character
Kill Line

Beginning of Line
End of Line

NO. Notice that the polygon is not filled anymore.

3. TEXT: Click on the object property called NUMBER_OF SIDES. A text
box will appear. Type a CONTROL-k to delete the text currently in the
CONTROL- d textbox. (This means hold down the control key and press “k”) Type
CONTROL- f in the number 3 and press RETURN. Notice that the polygon has 3
sides.
CONTROL- b
4. COLOR: If you have a color monitor, Click on the object property
CONTROL- k FOREGROUND_COLOR. Select a bright color from the choices offered
CONTROL- a and press OK. Notice that the color of the polygon has changed to the
CONTROL- e color selected on the color chips.
5. Exit the property editor by clicking on OK.
SUIT Tutorial Page 6 of 16
Last Modified: February 26, 1982 1:29 pm

More About Properties

Property lookup is performed
from the innermost level
(object) to the outermost level
(global)

As you have seen, each screen object has various properties which store
information about the object’s appearance and functionality. If these prop-
erties were always stored with each object, it would be hard to enforce
consistency. For example, if all the labels in an application were green, and
you decided to make them all red, you would have to change them all one
by one. SUIT addresses this problem by allowing properties to be stored at
three different levels: the object level, the class level, and the global level.
These nested levels are shown below.

To find a property, SUIT starts at the object level. If the prop-

7/~ Global Level: All Widgets

erty in question has not been defined at the object level, the
\ search is performed again at that widget’s class level. If the
search fails here too, SUIT searches the global level, where if
(3] itis still not found, a default value for that type of property
is returned.

Object Level:
“bounded value Bert”

1

\J

/ Class Level: All Bounded Values\
(9 “Bert” initiates a property lookup on a property called

EXAMPLE: Suppose the code for a button widget called

FOREGROUND_COLOR. SUIT first looks to see if a “fore-
ground color” property has been specified for Bert at the
object level. If so, SUIT returns the value of the property. If
not, SUIT looks to see if there is a FOREGROUND_COLOR
property specified at the class level for all “buttons”. If not,
SUIT searches the global level for FOREGROUND_COLOR, at

J

N

j which point, if the property is still not found, the default

value of black will be returned.

Property Inheritance

Properties that have a lock
icon next to them cannot be
changed from inside the
property editor.

To get a better idea of how property lookup works, try the following steps:

1. INVOKE THE PROPERTY EDITOR: Type SUIT-e over the [abel at the top
of the screen that says “SUIT”.

Note that the label has no HAS_BORDER property at the object level. This
means that the label is inheriting its HAS_BORDER from a higher level - in
this case, the class level.

2. Change the class level HAS_BORDER property to YES by clicking on it.
3. EXIT THE PROPERTY EDITOR: Click on the OK button.

All the labels now have borders because they are all getting their boolean
HAS_BORDER property from the Class level. Suppose you wanted all but
one of the labels to have a border? To do this, you have the single label
override his class level property by giving him a property at the object
level. We'll do this by copying the label’s class property to the object level.

4. COPYING PROPERTIES: Invoke the property editor again on the same
label. We are now going to copy a property from the Class level to the
Object level. To do this: Press and hold the mouse button down (No
need to use SUIT keys here) over the HAS_BORDER property listed
under Class Properties and move your mouse until the cursor is over
the Object Properties box. When you release the mouse button, the
property will be copied from the Class level to the Object level.

5. Change the Object level HAS_BORDER property of this label back to
NO. Exit the property editor again. Notice that this label is now differ-

SUIT Tutorial Page 7 of 16
Last Modified: February 26, 1892 1:29 pm

ent from the others: it has no border because this label finds its
HAS_BORDER property at the object level (where HAS_BORDER is NO),
not the class level (where the value is YES).

What if we wanted this label to revert to inheriting its HAS_BORDER from
the Class? We need to delete the object level property to let this happen.

6. DELETING PROPERTIES: Invoke the property editor one last time on
the label. Dispose of the object level HAS_BORDER property by drag-
ging the property from the object level listing to the trash can icon.
Notice that the label has gone back to inheriting its HAS_BORDER
property from its class.

