
Supporting Multilevel Security in Wireless Sensor
Networks

Jongdeog Lee
University of Virginia

jl9eh@cs.virginia.edu

Krasimira Kapitanova
University of Virginia

krasi@cs.virginia.edu

Sang H. Son
University of Virginia

son@cs.virginia.edu

ABSTRACT
In this paper we introduce the concept of multilevel se-
curity (MLS) to the field of wireless sensor networks
(WSNs). As WSNs become more widely-used in mili-
tary, commercial, and home environments securing the
data in the network grows to be a very important issue.
There are many applications, however, which require
more than just protecting the data from the outside
world. Just as in everyday life not every user has access
to all the data, in WSNs it is sometimes necessary to
secure some of the information even from ”inside men”.
Therefore, a multilevel system that would be able to ac-
commodate the different sensitivity levels of the data as
well as the different clearance levels and need-to-know
of the users is needed.

To provide a better understanding of the cost intro-
duced by security we studied three symmetric-key en-
cryption algorithms - AES, RC5, and Skipjack. We
measured their memory and power consumption on both
MicaZ and TelosB sensor nodes. Using those results we
have built the basis for an MLS environment to be used
in WSNs. The MLS component we propose is simple,
flexible, and adjustable to the WSN’s requirements and
constraints.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: Security
and protection; C.2.1 [Network Architecture and De-
sign]: Wireless communication-performance measures.

Keywords

Multilevel security, RC5, AES, Skipjack, Measure-
ments

1. INTRODUCTION
As wireless sensor networks (WSNs) grow to be more

popular and widely-used, security becomes a very seri-
ous concern. Users do not want to reveal their infor-
mation to unauthorized people, since the leaked data
can be used for malicious purposes that could lead to
serious problems. Even a very useful and convenient
system might not be appealing to the users if it is not
secure. However, security in general is stigmatized to
be very expensive. This problem is even more serious in
WSNs due to the limited resources of the sensor nodes.
Nevertheless, since security’s importance is increasing,
researchers in WSNs have turned their attention in that
direction and have implemented several security mech-
anisms to be used in sensor networks. Two example se-
curity mechanisms are TinySec [13] and TinyECC [15].

One of the limitations of the existing security mech-
anisms is that they only support single-level security.
However, users may have different security clearances
and the data transmitted over the radio or stored in
a mote may have different sensitivity. Current mech-
anisms do not support such requirements. Moreover,
there are applications where a multilevel security (MLS)
environment is absolutely necessary to have an effec-
tive system. Users may not want to use high-cost secu-
rity for trivial data such as temperature and humidity.
However, highly sensitive data such as enemy coordi-
nates needs to be protected by strong encryption. In
other words, providing different algorithms that can se-
cure the information with respect to its sensitivity would
certainly reduce security cost. In addition, an MLS en-
vironment makes the system more flexible. By leverag-
ing the security level, people can share information only
with legitimate users who have valid clearance and need-
to-know. Using MLS will allow reliable communication
between different security levels. An MLS component
can be applied to both military and urban sensor net-
works. Following are two example scenarios where using
MLS would be useful - military environments and smart
homes.

Assume that sensor nodes are deployed around a mili-

1



Figure 1: Military surveillance WSN

tary base for surveillance purposes as shown in Figure 1.
If enemy troops appear and a sensor node correctly de-
tects that, this data will be sent to the base station. The
information needs to be protected for two reasons. First,
we do not want the enemy to know that our forces have
noticed its infiltration. Second, the battalion headquar-
ters (higher level of military unit) may not want compa-
nies, platoons, and squads (lower level of military unit)
to learn immediately about the invasion since this might
cause disorder and chaos. A platoon leader with little
experience may forget to report to a higher unit and try
to handle the situation himself, which is a serious mis-
take and can cause the whole operation to fail. Not only
is this a real story but also a frequent situation in the
military. To avoid that from happening, the invasion
information should be kept secret so that only autho-
rized users can see it and give a command to the lower
units after making a decision. This clear separation of
information will help the higher units to have complete
control over the lower units. Less sensitive information
such as small explosions can be shown to companies and
battalions, but not to squads or platoons. Further, non-
sensitive data such as temperature and humidity data
can be shared with every unit. The need-to-know prin-
ciple should also be applied. Even if some battalion has
sufficient security clearance, if it does not need to use
some data, there is no reason why this data should be
shared with it.

MLS can also be used for a smart home application.
There are many sensor nodes deployed in a smart home
and if someone is within radio range they can easily
overhear the information sent among the nodes. The
owner of the house should be allowed to read every mes-
sage. However, visitors are not supposed to read mes-
sages containing information such as the owner’s blood
pressure or heart beat. If a doctor or a nurse visits a
house to check on a patient, they only need access to the
information regarding the patient’s health. In addition,
a doctor could be allowed to access more information

than a nurse if the doctor has a higher clearance.
Because of the wireless property of WSNs (i.e. ev-

erybody might overhear a message sent over the radio)
encryption is absolutely necessary for achieving secu-
rity. There are many different data encryption algo-
rithms that could be used in WSNs. They are gen-
erally divided into three major categories: symmetric-
key algorithms, asymmetric-key algorithms, and hash
algorithms. However, according to Potlapally et al.
[18], using asymmetric-key cryptography in WSNs is not
power-efficient. On the other hand, cryptographic hash
functions are mainly used for message integrity verifi-
cation. As a result, symmetric-key cryptography turns
out to be the best approach. We have studied three
widely used symmetric-key algorithms: AES, RC5, and
Skipjack. We chose them since RC5 and Skipjack are
implemented in TinySec, while one of the most broadly
used radios, CC2420, provides a hardware AES encryp-
tion. Since power is one of the most scarce and there-
fore valued resources of a wireless mote, knowing how
much power each of those algorithms uses will be ben-
eficial to a large number of WSNs designers. Further,
understanding how the different algorithm parameters
(key size, word size, and number of rounds) influence
the power consumption would allow designers to choose
the best combination of parameters to meet the rest of
their system’s requirements such as lifetime.

This paper’s contributions are twofold. First, we in-
troduce the principles of MLS to WSNs and show its
basic design. The proposed MLS component is flexible
and can be changed depending on the WSN’s require-
ments and the motes’ capabilities. Different encryption
algorithms can be combined to build the MLS or, if nec-
essary, a single algorithm but with different parameters
can be used instead. The second contribution is that we
have extensively studied RC5, AES, and Skipjack and
their power consumption and memory requirements for
MicaZ and TelosB, which are two of the most popu-
lar sensor nodes at the moment. This knowledge will
allow WSN’s designers and users to determine which
algorithms are most appropriate for their system’s re-
quirements.

