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Abstract

Writing portable applications for parallel architectures has proven to be more difficult than
writing sequential software. This is due in large part to the lack of easy-to-use, high-level abstrac-
tions. Mentat is a portable object-oriented parallel processing system that extends object encapsu-
lation to include parallelism encapsulation. In Mentat, programmers are responsible for
identifying those classes that are of sufficient computational complexity to warrant parallel execu-
tion. The compiler and run-time system manage program graph construction, communication,
synchronization, and scheduling. Mentat has been implemented on Sun workstations, the Silicon
Graphics Iris, the Intel iPSC/2, and the Intel iPSC/860. We present the Mentat programming lan-
guage, including several examples, the Mentat virtual machine architecture, and performance
results from two of the supported architectures.
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Easy-to-use Object-Oriented Parallel Processing with Mentat

1. Introduction

Two problems plague parallel MIMD architecture programming. First, writing parallel

programs by hand is very difficult. The programmer must manage communication, synchroniza-

tion, and scheduling of tens to thousands of independent processes. The burden of correctly man-

aging the environment often overwhelms programmers, and requires a considerable investment of

time and energy. Second, once implemented on a particular MIMD architecture, the resulting

codes are usually not usable on other MIMD architectures; the tools, techniques, and library facil-

ities used to parallelize the application are specific to a particular platform. Thus, considerable

effort must be re-invested to port the application to a new architecture. Given the plethora of new

architectures and the rapid obsolescence of existing architectures, this represents a continuing

time investment.

Mentat has been developed to directly address the difficulty of programming MIMD archi-

tectures and the portability of applications. The three primary design objectives are to provide 1)

easy-to-use parallelism, 2) high performance via parallel execution, and 3) applications portabil-

ity across a wide range of platforms. The premise underlying Mentat is that writing programs for

parallel machines does not have to be hard. Instead, it is the lack of appropriate abstractions that

has kept parallel architectures difficult to program, and hence, inaccessible to mainstream, pro-

duction system programmers.

The Mentat approach exploits the object-oriented paradigm (see Appendix A) to provide

high-level abstractions that mask the complex aspects of parallel programming, communication,

synchronization, and scheduling, from the programmer. Instead of worrying about, and managing,

these details, the programmer is free to concentrate on the application. The programmer uses

application domain knowledge to specify those object classes that are of sufficient computational

complexity to warrant parallel execution. The complex tasks, scheduling, communication and

synchronization, are handled by Mentat.
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There are two primary components of Mentat: the Mentat Programming Language (MPL)

[9] and the Mentat run-time system [8].   The MPL is an object-oriented programming language

based on C++ that masks the complexity of the parallel environment from the programmer.   The

granule of computation is the Mentat class member function. Mentat classes consist of contained

objects (local and member variables), their procedures, and a thread of control.   The programmer

is responsible for identifying those classes that are of sufficient computational complexity to

allow efficient parallel execution. Mentat class instances are used almost exactly like C++ classes.

Mentat extends object encapsulation from implementation and data hiding to include par-

allelism encapsulation. Parallelism encapsulation takes two forms that we call intra-object encap-

sulation and inter-object encapsulation (see Appendix B). Intra-object encapsulation of

parallelism means that callers of a Mentat object member function are unaware of whether the

implementation of a member function is sequential or parallel, i.e., whether its internal execution

graph is a single sequential node, or whether it is parallel. Inter-object encapsulation of parallel-

ism means that programmers of code fragments (e.g., a Mentat object member function) need not

concern themselves with the parallel execution opportunities between the different Mentat object

member functions they invoke. Thus, the data and control dependencies between Mentat class

instances involved in invocation, communication, and synchronization are automatically detected

and managed by the compiler and run-time system without further programmer intervention.

By splitting the responsibility between the compiler and the programmer, we exploit the

strengths and avoid the weaknesses of each.   The underlying assumption is that the programmer

can make better decisions regarding program and data partitioning, while the compiler can better

manage communication and synchronization. This simplifies the task of writing parallel pro-

grams, making parallel architectures more accessible to non-computer scientists.

What makes Mentat different from the dozens of other concurrent and distributed object-

oriented systems and languages is its emphasis on parallelism and high-performance. Mentat is

not yet another RPC based system, it is a parallel processing system that uses parallel processing
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compiler and run-time support technology in conjunction with the object-oriented paradigm to

produce an easy-to-use high performance system that facilitates hierarchies of parallelism via the

mechanism of parallelism encapsulation.