7. EXIT PROPERTY EDITOR: Click on OK.

Interactive Help: Info

If you are unsure of the purpose of some property, you can get help from
SUIT’s Info facility. Info works like the trash can: you drag a property from
its place in the property editor to the Info panel. A dialog box will appear
with a message that gives a short description of the property.

1. Invoke the property editor (SUIT-e) on the bounded value widget.

2. Drag the GRANULARITY property to the Info icon to see a description
of that property. Dismiss the help box by pressing OK.

3. EXIT PROPERTY EDITOR: Click on OK.
4. EXIT DEMO: Click on demo’s Done Button.

Your First SUIT Application: 3cell

You are now ready to build your own SUIT application, a three cell spread-

sheet. To see an example of what your application will be like run 3cell.
The Skeleton of All SUIT Applications

Exit 3cell and load empty.c into your text editor. We will build 3cell start-

ing with this template:

#include "suit.h"

void main(int arge, char *argv[]) {
SUIT deluxelnit (sarge, argv);
SUIT createDoneButton (NULL) ;
SUIT beginStandardApplication (NULL);

When you click on the GO }
button, 3cell adds together

the numbers that have been In order to make this program into 3cell you will:

entered into the first two cells 1. Add several additional screen objects:
t::flddisrﬂays the sum in the ¢ One button (the GO button)
ird.

o Two text boxes (the cells into which numbers are entered)
o Three labels (a plus sign, an equals sign, and the result of the
addition)
2. Add a callback function called PerformaAddition () to the GObutton.
For right now, all this function will do is beep.

SUIT Tutorial Page 8 of 16
Last Modified: February 26, 1892 1:29 pm

The exact changes to make to empty.c are printed on the following page.
#include "suit.h"

Changes to the code are
marked with change bars s

}

SUIT object numl, num2, result;

void PerformAddition (SUIT object object) {

GP_beep() ;

void main(int argc, char *argv[]) {

SUIT deluxelnit (&arge, argv);

SUIT createDoneButton (NULL);

numl = SUIT createTypeInBox("num 1%, NULL) ;
num2 = SUIT createlypelnBox("num 2%, NULL);
SUIT_greateLabel("+");

SUIT_ createLabel ("=");

result = SUIT createLabel ("result”);

SUIT createButton(“GO", PerformAddition);
SUIT beginStandardApplication (NULL);

Compile empty.c (on a Unix system, type make) and run empty.

Since this is the first time you have run this program, all the objects are
randomly scattered across the screen. Go ahead and make the inter-
face look like 3cell’s.

Now enter numbers into the two text boxes and press the GO button.
Notice that although you hear the beep, the cell for the result is not
updated. That is because it has not been “attached” to the cells into
which you entered numbers. The following steps will illustrate how to
do this.

Exit empty by pressing the DONE button.

Modify empty.c to look as shown below. This new code will read the
current values of the “type in boxes”. Add them together and display
the sum in the “result” label. Notice that the property names (LABEL
and CURRENT_VALUE) are constants that appear in CAPTIAL LET-
TERS.

#include “suit.h"
SUIT object numl, num2, result;

void PerformAddition (SUIT object object) ({

}

double templ, temp2;
char buffer[100];

templ = atof(SUIT_getText (numl, CURRENT VALUE)) ;
temp2 = atof(SUIT_getText (num2, CURRENT VALUE)) ;
sprintf (buffer, "%1f", templ + temp2);

SUIT_ setText (result, LABEL, buffer);

void main(int arge, char *argv[]) {

SUIT deluxelnit (&arge, argv);

SUIT_ createDoneButton (NULL);

numl = SUIT createlypelInBox("num 1", NULL);
num2 = SUIT createTypelInBox("num 2", NULL) ;
SUIT_ createLabel (“+");

SUIT createlabel (¥=");

result = SUIT_createLabel ("result");

SUIT createButton ("GO",PerformAddition);
SUIT beginStandardApplication (NULL);

8. Compile empty.c and run the resulting executable, empty.

9. Enter numbers into the two text boxes and press the GO button. Notice
SUIT Tutorial Page 9 of 16
Last Modified: February 26, 1992 1:28 pm

that now the cell designated to display the result is updated.