The rest of the paper is organized as follows. We dis-
cuss the related work in Section 2. Section 3 elaborates
on the MLS concept and the problems it attempts to
solve. Section 4 describes the encryption algorithms we
have chosen to study in more detail and Section 5 dis-
cusses their security strength. The experimental setup
we built to measure the power consumption of RC5,
AES, and Skipjack is presented in Section 6, which is
followed by the results from our experiments in Section
7. Section 8 contains the MLS component we propose.
Section 9 concludes the paper and discusses some of the
open problems of MLS in WSNs.

2



2. RELATED WORK
To the best of our knowledge there has been no pre-

vious work on Multilevel security (MLS) in WSNs. We
believe that our paper is the first one to introduce the
MLS concept to the field of sensor networks. Security
in general, however, is not a new topic in WSNs. Tiny-
Sec [13], a link layer security architecture for WSNs,
is provided as a library for TinyOS 1.x. It contains
two block ciphers, RC5 and Skipjack, as encryption al-
gorithms, and Cipher Block Chaining (CBC) supports
encryption and decryption of messages longer than the
size of a block. Message integrity and authentication
are guaranteed by CBC Message Authentication Code
(CBC-MAC). Unfortunately, TinySec introduces a 10
percent overhead with respect to energy, latency, and
bandwidth. In addition, since TinySec needs to modify
the radio stack, it does not work well on other radios
except CC1000. CC1000, however, is not widely used
anymore, which is why TinySec is not much used either.
TinySec is not even included in TinyOS 2.x, which is the
next version of TinyOS 1.x. Admittedly, the Security
group in the Computer Science Department at the Uni-
versity of Cambridge has managed to successfully port
TinySec on CC2420 [19]. Unfortunately, they could not
solve the flexibility problem so nontrivial effort is still
needed to use TinySec with another radio. Moreover,
they support only a single level of security and there-
fore cannot leverage security strength at the application
level. The security level can only be changed at compile
time by specifying a different encryption algorithm in
the make file.

Another software package, TinyECC [15], implements
Elliptic Curve Cryptography (ECC) which turns out to
be one of the efficient types of public-key cryptography
(PKC) in the context of WSNs. Liu at al [15] provide
3 different levels of security strength by using different
key sizes. However, users can specify the key length at
compile time only, which means that multilevel encryp-
tion at the application level is not supported. Further,
since public-key encryption algorithms consume a lot of
power, they are not very suitable for WSNs. Therefore,
TinyECC is mainly used for less frequent events such as
key distribution in TinySA [9].

There are several papers that measure how running
encryption algorithms influences the power consump-
tion of wireless sensors. Ganesan et al. [8] measure the
energy consumption with respect to different encryp-
tion algorithms so that designers can easily predict the
performance of the system. They study 5 encryption al-
gorithms and measure the computational overhead they
cause on 6 different platforms. However, they are not
studying Atmega128 and MSP430, which are the MCUs
used in MicaZ and TelosB respectively.

Guimaraes et al. [10] evaluate the energy cost of secu-

Figure 2: The hierarchy of security levels

rity algorithms on Mica2 using TinySec. Their results
show the impact on the MCU and memory usage for
a single mote. However, the motes that they are using
are Mica2 with a CC1000 radio. Further, they do not
consider AES, and they fail to mention the parameters
of the RC5 algorithm they study. In addition, accord-
ing to their results, Skipjack consumes more power than
RC5, which is not what we have found.

Law et al. [14] studied the influence of block ciphers
on WSNs and compared the CPU cycles and memory
used by the different encryption algorithms. However,
they do not specify the platform they use in their exper-
iments. In addition, the presented power consumption
results are not sufficient to provide a good reference to
WSNs’ designers.

Chang et al. [6, 5] used a setup similar to ours to mea-
sure the power consumption introduced by hash func-
tions and symmetric-key algorithms on Mica2 motes
with a CC1000 radio and Ember sensors with a EM2420
radio. They use a PicoScope 3206 oscilloscope to sam-
ple the voltage drop across two registers and speculate
about the power consumption by observing the voltage
drop. The results they provide, however, cannot be used
as a reference for MicaZ and TelosB motes.

None of the previous work studies how the different
algorithm parameters - word size, key size, and num-
ber of rounds, influence the power consumption. When
measuring the power consumption introduced by a spe-
cific encryption algorithm, they only use a single rep-
resentative of that algorithm, i.e. pick a single set of
parameters, for example RC5-16/16/20. Since different
papers study different algorithm representatives, the re-
sults they provide are not comparable and we cannot
draw conclusions about the algorithms based on them.

3. MULTILEVEL SECURITY

3.1 Principles and problems
Multilevel security (MLS) allows users with different

security clearances to reliably communicate with each
other without compromising the information they share.
MLS classifies messages with respect to information sen-
sitivity, and only permits users who have a valid security

3



Figure 3: Multilevel security in WSN

clearance to access the data. Security level is a general
term for either clearance level or classification level. A
well-know hierarchical security level with respect to se-
curity strength is Unclassified, Confidential, Secret, and
Top secret as can be seen in Figure 2. We have used
this hierarchy as a basic model in the rest of the paper.

A major problem for MLS is sanitization, which tries
to make sure that no security restrictions are violated
when sharing information. There are two ways to vio-
late those restrictions, namely read-up and write-down.
Read-up occurs when lower security clearance users have
access to higher security messages. Write-up occurs
when higher security clearance users write high security
messages to a place which can be accessed by low se-
curity level users. The Bell-LaPadula model is usually
used to control the access to data [1]. However, this
model has been proven to not fully satisfy the require-
ments of MLS [16]. Sanitization is a very hard problem
to solve in both theory and practice due to macro func-
tions and Trojan viruses. An example is when a user
with a Top secret clearance accesses a Unclassified file
which has been infected by a Trojan virus. The virus
could then copy all the Top secret data the user can
access to a Unclassified user’s computer. This leak of
valuable information is a clear violation of the MLS prin-
ciples. Other problems, such as system assurance and
downgrading, also remain unsolved in MLS.

One practical approach to implementing MLS is us-
ing multiple independent levels of security (MILS) [11].
MILS controls and physically separates information flow
with respect to different security levels. Security moni-
tors are positioned between the different security layers
to make sure that invalid data flow, such as flow from a
higher security layer to a lower security layer, does not
occur.

3.2 Multilevel security in WSNs
Figure 3 shows a typical architecture of WSNs. Note

that box B contains wired communication as opposed to
box A, which represents wireless communication. MILS
architecture, as mentioned in section 3.1, could be ap-

plied for box B to provide security. The situation in box
A is more complicated. Any node can overhear a mes-
sage if it happens to be in its radio range. This makes
applying MILS to box A impossible since we cannot
physically separate the wireless communication. Ad-
mittedly, we could use different radio channels for the
different security levels. However, this would require a
mote with a Top secret clearance, for example, to listen
to all four channels for Top secret, Secret, Confidential,
and Unclassified messages. Constantly switching the ra-
dio channels will require additional energy and will also
significantly slow down the communication. Therefore,
encryption is the best way to accomplish MLS in WSNs.

