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1. INTRODUCTION

The procedure calling convention impacts the operation of many system software
components. The interface between procedures, which is established by the calling
convention, facilitates separate compilation of program modules and interoperability
of programming languages. The procedure calling convention dictates the way that
program values are communicated, and how machine resources are shared between a
procedure making a call (the caller) and the procedure being called (the callee). What
makes calling conventions unique and interesting is that they are not implementation
dependent or entirely language dependent. Instead, the calling convention is machine-
dependent because the rules for passing values from one procedure to another depend
on machine-specific features such as memory alignment restrictions and register
usage conventions. Further, code that implements the calling convention must be gen-
erated by the compiler and understood by other systems software.

Applications, such as compilers and debuggers, which generate, or process procedures at the
machine-language abstraction level require knowledge of the procedure calling convention. Cur-
rently, applications that process procedures implement conventions in an ad-hoc manner. The result-
ing code is complicated with details, difficult to maintain, and often plagued with errors. In this
paper, we describe the only known formal model and specification language for procedure calling
conventions. The model and language, in combination, facilitate the accurate specification of con-
ventions that can be shown to be both consistent and complete. Further, we show how the convention
specifications can be used to automatically generate that part of the code generator responsible for
generating procedure calls. Finally, we discuss a new compiler testing technique that uses the speci-
fications to further close the gap between actual compiler implementations and correct compilers.
The technique, which uses a target-sensitive test suite generator, has exposed and diagnosed faults in
several C compilers. 

Categories and Subject Descriptors: D.3.4 [Programming Languages] Processors—code genera-
tion; compilers; D.3.3 [Programming Languages]: Language Constructs and Features—proce-
dures, functions and subroutines; D.2.5 [Software Engineering]: Testing and Debugging—
debugging aids; test data generators

General terms: Testing, Code Generation, Procedure Call, Specification

Additional Key Words and Phrases: Procedure Calling Convention, Test Suite Generation, Program
Fault Diagnosis
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1.1 Motivation

Currently, information about a particular calling convention can be found by: looking
in the programmer’s reference manual for the given machine, or reverse-engineering
the code generated by one of its compilers. Reverse-engineering a compiler has many
obvious shortcomings. Using the programmer’s reference manual may be equally
problematical. As with much of the information in the programmer’s manual, the
description is likely to be written in English and is liable to be ambiguous, or inaccu-
rate. For example, in the MIPS programmer’s manual [Kane and Heinrich 1992] the
English description is so difficult to understand that the authors provide fifteen exam-
ples, several of which are contradictory [Fraser 1993]—and this is the second edition
of the programmer’s manual. Furthermore, the convention, once understood, is diffi-
cult to implement. For example, the GNU ANSI C compiler fails on an example listed
in the manual. Digital Equipment Corporation, in recognizing the problem, has pub-
lished a calling standard document for their Alpha series processors [Digital Equip-
ment Corporation 1993] that exceeds 100 pages1. Thus, it should be clear that there is
a need for accurate, concise descriptions of procedure calling conventions and soft-
ware to use them.

1.2 Applications

Any application that must process, or generate procedures at the machine-language
abstraction level is likely to need to know about a procedure calling convention.
Example applications include compilers, debuggers, linkers and evaluation tools such
as profilers. The code that implements the calling convention in these applications
lends itself to automatic generation. Often, the convention itself is not difficult to
understand or implement, for a given instance of a procedure call. However, a general
solution that covers all possible cases is difficult to implement correctly.

As part of research whose objective is to develop more retargetable optimizing com-
pilers, we have developed a formal specification language for describing procedure
calling conventions. This language, called CCL (Calling Convention Language), has
been used to generate automatically the calling sequence generator for a compiler
[Bailey and Davidson 1995]. The compiler, called vpcc/vpo, is a retargetable optimiz-
ing compiler for the C language that has been targeted to over a dozen different archi-
tectures [Benitez and Davidson 1988; Benitez and Davidson 1994]. 

The procedure calling convention for a target machine is described using CCL. The
resulting specification is processed by an interpreter that can generate tables that can
be used in the calling-convention-specific portion of vpcc/vpo, or in a test suite gener-
ator. Fig. 1 shows this process. The test suite generator uses information from the
table to build a test suite for the specific calling convention. The test suite can be used
to either confirm that the vpcc/vpo implementation properly uses the convention
tables, or confirm that another, independent, compiler conforms to the convention
described in the CCL specification. 

1Although this document also includes information on exception handling and information pertinent
to multithreaded execution environments, more than 42 pages are devoted to documenting the call-
ing convention.
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2. PROCEDURE CALLING CONVENTIONS

To facilitate local compilation of procedures, compiler developers establish rules
about how procedures interact. These rules establish an agreement between the caller
and callee on how information and control are passed between the two, as well as how
and who will maintain the state of the machine. Collectively, these rules are known as
the procedure calling convention.

2.1 A Simple Calling Convention

To aid in our discussion of calling conventions, we use a simplified example calling
convention. Fig. 2 contains the calling convention rules for a hypothetical machine.
Consider the following ANSI C prototype for a function foo:

int foo(char p1, int p2, int p3, double p4);

For the purpose of transmitting procedure arguments for our simple convention, we
are only interested in the signature of the procedure. We define a procedure’s signa-
ture to be the procedure’s name, the order and types of its arguments, and its return
type. This is analogous to ANSI C’s abstract declarator, which for the above function
prototype is:

int foo(char, int, int, double);

which defines a function that takes four arguments (a char, two int’s, and a double),
and returns an int. 

With foo’s signature, we can apply the calling convention in Fig. 2 to determine
how to call foo. Arguments to foo would be placed in the following locations:

— p1 in register a1,

— p2 in register a2,

— p3 in register a3, and 

— p4 on the stack in M[sp:sp + 7] (M denotes memory).

Fig. 1. How CCL specifications are used.
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Notice that although register a4 is available, p4 is placed on the stack since it cannot
be placed completely in argument-transmitting registers (rule 4). Such restrictions are
common in actual calling conventions. 

2.2 Convention, Language and Implementation

The first thing to notice about our simple calling convention is the lack of detail.
There are many questions that are left unanswered. Among them are:

(1) What order are the procedure’s arguments evaluated?

(2) What order are the procedure’s arguments placed in registers and on the stack?

(3) Where are the persistent registers stored?

(4) Which persistent registers need to be saved?

(5) What is the activation frame layout?

Each of these questions must be answered in order to produce a working implementa-
tion. These questions are answered by two other elements that interact with the proce-
dure calling convention: the definition of the procedure’s source language and the
language’s implementation. In this work, we have made a conscious effort to separate
the concepts of calling convention, language definition and implementation. 

The choice to isolate the concepts of the convention from those of the language def-
inition is an obvious one. To facilitate inter-language procedure calls, a single conven-
tion separate from the language definition, must be available. There are, however,
features of the source language that may be present in the convention. For example, in
our hypothetical convention, where an argument is placed is determined, in part, by
the type of the argument. Such language features cannot be avoided in the description
of the convention, but they should be kept to a minimum. Also, it illustrates what fea-
tures both languages must share to make inter-language procedure calls possible at all.

(1) Registers a1, a2, a3, and a4 are 32-bit argument-transmitting registers.

(2) Arguments are also passed on the stack in increasing memory locations start-
ing at the stack pointer (M[sp]).

(3) An argument may have type char (1 byte), int (4 bytes), or double (8 bytes).

(4) An argument is passed in registers (if enough are available to hold the entire
argument), and then on the stack.

(5) Arguments of type int are 4-byte aligned on the stack.

(6) Arguments of type double are 8-byte aligned on the stack.

(7) Stack elements that are skipped over cannot be allocated later.

(8) Return values are passed in registers a1 and a2.

(9) Values of registers a6, a7, a8, and a9 must be preserved across a procedure
call.

Fig. 2. Rules for a simple calling convention.
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The need for the second separation, between the convention and the language
implementation, may be less obvious. Compiler writers commonly refer to the mecha-
nism by which procedure calls are made as either the calling convention, or the calling
sequence. Although these two terms are frequently used interchangeably, they are sep-
arate concepts and we treat them as such. Without additional information, the calling
convention itself does not provide enough information to produce an implementation.
The calling sequence, on the other hand, is an implementation of the calling conven-
tion. It is a sequence of machine instructions that implement a procedure call. There
may be many calling sequences for a given calling convention. Furthermore, since the
sequence implements the convention, it is impossible for the caller to determine if the
callee is using the same sequence, and vice versa. Thus, while it is imperative that a
caller and a callee use the same calling convention, it is not necessary that they use the
same calling sequence. 

2.3 Separating Convention from Sequence

An important result of this work is the identification of calling convention and calling
sequence as separate concepts. Although at first this distinction may seem unnatural,
it has many benefits. The reason it seems unnatural is that the two concepts are so
closely coupled. It is impossible to discuss calling sequences without calling conven-
tions. However, the reverse is not true. By extracting the concept of convention from
the calling sequence, we are able to more accurately model the interaction between
procedures and the interaction between system software that process procedures. 

When discussing calling conventions, we have found it useful to have a litmus test
that helps us identify what features of the procedure call are part of the calling con-
vention, and what features are part of the calling sequence. We ask the following
question:

If I change the implementation of this feature on one side of the procedure call,
will it impact the other side of the call?

