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Abstract

We study a bin-packing pblem which is one-dimensional and is constrained in
the manner items arplaced into bins. The @blem is motivated by a practicadal-
time scheduling mblem, whes redundant periodic tasks need to be assigned to a
multiprocessor system. Theoptem is stated in the traditional light: to use as few
bins as possible to pack a given list of items, and it is a generalization of the classical
bin-packing poblem. W first popose a heuristic algorithm called First-Fit-K to
solve the bin-packing pblem, and then pre that First-Fit-K has an asymptotical
worst-case tight bound of 1.7.eVdlso study the average-case performance of the
algorithm. The simulationaeisults show that First-Fit-K performs within 10% of the
optimal solution.

Index Terms:. Bin-packing, combinatorial optimization, algorithm design and analy-
sis, smulation, real-time scheduling, EDF



|. Introduction

In this paperwe study the followindpin-packing problem: A list of items are to be packed
into a potentially infinite number of unit-size bins. Each item has a color and a size which is no
more than one. For each cqltrere are at mogt> 1 items. Then given a list of colorful items,
what is the minimum number of bins that is required to pack the items such that no two items with

the same color are packed to a bin?

This problem is a natural generalization of the one-dimensional bin-packing problem studied
in [7]. Indeed, if the number of items with the same color is oneki=l, then the two problems
coincide. Although there have been many extensions or variations to the classical bin-packing
problem, this new problem has not been studied yet in the literature according to the best of our
knowledge. The classical bin-packing problem is known to be NP-hard, from which it follows triv-
ially that the new bin-packing problem is also NP-hard. For this reason we shall focus on fast heu-
ristic algorithms for solving this problem, seeking to prove close bounds on the extent to which
they can deviate from optimalitfpue to the complexity involved, the analysis of these simple
approximation methods represents a permanent challenge (see, éganGzifal [2])

It is a common practice to analyze the performance ratio of the algorithm under study when
working with approximation algorithms for combinatorial optimization problems [5].A(Bt
denote the performance of a given algorithm for an instota particular combinatorial optimi-
zation problem and IeDPT(l) denote the performance of an optimal algorithm for the same
instance. The ratio &(l) to OPT(l), considered over all instandegprovides us with an indicator
of the quality of the given algorithmoToe specific for bin-packing heuristics, M (L) and
N, (L) (or N,) denote the number of bins required by the heurstiad the optimal number of
bins required to schedule a given listof items, respectivelylhen, the asymptotical worst-case

bound for heuristi@ is determined by
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It is apparent that the smaller tIiE:’s value is, the better the heuristic algoritArperforms in
terms of the worst-case scenario. In other words, the smaIIEr:tl*ﬂevalue is, the closer the heu-
ristic solution is to the optimal one. Hence, we want to minirﬁi%’eas much as possible when
we design a heuristic algorithm.

Many heuristic algorithms, such as Next-Fit, First-Fit [6, 7], and Harmonic Fit [9], have been



devised to solve the classical bin-packing problems and other bin-packing problems. Among the
different strategies, the First-Fit strategy has been frequently adapted to solve the various bin-pack-
ing problems and is one of the best studied ones. The First-Fit strategy isasimple, on-line one, and
yet it can deliver near-optimal performance. For the classical bin-packing problem, the First-Fit
heuristic has atight bound of 1.7, while no on-line algorithm can have an asymptotical worst-case
bound lessthan 1.53[1, 10]. By ordering the items according to their decreasing sizes and applying
the First-Fit strategy to pack the new list of items, we have the famous First-Fit-Decreasing (or
FFD) heuristic, which is clearly off-line and has a tight bound of 11/9. Heuristic algorithms with
polynomial time complexity can also be devised that have an upper bound arbitrarily close to one
[3, 8], i.e, for any € >0, there is an algorithm A_, whose running time grows polynomial with
1/¢, that has an asymptotic bound of 1 + €. But these algorithms are generally too complicated
to be of practical applications. For these reasons, it is interesting to study the performance of the
First-Fit-K heuristic, which is a natural adaptation from the First-Fit strategy.