Note that we do not assume that attackers can phys-
ically access the motes. If that was the case, they can
retrieve the encryption key by reading the mote’s mem-
ory since the keys are stored there. In situations like
that, unless the key is protected by specialized hard-
ware, security cannot be guaranteed. Therefore, we only
consider the cases when an attacker can remotely access
the motes. Under this assumption, we believe that not
only the transmitted data but also the one stored on the
motes should be protected.

Storage: The sensed data is not always immediately
transmitted. In some cases it is stored on the motes for
a certain amount of time which makes it vulneravle if
it is not encrypted. Therefore, data should be classified
and correspondingly encrypted as soon as possible after
it is sensed. In this way unauthorized users will not be
able to read it even if they manage to gain access.

Transmission: The collected data is sent to the base
station over the radio which makes snooping a possible
attack. However, if the data is properly secured accord-
ing to its security level, attackers and lower clearance
users cannot read it since they do not have a valid key
to decrypt it.

Another important concern is how to apply the en-
cryption schemes to MLS. The first thing we need to
consider is the strength of the security algorithms. The
strongest encryption algorithms will be used to protect
Top secret data while weaker algorithms will be used
for Secret and Confidential information. No encryption
will be used for Unclassified information. Unfortunately,
the price we have to pay for security is not ignorable.
It is especially noticeable in WSNs, because the motes
have very limited processing, memory, and power re-
sources. For example, a MicaZ mode, which is currently
one of the most popular platforms, has a 8MHz MCU,
4KB RAM, 128KB ROM, and uses two AA batteries
for power supply. Compared to a desktop computer or
a laptop, this is an incredibly slow CPU, small mem-
ory, and low power supply. Therefore, encryption cost
in WSNs should be carefully calculated.

The security cost in a WSN has three dimensions:

4



Security level Security strength Cost
Top secret High High

Secret Medium Medium
Confidential Low Low
Unclassified None None

Table 1: Cost of security in MLS

power consumption, latency and memory usage.
- Power consumption: Using encryption results in

consuming more power which in turn decreases the life-
time of the network. Since usually most sensor nodes
have limited power supply, the additional power con-
sumption could be a serious problem.

- Latency: The extra computations the MCU has to
perform due to encryption increase the execution time.
Depending on the complexity of the cryptography algo-
rithms, this latency might be significant.

- Memory: Many encryption algorithms have sub-
stantial memory needs. However, in some applications
might not be able to spare half of the available memory
just to provide security. Therefore, we need to make
sure that using encryption is not burdening the rest of
the system.

In order to efficiently use security in their systems, de-
signers of WSNs should carefully consider the price they
will have to pay for that. Table 1 presents the general
correlation between security strength and cost. Since
this information is general and is not specific for either
the security algorithms that are used or the platform
that they execute on, we did measurements that would
give us more details on the actual cost of security for
MicaZ and TelosB motes.

4. THE ENCRYPTION ALGORITHMS
Here we give a more detailed overview of the symmet-

ric -key algorithms we studied in this paper. All of the
algorithms are block ciphers and have been used outside
the WSNs community for many years now.

4.1 AES
The Advanced Encryption Standard (AES) algorithm,

also known as Rijndael, is a block cipher adopted as
an encryption standard by the U.S. government. AES
is one of the most popular symmetric-key cryptogra-
phy algorithms. Unlike the Data Encryption Standard
(DES), which was its predecessor, AES is a substitution-
permutation network, not a Feistel network. AES is fast
in both software and hardware and is relatively easy to
implement. It has a fixed block size of 128 bits and a
key size of 128, 192 or 256 bits with 10, 12, and 14 num-
ber of rounds respectively. It operates on a 4Œ4 array
of bytes, called state.

The cipher is specified in terms of repetitions of pro-

cessing steps that are applied to make up rounds of
keyed transformations between the input plaintext and
the final output ciphertext. A set of reverse rounds are
applied to transform the ciphertext back into the origi-
nal plaintext using the same encryption key. The trans-
formation functions used in the decryption phase are
more complex than those used in the encryption phase.

4.2 RC5
An advantage of RC5 is its flexibility. Unlike other en-

cryption algorithms, RC5 has a variable block size (32,
64 or 128 bits), number of rounds (0...255), and key size
(0...255 bits). The values of those parameters determine
the level of security of the algorithm. Using above 16
rounds is believed to be sufficient protection against se-
curity attacks [18]. Algorithms with less than 8 rounds
are considered to have low security and algorithms with
8 to 16 rounds provide medium security.

Since in RC5 we can change all three parameters, this
allows us to study the influence each of them has on the
power consumption. This could give us detailed infor-
mation on how we should alter the encryption algorithm
if we have to meet some non-security requirements. An
example scenario is a WSN deployed in a comparatively
inaccessible place, which has a lifetime requirement of a
year. Since the transmitted data is confidential, we have
chosen to use RC5 to encrypt the data. However, eleven
months into the project, it turns out that the WSN can-
not meet its lifetime requirement since the motes have
used up more power that we had initially anticipated.
If we still want to keep the same data transmission fre-
quency, what we can do is decrease the security level.
For that purpose we will have to change one or more of
the algorithm’s parameters (key size, number of rounds,
and word size). What we wanted to accomplish is pro-
vide sufficient information to determine which parame-
ter(s) to change and by how much so that we can meet
the lifetime requirement of the WSN while still provid-
ing a sufficient level of security.

4.3 Skipjack
Skipjack is a block cipher that was developed by the

U.S. National Security Agency (NSA). The algorithm is
an unbalanced Feistel network with 32 rounds. Skipjack
uses an 80-bit key for encryption and decryption and the
size of the data blocks is 64 bits. As we can see, all of
Skipjack’s parameters are constants.

5. STRENGTH OF THE ENCRYPTION AL-
GORITHMS

5.1 AES
According to [7], the most efficient key-recovery at-

tack for Rijndael is exhaustive key search. Obtaining

5



information from given plaintext-ciphertext pairs about
other plaintext-ciphertext pairs cannot be done more ef-
ficiently than by determining the key using brute force.
The expected effort of exhaustive key search depends on
the length of the encryption key and is:

- For a 16-byte key - 2127 applications of Rijndael.
- For a 24-byte key - 2191 applications of Rijndael.
- For a 32-byte key - 2255 applications of Rijndael.
The rationale for this is that a considerable safety

margin is taken with respect to all known attacks.