If the answer to this question is yes, then the feature is part of the calling convention.
If no, the feature is part of the calling sequence. For example, if the callee changes
where it stores the values of persistent registers that it uses, the caller need not be
changed. Thus, where these values are stored is a feature of the calling sequence. Con-
versely, if the callee changes where it stores its return value, the caller must also be
changed so it can properly retrieve the value upon return. Therefore, the placement of
the return value is a matter of calling convention.

2.4 Interfaces and Agents

So far, we have referred to the procedure call interface. Actually, there are two inter-
faces: the procedure call interface and the procedure return interface as shown in
Fig. 3. We model the actions and responsibilities on each side of these interfaces using
agents. An agent ensures that its side of the interface satisfies the requirements of the
calling convention. These agents are the whom in the definition of the calling conven-
tion. For the procedure call interface, there are the caller prologue and callee prologue
agents that are responsible for correctly passing the procedure arguments and con-
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structing an environment that the callee can execute in. For the procedure return inter-
face, there are the callee epilogue and caller epilogue that are responsible for
correctly passing the procedure return values and restoring the environment of the
caller. The responsibilities of each of the four agents are closely related. The caller
prologue and callee prologue agents must agree on how to pass information, as must
the caller epilogue and callee epilogue. Additionally, actions of the epilogue agents
must be symmetric to the actions of the prologue agents to properly restore the envi-
ronment (e.g., if the call decrements the stack pointer, the return must increment it). It
is precisely these restrictions that make it difficult correctly construct a calling
sequence. 

2.5 Addressing

One responsibility of each agent is to maintain the environment in which procedures
execute. Depending on the language and its implementation, the environment can con-
tain arbitrary information. However, one aspect of the environment that almost all lan-
guages are likely to share is the concept of addressing. Addressing describes how a
name in the source language is bound to a location in the implementation. For exam-
ple, local variables are commonly found on the stack, while global variables may be
referenced through a global space pointer. 

Sometimes, to properly construct an environment for a procedure, the caller must
provide to the callee details about the caller’s environment. For example, in Pascal,
where nested procedures can refer to variables in the scope of their containing proce-
dures (up-level references), the caller must provide the callee with environment infor-
mation for the callee to properly implement the scoping rules of the language. Using
our litmus test, clearly the structure of the environment information is part of the call-

Fig. 3. The role of agents in procedure call and return interfaces.
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ing convention. If the structure changed, the callee would need to be changed so it
could properly find variables that visible to the callee. 

Although the structure of information that is transmitted between procedures is a
matter of convention, we have not included it in our convention specifications. Just as
it is reasonable to discuss calling convention rules using data types that are never for-
mally defined, it is reasonable to specify how information is passed between proce-
dures without defining its structure. We believe that description of the structure of
information is itself an interesting and difficult problem that is best left as a future
research effort. When such a description is developed, incorporating it into our speci-
fications should require little effort.

2.6 Activation Frame Layout 

An important decision that must be made when implementing a procedure calling
convention is the layout of the procedure activation frame. An activation frame is one
of several implementation choices for storing the information specific to a particular
activation of a procedure. A surprising result of studying calling conventions is that a
complete specification of the calling convention is unlikely to determine the frame
layout. 

Information that is typically found in a procedure activation frame includes: the pro-
cedure’s parameters, locations for storing local variables and temporaries, space for
saving the values of persistent registers, and space for any other environment informa-
tion. Where this information is found in the frame is determined, in part, by the con-
vention and, in part, by the implementation. The convention fixes the location of the
procedure’s arguments, while it is up to the implementation to specify where local
variables are stored. Thus, any implementation must make some decisions about
frame layout. Section 5.2 discusses how this is done in our implementation. 

3. THE CCL SPECIFICATION LANGUAGE

In this section, we briefly describe the specification language that we use to describe
procedure calling conventions. Once a convention is specified in CCL, we avoid the
pitfalls related to using the programmer’s reference manual, or reverse-engineering
the compiler. The following sections present the key features of CCL and enough syn-
tax of the language to understand the examples. The extended ASCII syntax shown is
just the form that we chose to use. Another syntax could be used if it incorporated the
underlying concepts of CCL. 

3.1 Design Philosophy

In designing CCL, there were a number of features that we wanted to be present. First
and foremost, the language had to be processed automatically. Second, we wanted the
descriptions to be natural. Hence, the elements of the language had to reflect objects
common to calling conventions. Third, the design had to avoid over-specification of
conventions. To achieve this, we tried to exploit the symmetry of the procedure call to
eliminate redundancy in the descriptions. Finally, the feature that received the least
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priority was the syntax of the language. The selection of what symbols to use for oper-
ators, for example, was only of secondary concern.

We describe the key features of CCL by presenting a simple CCL description. Fig. 4
contains the complete specification for our hypothetical calling convention. CCL uses
an extended ASCII character set and typographical elements such as bold face, super-
scripts and special fonts. The specifications are edited using a desktop publishing sys-
tem and are automatically processed from this form.  

The primary objects of CCL are machine resources. A machine resource is simply
any location that can store a value. Examples include registers and memory locations,
such as the stack. Defining where required values are located is accomplished by
specifying a mapping from one resource to another. We call such a mapping a place-
ment. In CCL, machine resources are modeled as arrays with attributes in CCL. In
addition, the language also includes many familiar types of expressions. They include: 

— Sets: {2:9} ≡ {2,3,4,5,6,7,8,9} 

— Ordered sets: <2,8,3,9,4,10>, <0:∞>

— Labeled sets: {char: 1, short: 2, longword: 4, float: 4, double: 8}

— Arrays: M[14] ≡ M14, <M[r14:r14+31]> ≡ <M[r14(32)]>

— Operators: mod, ∑, ∧, ∈, ⊥ 
— Keywords: external, alias, caller prologue, resources, map, set

— Comments: This is a comment

Sets and arrays are the most important types in CCL. In combination, they provide a
natural way to discuss features of a calling convention. The range operator (:) is used
to build sets. For example, we can build an ordered set of machine resources that rep-
resents the first 8 locations of the stack using the expression <M[sp:sp+7]> which is
equivalent to <M[sp], M[sp+1], … M[sp+7]> where sp is an alias for the register con-
taining the stack pointer (another equivalent expression is M[sp:sp(8)]).

3.2 Outer Environment

The CCL language is a part of CSDL, which is a larger description system we are
developing at the University of Virginia [Bailey and Davidson 1996]. Although CCL
is used to capture information about a calling convention, a CCL description does not
contain all necessary information to produce a calling sequence. Indeed, CCL descrip-
tions are not complete by themselves. CCL descriptions require information from the
outer environment to complete the descriptions. Information about the machine and
language, such as the size of registers, the base data types and local procedure infor-
mation, such as the amount of space needed for temporary variables, and which regis-
ters are used, are provided by other components of the CSDL description system. Four
variables that are always defined by the outer environment are the special resources
ARG, RVAL, and the corresponding special resource sizes ARG_TOTAL and
RVAL_TOTAL. Since these values are always defined, they are implicitly declared as
external values. All other variables whose values are provided by the outer environ-
ment are declared using the external statement. 
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A CCL description is typically language dependent as well. This is, in part, because
the language definition influences the calling convention. For example, the C lan-
guage [Kernighan and Ritchie 1978] defines a slightly different calling convention

1
2
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5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

external NVSIZE, SPILL_SIZE, LOCALS_SIZE
persistent {a6, a7, a8, a9}
alias sp ≡ a5

caller prologue
view change

∀ offset ∈ {−∞:∞}
M[sp + offset] becomes M[sp + offset + ARG_SIZE]

end view change
data transfer (asymmetric)

alias mindex ≡ sp:∞
alias argregs ≡ a1:4

resources {<argregs, Mmindex>}
internal ARG_SIZE ← ∑(<M[addr].size | addr ∈ <mindex> ∧

M[addr].assigned>)
class regs ← <<register> | register ∈ <argregs>>
class imem ← <<M[addr]> | addr ∈ <mindex> ∧ addr mod 4 = 0>
class dmem ← <<M[addr]> | addr ∈ <mindex> ∧ addr mod 8 = 0>
∀ argument ∈ <ARG1:ARG_TOTAL>

map argument → argument.type ⊥ {
char: <regs, Mmindex>,
int: <regs, imem>,
double: <regs, dmem>,

}
end data transfer

end caller prologue
callee prologue

view change
∀ offset ∈ {-∞:∞}

M[sp + offset] becomes M[sp + offset + SPILL_SIZE +
LOCALS_SIZE + NVSIZE]

end view change
end callee prologue
callee epilogue

data transfer (asymmetric)
resources {a1:2}
map RVAL1 → <<<a1>>>

end data transfer
end callee epilogue
caller epilogue
end caller epilogue

Fig. 4. A CCL description of the calling convention of Fig. 2.
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than its successor ANSI C [Kernighan and Ritchie 1988]. One difference is that C
always promotes arguments of type float to type double, while ANSI C does not.
These differences are part of the calling convention, and are, therefore, present in the
resulting CCL descriptions. Although ANSI C is now the standard, all of the exam-
ples in this paper assume the traditional C language calling convention since our com-
piler, which uses the descriptions, implements traditional C. However, we also have
ANSI C descriptions available. Finally, although we only present descriptions for C,
we believe that the calling convention of any Algol-based language is amenable to
description in CCL.