What The New Code Does:

The PerformAddition () function begins by looking up the CURRENT
VALUE property on each of the two type in boxes (numl and num2). The
current value of a type in box is the text that appears in the box.These
strings are converted into floats by the standard C library function
atof (). These two floats are then added together and the result con-
verted to a string called buffer via sprintf (). The last step takes the
LABEL property of the widget called result and makes it equal buffer.
This function is run each time the GO button is pressed because we regis-
tered the function Performaddition() as the “callback” for the GO
button when we called SUIT createButton ("GO", PerformAddi-
tion).

Interactive Widget Creation

In the previous section you created three labels by adding the following
calls to empty.c:

SUIT createlabel ("+%);

SUIT createLabel("=");

SUIT createlabel ("result");

Though this was not particularly difficult, it did require that you recom-
pile. Fortunately, SUIT does provide a way for you to create widgets
interactively, through the use of the SUIT command menu.

The SUIT Command Menu

The SUIT command menu provides additional operations that can be per-
formed on widgets: To access this menu:

1. Run your new application called empty.
2. Place the cursor over an unoccupied area
Type SUIT-m. The SUIT menu will appear.

Align, Redraw, Send to Back, Bring to Front, and Destroy... are discussed in
the SUIT Reference Manual, but not in this tutorial. To remove the menu
select Remove this Menu.

1. Bring up the SUIT menu by typing SUIT-m.
Choose “Create...” from the SUIT menu.

2
3. Select “label” from the list of widget classes.
4. Type “My 3 Cell Application” in the space provided for an “object

The SUIT command menu: name”

The functions available here)

can also be reached through 5. Select OK. A new label will appear on the screen.

the keyboard shortcuts that 6. Choose “Create...” again from the SUIT menu.

appear on the menu. 7. Create a clock widget and place it in the upper left hand corner of the

application.
8. Exit empty by pressing the DONE button.

SUIT Tutorial Page 10 of 16
Last Modified: February 26, 1992 1:28 pm

Saving the Interface: the “.sui” File

Each time you quit a SUIT application, the properties associated with each
of the widgets are saved in a file called an “.sui” file.! Not only does this
file contain all the information necessary to display your application’s
interface (all the widget locations and sizes) but it also keeps a record of
the state the program was in when you last left it (the value of all the
bounded values, the choices that were selected for each radio button in the
interface, etc.). If a SUIT program starts up without an accompanying
“ sui” file, the widgets appear on the screen in random locations and all
other properties are given default values (booleans default to NO, colors
default to black, doubles and integers are 0, etc.).

Interactive Widgets and the “.sui” file
The “.sui” file is also used for something else: the definition of widgets that
are created interactively. For example, if you were to look in the file 3cell.c,
you would notice that there is no function call to SUIT_createLabel ()
that corresponds to the new interactively created “My 3 Cell Application”
label. The only reason SUIT knows to create such a label the next time the
program is run is that the description of the label is kept in the “.sui” file.
If you were to lose the “. sui” file any widgets created interactively would
be lost as well (not to mention the description of the entire interface of the
application). Given the importance of the “.sui” file, you should treat the “.sui”
file with the same care as you would the executable or the source code.

Interactive Functionality: Export

SUIT can attach program functionality interactively.

Suppose you had a widget called “Ernie” and you wanted the user to be
able to control Ernie’s foreground color through a set of color chips some-
where in the application. Instead of adding a
SUIT createColorChips() call to your code, writing the callback,
and recompiling the code, you could export Ernie’s FOREGROUND COLOR
to the application’s interface via the export button in the property editor.
Exporting a property means having SUIT add another widget to your
application interface whose sole job is to control some property of another
widget. SUIT can do this because for every data type that SUIT manipulates
(integers, booleans, strings, etc.) there is a corresponding widget that can
represent that type (bounded values, check boxes, type-in boxes, and
respectively). To export the polygon’s FILLED property:

1. Start up the demo program.

Properties that have a lock
icon next to them cannot be
changed from inside the
property editor.

2. Invoke the property editor (SUIT-e) on the polygon widget.

3. Drag the FILLED property from the object level listing to the export
panel (looks like a moving van), in the same way you might drag a

property to the trash can.
4. Select OK to exit the property editor.