5.2 RC5
There are two types of attacks against RC5 - differ-

ential and linear cryptanalysis. RC5 has appeared to
be extremely resistant to linear attacks [12]. A differen-
tial attack described by A. Biryukov and E. Kushilevitz
in 1998 remains the best published result. A summary
of the data requirements for this attack with a varying
number of rounds is provided in Table 2 for RC5 with a
64-bit block size. The second row in the table has been
derived from the first row using the fact that a differ-
ential attack with m chosen plaintexts can be converted
into one with approximately 2w(2m)1/2 known plaintexts
where the block size is 2w [3]. In chosen plaintext crypt-
analysis [17] it is assumed that the cryptanalyst can en-
ter specially chosen text into the enciphering device and
get a cryptogram created under the control of the secret
key. In contrast, in known plaintext cryptanalysis [17] it
is assumed that the cryptanalyst knows the ciphertext
and a portion of the original text, and in special cases
knows the correspondence between the ciphertext and
the original text.

Number
of rounds 4 6 8 10 12 14 16 18
Chosen

plaintext 27 216 228 236 244 252 261 >
Known

plaintext 236 241 247 251 255 259 263 >

Table 2: Plaintext requirements for the cur-
rently best-known Differential attack on RC5
(64-bit block size)

While most of the data requirements are impractical
anyway, ”>” is used to denote when the attack is in-
feasible even at a theoretical level. This is when the
plaintext requirements are greater than 22w, which is
the maximum number of possible 2w-bit plaintexts [3].

5.3 Skipjack
E. Biham and A. Shamir discovered an attack against

16 of the 32 rounds of Skipjack, and with A. Biryukov [2]
extended this to 31 of the 32 rounds using impossible dif-
ferential cryptanalysis. Truncated differentials and later

Figure 4: Experimental setup

a complementation slide attack were published against
all 32 rounds of the Skipjack cipher. It was found, how-
ever, that the attacks are flawed. Biham, Shamir and
Biryukov’s attack continues to be the best cryptanalysis
of Skipjack known to the public.

Brickell et al. [4] wrote in 1993 that Skipjack will not
be broken by exhaustive search in the following 30-40
years. They also took into account the speed by which
processing power increases, so we can believe that Skip-
jack has at least 15-25 years left before it is broken by
exhaustive search. The authors also say that Skipjack
cannot be attacked with a shortcut method either.

5.4 Comparison
Since all three algorithms are so different there is no

straightforward way to compare their strength. How-
ever, there are a couple of conclusions that can be drawn.
The first one is that if we look at Skipjack and AES, we
can claim that AES is stronger than Skipjack because
the strength of both algorithms is determined by the
key size. The key used in AES (128, 192 or 256 bits) is
always longer than the key used in Skipjack (80 bits).
The second conclusion is that we cannot make the same
claim for RC5. Since the strength of RC5 is not deter-
mined by the key length but by the number of rounds,
we cannot compare it to any of the other two algorithms.
The fact that all three parameters - block size, key size,
and number of rounds, can be arbitrarily changed makes
the comparison even harder.

6. EXPERIMENTAL SETUP
The circuit we built for our experiments is shown in

Figure 4. We used a Tektronix MSO 4034 oscilloscope to
measure the power consumption in MicaZ and TelosB
sensor motes. The MicaZ motes have 4 KB of RAM,
128 KB of ROM and use a CC2420 radio. The TelosB
sensors have 10KB of RAM, 48 KB ROM and also use
a CC2420 radio. The oscilloscope helped us determine
the time it took for the three different encryption algo-
rithm phases - key setup, encryption and decryption, to
execute. It also allowed us to measure the voltage drop
in the circuit.

We use the oscilloscope to determine the power con-
sumption of any of the three algorithm phases. We con-
nect one of the pins of the mote to the oscilloscope and
use it to signal when a phase begins and finishes ex-

6



Figure 5: Example oscilloscope display

ecuting. HAProfiling.h and MSP430GeneralOC.nc in-
terfaces are used to control the pins for Atmega128
and MSP430 respectively. The oscilloscope registers the
changes in the pin’s level and displays that on the screen.
An example oscilloscope display is captured in Figure 5.

We calculated the power consumed by the mote using
the equation P = I x Vb, where I is the current in the
circuit, and Vb is the voltage of the battery. Accord-
ing to the MicaZ datasheet the mote’s processor runs
at 3V and this is the value we have set for Vb. Since
I = V/R, to find the current we need the voltage and
the resistance. We are using a 10.1Ω resistor and we
can determine that the voltage is V = 86 mV using the
oscilloscope. Therefore, the current is I = V/R = 86
mV/10.1Ω = 8.52 mA. Now we can calculate the power
P = I x Vb= 8.52mA x 3V = 25.54 µJ. This is the
power consumed by MicaZ’s MCU when it is operating.
By multiplying this value by the execution time, we de-
termine the total power each algorithm phase consumes.

Since TelosB is more energy-efficient than MicaZ, its
power consumption is lower. The voltage in TelosB is
25.1 mV when the MCU is working and 4.8 mV when
the MCU is idle. We can see that when the MCU is idle
the TelosB power management puts it into sleep mode
and turns down the voltage. When we calculate the
current we get IMCU−active = V/R = 25.1mV/10.1Ω =
2.49mA and IMCU−idle= V/R = 4.8 mV/10.1Ω = 0.48
mA. Calculating the power gives us: P= IMCU−active x
Vb= 2.49 mA x3V = 7.47 µJ, which is almost a third
of the power consumed by a MicaZ mote.

To verify that the numbers we calculated were real-
istic we validated our results against the information
in the MicaZ and TelosB datasheets. According to the
MicaZ datasheet the current draw when the MCU is ac-
tive should be 8 mA and our measurements show 8.52
mA. Similarly for TelosB, the datasheet specifies the
current in active mode to be 1.8mA and 0.005mA in
sleep mode. The values we measured are 2.49mA and
0.48mA for active and idle mode respectively. A dif-
ference of about 0.50-0.60mA for both platforms is not
significant especially if we consider that there might be

some slight current fluctuations in the circuit we have
built, we have some differences due to the resistors we
are using, and, in addition, our measurement tools are
not perfect.

Since we are measuring the power consumption of
software encryption, this only involves the MCU. There-
fore, the MCU is the only active hardware during our
experiments. The time needed for turning the MCU’s
pin on and off is very short and does not affect the total
execution time. Using this setup we can measure the
exact time each encryption phase takes with very low
error.

7. MEASUREMENTS
In this section we present the results of our experi-

ments. The experiments were performed on both MicaZ
and TelosB motes using the setup described above. In
addition to measuring the power consumption of AES,
RC5, and Skipjack, we also measured the RAM and
ROM memory usage of the algorithms. Those results
are presented in Table 3.