We first came upon this bin-packing problem when we were investigating the issues of sup-
porting fault-tolerancein areal-time system [12]. A scheduling problem arisesin asituation where,
for fault-tolerance purposes, multiple versions are used for each periodic task so that versions of a
task must be executed on different processors. Specifically, we were dealing with the following
scheduling problem: a set of n tasks > = {1,,7,...,T,} is given, where 1, =

((Ci,l' G Ci,K‘), R, T,) fori=1,2,...,n,and (Ci,l, Cioeonn Ci,K,) are the computation
times of the K; versiorlls of task T;. R, and T; are the release time and period (I)f task T;, respectively.
The deadline of each request of atask isthe arrival of its next request. What is the minimum num-
ber of processors required to execute the task set such that versions of atask are executed on dif-
ferent processors and all task deadlines are met by the Earliest Deadline First (or EDF) algorithm?

Liu and Layland proved that a set of periodic tasks can be feasibly scheduled by EDF if and
only if ZI”: 1Ci/T; =1, andthereleasetime of each task, R;, does not affect the schedulability of
aset of periodic tasks[11]. Since0< C,/ T, < 1and Z”: 1Ci/ T, =1, wecantreat the assignment
of aset of tasksto asingle processor as packing alist of itemsinto abin with aunit size. The quan-
tity u; = C,/T, for atask (version) corresponds to the size of an item. In order to distinguish ver-
sions belonging to one task from those belonging to another, we assign colors to them such that
versions belonging to one task share the same color. Versions belonging to different tasks have dif-
ferent colors. Then itemswith the same color cannot be assigned to the same bin and the maximum
number of items with the same color isk = max, _; _ K; . The number of colors therefore corre-



sponds to the number of tasks in a task set. Hence, the scheduling problem is equivalent to the
above bin-packing problem.

Besides the scheduling problem described above, the bin-packing problem also occursin a
number of other applications. For example, the problem of allocating a set of parallelized tasksto
the minimum number of processors such that the compl etion time of the whole schedule isbounded
can also be reduced to this bin-packing problem.

We will present our heuristic algorithm First-Fit-K and analyze its asymptotical worst-case
performancein Section I1. An empirical study through simulation on the average-case performance
of the algorithm appears at the end of Section 11. We conclude in Section I11 with alook at future
research directions.

[l. The Design and Analysis of First-Fit-K

The design of First-Fit-K is quite straightforward: to ensure that no two items with the same
color is assigned to the same bin, we only need to make sure that the bin that is selected by First-
Fit does not contain an item with the same color. The algorithm is given as follows:

First-Fit-K (or FF-K): Let the binsbeindexed asB, B,, ..., with eachinitialy filled to level
zero. Given alist of colorful items, where the size of each item isno more than 1 and the maximum
number of items with the same color isk, theitems are assigned to binsin the order they are given.
In assigning an item to a bin, the smallest-indexed bin that does not contain an item with the same
color asthe item being assigned and in which the item can befit, is selected to contain the item. An
item is assigned to anew bin if it cannot be assigned to any non-empty bin.

The main result is stated in the following theorem. Where there is no confusion, we refer an
item of size b ssimply asitem b.

Theorem 1: For any list L of items by, b, ..., by, FF-K(L) < 1.7L" + 2.19k, wherek isthe
maximum number of items with the same color, FF-K(L) is the number of bins used by FF-K to
pack thelist L, and L is the minimum number of bins used to pack the same list.

Before proving the theorem, we need to establish several lemmas.

Lemmal: Supposethe maximum number of items with the same color isk. Among all the
binsto each of whichn>c > 1 itemsare assigned, there are at most K of them, each of whichisno
morethanc/ (c+ 1) full.

Proof: Thelemmais proven by contradiction. Supposethat there arek + 1 bins each of which

3



is no more thae / (c + 1) full. LetBy, By, ..., B, , ;

be suclk + 1 bins andy;; be theth item that

is assigned to biB;, for 1<i<k + landl<j<n. Thenzj”= 15 J. <c/(c+1),forl<i<k+1.