Our objective is to show that Mentat is an easy-to-use, portable, high-performance parallel

processing system. We begin by introducing the Mentat programming language (MPL) and the

object model. We include several examples that illustrate the use of the language and the resulting

parallelism. We next introduce the run-time system that underlies Mentat and provides the virtual

machine abstraction that can be easily ported to new architectures. We then proceed to show that

we have met our high-performance objectives, by providing performance figures for two applica-

tions on two different platforms, a network of Sun workstations and the Intel iPSC/2.

2. The Mentat Programming Language (MPL)

MPL is an extended C++ designed to simplify the task of writing high-performance paral-

lel applications by supporting both intra- and inter-object parallelism encapsulation. This high

level ease-of-use objective is realized via four, more specific, design goals.

First and foremost, the MPL is object-oriented. The object-oriented approach to program-

ming has become popular because it promises to both simplify software development and to facil-

itate software reuse. The object-oriented paradigm is ideal for parallel and distributed systems

because users of an object interact with the object via the object’s interface. Because of the data

hiding, or encapsulation, properties of objects, users cannot directly access private object data.

This simplifies concurrency control on object data structures, so objects can be treated as moni-

tors. We extended the usual notions of data and method encapsulation to includeparallelism

encapsulation.

The second design goal contributing to ease-of-use is that the MPL is an extension of an

existing language, C++, and minimizes the number of extensions and changes to the base lan-

guage. The syntax and semantics of the extensions follow the pattern set by the base language,

maintaining its basic structure and philosophy whenever possible.
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Third, the language constructs have a natural mapping to the macro data flow model, the

computation model underlying Mentat. It is a medium grain, data driven model in which pro-

grams are directed graphs. The vertices of the program graphs are computation elements (called

actors) that perform some function. The edges model data dependencies between the actors. The

responsibility for performing the mapping is not the programmer’s.

Fourth, the concepts used as the basis of the extensions are applicable to a broad class of

languages, so that the Mentat approach can be easily used in other contexts.

These goals have been met in the MPL by extending C++ in three ways, by the specifica-

tion of Mentat classes, thertf() value return mechanism, and the select/accept statement. The

basic idea is to allow the programmer to specify those C++ classes that are of sufficient computa-

tional complexity to warrant parallel execution and let the compiler manage communication and

synchronization between instances of these classes. Instances of Mentat classes are called Mentat

objects. The programmer uses Mentat objects just as any other C++ object. The compiler gener-

ates code to construct and execute data dependency graphs in which the nodes are Mentat object

member function invocations, and the arcs are the data dependencies found in the program. Thus,

we generate inter-object parallelism encapsulation in a manner largely transparent to the program-

mer. During the course of execution a graph node (member function) may itself be transparently

implemented in a similar manner by a macro data flow subgraph. Thus we obtain intra-object par-

allelism encapsulation; the caller only sees the member function invocation.

Throughout this section we develop several examples that illustrate MPL concepts, and

show how the parallelism is realized. The discussion assumes a familiarity with C++ terms. See

Appendix C for a short primer onC++.

2.1 Mentat Class Definition

In C++, objects are defined by their class. Each class has an interface section in which

member variables and member functions are defined. Not all class objects should be Mentat

objects. In particular, objects that do not have a sufficiently high communication ratio, i.e., whose
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object operations are not sufficiently computationally complex, should not be Mentat objects.

Exactly what is complex enough is architecture dependent. In general, several hundred instruc-

tions long is a minimum. At smaller grain sizes the communication and run-time overhead takes

longer than the member function, resulting in a slow-down rather than a speed-up.

Mentat uses an object model that distinguishes between two “types” of objects, contained

objects and independent objects.1 Contained objects are objects contained in another object’s

address space. Instances of C++ classes, integers, structs, and so on, are contained objects. Inde-

pendent objects possess a distinct address space, a system-wide unique name, and a thread of con-

trol. Communication between independent objects is accomplished via member function

invocation. Independent objects are analogous to UNIX processes. Mentat objects are indepen-

dent objects.

Because Mentat objects are address space disjoint, member function calls are call by

value. Results of member functions are also returned by value. Pointers to objects, particularly

variable size objects, may be used as both parameters and as return types. To provide the program-

mer a way to control the degree of parallelism, Mentat allows both standard C++ classes and

Mentat classes. By default, a standard C++ class definition defines a standard C++ object.

