
SRADS WITH LOCAL ROLLBACK

Phillip M. Dickens
Paul F. Reynolds, Jr.

IPC-TR-90-003
January 22, 1990

Institute for Parallel Computation
School of Engineering and Applied Science

University of Virginia
Charlottesville, VA 22903

This research was supported in part by Jet Propulsion
Laboratory Contract #957721.

SRADS WITH LOCAL ROLLBACK

Phillip M. Dickens and Paul F. Reynolds, Jr,
Institute for Parallel Computation

School of Engineering and Applied Science
University of Virginia

Charlottesville, VA 22903
804/924-1039

ABSTRACT

There is reason to believe bounded aggressive process-
ing (limiting the degree to which processes act on conditional
knowledge) may be a good alternative to unbounded process-
ing. Simulations characterized by substantial variance in logi-
cal process processing times can lead to conditions where,
without bound, some processes may cause frequent repairs (e.g.
rollbacks) to occur. We present an algorithm, SRADS/LR, in
which we bound aggressiveness and discuss its expected impact
on performance.

INTRODUCTION

Most of the literature in the field of parallel discrete
event simulation partitions protocol types into two basic
categories: conservative [ChMi79] [PeWo79] [Reyn82]
[Nico89] and optimistic (Time Warp [Jeff85]). We have shown
that this is an overly simplistic taxonomy [Reyn88], instead
choosing to classify protocols based, among other things, on
how much aggressiveness and risk they exhibit. Typically, pro-
tocols called conservative block when they do not have enough
information to proceed. This blocking can occur when there is
inadequate information to process incoming events (lack of
aggressiveness) or when there is inadequate information to send
events on to other processes (lack of risk). A blocking process
may not proceed until it has enough information to guarantee
that no other process can affect the accuracy of its computa-
tions. Since blocking is used to guarantee accuracy, deadlock
can occur. Much research has been concentrated on mechan-
isms to prevent deadlock.

If a parallel synchronization protocol exhibits aggres-
siveness or risk then processes tend to be allowed to proceed at
their own rate determined by the presence of any actions to be
performed. In this case a rollback mechanism is typically used
to guarantee accuracy. The rollback mechanism prevents a pro-
cess from having to block and thus prevents deadlock.

The major criticism of blocking protocols is the use of
blocking to guarantee accuracy. There are two major problems
associated with blocking mechanisms. First, a processor may
be required to remain idle even when there is useful work that it
could perform. Second, blocking can potentially lead to
deadlock and solutions to the deadlock problem are expensive.

Protocols such as Time Warp alleviate the need to use
blocking by allowing a process to perform computation based
on incomplete information. As mentioned above, this aggres-
sive processing solves the deadlock problem since a process is
never required to block for synchronization purposes. There

are, however, two primary costs associated with this aggres-
siveness. One cost is a large memory requirement necessitated
by state and anti-message saving. The second is the time
required to periodically save state information and to rollback
to an earlier state when it is discovered that some computation
is incorrect. The costs of rollback can be quite large as one roll-
back can lead to a cascade of others.

In [Reyn88] Reynolds suggests allowing aggressive pro-
cessing, but placing bounds on this aggressiveness. A process
could perform computations based on incomplete information,
but not pass on the results of this computation until it can be
guaranteed that the results will not have to be rolled back. This
would ensure that all rollbacks are strictly local and thus there
would be no cascading rollbacks. We call this approach local
rollback.

This paper introduces and explores the concept of a local
rollback mechanism. We describe a modification to SRADS
[Reyn82], an existing synchronization protocol, that allows for
more locally aggressive processing. In particular, processing
based on incomplete information is allowed, but the results of
this computation are not passed along until it can be guaranteed
they will never have to be rolled back. This allows controlled
aggressive computation without the possibility of cascading
rollbacks and with potentially less memory requirements than a
completely aggressive approach.

We begin with an overview of the SRADS protocol.