Let us look at the sizes of items assigned to the lasBhip, , among the + 1 bins. Since
there aren = ¢ items in the binB, , ; and Z”: 10¢+1,j ¢/ (c+ 1), there must exist an item

bK+1’Z in the binB, ,, such thatbK+1’Z <1/+1 andzO{1,2,...,n} . If not, then
Zj”:lb“l’j >c/(c+ 1)
Sincezjnzlbi,j +bK+1’zs1/(c+ 1) +c/(c+1)=1for l<i<K, andeJrLZ cannot be

assigned to the birB;, there must exist one and only one itdiy) among the items
{bi,j|j =1,2,...,n} , that has the same color bs, 17 does, for ali = 1, 2 ..., K. In other

words, there are a total ef+ 1 items with the same color as itéy, , ,. This is a contradiction
to the assumption that the maximum number of items with the same calof erefore the
lemma must be true. "

In the following, we define a weighting function ®(that maps the size of an item,to a
number between zero and one, M#q): (0, 1] - (0, 1] as given in Figure 1. @/call the value
of W(a) the weight of itentt, and the sum of the weights of the items assigned to a bin the weight
of the bin. The weighting function is defined in such a way that with a few exceptions, the weight
of a bin in the completed FF-K packing is equal to or greater than 1, and the weight of a bin in the
optimal packing is no greater than 1.7. Note that, although this weighting function was first used
by Johnson et al [7] in deriving the bound for First-Fit, the proof here follows$eaedht route and
is a little bit more involved, due to the additional color constraint placed upon the placement of
items.

7(6a)/5 0<a<1/6
0 /5-1/1 1/6<a<1l/
W(a) = D(90() 5 0 6<a 3
0(6a)/5+1/10 1/3<a<1/2

Dl 1/2<a<1

We first claim that for any bin in the optimal packing, the total weight of the bin is no greater
than 1.7, i.e.,zim: (W(b) <17

Lemma?2: Leta bin be filled with items;, by, ..., by, Thenzim: W(b) 1.7

This lemma was readily proven by Johnson et al in [7].

In order to prove that, with a limited number of bins, the weight of each bin in the completed
FF-K packing is no less than one, we divide the bins into several groups according to the levels
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Figure 1: Weighting Function W(a)
they arefilled to. Since a bin can be filled to alevel from zero to one, we instead divide the bins
into groups according to the regions their levels fall into. A total number of seven regions is
defined: (0, 1/2], (1/2, 2/3], (2/3, 2/3 + 1/18), [2/3 + 1/18, 3/4), [3/4, 4/5), [4/5, 5/6), and [5/6, 1].
For each region, the result is stated in alemma. The proof of the theorem is given at the end.
Lemma3: Leta bin be filled with items; 2 by, > ... 2 by, If Zm: by 12, then thee are
at mostk bins with Zm:  W(b) <landmz1.

Proof: According to Lemma 1, among all bins to each of which m = 1 items are assigned,
there are at most Kk of them, each of which is no more than 1/2 full. Therefore, there are at most K
binswith Zm: W(b) <1 n

Lemma4: Let a bin be filled with itemig; 2 b, > ... 2 b, If /2 < zlmz by = 2/3, then
there are at mosk bins Withzim: 1W(bi) <land m>2.

Proof: For 1/2 < Zmz by < 213, the bins with Zm: LW(b;) <1mustbeassigned at least
two items, i.e.,, m= 2. If m= 1, then b; > 1/2 and Zm: W(b) =1

According to Lemma 1, among all bins to each of which m> 2 items are assigned, there are
at most K of them, each of which is no more than 2/3 full. Therefore, there are at most Kk bins with

Z:m:lW(bi) <1 n

For theregion of (2/3, 2/3 + 1/18), there may be an infinite number of binswith Z.m: W (b))
< 1. However, the deficiency of weights created by these bins can be bounded, as shown by the
next lemma. However, in order to show that this deficiency can indeed be bounded, we need afew
definitions.

Definition 1: Let abin B; befilled withitemsby, by, ..., by, Thecolor of anitem b; is denoted



by X(b;), and the set of colors of theitemsin abin B; is denoted by x(B;). The deficiency §; of abin
Bjisdefinedasd; =1 - Zm: . b;. 1.e, wherethe binisfilled up to the level of 1 - &; in the com-
pleted FF-K packing. For convenience in defining the coarseness of a bin, we introduce an imagi-
nary bin with a zero index, such that its coarseness is zero, and its color set is empty. Then the

coarseness of a bin with an index larger than zero is defined as

O = M (ocj<in(x(B) nx(B)) =0)) 9 forizl

Specifically, the coarseness of abin is equal to the maximum deficiency, among all the bins
that are ahead of the current bin and that do not share any color with the current bin. Intuitively, the
size of each item in a bin must be larger than the coarseness of the bin. If abin has a coarseness of
zero, then either it isthefirst one or, most likely, every bin ahead of it shares at |east one color with
it.