MicaZ TelosB
Encryption RAM ROM RAM ROM
algorithm (B) (KB) (B) (KB)

RC5 0.2 2.5 0.2 6
AES 2 10 1.8 9

Skipjack 0.6 10 0.04 7.5

Table 3: Encryption algorithm memory usage on
MicaZ and TelosB

We can see that AES takes up a significant amount
of both RAM and ROM. For a MicaZ mote the RAM
requirements are about half of the available RAM. How-
ever, we believe that this number can be decreased if the
algorithm is further memory-optimized. Chang at al [5]
succeeded to decrease the RAM size by 1KB using their
”Divide and Conquer” technique. In contrast to AES,
RC5 and Skipjack are not so memory-heavy.

7.1 AES

7.1.1 Software implementation
The only variable parameter in AES is the key size.

We have measured the execution times and calculated
the power consumption of AES-128, AES-192 and AES-
256 where the number in the name of the algorithm
corresponds to the size of the key in bits. We measured
separately the execution times for key setup, encryption,
and decryption.

The values we measured on a MicaZ mote are shown
in table 4. As we can see, all three phases - key setup,
encryption, and decryption, are influenced by the key
size. The bigger the size of the key, the longer it takes

7



for all three phases to execute. Something to note is
that for all three algorithms - AES-128, AES-192, and
AES-256, the encryption time is about 43 percent of
the decryption time. This is a reasonable ratio since
the decryption phase is more complicated and requires
more computations.

The results we measured for TelosB were quite differ-
ent. Here decryption took much longer than encryption
- more than 10 times. The measurements and corre-
sponding calculations are presented in Table 5. As we
can see, TelosB is slower compared to MicaZ. However,
since its power consumption is less, the final result is
that both the key setup and encryption phases require
less power to execute. This is not the case with the de-
cryption phase, though. Since it takes up so much longer
to execute, even though TelosB consumes less energy,
the end result is that decryption on TelosB costs more
power than decryption on MicaZ. As a result, the total
power consumption of TelosB when executing AES is
higher than that of MicaZ. This is an interesting obser-
vation since, as we shall see in the following subsections,
TelosB motes are usually more power-efficient than Mi-
caZ motes.

7.1.2 Hardware implementation
CC2420 provides a hardware implementation of AES-

128. Our sensors are running in stand-alone mode, which
means that the radio is only encrypting the messages
without actually transmitting them. The hardware AES
-128 does not have distinct key setup and decryption
phases. Since the key setup phase is included in the
encryption phase, we have measured the time necessary
to execute the combined setup + encryption phase.

When executing the hardware AES-128 the current is
higher compared to that when only the MCU is active,
since now we are also using the radio. For MicaZ the
current is I = 26.14mA and for TelosB - I = 21.19mA.
The results for the hardware AES encryption for both
MicaZ and TelosB are presented in Table 6. This is by
far the cheapest encryption when either time or power
consumption is concerned. However, the constraint we
have to face is that this type of encryption is available
only for CC2420 or CC2520 radios and unfortunately
not every platform comes equipped with them. Sensors
using CC1100 or CC2500 are not able to take advantage
of the hardware AES encryption.

Architecture Encryption Encryption
(ms) power (µJ)

MicaZ 0.023 1.83
TelosB 0.225 14.30

Table 6: Hardware AES encryption for MicaZ
and TelosB

Again we see that running AES on MicaZ is signifi-
cantly more power-efficient than running it on TelosB.
A reasonable explanation of this phenomenon would be
the different MCUs on MicaZ and TelosB. It is very pos-
sible that MicaZ’s Atmega128 MCU has a better hard-
ware support for the operations that AES executes than
the MSP430 MCU of TelosB.

7.2 RC5
Since we can vary all three parameters of RC5 - word

size, number of rounds, and key size, we used different
combinations to fully understand the influence of those
parameters on the power consumption caused by the
encryption algorithm.

• The usual word size for encryption is 32 bits (4
bytes). To study the impact of the word size on
the time it takes to perform key setup, encryption
and decryption, we also executed RC5 using a 16-
bit word.

• The number of rounds has a proportional effect
on the security of RC5[1]. We wanted to see how
the number of rounds influences the power con-
sumption. For this reason we measured the power
consumption with 4, 8, 12, 16, and 18 rounds.

• We used different values for the key size. We chose
the values that are used in the AES algorithm -
128, 192, and 256 bits.

With two options for the word size, five for the num-
ber of rounds, and three for the key size, we have thirty
different experimental combinations of RC5 parameters.
For each combination we measured the time necessary
to perform the key setup, encryption and decryption
functions. Then we calculated the power that was con-
sumed during each of those functions as well as the to-
tal power. We ran the experiments on both MicaZ and
TelosB nodes.

The execution times of all three phases of RC5 were
longer when we ran RC5 on TelosB. However, the to-
tal power consumption was smaller. The explanation
behind this result is that the current through a TelosB
node (2.49mA) is much smaller than the current through
a MicaZ node (8.52 mA). Since the execution time of
RC5 on TelosB was less than twice that on MicaZ, the
power consumption on TelosB was smaller. Based on
this result we can make the conclusion that it is more
power-efficient to run RC5 on TelosB nodes.

7.2.1 Changing the word size
As expected, a longer word size leads to longer ex-

ecution times for both the key setup and the encryp-
tion/decryption phases. The results for the power con-
sumption on MicaZ and TelosB nodes for RC5 when

8



Key size Key setup Encryption Decryption Key setup Encryption Decryption Total
(bits) (ms) (ms) (ms) power (µJ) power (µJ) power (µJ) power (µJ)
128 2.44 1.53 3.52 62.32 39.08 89.90 191.29
192 2.68 1.82 4.25 68.45 46.48 108.55 223.48
256 3.01 2.11 4.98 76.88 53.89 127.19 257.95

Table 4: AES: Influence of the key size on the execution time on MicaZ

Key size Key setup Encryption Decryption Key setup Encryption Decryption Total
(bits) (ms) (ms) (ms) power (µJ) power (µJ) power (µJ) power (µJ)
128 3.58 3.77 43.20 26.74 28.16 322.70 377.61
192 3.97 4.60 51.00 29.66 34.36 380.97 444.99
256 6.66 5.58 66.00 49.75 41.68 493.02 584.45

Table 5: AES: Influence of the key size on the execution time on TelosB

the key size and the number of rounds were kept con-
stant (rounds = 4, key size = 128 bits) are presented in
Figure 6.

Figure 6: RC5: Influence of the word size on the
power consumption on MicaZ and TelosB sensor
nodes.