SRADS

SRADS is a discrete event simulation protocol designed
primarily for deterministic models where potential message
arrival times are predictable. Examples of such models include
logic networks, some queuing systems and generally any sto-
chastic system that can be discretized. Studies performed by
[ReKu86], [DaRe83], [Nico84] and [O’Hal83] have shown that
SRADS performs quite well for this type of system.

In SRADS a process that may send a message to another
process is termed a writer and a process that may receive a
message is termed a reader. Note that a process may be both a
reader and a writer. A reader is required to send a poll to its
writers at regularly scheduled intervals. Polls are scheduled at
the times the reader predicts it may receive a message from the
writer. The polling mechanism is discussed in detail in the next
section. As will be seen, the performance of the simulation is,
to a large extent, dependent upon the ability of the reader to
predict potential message arrival times. It is obvious that the
polling mechanism requires that a reader know a priori the
processes with which it may communicate. SRADS thus works

best with a static communication topology, although there are
some cases in which it could work with a dynamic one.

Polling Mechanism

The polling mechanism in SRADS is used to both syn-
chronize readers and writers, and to advance the simulation
time of the reader in the absence of other available information.
As mentioned above, a reader is required to poll its writers at
regularly scheduled intervals. The timestamp of the poll event
shows the current simulation time of the reader. After the poll
has been issued, the reader blocks until the writer responds with
a message (an acknowledgement) showing that it has advanced
its simulation time to at least that of the reader. The poll is thus
used to synchronize readers with their writers, ensuring that a
reader does not get arbitrarily ahead of its writers.

Note that a reader may have enough information locally
to be able to avoid a scheduled poll. This would be the case if it
had received a message from a writer with a timestamp greater
than the scheduled poll time. In this case the reader knows that
the writer will not be able send a message with a timestamp ear-
lier than the poll time and the reader may therefore proceed.

In addition to synchronizing processes, the polling
mechanism also aggressively advances the simulation time of
the reader in the absence of any other information. If the
reader’s next scheduled event is a poll, it will go ahead and
advance its clock up to the poll time. The reader will then block
and wait for a response from the writer. The reader assumes
the writer has advanced its clock to at least this time, and
blocks until it receives confirmation of this fact.

The use of the polling mechanism to both synchronize
processes and aggressively advance simulation times can lead
to a reader receiving a message in its logical past. This
phenomenon is termed time slip and is caused by the aggressive
assumptions made by the reader. The first assumption is that
messages will only arrive at regularly occurring intervals.
Using this assumption the reader only synchronizes with a
writer at poll times. Between poll times readers and writers pro-
gress at their own rates. The second assumption is that it is
acceptable to advance the clock of a reader to the next poll
time. This is again based on assumptions about potential mes-
sage arrival times. The reader is advancing its clock to the time
of the next anticipated message arrival.

Note that SRADS does not quite fit into the
"conservative"/"optimistic" dichotomy in that it does use block-
ing for synchronization but also allows for some aggressive
processing. The polling mechanism is aggressive in that it
makes assumptions as to the logical time of a writer and about
potential message arrival times. It is conservative in that a
reader must block until it knows for certain that the writer has
progressed at least up to the time of the poll.

The following example should clarify how time slip can
occur. In the next section we show how the addition of the local
rollback mechanism can eliminate most of these problems.

Example 1

Consider a system consisting of three processes as
shown in figure 1. Assume the application designer has deter-
mined with high probability that both processes A and B will
send messages to process C at five time unit intervals. Process

A
�
�
�
��������������������������

�
�
�

�����������������������

B
�
�
�
��������������������������

�
�
�

�����������������������

C
�
�
�
��������������������������

�
�
�

�����������������������

FIGURE 1. Example Network.

C will thus have a poll scheduled to both A and B every five
time units.