Lemmab: Letabin B; with coarseness a; befilled withitemsb; >b,> ... 2 b,,and 2/3 <

z;m: . by < 3/4. Then there are at most k bins with z:m: (W(b;) <Zlandmz3.Iflisthenumber

of bins with 2/3 < Zimzlbi < 2/3 + 1/18, Zm: JW(b) =1-p;B >0 and m= 2, then
Z: _, W(B) >1-9/20.

Proof: According to Lemma 1, among all bins to each of which m > 3 items are assigned,
there are at most k bins of them, each of which isno more than 3/4 full. For those binswith m= 3,
there are at most K bins with 2/3 < Zm: by < 3/4. Therefore, there are at most K bins with

m
Zi - W(b) <L
Accordingly, we need only to focus our attention on the bins each of which is assigned two
items, i.e., m= 2. Furthermore, 1/2 > b, = 1/3and b, < 1/3, since 2/3 < ZIZ: b <23+ 1/18and
m
Zi - W(b) <L
Claim 1: Thereareat most (3k) /2 such binsthat have a coarseness of zero.

Let us consider the worst case configuration of the FF-K bin-packing where the maximum
number of bins with zero coarseness is achieved. Note that for these bins, a bin with zero coarse-
ness implies that all the bins ahead of it contain one of the two colors it contains. Thisis because
each of these bins has a deficiency of at least 1 — (2/3 + 1/18).

Recall that for thefirst of these bins, it contains exactly two colors. For the bins that follows
it, every one of them must contain at least one of its colors. Now we want to find out the maximum
number of binsthat can possibly satisfy this constraint. Let n be the number to be derived. Then it



is apparent that < 2k, because the maximum number of items with the same color is

Letc, andc, be the two colors in the first bin. Ligtbe the number of bins that immediately
follow the first bin and share the same calprandi,, be the number of bins that immediately fol-
low the first bin and share the coloy. If i, =i,, thenn<i, <k. Let us assume thaf >i,. Let
j > 0 be the number of bins that immediately follow ithh bin and have one colay,. Theni,

+ ] <K, since the number of bins containing cotgrmust be no more than Furthermorej, -
i, +] <K. This is because the, (- i,) bins that immediately follow the firs{ bins must share
one color with the bins that immediately follow thg th bin with the other color being, . This
is illustrated in Figure 2.

|20fy il'iZOfX JOfy y
V) I| o ol y X | a bin with two items
a a al X|...... X with colors x &y

Figure 2: Worst-case Configuration of Zepo Coarseness

Sincei; <K, i; =i, +j<K,andi, +] <K, we conclude that< i, +j< (3k) /2.

Claim 2: zf: W(b) =1if Zf_ b 21-q

For any such bin with coarsenegs> 0,a; must be lager than 1/3- 1/18 (sincezizz 1bi <
2/3 +1/18).

Let b, andb, be the two items assigned to a Bjrandb, = b,. Thenb; > a; > 1/3-1/18 and
b, > a; = 1/3 - 1/18, according to the definition of coarseness; & 1/3, thenb, > 1/3 and
zf: W(b) 21/2+1/2=1.

If a; < 1/3, thenb, = 1/3, andb, < 1/3. Otherwiseb, + by, < 2/3, which contradicts the
assumption thaly 7_ b, > 2/3. Theny *_ W (b;) = 60y/5 + 1/10 + 8,/5 - 1/10 > 65 7_ b/
5+ J,/5 > (6/5) * (1~ a;) + 30;/5 = 1 + 1/5- 30;/5 > 1, since, > a; anda; < 1/3.

For future reference, le: 1W(bi) = 1- 3 andp; > 0, then we must havziz_ 1bi <1-
a; 1/3<b; <1/2, and 1/6 b, < 1/3. 2.2: (W(b,) =6by/5+1/10 + &,/5 - 1/10 > ,/5 + 9(2/
3 - b,)/5 = 6/5- 3b4/5 = 9/10 sinceb, < 1/2. In other words; < 1/10.

Claim 3: zim: by <1-a;-5By/9 if zim: (W(b) =1-B;with ;> 0.