The programmer defines a Mentat class by using the keywordmentat in the class defini-

tion. The programmer may further specify whether the class ispersistent or regular. The syntax

for Mentat class definitions is:

Persistent objects maintain state information between member function invocations, while regular

objects do not. Thus, regular object member functions are pure functions. Because they are pure

1. The distinction between independent and contained objects is not unusual, and is driven
by efficiency considerations.

 new_class_def :: mentat_definition class_definition |
class_definition

mentat_definition :: persistent mentat |
regular mentat |

class_definition :: class class_name {class_interface};
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functions the system is free to instantiate new instances of regular classes at will.   Regular classes

may have local variables much as procedures do, and may maintain state information for the dura-

tion of a function invocation.

When should a class be a Mentat class? In three cases: when its member functions are

computationally expensive, when its member functions exhibit high latency (e.g., IO), and when

it holds state information that needs to be shared by many other objects (e.g., shared queues, data-

bases, physical devices). Classes whose member functions have a high computation cost or high

latency should be Mentat classes because we want to be able to overlap the computation with

other computations and latencies, i.e., execute them in parallel with other functions.   Shared state

objects should be Mentat classes for two reasons. First, since there is no shared memory in our

model, shared state can only be realized using a Mentat object with which other objects can com-

municate. Second, because Mentat objects service a single member function at a time, they pro-

vide a monitor-like synchronization, providing synchronized access to their state.

To illustrate the difference between regular and persistent mentat classes, suppose we wish

to perform matrix operations in parallel, e.g., a matrix-matrix multiply. Recall that in a matrix-

matrix multiply a new matrix is formed. Each element in the result is found by performing a dot

product on the appropriate rows and columns of the input matrices (Figure 2-(a)). Because matrix-

matrix multiply is a pure function, we could choose to define a regular mentat class matrix_opera-

tors as in Figure 2-(b). In this case, every time we invoke a mpy() a new mentat object is created

to perform the multiplication and the arguments are transported to the new instance. Successive

calls result in new objects being created and the arguments being transported to them.

Alternatively, we could choose to define a persistent mentat class p_matrix as in Figure

2-(c). To use a p_matrix, an instance must first be created and initialized with a matrix*.

Matrix-matrix multiplication can now be accomplished by calling mpy(). When mpy() is used

the argument matrix is transported to the already existing object. Successive calls result in the

argument matrices being transported to the same object. In both the persistent and regular case the
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implementation of the class may hierarchically decompose the object into sub-objects, and opera-

tions into parallel sub-operations. This is an example of intra-object parallelism encapsulation.

2.2 Mentat Object Instantiation & Destruction

An instance of a Mentat class is a Mentat object. All Mentat objects have a separate

address space, a thread of control, and a system-wide unique name. Instantiation of Mentat

objects is slightly different from standard C++ object instantiation semantics. First, consider the

C++ fragment:

{// A new scope
int X;
p_matrix mat1;
matrix_operators m_ops;

} // end of scope

In C++, when the scope in which X is declared is entered, a new integer is created on the

stack. In the MPL, because p_matrix is a Mentat class, mat1 is a name of a Mentat object of

type p_matrix. It is not the instance itself. Thus, mat1 is analogous to a pointer.

Names (e.g., mat1) can be in one of two states, bound or unbound. An unbound name

refers to any instance of the appropriate Mentat class. A bound name refers to a specific instance

regular mentat class matrix_operators {
// private members
public:

matrix* mpy(matrix*,matrix*);
};

persistent mentat class p_matrix {
// private members
public:

void initialize(matrix*);
matrix* mpy(matrix*);

};

(b) regular mentat class definition

(c) persistent mentat class definition
Figure 2. Regular versus. persistent classes to perform matrix-matrix multiplication.

(a) matrix-matrix multiplication
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with a unique name. When an instance of a Mentat class (a Mentat variable) comes into scope or

is allocated on the heap, it is initially an unbound name: it does not refer to any particular instance

of the class. Thus, a new p_matrix is not instantiated when mat1 comes into scope. When

unbound names are used for regular Mentat classes (e.g., m_ops), the underlying system logi-

cally creates a new instance for each invocation of a member function. This can lead to high lev-

els of parallelism, as we shall see later.

2.2.1 Binding and Instantiation

 The programmer binds Mentat variables to Mentat objects using four new reserved mem-

ber functions for all Mentat class objects: create(), bind(), bound(), and destroy(). There

are three ways a Mentat variable (e.g., mat1) may become bound: it may be explicitly created

using create(), it may be bound by the system to an existing instance using bind(), or the

name may be assigned to a bound name by an assignment. The bound() function indicates

whether the mentat object is bound to a particular instance. The member function destroy()

destroys the named persistent Mentat object. If the name is unbound, the call is ignored.