Assume process C has sent a poll to both A and B at
time 5 and is blocked waiting for their reply. Some time later A
sends an acknowledgement to the poll showing that its logical
clock is at time five. Before process B responds to the poll
assume that process A sends an event message with a times-
tamp of nine. Note that process C cannot accept this message
until it receives a response to the poll it issued to B.

Assume that some time later process B responds to the
poll indicating that it has advanced its clock to time five. Pro-
cess C will now go ahead and accept the event message it
received from A. This is because C has completed the syn-
chronization with B at time five, and does not have to synchron-
ize again until time ten, the next scheduled poll time. It is now
possible that B will send C a message between time five, their
last synchronization time, and time nine, process C’s current
simulation time. In this case the message arrives in C’s logical
past. This late arrival is an example of time slip.

It should be noted that time slip does not occur if the
protocol designer can accurately predict possible message
arrival times. As discussed above, SRADS is expected to per-
form best in models where this assumption is met. There is evi-
dence to suggest that even when the message arrival times can-
not be predicted that time slip is not as severe a problem as one
might imagine. In [Theo84] it was shown that in the case of
queuing networks time slip had little effect on mean value
statistics.

SRADS WITH LOCAL ROLLBACK (SRADS/LR)

SRADS, as presented above, requires a process to block
at poll times unless it can be determined locally that a writer
has progressed at least to the time of the poll event. If a poll
must be issued the reader is forced to remain idle until the poll
has been answered. Note that the process may receive messages
from other writers while it is blocked on the poll. In the original
version of SRADS these messages cannot be processed as there
is no mechanism to correct any out of sequence computation
that may result from this aggressiveness.

SRADS can be modified to allow aggressive processing
while a reader is blocked on a poll. To facilitate this aggressive-
ness a rollback mechanism is employed. The results of aggres-
sive processing are however not sent immediately. The process
must wait until it has enough information to guarantee that any
results that it passes along will have timestamps that are

monotonically non-decreasing. Thus it cannot process a mes-
sage aggressively and immediately send the results of the pro-
cessing if it is possible that another message may arrive at a
later time that would cause the computation at the current pro-
cess to be invalid. Thus any message sent will not, by itself,
cause the receiving process to have to rollback (the receiving
process may have to rollback if it processes the message
aggressively). This guarantees that all rollbacks will be strictly
local. The example below should clarify these ideas.

Example 2

Again consider the system shown in figure 1. Assume
that process C has polls scheduled to A and B at five time unit
intervals. Consider the same scenario discussed in Example 1.

Process C has a poll outstanding to both A and B. Pro-
cess A responds to the poll and then subsequently sends an
event message with a timestamp of nine. Without the local roll-
back mechanism C must wait to hear from B before it can pro-
cess the message from A. With the local rollback mechanism C
can now go ahead and aggressively process the message from A
even though B has not yet responded to the poll. Process C will
not, however, send the results of this computation along until it
has enough information to ensure that the results will not have
to be rolled back. Thus the results will not be sent out until pro-
cess C can obtain more information as to the logical time of
process B.

If process B sends C a message with a timestamp less
than nine, then C can rollback to the earlier time and process
the messages in the correct order. If process B sends C a
response indicating that its logical clock is up to at least time
nine, then the results of the aggressive computation can be sent
out. If B responds with an acknowledgement showing its clock
has advanced to some time between time five and nine, then C
must wait for B to progress further in simulation time before it
can send out the results of the computation.

Discussion

Note the basic difference between a local rollback
mechanism and the more aggressive Time Warp. With a local
rollback mechanism all rollbacks are strictly local and thus
there are no cascading rollbacks. In Time Warp messages based
on aggressive processing are sent out to other processes. If it is
discovered that the computation is incorrect an anti-message is
sent to cancel the original message. This anti-message may
cause the receiving process to rollback which may in turn have
to send its own anti-messages causing further rollbacks. In
SRADS/LR a message that is sent will never have to be can-
celled at a later point. Thus there are no cascading rollbacks in
this approach. An interesting research question is how a local
rollback scheme will perform compared to Time Warp.