As we can see from the values in Figure 6, increasing
the word size from 16 to 32 bits more than doubles the
execution time for the encryption and decryption func-
tions on both architectures. This ratio remains constant
even if we change the key size or the number of rounds.
Since the key setup is also longer, when using 32-bit
words we can conclude that a smaller word size leads to
faster execution for all three cryptographic phases. If
we divide a single 32-word in half we will get two 16-bit
words. The key setup will occur only once, so summing
up the time for key setup, encryption and decryption
for the 32-bit word will give us a larger number than
the sum of the key setup and twice the encryption and
decryption of the 16-bit words. This means that de-
creasing the word size decreases the power consumed in
RC5. The same conclusions should also apply for the
case when 64-bit words are used. This result is not sur-
prising since a longer block naturally needs more time
for encryption and decryption. The increase in the key
setup time, on the other hand, can be justified by the
way RC5 works. The task of the key setup phase is to

expand the user’s key to fill an expanded key array S.
Since the elements of that array S are words, the longer
the words are, the bigger the array will be and the longer
its setup will take.

7.2.2 Changing the number of rounds
Changing the number of rounds influences the exe-

cution times of both the key setup and the encryp-
tion/decryption phases. An interesting observation is
that increasing the number of rounds by a constant
number, results in increasing the execution time of all
three phases by a constant value. The values we mea-
sured when keeping the word size and the key size con-
stant (word size = 16 bits, key size = 128 bits) on MicaZ
and TelosB motes are presented in Figure 7. Note that
we have used a logarithmic scale for the y-axis in order
to better visualize the changes in the algorithms’ power
consumption.

Figure 7: RC5: Influence of the number of
rounds on the power consumption on MicaZ and
TelosB sensor node.

We can see that increasing the number of rounds has
a steady price. For our current RC5 parameter config-
uration (word size = 16 bits and key size = 128 bits),
increasing the number of rounds by one increases the

9



length of the key setup phase by 1.08 ms and the en-
cryption and decryption phases - by 0.03 ms on average.
This means that the power required for one round would
be 27.46mW for key setup and 0.79mW for encryption
and decryption. From these results we can conclude
that the power consumption increases linearly with the
number of rounds. The more encryption rounds we per-
form, the more power will be used by the MCU to do
the work.

The reason why the key setup phase is influenced by
changing the number of rounds comes again from RC5’s
nature. As we mentioned previously in Section 7.2.1, the
key setup phase performs the key expansion, which is
not only related to the word size but also to the number
of rounds. The expanded key table S[0...t-1] consists of
t = 2 × r + 1 words. Therefore, the higher the number
of rounds is, the bigger the expanded key table would
be, making the key expansion take more time.

7.2.3 Changing the key size
Varying the key size only influences the key setup

phase. The time used for encryption and decryption
remains constant. The values we measured for both Mi-
caZ and TelosB when 18 rounds were used with a word
size of 32 bits are presented in Figure 8.

Figure 8: RC5: Influence of the key size on the
power consumption on MicaZ and TelosB sensor
node.

The values in those tables reveal a case when the dif-
ference between the 128-bit key and the 256-bit key ex-
ecution is about 2ms. In other cases, for example, when
the word size is 16 bits and we are using 12 encryption
rounds, this difference is only 0.2 ms (for more informa-
tion check Appendix A). From those results we can see
that even doubling the key size does not lead to consid-
erable additional power consumption changes. There-
fore we can conclude that the key length has almost no
impact on the execution time of any of the three algo-
rithm phases and therefore, on the power consumption
in general.

7.3 Skipjack
All parameters in Skipjack are constants so we did

not have much to measure. Further, since the key is

determined from the very beginning, there is no key
setup phase. The result for both MicaZ and TelosB are
presented in Table 7.

Plat- encrypt decrypt encrypt decrypt total
form (ms) (ms) power power power

(µJ) (µJ) (µJ)
MicaZ 0.22 0.22 5.52 5.52 11.04
TelosB 0.35 0.35 2.63 2.63 5.26

Table 7: Power consumption of Skipjack

8. MLS DESIGN
Based on the results in Section 7 we propose a multi-

level security (MLS) component which can use different
cryptography algorithms depending on the information
sensitivity and the available power resources. This com-
ponent is flexible and allows users to change it to better
comply with their system’s constraints. For example,
the security hierarchy can have a different number of
levels than what we have shown and users can choose
suitable algorithms for each level to meet the WSN’s
requirements. Different encryption algorithms can also
be included. Adding new algorithms should not be hard
since we are working with a software implementation.
As long as the algorithms use the same interface, in-
corporating them into the MLS component should be
straightforward.

Different WSNs systems have different requirements.
Therefore, when building a system, designers have to
comply with different constraints. As we have men-
tioned in previous sections, security introduces power
consumption cost, latency cost, and memory usage cost.
Power consumption and latency are linearly dependent
since the more time the algorithm needs to execute, the
more power will be consumed by the MCU. The fact
that power consumption is proportional to latency fol-
lows from the equation W = P × T = I × V × T . P
is fixed because the current and voltage are also fixed,
so W depends only on T. We have looked at two differ-
ent scenarios. The first one is when the designer’s main
concern is power consumption. The second one is when
memory usage is the main concern.

8.1 Based on power consumption and latency
From the measurements we have performed we can

see that the power consumed by the setup phase of RC5
is significantly higher than that of AES. However, the
encryption and decryption phases of RC5 are executed
faster and therefore require less power. Thus, we can
conclude that the algorithm choice depends on how fre-
quently the key setup phase will need to be executed.
If an application requires the key to be changed very
frequently, RC5 would be less power-efficient than AES

10



even if RC5 outperforms AES for the encryption and
decryption phases.

The overall security level also needs to be consid-
ered when designing the system. In a military appli-
cation, for example, even the confidential data needs
to be highly secure since the enemy or unauthorized
users can benefit from inferring information from a con-
fidential message. A smart-home application, however,
does not need to use strong algorithms to protect con-
fidential messages such as the number of times the res-
idents of the house go to the kitchen. Although users
might not want to broadcast freely this information, a
low-strength algorithm will be sufficient to provide the
necessary security. Admittedly, this information can be
secured much better but this will require more power
and will decrease the performance of the whole system.
This trade-off between cost and performance is a com-
mon issue in any system design.

Table 8 suggests the MLS component for both a mili-
tary and a smart-home application. Note that if we can
use sensors with CC2420 or CC2520 radios, the hard-
ware AES-128 encryption will be used at the Confiden-
tial level since it is much more cost-effective compared
to the software AES-128 encryption.

Application Confidential Secret Top secret
Military AES-128 AES-192 AES-256

application
Military Hardware

application AES-128 AES-192 AES-256
using a CC2420

Smart-home Skipjack RC5 8 16 RC5 18

Table 8: Multilevel security for WSNs

8.2 Based on memory usage
If the sensor nodes have enough memory and the code

size is not a concern, then Table 8 presents a suitable
MLS component. However, for certain motes like Mi-
caZ, the available memory is too small to contain all
three encryption algorithms. Even if we optimize the
algorithms in terms of memory and manage to store
them on the mote, the remaining space will probably
not be enough for the main application to run. There-
fore, when there is not enough memory, it is desirable
to use only one algorithm to provide all three levels of
security by changing its parameters. Since AES requires
significantly more memory than RC5, when the system
requires the algorithms to occupy as little memory as
possible, RC5 is a more appropriate choice. On the
other hand, if the mote has enough memory for two al-
gorithms after loading the main application, then users
can use two different algorithms and achieve higher per-
formance and security.

