Synthesizing a General Deadlock Predicate

By

David R. O'Hallaron
Paul F. Reynolds, Jr.

Computer Science Report # TR-85-01

March 22, 1985

Submitted to Information Processing Letters

Synthesizing a General Deadlock Predicate

DAVID R. OHALLARON
PAUL F. REYNOLDS, JR.

University of Virginia, Charlottesville, Virginia

Satisfiability of the deadlock predicate constructed by the semaphore invariant method is 2 necessary condition
for total deadiock in PV programs. Clarke has developed a technigue, based on a view of resource invariants as
fixpoints of a functional, for constructing a deadlock predicate such that satisfiability is a necessary and sufficient
condition for total deadiock. We describe a technique for synthesizing a general deadiock predicate such that
satisfizbility is a necessary and sufficient condition for both total and partial deadlock. Our method constructs a
strongest resource invariant using Clarke’s fixed point functional. We then use this strongest resource invariant
and an inverse fixed point functional to construct a general deadlock predicate.

Categories and Subject Deseriptors: D.1.3{Programming Technigues]: Concurrent Programming; D.2.4 [Software
Engineering] Program Verification; D.4.5 [Operating Systems} Process Mansgement — deadlocks

General Terms: Theory, Verification

Additionat Keywords and Phrases: Semaphore invariant method, static desdlock detection, deadlock predicate,
fixpoint

1. Introduction

The semaphore invariant method [Hab72, Hab75] uses a resource invariant called the
semaphore invariant to construct the total deadlock predicate [OwG76], the satisfiability
of which is a necessary condition for total deadlock in a FV program. The semaphore
invariant method is an attractive method because the total deadlock predicate is compact
and can be easily synthesized from the program text, as first described by E. M. Clarke in

[C1a80], and later generalized by S. D. Carson in [Car84]. However, the semaphore invari-

Authors’ present address: Department of Computer Science, University of Virginia, Charlovtesville, Virginia,
22903,

ant method is incomplete for two reasons,

(1) Because of the possibility of feasible yet unreachable total deadlock states,
satisfiability of the deadlock predicate is not a sufficient condition for total

deadlock[C1a80].
{2) The total deadlock predicate cannot be used to detect partial deadlocks.

Clarke has addressed the first problem by developing an iterative procedure to synthesize
from the program text a strongest resource invariant that is satisfied only by reachable
states. With this strongest resource invariant, satisfiability of the total deadiock predicate

becomes a necessary and sufficient condition for total deadlock.

We address the second problem by presenting a .technique for synthesizing from the
text of a program a deadlock predicate, the saf:isﬁability of which is a necessary and
sufficient condition for total and partial deadlock. We call this predicate the general
deadlock predicate. Qur method is a variant of Clarke’s technique for generating strongest

resource invariants.

Section Two defines basic concepts. Section Three describes the semaphore invariant
method, and Section Four describes Clarke’s technigue for penerating strongest resource
invariants. Section Five describes our technique for constructing a general deadlock predi-

cate from the program text. Section Six discusses some remaining challenges.

2. Program Model

We define a PV program as a collection of N cyclic processes

var L; cobegin P, // P,// +++ // Py end
where L is a list of § semaphores and their initial nonnegative values, Each P; is a pro—

cegs of the form

P; :cycle S;5 8% -+ ; s endcycle.

Each Sf is a statement of the form

wheno >0doo «~ o —1

denoted in the program text by P{o), or of the form

when truedo o «~ o + 1

denoted in the program text by V(o).