One of the primary advantages of SRADS/LR is that the
rollback mechanism is not required to prevent deadlock.
SRADS by itself has been proven deadlock free [Reyn82].
This allows for two very important options. First the process
can refuse to continue to process aggressively if it is running
out of memory. Thus the process can determine locally the
amount of memory it will require for state saving. Second, the
process can modify its aggressiveness based on a history of the
frequencies of rollbacks, for example. It can therefore make
local decisions about the advantages of aggressive processing.

It can, for instance, decide to continue to aggressively process
messages from one source but not from another. These options
are not available when the rollback mechanism is required for
deadlock prevention.

It should also be noted that in the case where the proto-
col designer cannot predict potential message arrival times with
complete accuracy that the local rollback can help control time
slip. In Example 2 it was shown how the local rollback mechan-
ism corrects messages arriving in out of order sequence
between poll times.

The local rollback mechanism can, in certain cir-
cumstances, also correct time slip caused by a reader aggres-
sively advancing its clock to the next scheduled poll event.
Referring to Example 1, time slip can occur when a reader
advances it clock to the next poll time and then receives a mes-
sage in its logical past. The process can back up its clock and
accept the earlier message if it has not answered a poll itself
based on the time to which it had aggressively advanced its
time. The reason that a process cannot rollback before a time
with which it has answered a poll is that to do so would invali-
date information it had sent to another process. This invalida-
tion of information contradicts the basic premise of local roll-
back: A process only sends information to another process that
it will never retract.

PERFORMANCE ISSUES

We present an informal assessment of the expected per-
formance of SRADS/LR as compared to one exhibiting
unbounded aggressiveness and risk (unbounded "optimism").
The following variables are essential to an assessment of this
difference and are meant to represent the magnitudes of the
differences in the costs between the two approaches. Each can
be considered in units of wallclock time.

� LO: lost opportunity cost. This measures how much could
be gained if aggressiveness and risk were unbounded as
opposed to the way they are bounded in SRADS/LR.

� DA: deadlock avoidance cost. SRADS/LR employs a pol-
ling mechanism as described above. An unbounded
approach has none.

� SS: state saving costs. SRADS/LR can control how much
state saving is done on a continuous scale from none to as
much as is required for unbounded local aggressiveness.
An unbounded approach must have some state saving and
part of the frequency of state saving will be dependent on
how imbalanced the system is.

� RC: rollback costs. We expect a decrease in rollback fre-
quency in SRADS/LR relative to the costs in an unbounded
approach. This variable includes only those costs local to
processes.

� IR: cost of inter-processor rollbacks. SRADS/LR would
have none. Unbounded approaches are designed to accom-
modate them. This variable measures the cost of carrying
out interprocessor rollbacks (e.g. an anti-message system as
in Time Warp).

A
�
�
�
������������������

�
�
�

���������������

B
�
�
�
������������������

�
�
�

���������������

�����������������������

�����������

�����������������
�
�
�
�
��

�
�
�
�
�� �����������������

...............

FIGURE 2. Network for Protocol Comparison

SRADS/LR will exhibit better performance when the following
inequality holds:

LO + DA < SS + RC + IR

With sufficient activity level (see [Nico89]) we can
argue that DA and IR can be negligible since they are primarily
message passing costs and can be overlapped with processing.
SS can be considered negligible if we assume a separate state
saving device as proposed in [Fuji88]. Thus, the remaining,
dominant costs are LO and RC. In figure 2 we demonstrate a
network in which RC can be made arbitrarily larger than LO,
assuming that state saving is done to secondary storage, thus
creating non-negligible state restoration costs.