3.3 Placement of Parameters and Return Values

Here, we examine the placement of procedure arguments. Return values are specified
in the same manner. For placement of arguments, we focus on the data transfer state-
ment within the caller prologue section of the description (lines 9–24). We use the
alias statement to introduce the name argregs as a name for the parameter passing
registers and mindex as a set of stack addresses (a5 is the stack pointer). Line 12
defines the set of possible destinations for data placement, which we call the
resources. Lines 15–17 specify classes, each of which defines a subset of these
resources, where placements may start. Since the convention has two different align-
ment restrictions for memory, based on argument type, there is a corresponding class
for each restriction and a class for the argument registers. The language requires
classes to be ordered sets of ordered sets. Classes simply partition the resources into
sets of valid locations to place values. The outer set indicates the order to consider
placing the arguments. In this example, when passing arguments in memory, we con-
sider memory locations in low-to-high address order. The inner set typically contains
a single element (the starting location). More complicated conventions make more use
of the inner set. 

The remaining lines (18–23) of the data transfer contain the argument placement
description. The universal quantifier (∀) operator iterates over the set, each time bind-
ing the variable argument to an element of the set. Here, the set is ordered, ensuring
that argument will take values in the set in order. The resource ARG is a special
resource that is provided by the outer environment. It contains information such as the
type and size of the arguments for the call.

The two operators on line 19 complete the placement description. The placement
operator (→) is invoked for each value argument is assigned. The placement operator
takes a value (here an argument) and a list of classes. The classes are searched, in
order, for an available resource to place the given value. When a resource is found, the
location is marked as used, by setting the assigned attribute, to ensure unique loca-
tions for each placed value. The selection operator (⊥) is used on labeled sets. This is
simply a case expression. Based on the value of argument’s type attribute, one
expression from the labeled set is selected.

3.4 Point-of-view change

A view change indicates something has happened that caused values to appear to
move. The register window mechanism on the SPARC microprocessor is an example.
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When the register window slides, the contents of the registers appear to move because
the names of the registers have changed. We wish to indicate this change without
causing the move to occur. The change of view indicates how the names of locations
have changed. View change is used more commonly when describing that a frame has
been pushed on the stack. When a push occurs, all locations referenced by the stack
pointer appear to shift. 

4. THE FORMAL MODEL

4.1 P-FSA Representation

We use finite state automata to model each placement in a calling convention. One
such FSA is shown in Fig. 5. This FSA models the placement of procedure arguments
for the simple calling convention. A placement FSA (P-FSA) takes a procedure’s sig-
nature as input and produces locations for the procedure’s arguments as output. The
automaton works by moving from state to state as the location of each value is deter-
mined. When a transition is used to move from one state to the next, information
about the current parameter is read from the input, and the resulting placement is writ-
ten to the output.

The states of the machine represent that state of allocation for the machine
resources. For example, the state labeled q2 represents the fact that registers a1 and a2

have been allocated, but that registers a3, a4 and stack locations have not been allo-
cated. The transitions between states represent the placement of a single argument.
Since arguments of different types and sizes impose different demands on the
machine’s resources, we may find more than one transition leaving a particular state.

Fig. 5. P-FSA for transmission of parameters for a simple calling convention.
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In our example, q8 has three transitions even though two of them (int and double)
have the same target state (q4). This duplication is required since the output from
mapping an int is different from the output from mapping a double.

Modeling the allocation of an infinite resource, such as the stack, using an FSA
poses a problem, however. As stated above, the state indicates which resources have
been allocated. For finite resources, this is easily accomplished by maintaining a bit
vector. When a resource no longer may be used, the associated bit is set to indicate
this. For an infinite resource this scheme cannot work if we hope to use an FSA since
this would require a bit vector of infinite length. To simplify the problem, we impose a
restriction on infinite resources: their allocation must be contiguous. Thus, for an infi-
nite resource I = {i1, i2, …}, we can store the allocation state by maintaining an index
p whose value corresponds to the index of the first available resource in I. Because the
allocation of I must be contiguous, p partitions the resources since a resource ij is
unavailable if j < p or available if j ≥ p. For instance, if the stack is the infinite
resource, p can be considered the stack pointer. 

Nevertheless, we still have a problem. Although for a particular machine, the value
of p must be finite, the resulting FSA could have as many as 232 stack allocation states
for a 32-bit machine. However, we can significantly reduce this number by observing
that the decision of where to place a parameter in memory is not based on p, but rather
on alignment restrictions. For our example, we care only if the next available memory
location is one-, four-, or eight-byte aligned. Consequently, we can capture the alloca-
tion state of the machine with three bits that distinguish the memory allocation states.
We call these the distinguishing bits for infinite resource allocation.

Handling pass-by-value structures creates a complimentary problem. Since only the
“alignment state” of the stack is of interest, structures that affect the state of the
P-FSA differently must use different transitions. So for a convention that requires
structures to be passed in 8-byte aligned memory locations, all structures of size n
where n mod 8=1 share the same transition out of a given state because they leave the
alignment p in the same state. Therefore, the number of transitions leaving a state is
limited by the alignment restrictions of the machine. 

Placement functions are described in terms of finite resources, infinite resources,
and selection criteria. A set of finite resources R = {r1, r2, …, rn} is used to represent
machine registers, while an infinite resource I = {i1, i2, …}1 is used to represent the
stack. The selection criteria C = {c1, c2, …, cm} correspond to characteristics about
arguments (such as their type and size) that the calling convention uses to select the
appropriate location for a value. We encode the signature of a procedure with a tuple
w ∈ (C*, C*). Each state q in the automaton is labeled according to the allocation
state that it represents. The label includes a bit vector v of size n that encodes the allo-
cation of each of the finite resources in R. Additionally, to express the state of alloca-
tion for the stack, we include d, the distinguishing bits that indicate the state of stack
alignment. So, a state label is a string vd that indicates the resource allocation state. In
our example convention, n = 4, and  = 3. So, each state is labeled by a string from

1This can easily be extended to model more than one infinite resource.

d
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the language {0, 1}4{0, 1}3. The output of M is a string s ∈ P, where
, which contains the placement information. 

Since the P-FSA produces output on transitions, we have a Mealy machine [Mealy
1955]. We define a P-FSA, M, as a six-tuple1 M = (Q, Σ, ∆, δ, λ, q0), where:

— Q is the set of states with labels  representing the allocation state of
machine resources,

— the input alphabet Σ = C, is the set of selection criteria,

— the output alphabet ∆ = P, is the set of placement strings,

— the transition function δ:Q × Σ → Q,

— the output function λ:Q × Σ → ∆+, and

— q0 is the state labeled by 0nw where  = , and w is the initial state of d.

We also define :Q × Σ∗ → Q and :Q × Σ∗ → ∆* which are just string versions
(defined by Hopcroft and Ullman [Hopcroft and Ullman 1979]) of δ and λ, respec-
tively. So, for our example, we have M = (Q, {char, int, double}, {a1, a2, a3,
a4}∪{0, 1}3, δ, λ, q0), where Q and δ are pictured in Fig. 5 and λ is defined in
Table I. Note that we have modified the traditional definition of λ to allow multiple
symbols to be output on a single transition. This reflects the fact that arguments can be
located in more than one resource. For example, in state q5 on an int, Table I indicates
that M produces the string of four symbols 100 101 110 111 that indicates four bytes
that are four-byte aligned, but are not eight-byte aligned.

The signature:

int phred(double, double, char, int);

will take the P-FSA in Fig. 5 from state q0 to q4 producing the string (a1 a2) (a3 a4)
(000) (100 101 110 111) along the way. The parentheses in the output string are
required to determine where the placement of one argument ends and the next argu-
ment’s placement begins. From the string, we can derive the placement of the phred’s
arguments. The first double is placed in registers a1 and a2, the second in registers a3

1In this paper, we use the notation of Hopcroft and Ullman [1979] for finite state automata and regu-
lar expressions. We use letters early in the alphabet (a, b, c) to denote single symbols. Letters late in
the alphabet (w, x, y, z) will denote strings of symbols.

a. m1 = 000 001 010 011
b. m2 = 100 101 110 111
c. m3 = 000 001 010 011 100 101 110 111

λ q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

char a1 a2 a3 a4 000 001 010 011 100 101 110 111

int a1 a2 a3 a4 m1
a m2

b m2 m2 m2 m1 m1 m1

double a1a2 a2a3 a3a4 m3
c m3 m3 m3 m3 m3 m3 m3 m3

Table I. Definition of λ for example P-FSA.

P R 0 1{ , } d∪=

0 1{ , } n 0 1{ , } d

w d

δ̂ λ̂
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and a4, the char at the stack location with offset zero and the int at the stack location
with offset five. 

4.2 Automatic P-FSA Construction

In this section, we present an algorithm for automatically constructing P-FSA’s. For
the moment, we assume the existence of a function f:Σ* → ∆∗. f computes the same
value as M. Since f and M are equivalent, why construct M at all? The answer is that f
may have undesirable properties. For instance, M may be used in a context, such as a
compiler, where performance is an issue. If f is implemented as an interpreter, the time
it takes to compute a placement may not satisfy the performance constraints. Addi-
tionally, by using a P-FSA, there are several properties (such as an upper bound on
M’s execution time) we can prove about the P-FSA that we cannot prove about f. We
present such properties in Section 4.3.