The create() call tells the system to instantiate a new instance of the appropriate class.

There are five flavors of create(). See Figure 3. Assume the definition p_matrix mat1;

When create() is used as in Figure 3(a), the system will choose on which processor to

instantiate the object [8]. The programmer may optionally provide location hints. The hints are

COLOCATE, DISJOINT, and HIGH_COMPUTATION_RATIO. These hints allow the pro-

grammer to specify where he wants the new object to be instantiated. In Figure 3(b), the program-

mer has specified that the new Mentat object should be placed on the same processor as the object

another_object. In Figure 3(c), the programmer has specified that the new object should not

(a) mat1.create();
(b) mat1.create(COLOCATE another_object);
(c) mat1.create(DISJOINT object1, object2);
(d) mat1.create(HIGH_COMPUTATION_RATIO);
(e) mat1.create(int on_host);
(f) mat1 = expression;
(g) mat1.bind(THIS_HOST);

Figure 3. Binding Mentat variables to Mentat objects.
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be placed on the same processor as any of a list of Mentat objects. In Figure 3(d), the programmer

has specified that the new object will have a very high ratio of computation to communication,

and thus may be placed on a processor with which it is expensive to communicate. In Figure 3(e),

the programmer has specified that the new object should be placed on a specific processor.Names

may also be bound as the result of assignment to an expression, as in 3(f).

Mentat variables may also be bound to an already existing instance using thebind(int

scope) member function, as shown in Figure 3(g). The integer parameter scope can take any

one of three values, BIND_LOCAL, BIND_CLUSTER, and BIND_GLOBAL, to restrict the

search for an instance to the local host (the host may be a multiprocessor), to the cluster (subnet),

and to the entire system respectively.

2.3 Mentat Object Member Function Invocation

Member function invocation on Mentat objects is syntactically the same as for C++

objects. Semantically there are two important differences. Mentat member functions are always

call-by-value, and Mentat member function invocation is non-blocking. The non-blocking nature

of Mentat object member functions provides for the parallel execution of member functions

whenever data dependencies permit. This is transparent to the user and is called inter-object paral-

lelism encapsulation.

As noted earlier, because Mentat objects are address space disjoint, Mentat class member

functions always use call-by-value semantics. When pointers are used as arguments, the object (or

structure) to which the pointer points is sent to the callee. If the object to which the pointer points

is of variable size, then the class of the object must provide a member functionint size_of()

that returns the size of the object in bytes.If a structure or class has contained pointers, they are

not “chased”. Call-by-value semantics is common in systems that provide an RPC-like service.

The alternative is to allow pointer passing between address spaces.

Example 2. Consider the code fragment shown in Figure 4. The member functionopen()

takes two parameters and returns an integer. The first parameter is of typestring*. Because
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strings are of variable length, we have provided the function int size_of(). Size_of is called at

run-time to determine the size of the first parameter, and size_of() bytes will be sent to the

Mentat object f. The second argument is an integer. Fixed size arguments such as integers and

structs do not require a size_of() function.   The compiler ensures that the correct amount of

data is transferred.

The example in Figure 4 illustrates the creation of a persistent object and a simple RPC to

a member function of that object. The difference between Mentat and a traditional RPC is what

happens when an RPC call is encountered. In traditional RPC, the arguments are marshalled

(packaged into a message), sent to the callee, and the caller blocks waiting for the result. The

callee accepts the call, performs the desired service, and returns the results to the caller. The caller

then unblocks and proceeds.

In Mentat, when a Mentat object member function is encountered, the arguments are mar-

shalled and sent to the callee, but the caller does not block waiting for the result (x in Figure 4).

Instead, the run-time system monitors (with code provided by the compiler) where x is used. If x

is later used as an argument to a second or third Mentat object invocation, then arrangements are

made to send x directly to the second and third member function invocations. If x is used locally

in a strict operation, e.g., y=x+1;, or if (x<0), then the run-time system will automatically

class string {
public:

int size_of();
}
int string::size_of() {return(strlen(this)+1)};
persistent mentat class m_file {
public:

int open(string* name, int mode);
data_block* read(int offset, int num_bytes);
void write(int offset, int num_bytes, data_block* data);}

{
// *** A code fragment using m_file
m_file f;
f.create(); // No location hints.
int x = f.open((string*) "my_file",1);
if (x < 0) {/* error code */}

}
Figure 4. Class m_file declaration and use.
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block the caller and wait for the value ofx  to be computed and returned.   This is the case in

Example 2. Note, though, that ifx is never used locally (except as an argument to a Mentat

object member function) then the caller never blocks and waits forx . Indeedx might never be

sent to the caller, it might only be sent to the Mentat object member functions for which it is a

parameter. This is illustrated in Example 3.