As in [Cla80], we say that a program state 7 is an ordered list (pc,,...,pcy;s) € I,
where pc; is the program counter for process { with 1 £ p¢; € k;, and where s is the
prdgram store representing the values of the semaphores at state 7. The initial state has
the form (1,...,%;54) where sp is the store reflecting the initial values of the semaphores.
We say that o(s) is the value of semaphore o in store s, while A{s) will be the new store

resulting when statement A is executed in store s,

A computation is & sequence of states 7;,7;4y,...,7;, '+ - Where consecutive states
7, = (pek, ... pekisy) and 7, = (pektt L. pektis, 4) are related as follows: There

exists an m,1 € m € N, such that

k

pei if im
() pcf*i={pcf+1 if i=m and pcf<k;
1 otherwise

(2) if statement pct is P(o) then o(s,) > O and 5,4, = A(s,).
(3) if statement pcf is V(o) then s,y = Als).

If 7, and 7,4, are states in a computation, then 7, is an immediate predecessor of state
Ty 41 and 7,4, is an immediate successor of 7,. A state 7 is reachable from state 7' if and
only if there exists a computation where 7 follows 7' in the sequence. A state 7 is reach~
able if and only if 7 is in some C(Smp_utation starting from the initial state. Process i is
blocked at statement pcf in state 7, = (pck, ..., pck;s,) if and only if statement pcf is a
P(o) and ols;) = 0. Process i is deadlocked at state 7 if and only if process i is blocked at

all states reachable from 7. We say that 7 iz a deadlock state if at least one process is

deadlocked at 1. If 7 is a deadlock state and & < N processes are deadlocked at 7, then 7 is

a partial deadiock state; otherwise 7 is a tofal deadlock state.

SPIANU) denotes the strongest postcondition [C1a80] corresponding to the statement
A and the precondition U. If we associate with predicate U the set of states that satisfy

it, then SPLAJT) is defined by

SPLAYU) = pcy,. .., pon: Als D 1 {pcy,... pey;s) EULL
We let sp[ANV) denote the strongest precondition corresponding to the statement A and
the postcondition V. If we associate with predicate V the set of states that satisfy it,

then sp[A)V) is defined by

splAXV) = {(pcy,....pew;s) | (peq,. .. pex; Als D) € V.
Notice that sp[AJSP[AJU) = U.

3. Semaphore Invariant Method

The semaphore auxiliary method of static deadlock detection uses auxiliary vari—
ables, the semaphore invariant, statement preconditions, and blocking conditions to gen-

erate the total deadlock predicate. We briefly discuss each of these.

Let o be a semaphore initialized to . Let oof and o’ be auxiliary variables, ini-
tially zero, such that of is incremented when process i acquires ¢, and ¢ is incremented

when process { releases . Then the semaphore invariant for o is defined by
N N
I,=0=0,— Yof + Yo
i=1 i=1

A state (pc,,...,pcy;s) is uniquely determined by the values of the auxiliary variables.
If the semaphore invariant for any semaphore in a program is violated by the auxiliary
variable values associated with a state, then the state is called infeasible. Notice that

infeasible states are always unreachable while feasible states are not always reachable,

Associated with each process i is a set of auxiliary variables V;, where of € V; if
process { requests o, and where oY € V; if process i releases 0. The precondition of the
jth statement in the ith process, pre(S/), describes the relationships that exist among the

auxiliary variables in V; jﬁst before §/ is executed.

Associated with each statement 8/ is a blocking condition, b/, that describes the con—
ditions under which S/ is blocked. If §/ is V{co) then b/ is simply the predicate (false).

If §7is P(o) then b/ is the predicate (o = 0).

Let S be the number of semaphores and let k; be the number of statements in process

i. Then the total deadlock predicate is defined by

s

$
lere(S;")/\b{] A {g{w\llg}

=

N
D= A

im1

and is satisfied by feasible states where all processes are deadlocked. Satisfiability of the
total deadlock predicate is a necessary condition for total deadlock. Unfortunately,
satisfiability of the total deadlock predicate is not a sufficient condition for total deadlock
because of the possibility of feasible vet unreachable states. As we shall see in the next
section, Clarke solves this problem with an iterative technique that strengthens resource

invariants such as the semaphore invariant so that all unreachable states are excluded.