We construct the P-FSA by performing a depth-first-traversal of the states in Q to
determine the set of reachable states from q0. At each state q, the states that are reach-
able from q in one step are determined by using each element of {wc | c ∈ C} as input
to f. Each newly reachable state q’ is added to Q and is subsequently visited by BUILD-
P-FSA (the algorithms are included in the appendix). Finally, the appropriate addi-
tions to δ and λ are made for q’. BUILD-P-FSA also uses an auxiliary function STATE-
LABEL:P → Q. STATE-LABEL takes an output string from M and computes the label
for the state that M was in when the input was exhausted. 

Our construction is now complete, except the definition of the function f. We supply
f’s definition using an interpreter. The interpreter takes as input a CCL specification,
information about a procedure’s signature and some additional information about the
target machine, and produces the necessary mapping information to properly call the
given procedure. Thus, this interpreter can be used to implement f in our algorithm
above. In Section 5.1, we present the interpreter’s use in an implementation.

4.3 Completeness and Consistency in P-FSA’s

Applications, such as compilers and debuggers, which generate, or process proce-
dures at the machine-language level require knowledge of the calling convention.
Until now, the portion of such an application’s implementation that concerned itself
with the procedure call interface was constructed in an ad-hoc manner. The resulting
code is complicated with details, difficult to maintain, and often incorrect. In our
experience, we have encountered many recurring difficulties in the calling convention
portion of a retargetable compiler. There are three sources for these problems: the
convention specification, the convention implementation, and the implementation pro-
cess. We address each of these in the following paragraphs.

Many problems arise from the method of convention specification. Often, no speci-
fication exists at all. Instead the native compiler uses a convention that must be
extracted by reverse engineering. In the cases where a specification exists, it typically
takes the form of written prose, or a few general rules (e.g., our example description in
Fig. 2). Such methods of specification have obvious deficiencies. Furthermore, even if
we have an accurate method for specifying a convention, it still may be possible to
describe conventions that are internally inconsistent, or incomplete. For example, the
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convention may require that more than one procedure argument be placed in a partic-
ular resource. Another possibility is that the specification may omit rules for a partic-
ular data type, or combination of data types.

Those problems that do not stem from the specification result from incorrect imple-
mentation of the convention. Many of the same problems in the specification process
also plague the implementation. Many conventions have numerous rules, and excep-
tions that must be reflected in the implementation. Another difficulty is that the imple-
mentation may require the use of the convention in several different locations.
Maintaining a correspondence between the various implementations can itself be a
great source of errors. Finally, this problem is exacerbated by the fact that the imple-
mentation frequently undergoes incremental development. Rather than taking on the
chore of implementing the entire convention at once, a single aspect of the conven-
tion, such as providing support for a single data type, is tackled. After successfully
implementing this subset, the next increment is tackled. During this process, some
aspect of the first stage may break due to the interactions between the two pieces. 

The result of these observations is that there are several properties that we would
like to ensure about a specification and implementation. The above discussion moti-
vates the following categories of questions:

(1) Completeness:

(a) Does the specified convention handle any number of arguments?

(b) Does the convention handle any combination of argument types?

(2) Consistency:

(a) Does the convention map more than one argument to a single machine
resource?

(b) Do the caller and callee’s implementations agree on the convention?

Many questions like these can be answered using P-FSA’s. The following sections
show how we can prove certain properties about CCL specifications that ensure desir-
able responses to the above questions.

Completeness. The completeness properties address how well the convention cov-
ers the possible input cases. A convention must handle any procedure signature. If we
could guarantee that the convention was complete, or covered the input set, then we
could answer the completeness questions posed in the previous section. We can deter-
mine if a convention is complete by looking at the resulting P-FSA. For example, will
the convention work for any combination of argument types? The answer lies in the P-
FSA transitions. For the convention to be complete, each state q ∈ Q must have δ(q, c)
defined for all c ∈C. 

Using P-FSA’s, we can guarantee that no incomplete convention will go undetected.
For an incomplete convention K to not be detected, it would first have to be con-
structed using our algorithm. Assume such a P-FSA M exists for K. Then there must
be some state qk that is reachable from q0 but does not have δ(qk, a) defined for some
a ∈ C. Let Wk denote the set of all strings x such that (q0, x) = qk. That is, Wk is the
set of strings that take M from state q0 to qk. Thus, for all strings x such that x ∈ Wk, xa

δ̂
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represents a signature that K does not cover. However, during construction, BUILD-P-
FSA visited state qk with some string w such that (q0, w) = qk. Thus, w must be in Wk
and must not be covered by K. Since BUILD-P-FSA calls f(wc) for all c ∈ C, f will be
called using f(wa). Since wa is not covered by K, f(wa) will be undefined. At this point
the construction process will signal that K is incomplete.

Consistency. The consistency properties address whether the convention is inter-
nally and externally consistent. A convention is internally consistent if there is no
machine resource that can be assigned to more than one argument. A convention is
externally consistent if the caller and callee agree on the locations of transmitted val-
ues. In our model, we detect internal inconsistency, and prevent external inconsis-
tency.

To detect internal inconsistencies, we again turn to the P-FSA. If the convention
only used finite resources, detecting a cycle in the P-FSA would be sufficient to detect
the error. However, when infinite resources are introduced, so are cycles. We cannot
have an internal inconsistency for an infinite resource since p is defined to be mono-
tonically increasing. We detect finite resource inconsistencies in the following man-
ner. An inconsistency can occur when there is a transition from some state qj to qk
where bit i in the finite bit vector is 1 in qj, but 0 in qk. At this point, M has lost the
information that resource ri was already allocated. We can detect this change by com-
paring all pairs of bit vectors v1, v2 such that v1 labels qj, v2 labels qk and δ(qj, c) = qk
for some c ∈C. To do the comparison, we compute v3 = (v1 ⊕ v2) ∧ v1. v1 ⊕ v2 selects
all bits that differ between v1 and v2. We logically and (∧) this with v1 to determine if
any set bits change value. Thus, if v3 has any bit set, we have an inconsistency. 

Our convention specification language prevents external inconsistencies in the call-
ing convention. A convention specification only defines the argument transmission
locations once. Although both the caller and the callee must make use of this informa-
tion, the specification does not duplicate the information. Since we only have a single
definition of argument locations, we only construct a single P-FSA to model the
placement mapping. This single P-FSA is used in both the caller and callee. Thus, we
prevent external inconsistencies by requiring the caller and callee use the same imple-
mentation for the placement mapping. 

5. USE IN A COMPILER

In this section, we present how the information from our CCL descriptions can be
used to generate calling sequences for the vpcc/vpo optimizing compiler.

5.1 The Interpreter

We have implemented an interpreter for the CCL specification language. The inter-
preter’s source is approximately 2500 lines of Icon code [Griswold and Griswold
1990]. The interpreter takes as input the CCL description of a procedure calling con-
vention, a procedure’s signature, and some additional information about the target
architecture, and produces locations of the values to be transmitted, in terms of both
the callee and the caller’s frame of reference. 

δ̂
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We have developed CCL specifications for the following machines: MIPS R3000,
SPARC, DEC VAX-11, Motorola M68020, and Motorola M88100. Each of these
CCL specifications is approximately one page in length. Using the specification for
the MIPS, and the CCL interpreter, we constructed a P-FSA that implements the
MIPS calling convention. The MIPS P-FSA uses only 70 out of a possible 512 states
(the state label has nine bits), but requires up to 25 transitions for each state to imple-
ment the selection criteria for the C programming language. Since the MIPS conven-
tion has more machine resource classes and alignment requirements than any of the
other machines, it represents the most complicated convention we have. For machines
that pass procedure arguments on the stack with no alignment restrictions, such as the
VAX-11, the FSA’s contain only a few states.

For comparison purposes, we have examined the calling convention specific code
for a retargetable compiler. The MIPS implementation requires 781 lines of C code,
while the SPARC implementation has 618 lines. This code is one of the most complex
sections of the machine-dependent code. This code is replaced by the P-FSA tables
and a simple automaton interpreter. 

5.2 Realizing the Calling Sequence

In our compiler, the code for the procedure bodies is generated without knowledge of
the calling convention. For a callee, the optimizer treats formal parameters as local
variables. It assigns each parameter either a register or a memory location, based on
the parameter’s predicted reference frequency. Thus, although an established conven-
tion for where values cross the procedure call interface exists, the code generated by
our compiler for a procedure’s body may not conform to the convention. 

To correct this problem, instructions are placed before and after the callee’s body,
and before and after the call site in the caller. We call these instructions the caller/
callee prologue/epilogue sequences. It is these sequences of instructions that are col-
lectively called the calling sequence. The sequences introduce four new interfaces
shown in Fig. 6. In each sequence, the instructions transform a convention interface to
a code body interface or vice versa. Since these sequences of instructions are used to
“glue” the procedure bodies to the convention interfaces, they correspond to the
agents, shown in Fig. 3, of our high-level model.

An agent’s responsibilities fall into one of three categories: allocation or dealloca-
tion of storage space, movement of values from their locations in the first interface to
locations in the second interface, and the construction/restoration of procedure execu-
tion environments. Hence, to generate an agent’s actions, we must have information
about where the calling convention expects values, what space to allocate or free, and
the procedure’s environment structure. We can automatically generate the first two.

To illustrate our technique, we show how to generate the instruction sequence for
one agent. The instruction sequences that correspond to the other three agents are gen-
erated exactly the same way. For our example, we focus on the prologue callee agent
for the procedure foo introduced earlier.