Example 3. This example illustrates construction of a simple pipeline process.   We define

the Mentat classdata_processor . The member functionsf ilter_one () andf ilter_-

two () are filters that process blocks of data. Consider the code fragment in Figure 5. After some

initialization, creating and opening input and output files, the loop in the code fragment sequen-

tially reads MAX_BLOCKS data blocks from the file “input_file”, processes them through filters

one and two, and writes them to “output_file”.   Note that the variableres  is used as a temporary

variable and as a conduit through which information passes between the filters. This fragment is

written in a manner that is natural to C programmers.

 m_f ile in_f ile,out_f ile;
 data_processor dp;
 in_f ile. create();out_f ile. create();
 int i,x; x = in_f ile.open((string*)”input_f ile”,1);
 x = out_f ile.open((string*)”output_f ile”,3);
 data_block *res;
 for (i=0;i<MAX_BLOCKS,i++) {

res = in_f ile.read_block(i);
res = dp.f ilter_one(res);
res = dp.f ilter_two(res);
out_f ile.write_block((i*BLK_SIZE,res);

}

 Figure 5. A Pipelined Data Processor. The main loop reads MAX_BLOCKS

regular mentat class data_processor {
public:

data_block* f ilter_one(data_block*);
data_block* f ilter_two(data_block*);

}

data_blocks, passes them through filter_one() and filter_two(), and then writes
them to the output file. The loop is unrolled at run-time and a pipeline (Figure 6)
is formed.
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In a traditional RPC system, this fragment would execute sequentially.   Suppose that each

member function execution takes 10 time units, and that each communication takes 5 time units.

Then the time required to execute an iteration of the loop in a sequential RPC system is the sum of

four times the member function execution time, plus seven times the communication time

(because all parameters and results must be communicated from/to the caller). Thus the total time

required is 75 time units.

The average time per iteration for the Mentat version is considerably less, just over 10

time units.   First observe that the time for a single iteration is four times the communication time,

20 time units, plus four times the execution time, 40 time units, for a total of 60 time units. There

are only four communications because intermediate results are not returned to the caller, rather

they are passed directly where needed. Next, consider that the reads, the two filter operations, and

the writes can be executed in a pipelined fashion with each operation executing on a separate pro-

cessor (see Figure 6).

 Under these circumstances, each of the four member function invocations, and all of the

communication, can be performed concurrently. The communication for the ith iteration can be

overlapped with the computation of the (i+1)th iteration. (We assume that communication is asyn-

chronous and that sufficient communication resources exist.)

Using a standard pipe equation

Figure 6. Program Execution Graph for Example 3.

out_filefilter2filter1in_file

requests
values of i

TAll = time for all iterations

TStage = time for longest stage = 10 time units

T1 = time for first iteration = 60 time units

TAvg = average time per iteration

TAll= T1+ TStage* (MAX_BLOCKS-1)

TAll = 60 + 10*(MAX_BLOCKS-1)

TAvg = (60 + 10*(MAX_BLOCKS-1))/MAX_BLOCKS
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When MAX_BLOCKS is one, the time to complete is 60 time units, with an average of 60

time units. This is marginally faster than a pure RPC (75 time units) because we don’t send inter-

mediate results to the caller. When MAX_BLOCKS is greater than one, the time required for the

first iteration is 60 time units, and successive results are available every ten time units. Thus, as

MAX_BLOCKS increases, the average time per iteration drops, and approaches 10 time units.

Now consider the effect of quadrupling the time to execute filter one from 10 to 40 time

units. The time to execute the traditional RPC version goes from 75 to 105 time units. Using the

standard pipe equation the first result is available at time 90, and successive values every 24 time

units. The standard pipe equation assumes that there is just one functional unit for each stage. This

assumption is invalid in Mentat in this example, and the time per iteration for the Mentat version

remains unchanged at 10 time units, if there are sufficient computation resources. To see why,

consider that thedata_processor class is a regular Mentat class. This means that the system

may instantiate new instances at will to meet demand. A new instance of data_processor to ser-

vice filter_one requests is created whenever a result is generated by the read. There would be five

instances of thedata_processor class active at a time, four performing filter one, and one

performing filter two.