9. CONCLUSIONS AND FUTURE WORK
This paper introduces the concept of MLS to the field

of WSNs. We believe that with the broader use of
WSNs, securing the data in the network will become
more and more important. And just like in the real
world where different people have access to different
data according to their clearance and need-to-know, the
same principles will apply for WSNs. There is no rea-
son why all information on the network should be avail-
able to everyone. The only scenario where this would
be reasonable is when there is just a single event being
detected or there is only one person or a group of peo-
ple with the same clearance interested in the data. In
the more common case where the nodes are sensing for a
number of events and the data is of interest to more than
just one person, properly setting up the data access per-
missions will be crucial for the system’s security. This is
where applications such as military surveillance, smart
homes, WSNs used for security, industrial networks, etc.
could largely benefit from MLS. By correctly separating
the information depending on its sensitivity and assign-
ing clearance to nodes according to their need-to-know
and level of trust, MLS will help improve the security
of the network in general, protect the data that is being
transmitted or stored on the motes, and thus prevent
damage that could occur if information is leaked.

The MLS component we propose is general and does
not confine the system designers in any way. They can
decide how many levels of security their system will re-
quire, which encryption algorithms should be used and
how the different clearances will be distributed. In ad-
dition, we also provide data on how much each algo-
rithm costs not only in terms of memory consumption
but also in terms of latency and power consumption.
This information could be used to better and more pre-
cisely design a sensor network so that it can meet its
requirements.

There are a number of cryptography issues that need
to be considered to support MLS in WSNs. The first
one is that in order to be a full-fledged software secu-
rity application, an MLS component should also con-
tain various operation modes as well as message au-
thentication code (MAC). Operation modes are used
to more securely encrypt messages longer than a sin-
gle block. There are many existing types of operation
modes such as Cipher-Block Chaining (CBC), Cipher
Feedback (CFB), and Counter (CTR). MAC algorithms
are used to guarantee message integrity and authentica-
tion. We reserve the support of those features for future
work.

The second issue is key distribution. Although sym-
metric -key algorithms are both powerful and efficient,
key distribution is a non-trivial problem. As multiple
keys are used in a MLS environment, there should be a

11



way to distribute those keys. One option would be us-
ing TinyECC for key distribution. However, TinyECC
would introduce additional memory usage.

Another issue in MLS is packet labeling. When it is
transmitted, data should be labeled according to its se-
curity level. However, labeled data will leak some infor-
mation such as ”node A is transmitting Top secret mes-
sages to node B”. Such information could allow attack-
ers to speculate about the relationship between the two
nodes. On the other hand, unlabeled packets will cause
performance degradation since once a node receives a
message it will attempt to decipher that message using
all the keys it possesses. Encrypting the header of a
packet is another possible way to increase security. An
encrypted header will hide both the sender and the in-
tended receiver of the message. However, if the current
node used for routing does not have the required clear-
ance it will not know where to forward the message.

Still another problem we have to consider is dynami-
cally changing the security level. There are cases when
we would want to downgrade a Top secret message to
Confidential or to upgrade a Confidential node to Se-
cret. For example, in a case such as our military surveil-
lance example, we have battalion commanders with Top
secret clearance making decisions based on Top secret
data. Once the decision is made, it needs to be deliv-
ered to the lower level military units. However, since
Top secret data has been used, the decision also has a
Top secret level. If it is sent in this form, the lower level
military units will not be able to read it. Therefore,
the decision needs to be downgraded. This, however,
is a very hard problem since downgrading may lead to
leaking information when changing the security level.
Moreover, we cannot afford to reset every key to re-
designate the security level for every mote. Without
the ability to downgrade, though, we cannot provide a
dynamically changing MLS since we would only be al-
lowed to increase the security level but not to decrease
it.

10. REFERENCES
[1] D. Bell and L. LaPadula. Secure computer system unified

exposition and multics interpretation. Technical Report
MTR-2997, MITRE Corp., Bedford, MA, July 1975.

[2] E. Biham, A. Biryukov, and A. Shamir. Cryptanalysis of
Skipjack reduced to 31 rounds using impossible differentials.
Journal of Cryptology, 18(4):291–311, September 2005.

[3] E. Biham and A. Shamir. Differential cryptanalysis of the
data encryption standard. Springer-Verlag London, UK,
1993.

[4] E. F. Brickell, D. E. Denning, S. T. Kent, D. P. Maher, and
W. Tuchman. SKIPJACK review: interim report. Building
in big brother: the cryptographic policy debate, pages
119–130, 1995.

[5] C.-C. Chang, S. Muftic, and D. J. Nagel. Measurement of
energy costs of security in wireless sensor nodes.
Proceedings of 16th International Conference on Computer
Communications and Networks, 2007. ICCCN 2007., pages
95–102, September 2007.

[6] C.-C. Chang, D. J. Nagel, and S. Muftic. Balancing security
and energy consumption in wireless sensor networks. Mobile
Ad-Hoc and Sensor Networks, 4864/2007:469–480,
November 2007.

[7] J. Daemen and V. Rijmen. The block cipher rijndael. In
CARDIS ’98: Proceedings of the The International
Conference on Smart Card Research and Applications,
pages 277–284, London, UK, 2000. Springer-Verlag.

[8] P. Ganesan, R. Venugopalan, P. Peddabachagari, A. Dean,
F. Mueller, and M. Sichitiu. Analyzing and modeling
encryption overhead for sensor network nodes. In WSNA
’03: Proceedings of the 2nd ACM international conference
on Wireless sensor networks and applications, pages
151–159, New York, NY, USA, 2003. ACM.

[9] J. Grossschädl. TinySA: a security architecture for wireless
sensor networks. In CoNEXT ’06: Proceedings of the 2006
ACM CoNEXT conference, pages 1–2, New York, NY,
USA, 2006. ACM.

[10] G. Guimaraes, E. Souto, D. Sadok, and J. Kelner.
Evaluation of security mechanisms in wireless sensor
networks. Systems Communications, 2005. Proceedings,
pages 428–433, August 2005.

[11] W. S. Harrison, N. Hanebutte, P. Oman, and J. Alves-Foss.
The MILS architecture for a secure global information grid.
CrossTalk 18, 10:20–24, October 2005.

[12] B. S. K. Jr. and Y. L. Yin. On the security of the RC5
encryption algorithm. Technical Report TR-602, Version
1.0, RSA Laboratories, September 2006.