To prove this claim, ldb; andb, be the two items assigned to a Bjmwith b; > b,. Suppose



z;m: b = 1-aj-ywithy>0. Then we can construct a bin filled with two itemsndo, such
thato, + 0, = by + b, +vy, andoy < 1/2 ando, < 1/2. TherW(o,) + W(05) = 1. Since the slope of
the weighting function W in the range of (0, 1/2] does not exceed 9/5, theVéfo{e+ W(0>) <
zim:  W(b;) +9y/5. In other words, & 1-; + /5. F/9<Yy. Zim: by < 1-0a;-5B/9.

Suppose that in the c':om!:)leted EF-K packing|, et the number of bins WitEim: 1W(bi)
< 1. Among thé bins, letB,, B,, ..., B,, be the bins that have non-zero coarseness. If we group
these bins according X(B;) N x(B}) = 0 for any pair of bins in a group, then there are at most
(3k) /2 different groups, according to Claim Llitih each group, lat be the number of bins in
such group. Then; <a; if i < j. Sinceo; 2 a; _, +5B; _,/9, for 1 <i<n, then Zi“;i[si <9/5.
Zin: ) (a,—a;,_;) =9/5@,—0ay) <9/5+(2/3 + 1/18 2/3) = 1/10. Sinc@, < 1/10, we have
Zin= . B; < 2/10. Thereforiih: 1B = (3k) /2« 2/10 = %/10.

For the (3k) /2 bins with zero coarseness, suppose that thegeak&k) /2 of them, each
with Zim: L W(b;) =1-p;wheref; >0. According to the reasoning abO\E?: B < (3k)/2
« 1/10 = X/20.

Therefore,z: _ 1 B; < 3/10 + X/20 = X/20, wherd = h +g.
Z: _, W(B) >1-9/20. .

Lemma6: Among all the binsfilled to the level of 2/3+ 1/18< Zm: 1 b < 3/4, thereare
at most k of them with Z|m= ,W(b) <landm=3.

Proof: Let a binB; be filled with itemd; > b, > ... 2 b,and 2/3 + 1/1& zlmz b =3/4.
If m=1, therb, > 2/3 + 1/18 > 1/2.2{1 W(b) =1.

If m= 2, there are three cases to consider:

(1) If by > 1/2, thenzimz (W(b) 21.

(2) If 1/3 <by; < 1/2 and 1/3 9, < 1/2, thenzim: W(b) z21/2+1/2=1.

(3) If 1/3 <b; <1/2 and 1/6 b, < 1/3, thenzim: 1W(bi) > 6by/5 + 1/10 + 9(2/3 + 1/18
b,)/5-1/10 = 13/16- 3b,/52 1.

Obviously the bins withzim= 1W(bi) <1 must be assigned at least three itemsm.2.3.
According to Lemma 1, among all bins to each of wihich3 items are assigned, there are at most
K bins of them, each of which is no more than 3/4 full. Therefore, there are at imostwith

Z:m:lW(bi) <1. n



Lemma7: Among all the binsfilled to the level 3/4 < zm: b < 4/5, there are at most k
of themwith Zm: (W(b) <landmz4.

Proof: Let abin B; befilled withitemsb; >b, > ... 2 b and 3/4 < Zum= by <45,

If misequal to 1 and 2, then we can prove, similarly to the proof of Lemma 6, that
zim:lW(bi) > 1.

If m= 3, there are seven cases to consider:

(1) If by > 1/2, then zim: W(b) =21

(2) If Y3<by;<1/2and 1/3< b, < 1/2, then Z”L JW(b) 21/2+12=1

(3) If Y3<by<1/2,1/6 <by, < 1/3,and 1/6 < by < 1/3, then z:m: JW(b;) =6by/5+1/10+
9b,/5 — 1/10 + 9b4/5 — 1/10 = 6[3/4 — (b, + b3)]/5 + 9 (b, + bg)/5 — 1/10 = 3(b, + bg)/5
+4/5>1, sinceb, + by > 1/3.

(4) If Y3<by<1/2,1/6 <b,< 1/3, and b3 < 1/6, then Zm: JW(b;) =6by/5+1/10 + 9b,/5
— 1/10 + 6bs/5 = 9b,/5 + 6(3/4 — b,)/5 = 3b,/5 +9/10 > 1.

(5) If /3 < by <12 and b, < 1/6, then Zm: (W(b;) =6by/5+ 1/10 + 6b,/5 + 6ba/5 =
6(2{“: ,b))/5+ 1102 (6/5)  (3/4) + 1/10=1.