There are four items to note from this example. First, the main loop may have executed to

completion (allMAX_BLOCKS iterations) before the first write has completed! Second, suppose

our “caller” (the main loop) was itself a server servicing requests for clients. Once the main loop

is complete the caller may begin servicing other requests while the first request is still being com-

pleted. Third, the order of execution of the different stages of the different iterations can vary

from a straight sequential ordering, e.g., the last iteration may “complete” before earlier iterations.

This can happen, for example, if the different iterations require different amounts of filter process-

ing. This additional asynchrony is possible because the run-time system guarantees that all param-

eters for all invocations are correctly matched, and that member functions receive the correct

arguments. The additional asynchrony permits additional concurrency in those cases where exe-

cution in strict order would prevent later iterations from executing even when all of their synchro-
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nization and data criteria have been met. Finally, in addition to the automatic detection of inter-

object parallelism opportunities, we may also have intra-object parallelism encapsulation, where

each of the invoked member functions may be internally parallel. Thus we obtain even more par-

allelism.

2.4 The Return-to-Future Mechanism

The return-to-future function (rtf()) is the Mentat analog to the return of C. Its pur-

pose is to allow Mentat member functions to return a value to the successor nodes in the macro

data-flow graph in which the member function appears. Mentat member functions use the rtf()

as the mechanism for returning values. The returned value is forwarded to all member functions

that are data dependent on the result, and to the caller if necessary. In general, copies may be sent

to several recipients.

While there are many similarities between return and rtf(), rtf() differs from a

return in three significant ways.

First, in C, before a function can return a value, the value must be available. This is not

the case with an rtf(). Recall that when a Mentat object member function is invoked, the caller

does not block, rather we ensure that the results are forwarded wherever they are needed. Thus, a

member function may rtf() a “value” that is the result of another Mentat object member function

that has not yet been completed, or perhaps even begun execution. Indeed, the result may be com-

puted by a parallel subgraph obtained by detecting inter-object parallelism.

Second, a C return signifies the end of the computation in a function, while an rtf()

does not. An rtf() indicates only that the result is available. Since each Mentat object has its own

thread of control, additional computation may be performed after the rtf(), e.g., to update state

information or to communicate with other objects. In the message passing community this is often

called send-ahead. By making the result available as soon as possible we permit data dependent

computations to proceed concurrently with the local computation that follows the rtf().

 Third, a return returns data to the caller. Rtf() may or may not return data to the caller
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depending on the data dependencies of the program. If the caller does not use the result locally,

then the caller does not receive a copy. This saves on communication overhead. The next two

examples illustrate these features.

Example 4. Consider a persistent class sblock used in Gaussian elimination

with partial pivoting. In this problem, illustrated in Figure 7, we are trying to solve for x in Ax=b.

The sblocks contain portions of the total system to be solved. The sblock member function

vector* sblock::reduce(vector*);

performs row reduction operations on a submatrix and returns a candidate row. Pseudo-code for

the reduce operation is given in Figure 7-(b). The return value can be quickly computed and

returned via rtf(). The remaining updates to the sblock can then occur in parallel with the commu-

nication of the result (Figure 7-(c)). In general, best performance is realized when the rtf() is

used as soon as possible.

Example 5. Consider a transaction manager (TM) that receives requests for reads and

vector*sblock::reduce(vector* pivot) {
reduce current column using pivot
find candidate row, it has the largest absolute value in current column
reduce candidate row
rtf(candidate row);
reduce remaining rows - this is the computationally expensive part

}

Figure 7. Gaussian elimination with partial pivoting illustrating the use

A
b

an sblock

(a) Decomposition into sblocks.

(b) sblock::reduce() pseudo-code.

rtf() reduce rest

reduce candidate

communication

(c) Overlap of communication and computation with rtf().

of rtf() to overlap communication and computation.
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writes, and checks to see if the operation is permitted. If it is, the TM performs the operation via

the data manager (DM) and returns the result. Figure 8-(a) illustrates how the read operation

might be implemented. In a RPC system, the record read would first be returned to the TM, and

then to the user. In MPL the result is returned directly to the user, bypassing the TM (Figure 8-b).

Further, the TM may immediately begin servicing the next request instead of waiting for the

result. This can be viewed as a form of distributed tail recursion, or simple continuation passing.