4. Strengthening the Semaphore Invariant

Clarke’s iterative technique for strengthening resource invariants such as the sema—
phore invariant is based on a view of a resource invariant as a fixpoint of a functional F.
A similar technique that does not use resource invariants is presented in [Kel77]l. The

reader is directed to Clarke’s paper for a more theoretical treatment.

The fixpoint functional F : 2% - 2% is defined by

N[5
FU)=ToV IV VIV SPISH(pre(sk) A -bF ADH,
where the predicate J, describes the initial state of the program. Intuitively we think of
F(J) as the union of the set of states that satisfy J with the reachable immediate succes—

sors of the states that satisfyv J.

The strongest resource invariant is defined by

Fgalse) = (J F'(false),

i=0
where FO(false) = false and Fi*1false)= F(F(false)). Intuitively, we think of the
strongest resource invariant as being satisfied by the set of all states reachable from the

initial state,

Clarke has noted that the strongest resource invariant F*(J) converges in a finite
number of steps when the program has a finite number of states or when J is a reason—
ably good approximation to F*(J). This implies that F*(false) converges in a finite
number of steps only when the program has a finite number of states. Clarke has
addressed this problem in [Cla80}; we discuss it briefly in Section Six and propose a poten—

tially useful alternative.

Given the strongest resource invariant F' (false) Clarke constructs a strongest total

deadlock predicate

k,

Vl pre(S)) A b/
J:

N
D= A A F*{false)

which is satisfied by those reachable states where all processes are deadlocked. Its

satisfiability is a necessary and sufficient condition for total deadlock.

S. Synthesizing a General Deadlock Predicate

Clarke’s technigue addresses one of the problems with the semaphore invariant
method by strengthening the semaphore invariant so that satisfiability of the deadlock
predicate is a necessary and sufficient condition for total deadlock. However, this total
deadlock predicate cannot be used to detect partial deadlock. In this section, we present a
technique for constructing a general deadlock predicate, the satisfiability of which is a

necessary and sufficient condition for both total and partial deadlock.

We start with a weak predicate called the blocking predicate. Let P be the powerset
of {1,...,N}. Let P! be the ith set in P. Let A, = {P' | k € Pi}. Let A} be the ith set

in A, and let X} be the complement of Af. Then the blocking predicate for process o is

L,
J
kYE pre(S%) A b4

4,
B,= V| A

i=1 e Al

£y
V pre($% A bk] AT A
J

=1 exi,

A F*false)

The predicate B; is satisfied by the set of reachable states where process i is blocked and
the predicate U; = =B; A F*(false) is satisfied by the set of reachable states where process

i is not blocked. The blocking predicate for all processes

is satisfied by the set of reachable states where at least one process is blocked. Since block—
ing is a necessary condition for deadlock, the satisfiability of B is a necessary condition
for deadlock. For the satisfiability of B to be a sufficient condition for deadlock, we must
strengthen it to include only those reachable states where at least one process is blocked

forever. Our strengthening technicque uses the inverse of Clarke’s fixed point functional.

The inverse fixpoint functional G : 2% -» 2% is defined by

N [%
GU)=JV .\11 k_’"lsp{Si"}(post(S;") A J) A F¥(false)

Intuitively we think of G(J)} as the union of the set of states that satisf'y J with the set
of reachable immediate predecessors of the states that satisfy J. Notice from the

definition of G that

G (F (false)) = false

and

G(Fi*)(false)) = Fi(false) ,1 € i € oo
Suppose we iteratively apply the inverse fixpoint functional G to the predicate
U, = =B; A F{false) to get

W) =) GFW,).

k=1

If F*(false) converges in a finite number of steps, then the program has a finite number of
states, and G (U;) converges in a finite number of steps. For now, we assume.a finite
number of states. G*(U;) is satisfied by the union of the set of all reachable states where
process ¢ is unblocked with the set of all reachable states where process i is blocked but
eventually becomes unblocked. Thus =G*U;) A B; is satisfied by the set of reachable

states where process { is blocked forever.