(6) If /6 <by <1/3,1/6 <by, <13, and 1/6 < bz < 1/3, then Zm: W(b) = 9(Zim= 1 b)I5
- 3/10= (9/5) « (3/4) — 3/10 > 1.

(7) If /6 < by < /3, /6 < by < 1/3, and b3 < 1/6, then Zm: (W(b;) =9by/5-1/10+ 9y,/5
- 1/10 + 6b/5 = 9(3/4 — b3)/5 + 6by/5 — 2/10 > 23/20 — 3b5/5 > 1.

Obvioudly, the bins with Zm: 1W(bi) < 1 must be assigned at least four items, i.e.,, m= 4.

According to Lemma 1, among all binsto each of which m= 4 items are assigned, there are at most
K bins of them, each of which is no more than 4/5 full. Therefore, there are at most k bins with

zim:lW(bi) <1 n
Lemma8: Among all the binsfilled to the level 4/5 < Zm: . b; < 5/6, there are at most k
of themwith Zm:  W(b) <landm=5.

Proof: Let abin B; befilled withitemsb; >b,> ... 2 b, and 4/5< Zm: b <5/6.

If misequa to 1, 2, and 3, then we can prove, similarly to the proof of Lemma 7, that
zim: (W(b) 21

If m=4, there are eight cases to consider:



(1) If by > 1/2, then Zi’“: W(b) 21
(2) If /3< by <1/2and 1/3< b, < 1/2, then Zn: W(b) 212+12=1.

(3 If U3<by <12, 1/6<by,<1/3, and 1/6 < bz < 1/3, then Zm: (W(b,) =6by/5+1/10 +
9b,/5 — 1/10 + 9by/5 - 1/10 = 6[4/5 - (b, + bg)]/5 + 9 (b, + bg)/5 — 1/10 = 3(b, + b3)/5
+43/50> 1, since b, + by > 1/3.

(4)1f U3<b;<1/2, /6 <by< 13, and by < /6, then S ™. W (b)) 2 6by/5+ 1/10+ 9by/5
i=1 I
— 1/10 + 6(b3 + by)/5 = 9b,/5 + 6(4/5 — b,)/5 = 3b,/5 +24/25 > 1.

(5) If 1/3< by < 1/2 and b, < 1/6, then Zam: (W(b,) =6by/5+1/10+6 (b, + by + by)/5=
a(zim: ,b;)/5 +1/102 (6/5) * (4/5) + 1/10 > 1.

6) If 1/6<b;<1/3,1/6<by,<1/3, /6 <b3< 1/3, and 1/6 < by < 1/3, then Zm: 1W(bi) =
9(2[“: ,b;)/5 = 4/10> (9/5) « (4/5) - 4/10> 1.

(7) If /6 <by <1/3,1/6 < by, < /3 and by < 1/6, then Zm: JW(b;) =9by/5-1/10+ 9by/5
— 110 + 6(b3 + by)/5= 9[4/5 — (b3 + by)]/5 + 6(b3 + by)/5 — 2/10 > 31/25 — 3(bs + by)/
5>1.

(8) If 1/6 < by < 1/3 and b, < 1/6, then Zim: L W(b) =90y/5- 110+ 6(by + by + by)/5>
9[4/5 — (by + by + by)]/5 + 6(by + b3 + by)/5 — 1/10 > 67/50 — 3(by + bz + by)/5> 1,
sinceb, + by + by < 1/2.

Obvioudly, the bins with Zm: 1W(bi) < 1 must be assigned at least five items, i.e., m> 5.

According to Lemma 1, among all binsto each of which m> 5 items are assigned, there are at most
K of them, each of which is no more than 5/6 full. Therefore, there are at most k bins with

Z:m: W(b) <1 "

Lemma9: Let abin B; be filled with items by = by, > ... 2 by, If Zm: b 2 5/6, then
Zim:lW(bi) > 1.

Proof: SinceW() / B=6/5intherangeof 0< < 1/2 and W(3) = 1 when 3 > 1/2, we have
Zimle(bi) >5/6¢6/5=1. n

Proof of Theorem 1: Supposethat in thefinal FF-K-packing, therearembinsB4, B,, ..., By,
each of which receives at least oneitem, and Z.W(Bj) <1 Let ZJW(BJ') =1-Bj, with3;>0
forl<j<m.