Recall that for our hypothetical machine, foo’s arguments are placed by the caller in
locations a1, a2, a3, M[sp:sp+7]. Assume that in generating foo’s body, the optimizer
uses two persistent registers, allocates 12 bytes of memory for local variables (includ-
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ing foo’s arguments) and uses eight bytes of spill space. One possible frame layout is
shown in Fig. 7. Fig. 7a shows the generic layout for any procedure, while Fig. 7b
shows foo’s layout using this scheme. The relative locations of the temporary spill
space, local variable space and persistent register save space are determined by the
optimizer. The optimizer provides the locations where the callee body expects values.
These are listed in the second column of Table II. These locations represent an agree-
ment between the callee body and the callee prologue agent. 

The optimizer calls the P-FSA interpreter with foo’s signature and values of the
external variables:

[SPILL_SIZE=8, LOCALS_SIZE=12, NVSIZE=8,
(ARG1, type:char, size:1), (ARG2, type:int, size:4), (ARG3, type:int, size:4),
(ARG4, type:double, size:8)]

The P-FSA returns view changes, a list of argument locations that correspond to the
calling convention, and a list of persistent registers:

[(∀ offset ∈ {-∞:∞}, M[sp + offset] : M[sp + offset + 32]),
[(ARG1, a1), (ARG2, a2), (ARG3, a3), (ARG4, M[sp+32:sp+39])],
[persistent: a6, a7, a8, a9]]

In this example, the view change occurred before the list of locations. Therefore, the
locations reflect this fact. 

View change information corresponds to the allocation or deallocation of storage
space. This view change indicates that any memory location’s address that contains a
valid value for offset, shifts down by 32 bytes. Since offset can take on any positive or
negative value (-∞:∞), this corresponds to all addresses relative to the stack pointer.
Thus, a decrement of the stack pointer by 32 bytes is needed. This allocation of stack

Fig. 6. Calling sequence locations.
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space will appear as a view change since it changes the names of all locations refer-
enced by the stack pointer. A table is consulted for each view change in the CCL
description. The table maps all view changes to valid machine instructions. 

After the view change has been performed, the necessary moves must be made to
transform the agreement between the caller prologue agent and callee prologue agent
to the agreement between the callee prologue agent and the callee body. Table II sum-
marizes the location information. Column one shows the locations returned by the
P-FSA. Column two shows the locations that the optimizer supplies. Column three,
which can be trivially derived from columns one and two, indicates the necessary
actions. Each of these moves is a register/memory to register/memory move. A table
of available move instructions is consulted to determine the necessary instructions to
be inserted into the callee prologue’s sequence. 

After the agent’s actions are determined, the list of sources and destinations must be
examined to determine if there are any dependencies. If a source is also a destination,
the move containing the source must be performed before the move containing the
destination, otherwise the source value will be lost. It is not uncommon for a circular-
ity to exist. For example, if a1→a2 and a2→a1, we must introduce a third location to
break the circularity: a1→temp, a2→a1, temp→a2. Either an available register or a
memory location must be used to temporarily hold one of the values. In our compiler,
we usually have a register available. 

At this point, the callee prologue instruction sequence is complete. So far, we have
not addressed instruction sequence efficiency. Because of the frequency of procedure
calls, generating efficient instruction sequences is an important feature of optimizing
compilers. In our compiler, the resulting instruction sequences are processed by the
optimizer. Thus, although the instruction sequences that are initially generated by this

Fig. 7a. Generic Frame Layout. Fig. 7b. foo’s Frame Layout.

Fig. 7. A possible procedure activation frame structure.

incoming
arguments

return address

local variables

temporary spill
locations

outgoing
arguments

stack

 non-volatile
memory

save space

new
frame

caller's frame
sp

p4

return address

local variable 1
register a2 (p2)
local variable 2

temporary spills

stack

register a6

register a7

foo's caller's frame

0

12

20

28
32

40



20 • Mark W. Bailey and Jack W. Davidson

ACM Transactions on Programming Languages and Systems January 3 (10:22am)

process are naive, they benefit from thorough optimization just as other code does.
The resulting code is as good, if not better, than the code generated by our handwritten
version of our compiler. Often, the code improves because the additional peephole
optimization phase that is performed after the calling sequence instructions are gener-
ated can remove unnecessary register-to-register moves.

6. CONSTRUCTION OF DIAGNOSTIC PROGRAMS

Building compilers that generate correct code is difficult. To achieve this goal, com-
piler writers rely on automated compiler building tools and thorough testing. Auto-
mated tools, such as parser generators, take a specification of a task and generate
implementations that are more robust than hand-coded implementations. Conversely,
testing tries to make hand-coded implementations more robust by detecting errors. In
this section, we discuss how CCL descriptions can be used to make compilers more
robust without requiring that the compiler’s implementation use CCL. 

6.1 Test Vector Selection

To test a compiler’s implementation of a calling convention, we must select a set of
programs to compile. To exercise the calling convention, each test program must con-
tain a caller and a callee procedure. For the purpose of testing the proper transmission
of program values between procedures, the signature of the callee uniquely identifies
a test case. Thus, two different programs, whose callees’ signatures match, perform
the same test. Therefore, the problem of generating test cases reduces to the problem
of selecting signatures to test. 

Selecting which procedure signatures to test is a difficult problem. Obviously, one
cannot test all signatures since the set of signatures, S = {(C*, C*)}, is infinite. How-
ever, since we can model the function that computes the placement of arguments as an
FSA, there must be a finite number of states in an implementation to be tested. This is

Convention
Callee Prologue Agent/

Callee Agreement Callee Prologue Agent Actions

A
rg

u
m

en
ts

p1:a1 p1:a3 a1→a3

p2:a2 p2:M[sp+4:sp+7] a2→M[sp+4:sp+7]

p3:a3 p3:a4 a3→a4

p4:M[sp+32:sp+39] p4:a1,a2 M[sp+32:sp+39]→a1,a2

P
er

si
st

en
t

a6 M[sp+20:sp+23] a6→M[sp+20:sp+23]

a7 M[sp+24:sp+27] a7→M[sp+24:sp+27]

a8 a8 —

a9 a9 —

Table II. Summary indicating how callee prologue agent actions are determined from placement 
information from both interfaces.
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the case for any implementation, including those that do not explicitly use FSA’s to
model the placement function. 

The problem of confirming that an implementation properly places procedure argu-
ments is equivalent to experimentally determining if the implementation behaves as
described by the P-FSA state table. This problem is known as the checking experiment
problem from finite-automata theory [Hennie 1964; Kohavi 1978]. There are numer-
ous approaches to this problem, most of which are based on transition testing. Transi-
tion testing forces the implementation to undergo all the transitions that are specified
in the specification FSA.

An obvious first approach to generating test vectors using the P-FSA specification
is to generate all vectors whose paths through the FSA are acyclic and those whose
path ends in a cycle1. This solution insures that each state q is visited, and each transi-
tion δ(q,a) is traversed. For an FSA with few states, and a small input alphabet, this
may be acceptable. However, the number of such paths for an FSA is . To
illustrate the characteristics of P-FSA’s, Table III contains profiles for five P-FSA’s
that we have built from CCL descriptions. For complex conventions, like the MIPS
and SPARC, the number of transitions, and more important, the number of states can
be large. For the MIPS, this results in an upper bound of  test vectors.
In practice, the number of test vectors is closer to 108 vectors. However, this is still too
many to run feasibly. 

Another, simpler, approach is to guarantee that each transition is exercised at least
once. Since there are no more than  transitions, the number of test vectors that
this generates is not unreasonable. However, this method results in poor coverage that
does not inspire confidence in the test suite. For example, for the P-FSA in Fig. 5, the
three signatures:

void f(double, double);
void f(int, int, int, int);
void f(int, double);

cover all int and double transitions leaving states q0–2. This leaves the signature:

void f(double, int);

1We define a path that ends in a cycle to be a cyclic path wa where the path w is acyclic. 

Machine
Allocation 
Vector Bits

Memory 
Partition Bits

Longest 
Acyclic Path

DEC VAX 0 0 1 3 3 0

M68020 (Sun) 0 2 4 24 6 3

SPARC (Sun) 6 3 9 90 10 8

M88100 (Motorola) 8 3 72 720 10 15

MIPS R3000 (DEC) 6 3 70 772 25 11

Table III. P-FSA profiles for several calling conventions.

O Σ Q( )

2512 2.3 22×10=

Q δ Σ

Q Σ
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untested. Clearly such a test should be included in the suite. To further illustrate the
problem, consider the FSA specification shown in Fig. 8a. An erroneous implementa-
tion, shown in Fig. 8b, contains an extra state q1' that is reached on initial input b. The
two strings, aaa and bbb completely cover the specification FSA transitions. Unfortu-
nately, these test vectors will not detect that the implementation has an additional
(fault) state. Thus, it is not sufficient to include only test vectors that cover the transi-
tion set. 