2.5 The MPL Compiler - mplc

The mplc is responsible for mapping MPL programs to the macro data-flow model. It

accomplishes this by translating MPL programs to C++ programs with embedded calls to the

Mentat run-time system. These C++ programs are, in turn, compiled by the host C++ compiler

(see Figure 9). This is an approach similar to that used by the AT&T C++ compiler in which C++

programs are translated into a portable assembly language, C.

TM::read(int transaction_id, int record_number) {

check_if_ok(transaction_id, READ, record_number);

// Assume that check_if_ok handles errors

rtf(DM.read(record)); // Note tail-recursive call

}

Client
TM:read

DM.read

(a) Code fragment for Transaction Manager - read.

(b) Call graph illustrating communication for TM:read. Arcs

represent message traffic.

Figure 8. Tail-recursion in the MPL.

RTS Libraries

executable objectmplc CC
MPL
Source

Figure 9. MPL compiler steps.

C++
C++ compiler
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2.6 MPL Summary

The MPL is an extension of C++. MPL provides high-level abstractions that allow the

programmer to express the decomposition of a program using a natural extension of the object-

oriented paradigm. The compiler and run-time system are responsible for mapping this high-level

user’s view of the program onto the physical hardware.

3.  The Run-Time System

The Mentat run-time system [8] supports Mentat programs via the provision of a virtual

macro-data flow machine (Figure 10). The virtual machine provides support routines that perform

run-time data dependence detection, program graph construction, program graph execution, token

matching, scheduling, communication, and synchronization. The compiler generates code that

communicates with the run-time system to correctly manage program execution.

The Mentat run-time system is not an operating system. Instead, the run-time system is

layered on top of an existing host operating system, using the host operating system’s processes,

memory, C library, and interprocess communication (IPC) services.

The virtual machine model permits the rapid transfer of Mentat to new architectural plat-

forms. Only the machine-specific components need to be modified. Because the compiler uses a

virtual machine model, porting applications to a new architecture does notrequire any user source

level changes2. Once the virtual machine has been ported, user applications are recompiled and

can execute immediately.

2. Application code maybenefit from changes, but does notrequire them, e.g., on the Sun 3/60 loop unrolling
provides no benefit; on the SparcStation it does.

User application code

Machine independent VM components and libraries

Machine dependent components

Host OS facilities

Virtual Macro Data Flow Machine

Figure 10. Mentat Virtual Machine Model.
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The Mentat virtual macro data flow machine is implemented by the Mentat run-time sys-

tem (RTS). The RTS is in two sections, run-time libraries that are linked into Mentat objects, and

run-time objects that provide run-time services, e.g., scheduling, naming, and binding. The run-

time libraries are responsible for program graph construction, select/accept execution, and reliable

communication.

The logical structure of a Mentat system is that of a collection of hosts communicating

through an interconnection network (see Figure 11).   Each host is able to communicate with any

other host via the interconnection network, although not necessarily at uniform cost.

The logical interconnection network is provided by the lowest layer of the run-time system,

MMPS. MMPS (Modular Message Passing System) provides an extensible point-to-point mes-

sage service that reliably delivers messages of arbitrary size from one process to another.

Each host has a complete copy of the run-time system server objects (Figure 11-(b)).

These include the instantiation manager (i_m) and the token matching unit (TMU). The instantia-

tion manager is responsible for high level Mentat object scheduling (deciding on which host to

locate an object), and for instantiating new instances. The high level scheduling algorithm is dis-

tributed, adaptive, and stable.   The TMU is responsible for matching tokens for regular objects

and instantiating new instances (via the i_m) when needed.

Dynamic data dependence detection and program graph construction are accomplished by

Host 0 Host 1 Host 2 Host n-1

Interconnection Network (e.g., bus, mesh, hypercube)

user objects

i_m TMU

(a) Logical system structure, a collection of hosts.

(b) Logical host structure, user objects and system objects. (c) Mentat object structure

Communications (MMPS)
Data dependence and graph management

User code, including
compiler generated code

Figure 11. Mentat run-time system structure.

host operating system
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the mplc in conjunction with the run-time system (Figure 11-(c)). The mplc generates library calls

that tell the RTS when certain variables, called potential result variables (PRV’s), e.g., x in

x=matrix_op.mpy(B,C) of Example 1, are used on either the left-hand side or the right-

hand side of expressions. By carefully observing where PRV’s are used at run-time, the RTS can

construct data dependency program graphs, and manage communication and synchronization.