Since our goal isto provethat 1.7L" = W = FF-K(L) - Zm: 1Bi , we need to bound the quan-
tity an= B
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According to Lemma 8, if Zm: 1bi [0 [4/5, 5/6), there are at most K bins withm > 5 and
Zim: (W(b,) <1.Letl bethenumber of binswith ZJ.W(B].) =1-BjandB;>0forl<l<k.
Y - 1B SK(L-4/5- 6/5) = /25,

According to Lemma 7, if Zm: 1bi O [3/4, 4/5), there are at most K bins with m > 4 and
Zim= (W(b;) <1 Letl bethenumber of binswith Z.W(Bj) =1-BjandPj>0for1<l<k.
Y - 1B, SK(1-3/46/5) = k/10.

According to Lemma5 and Lemma6, if Zm: 1bi [[2/3, 3/4), then there are at most K bins
withm=> 3 and Zm: (W(b;) <1 Letl bethenumber of binswith Z.W(Bj) =1-Bjand ;>0

for1<l<k. Z:=1Bi < k(1 - 2/36/5) = KI5.

If Zm: . b; 0 (23, 2/3+1/18), then let | be the number of binswithm=2 and ZZ: JW(b)

< 1. Let | bethe number of such binswith ZJ W(Bj) =1-{and ;> 0. According to Lemmas,
[

Zi _ 1B =9/20.

According to Lemma/4, if Zm: 1bi 0(1/2, 2/3], then there are at most kK binswithm> 2 and
z:m: JW(b;) <1 Letlbethenumber of binswith sz(Bj) =1-BjandB;>0forl<l<k.
z: _ By SK(1-1/2+6/5) = 2/5.

According to Lemma 3, if Zm: 1bi (0, /2], then there are at most K binswith m> 1 and
Z;m: JW(b;,) <1 Letl bethenumber of binswith ZJ.W(B].) =1-BjandB;>0forl<l<k.
Then Z: _ B =k

Therefore, zm: 1Bi <K(1+2/5+9/20+1/5+ 1/10 + 1/25) = 2.19K.

In summary, FF-K(L) < 1.7L" + 2.19k. n

When k = 1, the problem becomes the well-known classical bin-packing problem. Since the
ratio 1.7 is not affected by the value of k, our result subsumes the previous known result [7]. Also,
when K = 1, the examples that can achieve the bound of 1.7 has been given in [7]. Since the term
2.19k is aconstant, it disappears when the optimal number of bins L* approaches infinity. There-
fore, we conclude that the bound is asymptotically tight.

In order to gain some insight into the average-case behavior of the new algorithm, one can
analyze the performance of the algorithm under probabilistic assumptions, or conduct simulation

experiments. We resort to simulation.

The ssimulation is conducted by running the algorithm on alarge number of computer gener-

ated sample lists of items and averaging the results over a number of runs. The input data of all
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parameters for a list of items are generated according to uniform distribution. The number of items
sharing one color is uniformly distributed in the range afki < 5. The size of an item is in the
range of 0 <b, < 1. The output parameter for the algorithm is the percentage of extra bins used to
accommodate a list of items, with regard to the total load of the list. The total load of a list is given
byU= Z?: 1 ZKz 10; j» which is a lower bound on the number of bins needed to pack the list. In
other words, the optimal number of bins needed to pack a list with a lbad af least). Suppose

thatN (L) is the number of bins required by FF-K to pack alligtith a load ofU, then the per-
N(L) -U
U
The result is plotted in Figure 3. The number of runs for each data point is chosen to be 20,

centage of extra bins is given &90 x

since for our experiments, 20 runs igkwenough to counter theeft of “randomness”. In order

to make comparisons, we run the same data through the on-line algorithm First-Fit or Krst-Fit-

for k = 1. The total load of a list is given l%”: 1 Zsz 10; j» Which'is a lower bound on the num-

ber of bins needed to pack a list of items. On the average, FF-K uses less than 10% extra bins than

the best possible solution.