Given G(U;) for all processes, we can define Clarke's strongest total deadlock predi-

cate by

N
D= .éiﬁG*(Ui) A Bis
which is satisfied by those reachable states where all processes are deadiocked. Its

satisfiability is a necessary and sufficient condition for total deadlock. Furthermore, we

can define the general deadlock predicate by

N
D = .YlﬂG*(Ui) A Bg,

which is satisfied by all reachable states where at least one process is deadlocked. Its

satisfiability is a necessary and sufficient condition for both partial and total deadlock.

6. Further Challenges

To simplify our presentation of the general deadiock predicate, we have limited our
discussion to cyclic PV programs with a finite number of states. However, there exist use—
ful cyclic PV programs with an infinite number of states. For these programs the strong-
est resource invariant F*(false) cannot be obtained through a finite number of applications
of the fixed point functional. Clarke has developed a more powerft_il iterative technigue
for obtaining strongest resource invariants based on the notion of widening. This tech~
nigue is guaranteed to converge in a finite number of steps when the strongest resouice
invariant is the conjunction of a finite number of inequalities. This condition on conver-

gence raises a number of questions.

First, we would like to know if Clarke’s more powerful iterative technique will
converge for all cyclic PV programs. If not, can we characterize those programs for which

it will converge?

Second, Carson [Car84] has pointed out that the number of unique deadlocks in a
‘cyclic PV program is finite. Thus one need only analyze a finite subset of the potentially
infinite states in a program to accurately predict if the program can deadlock. Determin—
ing the size of this finite subset of states is called the finite modeling problem. Solutions to
the finite modeling problem have been found for restricted classes of PV programs in
[Car84] and [OHRS85]. Furthermore, Carson has shown that the problem is decidable for

total deadlocks in general FV programs.

That the number of unique deadlocks is finite suggests that it is unnecessary to

obtain the strongest resource invariant in order to perform accurate deadlock detection

10

with the general deadlock predicate. Rather we need only iteratively apply the fixed
point functional until we obtain an approximate strongest resource invariant F(false)
that admits a finite set of states large enough to include all unigue deadlocks, Thus, if we
can solve the finite modeling problem, then we also solve the problem of generating the

general deadlock predicate for arbitrary PV programs.

7. Conclusions

We have presented a technique for synthesizing a general deadlock predicate from
the text of a cyclic PV program such that the satisfiability of the predicate is a necessary
and sufficient condition for both total and partial deadlock. Our method is based on

Clarke’s method for generating strongest resource invariants.

Our method constructs a strongest resource invariant, F*(false) using Clarke’s fixed
point functional. We then use F*(false) and an inverse fixed point functional to
strengthen a blocking predicate such that satisfiability of the strengthened predicate is a

necessary and sufficient condition for both total and partial deadlock.

11

References

[Carg4]

[C1a80}

[Hab72}

[Hab75]

[Kel77]

[OHRSS]

[OwWGT76]

S. D, Carson, Geometric Models of Concurrent Programs, PhD Dissertation,
University of Virginia, 1984.

E. M. Clarke, Synthesis of Resource Invariants for Concurrent Programs, ACM
Transactions on Programming Languages and Systems 2, 3 (July 1980), 338-358.

A. N. Habermann, Synchronization of Communicating Processes,
Communications of the ACM 15, 3 (March 1972), 171-176.

A. N. Habermann, Path Expressions, Technical Report, Department of Computer
Science, Carnegie~Mellon University, June 1975.

R. M. Keller, Generalized Petri Nets as Models for System Verification,
Technical Report, University of Utah, 1977.

D. R. O’Hallaron and P. F. Reynolds, Jr., Finite Models of Cyclic Concurrent

Programs, Technical Report 85-01, Department of Computer Science,

University of Virginia, 1985.

S. Owicki and D. Gries, Verifying Properties of Parallel Programs: An
Axiomatic Approach, Communications of the ACM 19, 5 (May 1976), 279-284.

