
COMPARATIVE ANALYSES OF
PARALLEL SIMULATION PROTOCOLS

(Revised)

Paul F. Reynolds, Jr.
Christopher F. Weight

J. Robert Fidler II

IPC-TR-89-011
December 6, 1989

Institute for Parallel Computation
School of Engineering and Applied Science

University of Virginia
Charlottesville, VA 22903

This research was supported in part by Jet Propulsion
Laboratory Contract #957721.



COMPARATIVE ANALYSES OF PARALLEL SIMULATION PROTOCOLS

Paul F. Reynolds, Jr,
Christopher F. Weight and J. Robert Fidler II

Institute for Parallel Computation
School of Engineering and Applied Science

University of Virginia
Charlottesville, VA 22903

804/924-1039

ABSTRACT

Currently there is not a significant body of compara-
tive, experimental performance results for parallel simulation
protocols. Nor is there a body of significant analytic studies.
The SPECTRUM Testbed [ReDi89] has been designed to
support the empirical study of parallel simulation protocols
and applications, with the expectation that experience with
the testbed will provide insights into the efficacy of various
protocols and their interplay with classes of applications. We
discuss our experience with the SPECTRUM Testbed, focus-
ing primarily on an observed, unexpected degree of depen-
dency between protocols and applications, and on an unex-
pected, large set of application design options. The latter
gives rise to the definition of a set of application design vari-
ables which describes a large design space. We discuss its
impact on the testbed design and we discuss a limited set of
performance results that we have for selected sets of proto-
cols and applications.

1. INTRODUCTION

We have advocated (See [Reyn88]) the need for recog-
nizing the existence of a spectrum of options for parallel
simulation protocol designs. In particular, there is more to be
considered than a simple optimistic vs conservative view of
protocols: there is an infinity of practical protocol designs.
To complicate matters further, it is very unlikely that one pro-
tocol design is universally optimal. Thus, in order to make
useful statements about the relative performance of various
simulation protocols, we must develop analytic and empirical
tools that allow us to make comparisons in a common frame-
work. The work discussed here concerns the empirical com-
parative analysis of protocols when applied to a set of appli-
cations in a common environment.

To date, other simulation studies have been fairly nar-
rowly focused and inconclusive. Analytic results are begin-
ning to appear (e.g. [Nico89]) but they do not consider impor-
tant application characteristics. Our hypothesis, shared by
many, is that the effectiveness of parallel simulation protocols
will be highly dependent on the applications using them.
Thus, an open question concerns the determination of the sui-
tability of classes of protocols for classes of applications.
The best way to determine this, short of analytic results that
have so far eluded the community, is to study a mix of proto-
cols and applications in a common test environment. SPEC-
TRUM [ReDi89] has been designed to support this sort of
activity. In this paper we report on the experiments we have
conducted on the SPECTRUM Testbed and the conclusions

we have drawn about simulation protocols and their suitabil-
ity for selected applications.

Our experimentation goals are quite ambitious, and not
yet fulfilled. The primary goal of our testbed activities has
been to study protocols and applications in an environment
that facilitated experimentation. We have achieved that, but
not in the manner we originally expected. We have found
that the dependence between protocols and applications is
greater than expected, forcing us to redesign testbed inter-
faces and support routines more than once. This also means
an application designer must be cognizant of the protocols to
be employed. This latter observation is a disappointment
because we had hoped to separate the application and proto-
col design processes more than appears to be possible. We
discuss these results later in this paper.

We wish to identify classes of protocols and classes of
applications for the purpose of our experiments. That will
require insights into applications and protocols, as we explore
below, and it will require feedback from individual experi-
ments conducted on individual applications. So far we have
applied two protocols to three applications. The protocols
represent different degrees of aggressiveness and the applica-
tions represent a spectrum of application types. It is the
latter, application types, where we have learned much about
the interdependence between protocols and applications. For
example, the null message protocol [ChMi79] must be
modified considerably, depending on whether messages can
be consumed, are queued, can be preempted, etc. We discuss
these observations in more detail, also.