In figure 2 we assume that process A sends late mes-
sages to process B with a high probability, thus creating a low
lost opportunity cost. Given this, the difference in rollback
costs, RC, is high for the following reason. With SRADS/LR
the cost of recovering from a late message from A to B is the
cost of doing a rollback at B only. Subsequent messages sent
from B into the cyclic subnetwork will have processing costs
associated with them, but no rollback costs. An unbounded
approach will encounter a sequence of rollbacks in the subnet-
work, given that B had processed messages from the subnet-
work and passed the results of processing them back into the
subnetwork. It is likely that some of the rollback activity will
overlap with processing in processes that have already rolled
back. However, if the cost of event processing is significantly
less than the cost of rolling back, the recovery in the subnet-
work will be dominated by a linear sequence of rollbacks.
Thus, RC will be significant. The difference between RC and
LO can be made arbitrarily large by increasing the percentage
of late messages from A and/or increasing the number of
processes in the subnetwork.

IMPLEMENTATION

We are in the process of implementing SRADS/LR on
the SPECTRUM [ReDi89] Testbed at the University of Vir-
ginia. SPECTRUM is a testbed for parallel discrete event
simulation protocols. The testbed provides a common environ-
ment in which to test various simulation protocols. We
currently have implemented SRADS and Null Messages as well
as many applications. We are in the process of comparing the
performance of SRADS/LR to both original SRADS and Null
Messages on a variety of applications. Future work includes a
comparison with an approach similar to Time Warp.

REFERENCES

[ChMi79] Chandy, K.M. and J. Misra, "Distributed Simula-
tion: A Case Study in Design and Verification of Distri-
buted Programs," IEEE Trans on Software Engineering.,
SE-5,5, May, 1979, 440-452.

[DaRe83]] Davidson, D.L. and P. F. Reynolds, "Implementa-
tion and Performance Analysis of the SRADS Distributed
Simulation Protocol" DAMACS Report No. 83-13, Univer-
sity of Virginia, December, 1983.

[Fuji88] Fujimoto, R., et al, "The Rollback Chip: Hardware
Support for Distributed Simulation Using Time Warp,"
Proc. of SCS Distributed Simulation Conference, 19,3, Jan
1988, 81-86.

[Jeff85] Jefferson, D., "Virtual Time," ACM TOPLAS, 7,3,
July, 1985, 404-425.

[Nico84] Nicol, D.M., "Synchronizing Network Perfor-
mance", Master’s Thesis, University of Virginia, March
1986.

[Nico89] Nicol, D.M., "The Cost of Conservative Synchroni-
zation in Parallel Discrete Event Simulations", unpub-
lished manuscript, June, 1989.

[O’Hal83] O’Hallaron, D.R., "Analysis of a Model for Distri-
buted Simulation", Master’s Thesis, University of Vir-
ginia, January, 1983.

[PeWo79] Peacock, J.K., Wong, J.W. and E. Manning, "Dis-
tributed Simulation Using a Network of Processors,"
Computer Networks, 3, North Holland Pub., 1979, 44-56.

[Reyn82] Reynolds, P.F. "A Shared Resource Algorithm for
Distributed Simulation," Proc of the Ninth Annual Int’l
Comp Arch Conf, Austin, Texas, April, 1982, 259-266.

[Reyn88] Reynolds, P.F. "A Spectrum of Options for Parallel
Simulation Protocols," Proc of ACM Winter Simulation
Conference, Dec, 1988.

[ReDi89] Reynolds, P.F. and Dickens, P. M., "SPECTRUM: A
Parallel Simulation Testbed",Proc of the 4th Annual
Hypercube Conference, Monterey, Ca., March, 1989.

[ReKu86] Reynolds, P.F. and Kuhn, C.S., "Three Variations
on the SRADS Simulation Protocol," Proc of SCS Eastern
Multi-conference, Orlando, April, 1986.

[Theo84] Theofanos, M. "Distributed Simulation of Queueing
Networks", Master’s Thesis, University of Virginia, Jan.
1984.