An alternative, which falls between the simple transition approach and the acyclic
path approach, we call the transition-pairing approach. In transition pairing, we
examine each state in the specification FSA. As shown in Fig. 9, a state has entering
and exiting transitions. For each state, we include a test vector that covers each pair of
entering and exiting transitions. This eliminates the faulty state detection problem
illustrated in Fig. 8. Furthermore, it provides tests that have a similar characteristic to
the acyclic method: transitions are tested in “all” the contexts that they can be applied.
Although there are many combinations that are not tested, they are similar to ones
included in the set. For example, in the simple FSA pictured in Fig. 5, we could have a
set of test vectors that includes the vector double double double to exercise the state
q4 with the transition pair ((q2, double), (q4, double)). Such a set would not need to
include int int double double to cover the same transition pair. 

Fig. 8a. Specification FSA. Fig. 8b. Implementation FSA.

Fig. 8. Example FSA where a fault will not be detected.

Fig. 9. Entering and exiting transitions for a state.
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This method of test vector generation provides a complete coverage of transitions in
the specification FSA. Further, the tests reflect the context sensitivity that transitions
have. This allows for some erroneous state and transition detection, while signifi-
cantly reducing the number of test vectors. The test vector sizes are significantly
smaller than the acyclic method, while still providing a significant confidence level. 

An algorithm for generating transition-pair paths is shown in Fig. 15 (in the appen-
dix). The algorithm performs a depth-first search of the FSA state graph. Each time a
transition (q, a) is encountered, it is marked. This mark indicates that all paths that go
beyond (q, a) are have been visited. When the algorithm reaches a state qn on transi-
tion (qm, a), each transition (qn, b) where b ∈ Σ is visited whether or not it is marked.
This causes all pairs of transitions ((qm, a), (qn, b)) to be included. These pairs repre-
sent all combinations of one entering transition with all exiting transitions. Because
the algorithm is depth-first, each entering transition is guaranteed to be visited. Thus,
all combinations of entering and exiting transitions are included. 

6.2 Test Case Generation

After selecting the appropriate test vectors, or procedure signatures, the corresponding
test cases must be realized. In our approach, we generate a separate test program for
each test vector so that we can easily match any reported errors to the specific test
vector. 

A procedure call is broken into two pieces: the procedure call within the caller (the
call-site) and the body of the callee. Because they are implemented differently, these
two pieces of code are typically generated in separate locations in a compiler. This
natural separation is reflected in the way that we construct our test cases. Each test
case is composed of two files, one contains the caller, the other contains the callee.
The two files are compiled and linked together. The programs are self-checking, so
that if a procedure call fails, this event is reported by the test itself.

Fig. 10 shows the compiler conformance test process. One file is compiled by the
compiler-under-test (CUT), while the other is compiled by the reference compiler.
The reference compiler operationally defines the procedure calling convention (its
implementation is defined to be correct). The resulting objects files are linked together
and run. Results of the test are checked by the conformance verifier and given to the
test conductor. The test conductor tallies the results of all tests for a test suite and gen-
erates a conformance report. Although this process uses two compilers, the same pro-

Machine Transition Paths Transition-pair paths Acyclic paths

DEC VAX 3 12 3

M68020 (Sun) 24 324 96

SPARC (Sun) 224 7,434 > 108

M88100 (Motorola) 720 22,412 > 108

MIPS R3000 (DEC) 772 5,655 8x108

Table IV. Sizes of test suites for various selection methods.
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cess may still be used if a reference compiler is not available. However, this will
weaken the conformance verifier’s ability to automatically diagnose errors as dis-
cussed in the next section. 

In each test case, the caller loads each argument with randomly selected bytes.
However, the values of these bytes have an important property: each contiguous set of
two bytes is unique. Thus, for a string B of m bytes, for all indexes , there
exists no index  and  such that  for all .
We can easily guarantee this property for all strings B whose length is no more than
65536 (216) bytes. Since the likelihood of using an argument list of size greater than
64 Kbytes is small, this is sufficient to guarantee that any two bytes passed between
procedures are unique. This makes it easier to identify if an argument has been shifted
or misplaced. The callee receives the values, and checks them against the expected
values. If the values do not match, an error condition is signalled.

As one might expect, the generation of good test cases from selected signatures is
language dependent. One convention used in the C programming language is varargs.
varargs is a standard for writing procedures that accept variable length argument lists.
The proper implementation of varargs in a C compiler can be tricky. For each test
case that we generate we also generate a varargs version to verify that this standard
convention is implemented correctly. 

6.3 Automatic Diagnosis of Errors

Generation of good tests is only a part of the testing process. If a test fails, the prob-
lem must be diagnosed and a solution developed. In this section, we discuss how the
second step, diagnosis, can be partially automated.

Fig. 10. The compiler conformance test process.
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As discussed above, the conformance verifier links a caller and callee together and
runs the resulting program. When both a reference compiler and CUT are used, this
results in four distinct caller-callee pairs. The result of running all four programs is
called an outcome. Fig. 11 shows an outcome pictorially. Procedures generated by the
reference compiler are filled, while CUT generated components are unfilled. The
result of a single test is indicated by an arrow connecting a pair of components. When
the result is that a test passed, a solid line is shown, while a dotted line is used for test
failure. 

The result of a single test, taken in isolation, provides limited information: whether
a fault has been detected or not. However, we can glean more information by consid-
ering the composite result that an outcome provides. By using multiple versions of
object files generated by different compilers, we can exploit the interface of the proce-
dure call. Each test has an object file in common with two other tests. When a test
fails, the results of the two other tests can help isolate the fault. For example, in the
outcome shown in Fig. 11, the CUT/reference test (the test composed of the CUT
caller and reference callee) has failed. To isolate if the caller or callee contains the
fault, the reference/reference test result is considered. This test replaces the CUT
caller with the reference caller, keeping the callee in common between the two tests.
Since the test passed, we have reason to believe that the CUT caller contains the fault
since the fault disappeared when the CUT caller was removed. Our suspicion is con-
firmed when we consider the CUT/CUT test. Since this test fails, the fault remains
when the reference callee was removed. Thus, the fault must be in the CUT caller. We
would come to the same conclusion had we started with the CUT/CUT fault and con-
sidered the CUT/reference and reference/CUT test results. 

This method of isolating errors by swapping different components makes it possible
to automatically diagnose common errors. Since each outcome is composed of four

Fig. 11. An example outcome.
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results that may indicate a pass or fail, there are 16 outcome configurations. Since this
number is small, each outcome can be hand-analyzed once and the results tabulated.
Table V summarizes such an analysis. Several diagnoses deserve mention. First,
although the reference compiler is considered the authority, there are many cases
where the reference can be determined to be faulty. This occurs in six of the outcomes.
Second, three of the outcome configurations are not possible. These are the outcomes
where only a single test failed. This indicates a conflict in conventions. This cannot
occur with a single test failure since we assume each component uses a single conven-
tion1. Finally, for two of the cases, we not only can isolate the location of the fault, but
we can identify the nature of the error. This occurs in outcomes 10 and 12 where two
conflicting conventions have been discovered. 

The combination of test vector selection and automatic diagnosis proves to be a
powerful debugging tool. As tests are generated, run, and analyzed, patterns of errors
tend to emerge. We have found that the patterns themselves suggest the nature of the
problem. For example, finding that an error occurred for every signature that included
a struct of size greater than seven bytes might suggest an alignment problem. More
complicated patterns can exist, and, with knowledge of the calling convention can sig-
nificantly help the developer correct faults. 

6.4 Test Results

We used our technique for selecting test vectors to test several compilers on several
target machines. Several errors were found in C compilers on the MIPS. In this sec-
tion, we present these results.

We selected several C compilers that generate code for the MIPS architecture (a
DECStation Model 5000/125). These included the native compiler supplied by DEC,
two versions of Fraser and Hanson’s lcc [Fraser and Hanson 1991; Fraser and Hanson
1995] compiler, several versions of GNU’s gcc [Stallman 1992], and a previous ver-
sion of our own C compiler that used a hand-coded calling sequence generator.
Although we feel that this technique is extremely valuable throughout the compiler
development cycle, we believe that it would be fairest to evaluate its effectiveness in
finding errors in young implementations of compilers. Where possible, we have used
early versions of these compilers. These versions, called legacy compilers, represent
younger implementations that more accurately exhibit bugs found in initial releases of
compilers. However, each of these compilers is a production-quality compiler that has
been widely used for years. Finding any bugs in their implementations is still a signif-
icant challenge.

1Appel [1996] observes that such outcomes actually are possible. In his counter example, the CUT
caller implements a different convention than the reference compiler, but the CUT callee implements
both conventions. In this scenario, the fault is detected in the CUT/reference test, but not in either the
CUT/CUT or the reference/reference tests. Although such a case is possible, the chances of a callee
implementing two different conventions that do not conflict (i.e., use the same register for two differ-
ent purposes) are remote. The benefits, in terms of diagnostic ability, of considering such a case as
invalid, far outweigh any accuracy gained by labeling it a valid outcome. Finally, if such a case were
to occur, it would still be detected; it just could not be automatically diagnosed.
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In testing the compilers, we checked for two types of conformance: internal and
external. Compiler A internally conforms if code that it generates for a caller can
properly call code for a callee that it generated. We denote this using A→c A. Compiler
A externally conforms if its caller code can call another compiler B’s callee code, and
vice versa (A→c B and B→c A). Thus, the callees and callers are compiled using each of
the compilers under test. This results in n object versions for n compilers. Each caller
version is then linked with the callee that was generated by the same compiler. This
results in the n tests necessary to verify internal conformance for this test case. To
establish external conformance, we could naively link each caller to each callee,
which would yield 2n2 tests. However, we can do better. Recognizing that procedure
call (→c ) is symmetric we can easily reduce this to n2 (since if A→c B, then B→c A). Fur-
thermore, procedure call is also transitive, so if A→c B and B→c C, then A→c C. This
reduces the number to  as pictured in Fig. 12. Each compiler’s caller is linked
to the reference compiler’s callee. This facilitates the isolation of which compiler does
not conform when an error is detected. 