We give a brief overview of the SPECTRUM Testbed
next. Details can be found in [ReDi89]. We follow with a
discussion on designing experiments, where we explore the
process of making a testbed such as SPECTRUM provide the
information we seek. Much to our surprise the contents of
this chapter have turned out to represent the most important
lessons we have learned so far. In contrast, our small set of
experimental results have provided far fewer insights. That
will change as we construct and perform experiments based
on the information we present in this section. Following that
we discuss our experience with filters. Filters were a novel
way to construct a testbed for parallel simulations; our experi-
ence with them has been, for the most part, positive. Next we
present a description of the experiments we have performed.
This section is relatively brief, primarily because of
significant process-oriented learning and adapting that took
place early on, as noted above. Finally, we close with



remarks about where we think our approach is going to lead.

application
component��

�
�����������������������������������

�
�

�������������������������������

process manager
�
�
�
����������������������������������

�
�
�

�������������������������������

��
���
�

node manager��
�����������������������������������

�
�������������������������������

LP

sim protocol
design interface�

�
�
����������������������������������

�
�
�

�������������������������������

testbed
library

sim algorithm
designerapplication

��
� ��

�

��
� ��

�

� ������������ ����������� node manager��
�����������������������������������

�
�������������������������������

� �������������������������������������������������� �������������������������������������������������

process manager
�
�
�
����������������������������������

�
�
�

�������������������������������

application
component��

�
�����������������������������������

�
�

������������������������������� ��
���
�

LP

��
� ��

�

��
� ��

�

� �������������������������������������������� �������������������������������������������

. . .

. . .

� �������������������������������������������������

Figure 1. Block Diagram of SPECTRUM Testbed.

2. OVERVIEW: SPECTRUM TESTBED

As noted, SPECTRUM is a testbed for designing and
evaluating parallel simulation protocols. It supports experi-
mentation on different simulation protocols in a common
environment. We have implemented versions on a BBN GP-
1000 and an INTEL iPSC/2. The experiments discussed here
have all been conducted on the BBN GP-1000.

As shown in Figure 1, a simulation protocol designer
approaches the testbed possibly with an application brought
from the outside. A protocol design interface provides a
library of applications as well as a library of support routines
for protocol design experimentation. The designer, with this
support, constructs an experiment using the simulation proto-
col design interface. This leads to the generation of applica-
tion components - pieces of the original application which can
be executed concurrently - as well as a customized process
manager for each application component. A process manager
supplies many of the routines common to all simulations such
as functions for managing time and event queues. An appli-
cation component, a process manager and a node manager
constitute a logical process (LP) in typical parallel simulation
nomenclature. Node managers are provided by the testbed to
support communication among logical processes. This com-
munication can be either a message-based or shared memory
paradigm; the node manager is optimized for the underlying
hardware.

The simulation designer can implement a simulation
protocol by associating filters with the routine operations per-
formed in the process manager. For example, with a
specification such as:

On post-event apply(P 1, P 2);

the designer can indicate a desire to have procedures P 1 and
P 2 called each time an application component calls post-
event in the process manager. If the simulation protocol
designer wishes to use a simulation protocol residing in the
testbed library then a set of filters and procedures will be sup-
plied automatically. Customization may be required depend-
ing on how much knowledge of the application is required.

In the same vein a designer can mix library-provided
filters and procedures with customized functions and pro-
cedures. Even in the case where an entirely new protocol is
to be tested, we expect many library routines will be useful.

Within an LP it is assumed that an application com-
ponent calls upon the process manager for time and event
maintenance. Among other things, the application com-
ponent has access to the following operations in the process
manager:
� initialization - each process manager initializes a local

clock and an event queue.
� post-event - post an event for future processing. A

future simulation time and the event to be simulated
must be provided.

� get-next-event - get the next event for processing,
given that the current simulation time is τ.

� time-advance functions - advance the current simula-
tion time to time τ.



These operations provide opportunities for a protocol
designer to affect event ordering, non-event support, etc., for
the application component through the process manager.
Also, they provide a useful form of separation between an
application component and the activities associated with cus-
tomizing parallel simulation protocols. In cases where appli-
cation data objects must be accessed we require they appear
in an externally referenceable data area.

A fifth operation is supplied by the process manager,
this time to the node manager:

� post-message - post a message from another LP onto
the local LP’s event queue.

This operation supports inter-LP communication and, as
noted above, can have an underlying implementation that is
optimized for the host machine.

The Pi in the filters can be arbitrary procedures.
Information for filter procedures comes from the following
sources: 1) contents of the action requests and responses that
occur between the application component and the process
manager, 2) data placed in the common data areas of the pro-
cess manager and the application layer and 3) messages that
pass between the node manager and the process manager.

Filters, as defined, provide the modularity and organi-
zational power necessary to make a testbed useful. Our
experience to date has shown that filter implementation of
protocols provides a disciplined approach to protocol design.
As noted above we have found that while filters work, they do
not provide a simple separation between applications and pro-
tocols. We have observed more dependencies (of a perfor-
mance nature) than we had originally expected. Nonetheless,
filters work. We discuss this more later.