[13] C. Karlof, N. Sastry, and D. Wagner. TinySec: a link layer
security architecture for wireless sensor networks. In SenSys
’04: Proceedings of the 2nd international conference on
Embedded networked sensor systems, pages 162–175, New
York, NY, USA, 2004. ACM.

[14] Y. W. Law, J. Doumen, and P. Hartel. Survey and
benchmark of block ciphers for wireless sensor networks.
ACM Transactions on Sensor Networks, 2(1):65–93, 2006.

[15] A. Liu and P. Ning. TinyECC: A configurable library for
elliptic curve cryptography in wireless sensor networks.
International Conference on Information Processing in
Sensor Networks, 0:245–256, 2008.

[16] J. McLean. A comment on the ”basic security theorem” of
bell and lapadula. Inf. Process. Lett., 20(2):67–70, 1985.

[17] N. Moldovyan and A. Moldovyan. Innovative Cryptography,
Second Edition. Charles River Media, 2007.

[18] N. R. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha.
A study of the energy consumption characteristics of
cryptographic algorithms and security protocols. IEEE
Transactions on Mobile Computing, 5(2):128– 143,
December 2005.

[19] Security Group at University of Cambridge.
http://www.cl.cam.ac.uk/research/security/
sensornets/tinysec/.

11. APPENDIX A

12



Word size Number of Key size Setup Encryption Decryption Setup Encryption Decryption Total
(bit) rounds (bit) (ms) (ms) (ms) power power power power

(µJ) (µJ) (µJ) (µJ)
16 4 128 5.97 0.129 0.126 152.47 3.29 3.22 158.99
32 4 128 8.67 0.305 0.300 221.43 7.79 7.66 236.88
16 4 192 6.22 0.129 0.126 158.86 3.29 3.22 165.37
32 4 192 9.36 0.305 0.300 239.05 7.79 7.66 254.51
16 4 256 6.37 0.129 0.126 162.69 3.29 3.22 169.20
32 4 256 9.98 0.306 0.301 254.89 7.82 7.69 270.39
16 8 128 10.30 0.251 0.247 263.06 6.41 6.31 275.78
32 8 128 14.40 0.600 0.592 367.78 15.32 15.12 398.22
16 8 192 10.50 0.251 0.247 268.17 6.41 6.31 280.89
32 8 192 15.10 0.600 0.592 385.65 15.32 15.12 416.10
16 8 256 10.60 0.251 0.247 270.72 6.41 6.31 283.44
32 8 256 15.70 0.600 0.592 400.98 15.32 15.12 431.42
16 12 128 14.60 0.374 0.369 372.88 9.55 9.42 391.86
32 12 128 20.20 0.894 0.884 515.91 22.83 22.58 561.32
16 12 192 14.80 0.374 0.369 377.99 9.55 9.42 396.97
32 12 192 20.90 0.894 0.884 533.79 22.83 22.58 579.20
16 12 256 14.80 0.374 0.368 377.99 9.55 9.40 396.94
32 12 256 21.30 0.895 0.884 544.00 22.86 22.58 589.44
16 16 128 18.90 0.497 0.490 482.71 12.69 12.51 507.91
32 16 128 25.90 1.190 1.180 661.49 30.39 30.14 722.02
16 16 192 29.20 0.497 0.490 745.77 12.69 12.51 770.98
32 16 192 26.90 1.190 1.180 687.03 30.39 30.14 747.56
16 16 256 19.00 0.497 0.490 485.26 12.69 12.51 510.47
32 16 256 27.00 1.190 1.180 689.58 30.39 30.14 750.11
16 18 128 21.00 0.588 0.551 536.34 15.02 14.07 565.43
32 18 128 28.00 1.340 1.320 715.12 34.22 33.71 783.06
16 18 192 21.30 0.588 0.551 544.00 15.02 14.07 573.09
32 18 192 29.50 1.340 1.320 753.43 34.22 33.71 821.37
16 18 256 21.10 0.558 0.551 538.89 14.25 14.07 567.22
32 18 256 29.80 1.340 1.320 761.09 34.22 33.71 829.03

Table 9: RC5 power consumption on MicaZ

13



Word size Number of Key size Setup Encryption Decryption Setup Encryption Decryption Total
(bit) rounds (bit) (ms) (ms) (ms) power power power power

(µJ) (µJ) (µJ) (µJ)
16 4 128 8.73 0.186 0.186 65.21 1.39 1.39 67.99
32 4 128 13.10 0.407 0.396 97.86 3.04 2.96 103.86
16 4 192 9.54 0.187 0.188 71.26 1.40 1.40 74.07
32 4 192 14.70 0.403 0.418 109.81 3.01 3.12 115.94
16 4 256 10.40 0.192 0.190 77.69 1.43 1.42 80.54
32 4 256 17.10 0.403 0.378 127.74 3.01 2.82 133.57
16 8 128 14.30 0.371 0.362 106.82 2.77 2.70 112.30
32 8 128 18.30 0.731 0.718 136.70 5.46 5.36 147.53
16 8 192 15.50 0.384 0.369 115.79 2.87 2.76 121.41
32 8 192 20.90 0.764 0.724 156.12 5.71 5.41 167.24
16 8 256 16.10 0.373 0.375 120.27 2.79 2.80 125.85
32 8 256 24.50 0.798 0.790 183.02 5.96 5.90 194.88
16 12 128 20.10 0.556 0.545 150.15 4.15 4.07 158.37
32 12 128 26.40 1.170 1.170 197.21 8.74 8.74 214.69
16 12 192 21.00 0.569 0.540 156.87 4.25 4.03 165.15
32 12 192 28.90 1.190 1.180 215.88 8.89 8.81 233.59
16 12 256 22.00 0.589 0.551 164.34 4.40 4.12 172.86
32 12 256 31.40 1.210 1.180 234.56 9.04 8.81 252.41
16 16 128 25.80 0.739 0.722 192.73 5.52 5.39 203.64
32 16 128 33.00 1.570 1.540 246.51 11.73 11.50 269.74
16 16 192 26.90 0.750 0.732 200.94 5.60 5.47 212.01
32 16 192 35.90 1.610 1.560 268.17 12.03 11.65 291.85
16 16 256 27.10 0.733 0.722 202.44 5.48 5.39 213.31
32 16 256 37.60 1.570 1.550 280.87 11.73 11.58 304.18
16 18 128 28.90 0.839 0.817 215.88 6.27 6.10 228.25
32 18 128 37.20 1.780 1.800 277.88 13.30 13.45 304.63
16 18 192 29.20 0.826 0.809 218.12 6.17 6.04 230.34
32 18 192 39.70 1.850 1.750 296.56 13.82 13.07 323.45
16 18 256 30.30 0.823 0.834 226.34 6.15 6.23 238.72
32 18 256 40.10 1.740 1.710 299.55 13.00 12.77 325.32

Table 10: RC5 power consumption on TelosB

14