The results of running both internal and external tests on the compiler set for the
MIPS are shown in Table VI. We found both internal and external conformance errors
in all of the tested compilers. Table VI reports internal and external errors separately.
Within each class, the number of actual tests that failed and the number of faults that

Outcome Diagnosis Outcome Diagnosis

Faults in at least three compo-
nents.

Faults in both components of the 
CUT.

Faults in both components of ref-
erence compiler.

CUT implements wrong conven-
tion (not externally conformant 
with the reference).

Fault in the reference compiler’s 
caller.
Fault in the CUT’s callee.

Fault in the CUT’s callee.

Fault in the reference compiler’s 
caller.

Not possible.

Fault in reference compiler’s 
callee. Fault in CUT’s caller.

Fault in the CUT’s caller.

Fault in reference compiler’s 
callee.

Not possible.

Two conventions. One shared 
between the reference compiler’s 
callee and CUT’s caller, and vice 
versa.

Not possible.

Not possible. No faults detected.

Table V. All outcome configurations.

2n n–
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caused failure are indicated1. The numbers reported in the fault columns indicate the
approximate number of actual coding errors resulting in test failures. These numbers
are only approximate. We tried, as best we could, to glean this information from the
results of tests. More accurate numbers can only be obtained by examining the com-
piler’s source.

Standard Procedure Calls. Internal conformance errors were found in two ver-
sions of gcc. gcc 1.38 failed 24 tests that focus on passing structures in registers.
Structures between 9 and 12 bytes in size (3 words) are not properly passed starting in
the second argument register. Procedure signatures that correspond to these tests
include:

a. Version 1.9 of lcc was not tested using varargs because we could 
not get the compiler to accept varargs callees. This could either 
be a problem with the compiler, or the particular version of 
stdarg.h on our machine. 

1These numbers include tests of both standard procedure calls and variadic procedure calls. 

Fig. 12. Determining conformance of n compilers.

Internal External

Compiler Failed tests Faults Failed Tests Faults

cc (native) 2,346 1 2,346 1

gcc (1.38) 2,370 2 2,567 3

gcc (2.1) 0 0 2,346 1

gcc (2.4.5) 1 1 2,374 3

lcc (1.9)a 0 0 0 0

lcc (3.3) 2,407 2 2,407 2

vpcc/vpo 2,346 1 486 3

Total 9,470 7 12,526 13

Table VI. Results of running the MIPS test suite on several compilers.
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void(int, struct(9-12));

gcc 2.4.5 fails a single test. The fault occurs with procedures with the signature:

void (struct(1), struct(1), struct(1));

gcc 2.4.5 fails to even compile a procedure with this signature1. The fact that gcc 2.1
does not have this error indicates that the error was introduced after version 2.1. This
supports our conjecture that such method of automatic testing is extremely useful
throughout the development and maintenance life-cycle of a compiler. 

External conformance errors were more prevalent. gcc 1.38 does not properly pass
1-byte structures in registers. This results in 208 test case failures. gcc 1.38 and 2.4.5
cannot pass a structure in the third argument register when that structure is followed
by another. The fault occurs with signatures matching:

void(int, int, struct(1-4), struct(any));

This results in another 13 test failures. Finally, vpcc/vpo has 486 tests that fail. Two
faults are responsible: 1) structures are not passed properly in registers, and 2) 1 to 4-
byte structures are not passed in memory correctly if they are immediately followed
by another structure. These match signatures:

void (int, int, int, int, struct(1-4), struct); 

Variadic Procedure Calls. Procedures that take variable-length argument lists
(variadic functions) are written using one the of two standard header files:
varargs.h (for traditional C) and stdarg.h (for ANSI C). These files provide a
standard interface for the programmer to write variadic functions. Because a variadic
function’s caller uses the standard procedure calling convention, the variadic callee
must also conform to this convention. The following paragraphs detail the results of
calling callees that are implemented using varargs/stdarg.

Most variadic functions in C have signatures similar to the standard library function
printf:

void func(char *, ...);

The function determines the number of arguments from the first parameter. However,
functions of the form:

void func(double, ...);

are also valid. When running test cases that contained variadic functions whose first
argument was a double, we found that none of the compilers, including the reference
compiler, properly implemented the calling convention. The difficulty stems from the
fact that until the type of the argument is known, the callee cannot determine whether
to fetch the first argument from the floating-point register or the integer register. Most
implementations of varargs dump the contents of the argument-passing registers to
the stack in the function’s prologue. For calling conventions like the MIPS, a more
sophisticated solution must be used. This error caused 2346 test cases to fail for all of

1The error returned by gcc 2.4.5 was:
gcc: Internal compiler error: program cc1 got fatal signal 4.
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the compilers. Version 2 releases of gcc managed to avoid this problem at the expense
of interoperability; their generated callees do not conform to the established calling
convention. 

From these results, obviously the state-of-the-art in compiler testing is inadequate.
Because these are production-quality compilers, each of them has undoubtedly under-
gone rigorous testing. However, hand development of test suites is an arduous and
itself error-prone task. Furthermore, because these tests are target specific, they must
be revisited with each retargeting of the compiler. In contrast, by using automatic test
generators that are target sensitive, compilers can quickly be validated before each
release.

7. RELATED WORK

What little work there has been in calling sequences has been ad-hoc. For example,
Johnson and Richie discuss some rules of thumb for designing and implementing a
calling sequence for the C programming language [Johnson and Ritchie]. Davidson
and Whalley [1991] experimentally evaluated several different C calling conventions.
However, no attempts have been made to formally analyze calling conventions.

On the other hand, the use of FSA’s for modeling parts of a compiler, and as an
implementation tool, has a long and successful history. For example, Johnson et al.
[1968] describe the use of FSA’s to implement lexical analyzers. More recently,
Proebsting and Fraser [1994], and Muller [1993] have used finite state automata to
model and detect structural hazards in pipelines for instruction scheduling.

Work related to the automatic generation of test suites has received much attention
recently in the area of conformance testing of network protocols [Sidhu and Leung
1989]. The purpose of the suite is to determine if the implementation of a communica-
tion protocol adheres to the protocol’s specification. Often, the protocol specification
is provided as a finite-state machine. This has resulted in many methods of test selec-
tion including the Transition tour, Partial W-method [Fujiwara et al. 1991], Distin-
guishing Sequence Method [Kohavi 1978], and Unique-Input-Output method [Aho
et al. 1991]. These methods are derivatives of the checking experiment problem where
an implementation is checked against a specification FSM [Yannakakis and Lee
1995]. 

What distinguishes these methods from ours are the underlying assumptions con-
cerning the characteristics of the implementation FSA’s. Unlike theirs, our FSA’s can
have a large number of states and transitions. This significantly changes the nature of
the solution to the problem. Furthermore, much of the problem that network conform-
ance researchers are faced with is identifying which state the implementation FSA is
in. A significant portion of their work focuses on generating test vectors that discover
the state of the machine. Fortunately, we can always put our implementation state
machine in the start state. Also, in their work, a bound on the number of states in the
implementation FSA’s is assumed. Because we have no practical bound on the num-
ber of states in the implementation, their work is not applicable. Finally, a similarly
related field is the automatic verification of digital circuits [Hennie 1964; Ho et al.
1995]. 
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8. CONCLUSION

Current methods of procedure calling convention specification are frequently impre-
cise, incomplete, or contradictory. This comes from the lack of a formal model, or
specification language that can guarantee completeness and consistency properties.
We have presented a formal model, called P-FSA’s, for procedure calling conventions
that can ensure these properties. Furthermore, we have developed a language and
interpreter for the specification of procedure calling conventions. With the interpreter,
a P-FSA that models a convention can be automatically constructed from the conven-
tion’s specification. During construction, the convention can be analyzed to determine
if it is complete and consistent. The resulting P-FSA can then be directly used as an
implementation of the convention in an application.

Although we have shown that it is possible to automatically generate the calling
sequence generator of a compiler, some work is required to retrofit an existing compi-
lation system to use CCL descriptions. Fortunately, it is possible to reap the benefits
of CCL without any modification of the compiler. Using automated compiler tools
and testing, one can significantly increase the robustness of any compiler. We have
combined these two techniques, in a new way, that further closes the gap between
actual compiler implementations and the ever-sought-after correct compiler. By using
formal specifications of procedure calling conventions, we have designed and imple-
mented a technique that automatically identifies boundary test cases for calling
sequence generators. We then applied this technique to measure the conformance of a
number of production-quality compilers for the MIPS. This system identified a total
of a least 22 faults in the tested compilers. These errors were significant enough to
cause over 2,300 different test cases to fail. Clearly, this technique is effective at
exposing and isolating faults in calling sequence generators of mature compilers.
Undoubtedly, it would be even more effective during the initial development of a com-
pilation system.
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Appendix

This appendix presents the supporting algorithms discussed earlier. It also contains a
more sophisticated example specification for the MIPS R3000.