We describe a set of filters for implementing the
SRADS protocol [Reyn82] as an example of how filters work.
The SRADS protocol assumes that receivers of messages can
always predict the times when messages may arrive from
other LP’s. SRADS is very well suited for applications
where such predictions can be made, or where the inaccura-
cies introduced do not affect critical metrics adversely.

Synchronization among LP’s is enforced by limiting
access to shared facilities (SF’s), where an SF is a buffer that
exists between an LP that can write to it and an LP that can
read from it. A reading LP uses a special event called a poll
in order to attempt access to an SF. At given intervals, deter-
mined by the protocol designer, (and dictated by the applica-
tion) a reader sends a poll to a writer, requesting information
about the writer’s state. The writer will respond, when its
state allows it, either with a message with a timestamp equal
to the reader’s polling time or with an indication that no
events are forthcoming at that time. Before sending a poll of
this nature, the reader first checks the SF to determine if the
writer has already generated a message for the poll time. If
so, the poll is unnecessary and not performed.

When performing a poll a reader has advanced its
simulation time to that poll time, even though it may not yet
have information from the writer about the potential arrival of
a message from the writer at that time. The importance of
this observation is that the reader will respond to polls sent to
it as though it has advanced its time to that simulation time.
As long as LP’s impose a non-zero delay on all events (i.e. an

arriving message representing an event at time, τ, will depart
the LP at a time greater than τ), SRADS can be an accurate
protocol (all events are simulated at the correct simulation
time). As noted, this accuracy is dependent on the correct
selection of poll times as well.

If an LP can receive a message from another at a time
other than one of its poll times, or if messages can pass
through an LP with no delay, then it is possible for LP’s to
receive messages in their logical past. However, messages
will always arrive a bounded amount of time in a reader’s
logical past at the very worst. We call this potential inaccu-
racy time slip. Since the occurrence of time slip can be con-
trolled by a judicious choice of polling frequency, time slip is
not as severe a problem as one might imagine.

An LP attempting to write never blocks unless it
encounters a full shared facility. This assumption, coupled
with polling is sufficient for a deadlock-free protocol.

Given a partitioning of a simulation, shared facilities
would exist on each potential communication path between
any pair of LP’s. This means there may be many SF’s
between a given pair of LP’s. SF’s would not need to be
known to the applications programmer; they can be created
by the protocol designer. Assuming these SF’s are initialized
by applying a filter when each application calls its respective
process manager’s initialization routine, the following filter-
ing activity is required.

In addition to initializing SF’s, the initialization rou-
tine needs a filter to schedule the set of next polls for all of
the LP’s that can write to the initializing LP. Once initially
scheduled, polls are maintained by get-next-event filters.

The post-event routine needs a filter to determine if an
event is for a part of the application residing in another LP. If
it is, there is an SF in another LP in which the event should be
placed. The filter routine should request that the local node
manager place it there. The filter routine should block if there
is an indication the target SF is full and return otherwise. If it
blocks it will unblock when a filter associated with the target
LP’s get-next-event routine makes the SF not full.

The get-next-event routine needs a filter to determine
three things: 1) if an event is coming from an SF (i.e.
another LP), 2) if an event is a local poll and 3) if an event is
a poll from another LP. If the event is a value from an SF,
the filter should pass it on to the local LP and update local
information about the sending LP’s time. If the event is
removed from a full SF, the filter sends a proceed message to
the blocked LP.

If the event is a locally generated poll, the filter should
determine if the poll is necessary. It is if there are no future
scheduled events from the LP needing to be polled. In that
case the filter initiates sending a message to the appropriate
LP and blocks the local LP until a response is received.

If the event is a request for a poll from another LP, a
response is sent, thus allowing that LP to unblock. The next
event in the local LP is then processed.

The post-message routine needs a filter to detect polls.
Upon receiving a poll, this routine inspects the receiving LP’s
current simulation time. If it is no less than the polling LP’s
time then a proceed signal is returned to the polling LP.



Otherwise, this filter schedules an event for the receiving LP
to send a proceed message when its simulation time does
equal or exceed the requesting LP’s time. The post-message
filter also processes proceed signals coming from other LP’s.
When a proceed is received the local LP is unblocked and
processing resumes.



protocol type application type

null messages
SRADS Stochastic w/ w/o balance, uniformity
appointments X Deterministic w/ w/o balance, uniformity
locally aggressive
time warp
moving time window

Figure 2. An Initial (Naive) Set of Experiments.