~N
44 - ——0-—-9-—-—-0--—-0-—-9

Per centage of Extra Bins

j —a— First-Fit (K=1)
2 - - FF-K (K=5)

— 1 - 1 1 - T 1T 1T ° T - T
100 200 300 400 500 600 700 800 900 1000
Number of Items
Figure 3: Performance of First-Fit-K with regard to K

[11. Concluding Remarks

The contributions of this paper are twofold: it addresses a general problem, which is general
in the sense that it occurs infdifent forms across various fields, and it provides a provably good
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solution to the general problem. The problem ismotivated by a practical real-time scheduling prob-
lem and it is a generalization of the classical bin-packing problem. The heuristic algorithm First-
Fit-K isshown by analysisto have an asymptotical worst-casetight bound of 1.7, and by simulation

to have an average-case performance of within 10% of the optimal solution.

Much work remains to be done. One area for improvement is to lower the constant 2.19
before K. Garey et al [4] has proven an improved result, FF(L) < 1.7L" + 1, for First-Fit, wherethe
meanings of FF(L) and L" are similarly defined. Hence we conjecture that the constant can be low-
ered from 2.19 to 1, if a better weighting function can be found. Also it would be interesting to
conduct a probabilistic study on the performance of the proposed algorithm.

There are other heuristics that can be designed for this bin-packing problem. For example,
we observe that, by numbering items with the same color from 1 to K; < k and dividing the bins
into K classes and assigning the ith item of a certain color to abin of ith class, we can ensure that
items with the same colors are not assigned to the same bins. Heuristics such as First-Fit can be
used to assign itemsto binswithin each class. While the performance bounds for heuristics solving
the classical bin-packing problem holds within each class, it is not clear whether it also holdsfor a
composite algorithm which consists of the same algorithm being applied to assign itemsto binsin
all classes.

Another direction of research will beto consider the off-line solution of the problem. We have
been concerned with on-line packing so far, where the items are assigned to bins in the order they
are given. It has been shown that off-line algorithm such as Next-Fit Decreasing and First-Fit
Decreasing generally delivers better performance than on-line counterparts. It would be interesting
to derive the performance bounds for these simple algorithms. These are the problems that we are
currently studying.

Acknowledgments: Thiswork was in part supported by ONR, CIT, and Loral Federal Systems.

References

[1] D.J. Brown. A Lower Bound for On-line One-dimensional Bin Packing Algorithms, Tech.
Rep. No. R-864. Coordinated Sci. Lab., University of Illinois, Urbana, 11l. 1979.

[2] E.G. Coffman, JrR., M.R. Garey, and D.S. Johnson, Approximate Algorithms for Bin
Packing - An Updated Survey, In Algorithm Design for Computer System Design, (49-
106) G. Ausidllo, M. Lucertinit, and P. Serafini (Eds), Springer-Verlag, NY (1985).

[3] W. Fernandez De La Vega and G.S. Lucker. Bin Packing can be Solved within 1 + € in

13



[4]

[3]

[6]

[7]

[8]

[9]
[10]
[11]

[12]

Linear Time, Combinatoria 1: 312-320 (1981).

M.R. Garey, R.L. Graham, D.S. Johnson, and A.C. Y ao. Resource Constrained Schedul-
ing as Generalized Bin Packing, Journal of Combinatorial Theory (A) 21: 257-298 (1976).
M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness, W.H. Freeman and Company, NY (1978).

D.S. Johnson. Near-Optimal Bin Packing Algorithms, Doctoral Thesis, MIT (1973).

D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey, and R.L. Graham. Worst-case Perfor-
mance Bounds for Simple One-dimensiona Packing Algorithms, SSAM Journal of Com-
puting 3: 299-326 (1974).

N. Karmarkar and R.M. Karp. An Efficient Approximate Scheme for the One-dimensional
Bin Packing Problem, Proceedings of 23rd Annual Symposium on Foundations of Com-
puter Science, IEEE Computer Society, 312-320 (1982).

C.C.Leeand D.T. Lee. A Simple On-line Bin-packing Algorithm, JACM 32(3): 562-572
(1985).

M.F. Liang. A Lower Bound for On-line Bin Packing, Information Processing Letters 10
(2): 76-79 (1982).

C.L. Liu and J. Layland. Scheduling Algorithms for Multiprogramming in a Hard Real-
Time Environment, JACM 10(1): 174-189 (1973).

Oh, Y. The Design and Analysis of Scheduling Algorithms for Real-time and Fault-toler-
ant Computer Systems, Ph.D. Dissertation, Department of Computer Science, University
of Virginia (1994).

14