Construction Algorithms

We define the algorithm BUILD-P-FSA in Fig. 13. The algorithm starts with the initial
state q0 as the only element of Q. Since there are no transitions yet, λ and δ have no
rules. A call to BUILD-P-FSA takes three parameters, q, w, and x. q represents the state
for BUILD-P-FSA to visit, while w represents the input string such that (q0, w) yields
(q, ε), and x is output string upon reaching q. From this definition, the initial call to
BUILD-P-FSA must be BUILD-P-FSA(q0, ε, ε). 

The algorithm for STATE-LABEL is simple. We start with state q0. As STATE-LABEL

reads each symbol from the string, it encounters either the name of a finite resource,
or a symbol representing the distinguishing bits of p. In the finite case, the bit corre-
sponding to the resource is set in the finite resource vector. In the infinite case, the dis-
tinguishing bits of the state are set to the input symbol that was read. At the end of the
input, all finite resources that have been read have their bits set to indicate they are
unavailable, and the distinguishing bits indicate the last set of distinguishing bits read.
To complete the computation, we need to move the infinite resource index to the next
available resource (it currently points to the last unavailable one)1. The result of this
computation is precisely the label for the final state of M for output w since it indi-
cates which resources are available for allocation. The complete algorithm is shown in
Fig. 14.

1An ordered list of values for p’s distinguishing bits is known so that we can perform this calcula-
tion, although this is usually just an increment.

function BUILD-P-FSA(q, w, x)
// q ∈ Q, w ∈ Σ*, x ∈ ∆* | (w) = x
for each criterion c ∈ C do

y ← f(wc); // compute placement of signature wc
q’ ← STATE-LABEL(y); // compute state label from placement
if q’ ∉ Q then

Q ← Q ∪ {q’};
BUILD-P-FSA(q’, wc, y);

end if
a ← b | xb = y; // set a as the suffix of y not in x
add λ(q, c) = q’;
add δ(q, c) = a;

end for
end function

Fig. 13. Algorithm to build a P-FSA.

λ̂
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A.2 A Complex Example

We now present a significantly more complex example: the MIPS R3000. The MIPS
is a RISC machine with both integer and floating-point registers. Unlike most
machines, the MIPS convention designates that not only some integer registers but
also some floating-point registers are to be used for passing arguments. Fig. 16 con-
tains the complete convention specification. 

function STATE-LABEL(w) // w ∈ ∆*

z ← 0n; // z is the finite resource vector
while w ≠ ε do

// extract the first symbol from w
define a and x such that ax = w;
w ← x; // set w to the rest of w
if a ∈R then // for finite resources:

// mark it as used
set a’s corresponding bit in z;

else // for infinite resources:
d ← a; // keep the last one encountered

end if
end while
d ← d + 1; // set d to the next resource
return zd; // return state label made of z and d

end function

Fig. 14. Definition of STATE-LABEL.

Input. A finite-state machine M.
Output. The set of transition-pair paths in M that take M from q0 to qn with at most one cycle.
The set traverses all pairs of transitions ((qr, a), (qs, b)) such that δ(qr, a) = qs.
Initial call. TRANSITION-PAIRS(q0, ε, ∅, 0);
Algorithm:
function TRANSITION-PAIRS(q, w, V, cycle)

paths ← ∅;
for each a where a ∈ Σ ∧ δ(q, a) is defined do // For each transition from state q...

if cycle ≠ 1 ∧ (q, a) ∉ T then // No cycles and (q, a) is new 
if q ∉ V then // If there is no cycle

T ← T ∪ {(q, a)}; // Mark transition as followed
cycle ← 0; // Indicate no cycle

else
cycle ← 1; // Indicate cycle

end if
// Compute paths from here

P ← TRANSITION-PAIRS(δ(q, a), wa, V ∪ {q}, cycle);
paths ← paths ∪ P;

end if
paths ← paths ∪ {wa}; // Add this path to paths

end for
return paths; // Return paths from q

end function

Fig. 15. Test vector generation algorithm.
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external SPILL_SIZE, LOCALS_SIZE
persistent {r1, r16:23, r26:31}
alias REG_ARGS ≡ 16
alias sp ≡ r29

caller prologue 
view change

∀ offset ∈ {−∞:∞}
M[sp + offset] becomes M[sp + offset + ARG_BLOCK_SIZE8]

end view change
data transfer (asymmetric)

alias rindex ≡ 4:7
alias fpindex ≡ 12,14
alias mstart ≡ sp + REG_ARGS
alias mindex ≡ mstart:∞
resources {<rrindex, Mmindex>, <ffpindex, Mmindex>, <Mmindex>}
∀ mem ∈ {M[sp(REG_ARGS)]} set mem.assigned ← true
internal ARG_BLOCK_SIZE ← ∑(<M[addr].size | addr ∈ <mindex> 

∧ M[addr].assigned>)
class intregs ← <<rx>| x ∈ <rindex>>
class intfpregs ← <<rx> | x ∈ <rindex> ∧ x mod 2 = 0>
class fpfpregs ← <<fx> | x ∈ <fpindex>>
class mem ← <<Mloc> | loc ∈ <mindex> ∧ loc mod 4 = 0>
class aligned_mem ← <<Mloc> | loc ∈ <mindex> ∧ loc mod 8 = 0 >
class struct_mem ← <<rx, Mmstart> | x ∈ <rindex>>
class aligned_struct_mem ← <<rx, Mmstart> | x ∈ <rindex> ∧ x mod 2 = 0>
∃ reg ∈ {reg | reg ∈ {f12} ∧ reg.assigned} ⇒ set r4.unavailable ← true
∃ reg ∈ {reg | reg ∈ {f12} ∧ reg.assigned} ⇒ set r5.unavailable ← true
∃ reg ∈ {reg | reg ∈ {f14} ∧ reg.assigned} ⇒ set r6.unavailable ← true
∃ reg ∈ {reg | reg ∈ {f14} ∧ reg.assigned} ⇒ set r7.unavailable ← true
∃ reg ∈ {reg | reg ∈ {r4:5} ∧ reg.assigned} ⇒ set f12.unavailable ← true
∃ reg ∈ {reg | reg ∈ {r6:7} ∧ reg.assigned} ⇒ set f14.unavailable ← true
∀ argument ∈ <ARG1:ARG_TOTAL>

map argument → argument.type ⊥ {
byte, word, longword: <intregs, mem>,
struct: argument.size ⊥ {

1,2,3,4,5,6,7: <struct_mem, mem>,
default: <aligned_struct_mem, aligned_mem>

},
float, double: ARG1.type ⊥ {

struct, byte, word, longword: <intfpregs, aligned_mem>,
float, double: <fpfpregs, aligned_mem>

}
}

end data transfer
end caller prologue

Fig. 16. The MIPS R3000 specification.
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Although the MIPS convention is more complicated, the description is quite similar
to our previous example—with a few additional restrictions. First, notice that the
resource list (line 15) now includes the floating-point registers. Each resource set is
ordered to indicate that the resources within them must be assigned in sequence. This
prevents the subsequent placement operator from using element n after element n + 1
has been assigned. Second, we have added several new classes. These reflect the addi-
tion of registers for passing arguments and alignment constraints placed on the regis-
ters and stack. For example, the class ‘intfpregs’ is the set of starting points in the
integer register set that have even register numbers used for passing floating-point val-
ues. The class ‘aligned_mem’ is the set of stack locations that are 8-byte aligned.
Finally, the class ‘struct_mem’ contains a set of starting-point pairs. The pair is used
to indicate that if the placement depletes the first resource, the placement continues
using the second resource starting point. This class is used in passing structure argu-
ments and indicates that a single structure argument may span the argument registers
and stack.

After properly defining the classes, the placement (lines 32–43) is straightforward.
For each type, a list of classes to use is specified. In each case, a register class is first,
followed by the corresponding stack class. This reflects the convention that registers
are used until depleted, followed by stack use. The placement is slightly complicated
in the floating-point case since the register class to use is dependent on the type of the
first argument. When the first argument is a floating-point value, the floating-point
registers are used. When the first value is any other type, the integer registers are used
to pass floating-point values.

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

callee prologue
view change

∀ offset ∈ {-∞:∞}
M[sp + offset] becomes M[sp + offset + SPILL_SIZE +

LOCALS_SIZE + NVSIZE8]
end view change

end callee prologue
callee epilogue

data transfer (asymmetric)
resources {<r2>,<f0>}
∃ return ∈ <RVAL1:RVAL_TOTAL> ⇒ 

map return → return.type ⊥ {
byte, word, longword: <<<r2>>>,
float, double: <<<f0>>>,
struct: ↑(<<<r2>>>)

}
end data transfer

end callee epilogue

Fig. 16. The MIPS R3000 specification.
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The MIPS convention has two other features we must convey. The first requires that
the initial 16 bytes of the frame, which correspond to the argument registers, must be
reserved so the callee can save the register arguments if necessary. This is specified on
line 16 by setting the ‘assigned’ attribute for these resources. The second constraint is
that floating-point argument registers are associated with the integer registers (f6 with
r4 and r5, f7 with r6 and r7). The association requires that if a register in one class is
assigned, the associated register in the other class cannot be assigned. Each of the four
associations is specified, on lines 26–31, using the existential quantifier (∃) which is
simply a conditional expression. These restrictions complete the calling convention
for the MIPS. The remaining details are similar to the simple example presented ear-
lier.