We have designed and implemented filters for other
protocols as well, including null messages [ChMi79] and
SRADS with local rollback [DiRe89]. As we have indicated
above, we have had to modify filters as we introduced new
applications. It is too early to tell if filters will stabilize or if
they will have to be continually updated as new applications
are brought into the testbed. We will know better after we
gain more experience with the testbed.

3. DESIGNING EXPERIMENTS

Early on we envisioned a set of experiments to be con-
ducted on the testbed. Figure 2 shows the initial set of exper-
iments we considered. The protocols are a representative set,
but certainly not complete. The application types were meant
to be fairly complete: stochastic representing queueing sys-
tems, pool balls, hockey pucks, ant farms, battlefield simula-
tors and the like, and deterministic representing logic net-
works and stochastic systems that could be adequately
represented by deterministic ones. The uniformity and bal-
ance factors were meant to capture process computational
requirements and uniformity of distribution of process activa-
tions, resp.

As we began implementing protocols (null messages
and SRADS initially) we brought up three applications to test
them: a queueing network, a logic network and a battlefield
simulator. It became apparent very quickly that our view of
the variables in applications (e.g. stochastic vs. deterministic)
was too narrow. We had overlooked the importance of
whether or not messages are queued, consumed or delayed
among other things. It turns out these variables have
significant impact on the performance of various protocols
(including whether or not they work at all). At this point we
have identified the following as application variables that
affect key decisions in protocol implementations:

� determinism
� queueing
� processing delays
� causality
� state change characteristics
� balance
� activity level
� connectivity

Determinism measures the degree to which an applica-
tion exhibits deterministic behavior. Deterministic simula-
tions are generally regarded as those which, when run on a
uni-processor, always produce the same results for the same

inputs.

An application that has queueing has an "arrivals and
departures" paradigm where the time the processing of an
event at an LP takes is dependent on the presence of other
events. Queueing systems have queueing; logic network,
hockey puck, pool ball and ant farm simulations do not.

A processing delay occurs if an event emitted by an
LP has a simulation time greater than the arriving event that
caused it to occur.

Causality is present in an application if every event
arriving at an LP leads to an identifiable subsequent event
leaving the LP. Variants include consumption and produc-
tion: production occurs when messages can be created by an
LP and consumption occurs when an LP takes in a message
without, as a result of that action, subsequently sending one
on to another LP.

State change characteristics measure how objects
change state in a simulation: how many objects change and
with what frequency. This variable is critical in determining
an optimal state-saving strategy in an aggressive protocol.

Balance is a measure of uniformity of processing
requirements. Balance depends on LP computational require-
ments and LP activation frequencies. Good balance is a func-
tion of how well an application can be partitioned for parallel
processing.

The activity level in a simulation is a weighted meas-
ure of the number of LP’s that are busy at any instant of time.
We may speak of mean and variance of activity level as well
as minimum and maximum activity levels for individual
LP’s. Activity level subsumes the notion of uniformity (uni-
formity of LP processing requirements) as defined above and
used in Figure 2.

The connectivity of an application is a measure of how
much events in one LP can directly affect events in another.
Connectivity is multi-faceted: direction of information flow
and topology are two components.

Most of these factors are not new. We have studied
and reported the effects of the last two in previous papers
(e.g. [ReKu86]) as have others. The significance rests in their
impact on protocol design and simulation performance. As
we developed filters for protocols we discovered that as we
added new applications the importance of these factors came
to light. We discuss some of these revelations next.

Initially we developed the null messages protocol and
a simple queueing network application to test it. It is well
known that the null messages protocol can lead to a



proliferation of null messages if some annihilation algorithm
is not applied. After careful consideration we decided on an
algorithm where any message (event or null) arriving at an LP
would annihilate any null messages queued up from the same
LP. This worked fine for queueing networks but failed miser-
ably when we tried our battlefield simulation where messages
could be consumed (lack of message causality). Messages
that consume other messages and then die quickly lead to
deadlock in the null messages protocol. We tried running the
battlefield simulation with no annihilation scheme but the sys-
tem became so flooded with null messages that it slowed to
an unacceptable pace. Finally, we implemented a scheme
where only null messages can annihilate other null messages.
That scheme works, but it is clearly less than optimal for a
system with causality and queueing. This was the first of
many discoveries relating performance and application-
dependent protocol design.

The null messages protocol, by definition, assumes a
processing delay (minimum processing time). Our imple-
mentation of null messages worked fine for our queueing and
logic network applications. It failed with the battle simulator
because that application sends messages with zero delays.
We note that the failure of null messages was due to our
attempt to apply it in an environment which violated one of
its basic assumptions: all messages incur a non-zero delay.
The effect was that we had to modify our battle simulator (all
messages incur minimum delays when passing through an
LP) in order to make it work with null messages. The general
effect was that an application had to be modified in a
protocol-dependent way. This, of course, affects the testbed
goal of low-effort mixing of protocols and applications.