Notice that there is now a new on/off switch in the application (this is the
kind of widget that controls boolean data types). Click on the switch and
the polygon will change from filled to unfilled and back again.

1) Sonamed because the name of the file is the same as the name of the program with an sui
extension: the application empty will create an sui file called empty.sui.

SUIT Tutorial Page 11 of 16
Last Modified: February 26, 1992 1:29 pm

Where to Go for More Information

If you need further information, the following documents are available:
¢ An Introduction to External Control

» The SUIT Reference Manual
o The SUIT example Files that come with the SUIT distribution

In addition, questions addressed to:
suit@uvacs.cs.virginia.edu

will be answered promptly.

Summary of SUIT-keys
Operation What it Does Hot Key!
SUIT menu invokes the SUIT menu, which contains

most of the following functions SUIT-M
cycle change awidget s displaystyle SUIT-C
align lines up selected widgets by tops, bottoms, etc. SUIT-A
send to back selected widget goes behind all others SUIT-B
bring to front selected widget goes infront of allothers SUIT-F
select widget marks a widget as selected;

deselects a widget if already selected;

selects all widgets if cursor is over nowidget SUIT-S
redraw repaintsall widgets o SUIT-R
edit properties examine and alter a widget’s properties SUIT-E
get info prints a widget's name, class and

display style ina dialogbox SUIT-I
open widget opens up a parent widget so that the

children may be accessed. SUIT-O
close widget closes a parent widget that was

openedwithSUIT-0. i SUIT-k
create new widget creates a new SUIT objectonthefly SUIT-N
destroy destroysa SUITwidget SUIT-D
version prints the version of SUIT you are using SUIT-v

1) “SUIT” is shorthand for holding down the SHIFT and CONTROL keys

simultaneously.

SUIT Tutorial
Last Modified:

Page 12 0f 16
February 26, 1992 1:29 pm

- ron To
External Control

Motivating Example: The Calculator

This section is an introduction to a model of computing which may be
new to you: the external control model. External control is a way of pro-
gramming that has become the norm in windowing environments, but
can be confusing at first.

Imagine that it is your job to write a graphical user interface (GUI) for the
following application: a simple four function calculator.

BE O

OO
OO

x=0 x=100 x =200

The Simple Calculator. Numbers given are typical pixel locations.

The first thing you would do is partition the screen into its various regions,
laying out where each button and screen element is supposed to go. Then,
your program would be “driven” by mouse clicks - each time the user
clicks, you would find out which “button” was hit, and then do the appro-
priate thing. This “picking routine” often ends up being a rat’s nest, as in:

GetMouseClick (&x, &y):
if ((y > 500) & (y < 800)) /* in number buttons */
{
if (x < 100) /* in left row of buttons */
{
if (y > 600)
HandlePressOnSevenButton() ;
else if (y > 500)
HandlePressOnFourButton () ;

Needless to say, this code is hard to write, and even harder to maintain. If,

SUIT Tutorial Page 13 of 16
Last Modified: February 26, 1992 1:29 pm

for example, you wanted to “reshape” your calculator to be wide, not tall,
you would have to completely rewrite this routine.

A better solution is to build a table which contains the location of each
important screen component, or “widget,” and a subroutine to call when
the user clicks on that widget with the mouse. We can indicate which sub-
routine to call by using #defines, which are similar to Pascal CONSTs.
Such a table would look something like:

xmin ymin xmax ymax routineNumber
50 600 100 700 SEVENBUTTON
50 300 100 400 PLUSBUTTON
100 300 200 400 MINUSBUTTON
And so on...

Now, the picking routine is very simple:
int button = NO_BUTTON;
GetMouseClick (&x, &y);
for (1 =0 ; i < max table entries ; i++)
{
if ((x >= table[i].xmin) &&
(x <= table[i] .xmax) &&
(y >= table[i].ymin) &&
(y <= table[i] .ymax))
button = table[i] .routineNumber;
}

switch (button) /* like a Pascal CASE statement */

{
case NO_BUTTON: beep(); break; /* user missed */
case SEVENBRUTTON: PressSevenButton(); break;
case PLUSBUTTON: PressPlusButton(); break;
case MINUSRBUTTON: PressMinusButton(); break;
. and so on
}

This is much better, because the picking routine is no longer “hard wired”
and all you need to do to change the location of a widget is to change its
numbers in the table. This picking routine technically runs more slowly
than the previous version, but it turns out that this all happens so fast that
it’s not a problem — modern computers can easily loop through the hun-
dred or so objects on the screen with no perceptible delay to the user.
Given the advantages to this approach, and the fact that the user can’t tell
the difference, there really is no incentive for using the faster version.

As it turns out, we can even avoid the need for all the constants and the
switch statement, because the C language allows us to store the routine
name (technically, a pointer to where the routine is stored in memory) in

SUIT Tutorial Page 14 of 16
Last Modified: February 26, 1892 1:29 pm

the table. So, the above code can be written as:

/* instead of integers, the table now contains

RoutinePointers */

RoutinePointer routineToCall = NULL;

GetMouseClick (&x, &y):

for (i =0 ; i < max_table entries ; i+t)

{

if ((x >= tablef[i].xmin) && (x <= table[i].xmax) &&
(y >= table[i] .ymin) && (y <= table[i].ymax))

routineToCall = tableli].callback;
}

if (routineToCall == NULL)

beep () ;

else

routineToCall(); /* this invokes the C callback
routine */

Now the picking routine is extremely small and simple, and all we have
to do to change the screen interface is change numbers in the table (N.B.
this scheme does not address what happens if two screen widgets over-
lap; we'll assume that doesn’t happen).

Changing the Table Values

But this still hasn’t gotten us very far. Figuring out the locations of all the
buttons is still very tedious from the programmer’s point of view and the
all widget locations are fixed at compile time; only a programmer can
design or change the interface. However, by going to this table driven
external control model, we have gained flexibility that we did not have
before. As long as the X, Y pairs are in the table, there’s nothing to say that
they must remain fixed. We could let the designer directly manipulate the
interface by moving and resizing the widgets right on the screen, a process
that simply updates the global location table by changing the location informa-
tion for the given widget!

We would like for the user to be able to drag screen widgets around with
the mouse and literally “redraw” the screen interface. But this causes an
ambiguity: when the user presses the mouse button on the “plus” key, did
he or she mean to drag the plus button to a new location, or to actually
press the button? In SUIT, we solve this by having the designer hold down
the CONTROL and SHIFT keys when he or she wants to move widgets.

SUIT Tutorial Page 15 0f 16
Last Modified: February 26, 1992 1:29 pm

New External Control Loop

Putting all this together, the main external control loop for SUIT looks like
this:
while (TRUE)
{
GetMouseEvent (&x, &y);
if (shift and ctrl are both held down)
talk to SUIT : drag widget on screen
else
Scan the table and call the appropriate callback
routine

}

Saving and Restoring State

The table of widget locations should be saved between invocations of the
program. We can write the names and locations of all the widgets to a file
just before the application exits so that the next time the application is run,
the location values can be reloaded into the global table. In SUIT, the loca-
tion table file is called an “.sui” file (say all the letters: “ess you eye”). In
fact, this “.sui” file holds more than just the locations of all the widgets -
it holds any other state information that the program might wish to restore
on the next invocation of the program (e.g. widget colors, fonts, etc.).

Summary

External control is a model of computation that is commonly used in
event driven scenarios, which is why it is so useful in GUIs (graphical
user interfaces). The thread of control in such a system lies in the hands of
the user; the main loop is the server that handles the mouse and keyboard
events and dispatches them to the appropriate widgets.

The most important thing that you must realize when programming with
external control is that you are no longer writing a large, monolithic pro-
gram where you, the author, control the sequence of what happens.
Instead, you write many small “callbacks” which can be called at any
time. For example, in the calculator program, the user is free to press any
button at any time, and there is no “main program” which prompts the
user to “press a number, then an operator, then another number, then the
‘=" key.” You will probably be very tempted to put code in your callback
routines which “prompt” or force the user’s choices; this is something
you should usually avoid. Instead, try to accept the programming model
that the user is in charge and may press any widget at any time.

SUIT Tutorial Page 16 of 16
Last Modified: February 26, 1992 1:29 pm