As noted in the previous section, the SRADS protocol
is designed for applications where potential message arrival
times can be predicted or where the inaccuracies produced by
inaccuracies in the predictions do not adversely affect simula-
tion metrics. SRADS is well suited for deterministic systems,
as our preliminary performance statistics given in a later sec-
tion indicate. The filter descriptions given in the previous
section work for a logic simulation. They also work for a
simulation of a queueing system but not as well. In any sto-
chastic system, where potential message arrival times cannot
be predicted precisely, there is a modification to SRADS that
makes it much more likely to process messages at the correct
time. This modification is to require a reading LP to wait for
all potential writers to have a simulation time that equals or
exceeds its own before continuing to process internal events.
However, as with null messages above, this is an
application-dependent decision affecting performance.

Recently we began implementing a variant of SRADS
in which we allowed LP’s to do locally aggressive processing
- meaning they could act on conditional knowledge [ChMi87]
but not pass messages to other LP’s if the content of those
messages was dependent on conditional knowledge. We have
dubbed this approach "SRADS with Local Rollback:
SRADS/LR". As with Time Warp [JeSo82], [Jeff85] and
other aggressive protocols, SRADS/LR requires a repair
mechanism in the event the aggressive processing turns out to
have assumed conditions that were not true. Rollback in turn
requires a state-saving mechanism. State saving can be a
very expensive proposition, as has been discussed in
numerous Time Warp papers. We have found that it can also

be application dependent if performance is a primary con-
sideration. For example, some computations can be very
compute intensive between significant state changes and oth-
ers not. As a result there are cases where delta state-saving -
saving only those objects which have changed state - could
be significantly more cost effective than the saving of the
entire state of a computation. The latter, of course, is the
most general approach, but we can see cases where it would
not be the most efficient, whether implemented in hardware
or software. Without sophisticated hardware, delta state-
saving must be done in an application-dependent manner.
Furthermore, in those cases where the saving of an entire
state is deemed most efficient, the optimal frequency with
which entire states are saved can be application-dependent.

These examples illustrate application dependence in
protocol design if performance (including deadlock freedom!)
is a primary consideration. What it means for the testbed is
filters must be designed in a fashion that allows inclusion or
exclusion of features so that a protocol can be customized for
a given application. What is not yet clear is how well this can
be done. A better understanding will come with more experi-
ence with the testbed.

In Figure 3 we present the basis for a revised set of
application types. In place of the three-variable design space
we presented in Figure 2, we now have an eight-variable
design space. The three variables, state-change, activity-level
and connectivity are each multidimensional. For example,
state-change can have frequently changing states with many
state objects changing, or frequently changing states with few
state objects changing, etc. The variable, causality, can have
more bindings than we’ve shown (as can most of the other
variables). For example, an application may have combina-
tions of the three choices listed.

The combination of the options for the eight design
variables shown in Figure 3 describes a set of 9216 unique
application variations. Factoring in the variations one can
describe just for the protocols listed in Figure 2, as well as
questions regarding scale (performance dependence on
number of processors) and statistical significance it is easy to
see that one could easily construct on the order of millions of
experiments. Even so we have not considered the full impact
of variations in protocol design.

In [Reyn88] we showed nine design variables that
were applicable to parallel simulation protocols. In essence,
they formed a basis set for protocol construction in the same
way that the variables shown in figure 3 form a basis for
application construction. In the case of protocols, many of
the design variables had essentially an infinite variety of pos-
sible bindings. Even, if we assume for the moment that each
protocol design variable has only three bindings, that still pro-
duces nearly 20,000 different variations on protocols.

Without the common framework provided by a testbed
such as SPECTRUM, we would have to consider all of the
factors related to inter-processor communication times, pro-
cessor interconnection topology, variations in event list
maintenance routines and others. If those factors are eventu-
ally deemed critical for comparing various protocols, SPEC-
TRUM will support experimentation with them. In the mean-
time, we continue our analysis assuming these factors are
constant.



DETERMINISM
- deterministic event processing.
- stochastic event processing.

QUEUEING
- first-come-first-serve queueing
- pre-emptive queueing
- no queueing

PROCESSING DELAYS
- events can be processed in zero simulation time
- all events require non-zero simulation time

CAUSALITY
- one-to-one correspondence between

messages entering/exiting LP’s
- messages can be consumed
- messages can be spontaneously created

STATE CHANGE CHARACTERISTICS
- state changes occur often } X { many state objects change
- state changes occur infrequently } X { few objects change

BALANCE
- LP’s activated with ~equal frequency
- LP’s activated with unequal frequencies

ACTIVITY LEVEL
- LP’s have ~equal mean processing } X { high variance

requirements }
- LP’s have unequal mean processing } X { low variance

requirements }
CONNECTIVITY
- (nearly) strongly connected }
- weakly connected } X { unidirectional message flow
- presence of cycles } X { bidirectional message flow
- presence of forks and joins }

Figure 3. Basis for Application Types

We have mentioned protocol design options, applica-
tion design options, testing for scalability and statistical
significance as design variables, assuming that all other vari-
ables are held constant. The combination of these factors
suggests, assuming ten tests for scalability and ten tests for
statistical significance, that there could be on the order of ten
billion experiments to be performed. This observation is
what led us to suggest in our introductory remarks that exper-
iments with classes of protocols and classes of applications
was a reasonable (nay, necessary) goal. Without grouping
into classes, the number of experiments to be performed is
unmanageable. The challenge that remains is the
identification of those classes.

Classification is possible. We have observed for
example that if one works with a deterministic application,
the other variables shown in Figure 3 are essentially
irrelevant. It turns out a deterministic application partitioned
across some number of processors will proceed at no more
than the rate of the processor that has the most work to do.
The other variables become important only if bindings slow
down the simulation any more. Our initial experiments show
that one protocol may dominate another in most if not all
situations. As we learn more facts of this nature, we will
again be able to scale down the extraordinarily large number
of experiments we appear to face.

We discuss our experimental results in Section 5.
Before that we discuss our experience using filters.

4. EXPERIENCE WITH FILTERS

We demonstrated earlier that a key to making the
SPECTRUM Testbed easy to use is the concept of imple-
menting protocols using filters on a selected set of simulation
operations (initialize, get-next-event, post-event, time-
advance and post-message). These operations are described
in detail in Section 2. Having gained experience implement-
ing three protocols, we discuss the practicality of this
approach.

On the negative side we have observed that the design
of protocols using the SPECTRUM Testbed can be conceptu-
ally difficult due to the limited access points the five opera-
tions provide to the protocol implementer. This is com-
pounded somewhat by the layered nature of the testbed.
There are times when certain aspects of protocol implementa-
tion would be more straight-forward if more access points
were provided. Our initial observations were that debugging
appeared to be more difficult and overall program flow
appeared to be more difficult to follow. One additional
undesirable result was that this organization presented a steep
learning curve to new testbed users.



applications

Queue Network Logic Network Battlefield Sim
design vars

DETERMINISM stochastic deterministic deterministic
QUEUEING FCFS queueing no queueing no queueing
PROC DELAYS all non-zero all non-zero some zero
CAUSALITY one-to-one one-to-one production and

consumption
STATE CHANGE frequent/few frequent/many frequent/many
BALANCE balanced balanced balanced
ACTIVITY LEVEL ~equal/low var ~equal/low var ~equal/low var
CONNECTIVITY weak/uni-dir weak/uni-dir strong/bi-dir

Figure 4. Implemented Applications and Their Bindings

It may be that we were expecting too much from the
testbed. It is natural for experienced programmers to want to
implement something they understand well in the most direct
manner. The selected operations force a discipline that, in the
long run, may produce the most maintainable code. We have
observed that implementation of the third protocol was
greatly facilitated by the existence of the filters for the other
two protocols. There was a great deal of borrowing of con-
cepts and code, which suggests that the SPECTRUM library
may be as useful as we had hoped. It is significant that one
programmer has implemented three protocols in two months.

Also significant is the fact that filters applied to the
five operations that support filters have been sufficient to
implement the three protocols we have implemented. While
the use of filters may have occasionally run counter to the
instincts of a knowledgeable programmer, they have not
stood as a significant impediment, or worse, been inadequate.

Not to be overlooked are the benefits gained from
machine independence and the existence of common simula-
tion functions. The testbed provides a common virtual simu-
lation engine that hides a significant amount of detail without
introducing perceptible performance degradation.

In short, we continue to be convinced that filters are
the best way to implement protocols for the testbed. They are
constraining in that they limit a programmer’s implementa-
tion options, but in return they, in the context of the testbed,
provide abstraction, access to a reliable simulation engine,
and, as the collection of filters grows, a reusable repository of
tested protocol functions.

5. A SMALL SET OF EXPERIMENTS

Currently, we have three applications and two proto-
cols running on the SPECTRUM testbed. We have a third
protocol, SRADS/LR, implemented but not fully operational.
We emphasize that operational has a significant meaning
here: a protocol is operational when it can work with any
application in the testbed library. SRADS/LR currently
works with the logic and queueing applications but not the
battlefield simulator. The other two protocols work with all
three applications. We expect to have additional protocols
and applications in the near future and expect to report on
them in a future paper.

The three applications we have implemented are: 1) a
queueing network, 2) a logic network and 3) a battlefield
simulator. Each of these represents a selected set of bindings
for the design variables given in Figure 3. We show these
bindings in Figure 4. As can be seen from Figure 4, there is
no pair of applications that differs in less than three of the
design variable bindings. We note this because it suggests
there are many applications that lie on points "between" these
more popular applications in the application design space we
have defined here. The significance of these missing points
remains to be determined.

The protocols we have implemented and made opera-
tional are null messages [ChMi79] (See also, [PeWo79].) and
SRADS [Reyn82]. Both protocols work with the three appli-
cations described above. Given our experience with incor-
porating new protocols and applications into the testbed, we
believe the filters implementing these protocols are rapidly
approaching the generality we need for them to work with
any application. (That is, generality without sacrificing
efficiency. The filters have been designed to allow incorpora-
tion of functions as needed to satisfy the requirements of par-
ticular types of applications.) As we develop an appreciation
for application requirements we expect to be able to do a
significantly better job of specifying protocols for all possible
applications before we implement the protocols. Our experi-
ence with implementing SRADS/LR certainly suggests that to
us.

Due to difficulties encountered on our GP-1000 the
experiments we have been able to perform have been narrow
in scope. We have encountered problems with time-
switching LP’s on individual processors. As a result we have
had difficulty performing typical parallel simulation experi-
ments where constant-size problems are run on varying
numbers of processors. We have had to settle for a mix of
running varying-size problems on varying numbers of proces-
sors and running some experiments where we were able to
coalesce the functions performed in different LP’s, thus pro-
ducing the constant-size problems on varying numbers of pro-
cessors that we desired. In the cases where we had to vary
the size of an application, we made certain we kept the same
bindings (as shown in Figure 4) for the various sizes of indi-
vidual applications. This was easily done in the case where
we kept the problems a constant size.



Experiments Trend with Processor Increase

variable problem sizes [1.50, 0.96] --> [0.81, 0.81]
fixed problem sizes [1.28, 1.09] --> [0.78, 0.08]

Figure 5. Trends in SRADS / Null Messages Relative Performance.

In Figure 5 we show the results of a set of experiments
in which we compared the performance of SRADS with that
of null messages. As just discussed, we performed one set of
experiments with an application that increased in size as we
added processors (a queueing network). The second set of
experiments consisted of a fixed size application (logic net-
work) performed on a varying number of processors. In each
of the queueing network experiments we varied the number
of jobs in the network. In the logic simulations we varied the
number of inputs presented to the network.

The results shown in Figure 5 show a trend in which
SRADS appears to perform better than null messages as the
number of processors increases. The values in brackets show
the range of relative performance times, SRADS to null mes-
sages, for varying numbers of jobs (inputs). For example, in
the variable problem size experiments we saw a range of per-
formances where, on a small number of processors (three),
the SRADS finishing times ranged from 1.5 that of null mes-
sages to 0.96 that of null messages. In the same set of experi-
ments the performance of SRADS on a larger number of pro-
cessors (18) was essentially a constant 0.81 that of null mes-
sages.

We stress the preliminary nature of any conclusions
we may draw from these results. We feel we have enough
data to consider exploring a trend: as the number of proces-
sors increases, SRADS performs as well as or better than null
messages. However, as we showed in section 3, there is a
large number of application types, any one of which could
negate the trend we see initially. Before declaring any trend
conclusively, we intend to explore analytic support for it. We
believe that is the most productive way, and the only reason-
able way, to use the testbed.

6. CONCLUSIONS

We set out to determine experimentally how well vari-
ous protocols performed with various applications. A key
message in this paper is: we have learned far more from the
process than we have from the outcomes of the experiments
themselves. We had strongly suspected a dependence
between applications and protocols. What we had failed to
foresee was the number of factors - we’ve called them appli-
cation design variables here - that had to be considered in
applications. The importance of the comment that we need to
identify classes of protocols and classes of applications has
been made very clear. Without this coalescing, the task of
studying protocols and applications is too huge. We are not
prepared to conduct the billions of experiments we identified
in section 3.

There is hope. Our early experiments have shown that
SRADS tends to perform increasingly better than null mes-
sages as we increase the the number of processors and
exceedingly better in some cases (logic networks). This

suggests a trend that should be explored analytically. We
expect other such trends to show up as we continue adding
and testing new protocols and applications.

There are some simple observations that can be made,
as well, that simplify the task. For example, we know that
deterministic applications can only proceed as fast as the rate
of the processor with the most work to do (assuming no load
balancing). This observation dominates all other considera-
tions; if an application is deterministic, bindings for the other
seven design variables identified in section 3 are effectively
irrelevant.

Are there other such simplifying observations? We
expect there are and we expect that as we proceed with our
experimentation they will come to light. In other cases,
where we identify trends, we will have guidelines for analytic
models. Thus, we see the testbed as a vehicle for supporting
our original goal: understanding protocols and applications,
albeit not by the means we had originally envisioned. Such is
the way of experimental techniques.

ACKNOWLEDGMENTS

This research was supported in part by JPL Contract
#957721. Thanks to Phil Dickens for all of his early develop-
ment work and later support and to Eric Manning and the
University of Victoria for providing an excellent opportunity
to think and write.

REFERENCES

[ChMi79] Chandy, K.M. and J. Misra, "Distributed Simula-
tion: A Case Study in Design and Verification of Distri-
buted Programs," IEEE Trans on Software Engineer-
ing., SE-5,5, May, 1979, 440-452.

[ChMi87] Chandy, K.M. and J. Misra, "Conditional
Knowledge as a basis for Distributed Simulation," Cal-
Tech Report, 5251:TR:87, Sept 1987.

[DiRe89] Dickens, P.M. and Reynolds, P.F., "SRADS with
Local Rollback", submitted to SCS Multiconference,
Wash. D.C., 1990.

[JeSo82] Jefferson, D. and H Sowizral, "Fast Concurrent
Simulation Using the Time Warp Mechanism," A Rand
Note, N-1906-AF.

[Jeff85] Jefferson, D., "Virtual Time," ACM TOPLAS, 7,3,
July, 1985, 404-425.

[Misr86] Misra, J., "Distributed Discrete Event Simulation,"
ACM Computing Surveys, 18,1, March, 1986, 39-65.



[NiRe84] Nicol, D.M. and P.F. Reynolds, "Problem
Oriented Protocol Design," ACM Winter Simulation
Conference, Dallas, Texas, Nov., 1984, 471-474.

[Nico89] Nicol, D.M., "The Cost of Conservative Synchron-
ization in Parallel Discrete Event Simulations", unpub-
lished manuscript, June, 1989.

[PeWo79] Peacock, J.K., Wong, J.W. and E. Manning,
"Distributed Simulation Using a Network of Proces-
sors," Computer Networks, 3, North Holland Pub.,
1979, 44-56.

[Reyn82] Reynolds, P.F. "A Shared Resource Algorithm for
Distributed Simulation," Proc of the Ninth Annual Int’l
Comp Arch Conf, Austin, Texas, April, 1982, 259-266.

[ReKu86] Reynolds, P.F. and Kuhn, C.S., "Three Variations
on the SRADS Simulation Protocol," Proc of SCS
Eastern Multi-conference, Orlando, April, 1986.

[Reyn88] Reynolds, P.F. "A Spectrum of Options for Paral-
lel Simulation Protocols," Proc of ACM Winter Simula-
tion Conference, Dec, 1988.

[ReDi89] Reynolds, P.F. and Dickens, P.M. "SPECTRUM:
A Parallel Simulation Testbed", Proc of 4th Annual
Hypercube Conference, Monterey, CA, march, 1989.

BIOGRAPHIES

PAUL F. REYNOLDS, JR., Ph.D., University of
Texas at Austin, ’79, is currently on sabbatical from his posi-
tion as an Associate Professor of Computer Science and
Director of the Institute for Parallel Computation at the
University of Virginia. He has been a member of the faculty
at UVa since 1980. He has published widely in the area of
parallel computation, specifically in parallel simulation, and
parallel language and algorithm design. He has served on a
number of national committees and advisory groups including
an oversight group for the National Testbed. He has been a
consultant to numerous corporations and government agen-
cies in the systems and simulation areas, and he has been a
Research Associate at NASA, Langley, in Hampton Virginia
since 1985. During the summer of 1989 he was a visiting
member of the faculty at the University of Victoria, Victoria,
B.C., and during the 1989/1990 academic year he will be
visiting NASA Langley and working quietly at home.

Institute for Parallel Computation
Thornton Hall
The University of Virginia
Charlottesville, VA 22901
(804) 924-1039
pfr@virginia.edu