One final note on the run-time system: because we use a layered approach and mask dif-

ferences in the underlying operating system and inter-process communication, applications are

completely source code portable between supported architectures. We routinely develop and

debug software on Sun workstations and use the sources unchanged on the Intel iPSC/2. In this

day of incompatible parallel computers this is quite useful. The fact that the sources are identical

allows us to compare architectures using the exact same code, and to measure the effect of known

architectural differences on algorithm performance, e.g., to measure algorithm sensitivity to com-

munication latency.

The only real difficulty when porting applications is grain size selection. Each platform

has different optimum grain size. To date we have overcome this problem either by decomposing

the problem with the largest grain size needed for any platform, or by parameterizing the Mentat

class to indicate the number of pieces into which the problem should be decomposed. We are cur-

rently examining ways to automate this process based on information provided by the program-

mer.

4. Performance

Ease-of-use and programming models aside, the bottom line for parallel processing sys-

tems is performance.   As of this writing we have implemented the Mentat run-time system and

run benchmarks on a network of Sun workstations (3’s and 4’s), the Silicon Graphics Iris, the Intel

iPSC/2, and the Intel iPSC/860.   Speedups for two benchmarks on the Sun 3 and the iPSC/2 are

given below. In each case the speedup shown is relative to an equivalent C program, not relative

to the Mentat implementation running on one processor.   We have been very careful to use the
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same level of hand optimization of inner loops, and the same level of compiler optimization for

both the C and MPL versions. In both cases the inner loops were optimized in C using standard

loop optimization techniques; no assembly language was used. The two benchmarks are matrix

multiply and Gaussian elimination. Each benchmark was executed for several matrix dimensions,

e.g., 100×100, 200×200. Single precision (32 bit) values were used. Matrix multiply and Gaussian

elimination were chosen because they are de facto parallel processing benchmarks.   All times are

carriage return to complete times, i.e., all overhead including loading of object executables and

data distribution have been included.

4.1 Execution Environment

The network of Suns consists of 8 Sun 3/60’s serviced by a Sun 3/280 file server running

NFS connected by thin Ethernet.   All of the workstations have eight megabytes of memory and a

MC68881 floating point coprocessor.

The Intel iPSC/2 is configured with thirty-two nodes. Each node has four megabytes of

physical memory and an 80387 math co-processor. The nodes are not equipped with either the VX

vector processor or the SX scalar processor. The NX/2 operating system provided with the iPSC/2

does not support virtual memory. The lack of virtual memory, coupled with the amount of mem-

ory consumed by the operating system, limited the problem sizes we could run on the iPSC/2.

Matrix Multiply

The implementation tested is for the regular Mentat class matrix_operators. The Mentat

times include the time to copy the arguments. The speed-ups for matrix multiply are shown in

Figures 13-(a) and 13-(b) below. The algorithm (and application source) is the same for both sys-

tems. Suppose the matrices A and B are to be multiplied. If k pieces are to be used, the B matrix is

split into sqrt(k) vertical slices, and the A matrix into k/sqrt(k) horizontal slices. Each of the

sqrt(k)*(k/sqrt(k)) workers gets an appropriate piece of A and of B to multiply. The results of the

invocations are merged together and sent to computations that are dependent on the result of the

A*B operation. The effect of the partitioning can be clearly seen in 13-(a). The speedup for four
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pieces is the same as five pieces, and the speedup for six pieces is the same as for seven pieces.

This is because the underlying object will not split the work into five or seven pieces. The fall off

in 13-(a) at eight pieces is due to the fact that there are only eight processors, as a result of which

the scheduler must place two objects on one processor.

Gaussian Elimination

In our algorithm, the controlling object partitions the matrix into n strips and places each

strip into an instance of an sblock, a Mentat class.   Then, for each row, the reduce operator is

called for each sblock using the partial pivot calculated at the end of the last iteration.   The reduce

operation of the sblock reduces the sblock by the vector, selects a new candidate partial pivot, and

forwards the candidate row to the controlling object for use in the next iteration. This algorithm

results in frequent communication and synchronization. The effect of frequent synchronization

can be clearly seen when the speed-up results for Gaussian elimination in Figures 14-(a) and 14-

(b) are compared to the results for matrix multiply.

5. Related Work

Mentat does not exist in a vacuum. There are many other systems and projects that are

similar in some respects to Mentat, and that share many of the same goals. Mentat has much in

common with both distributed object-oriented systems and with parallel processing systems.

Figure 13. Speedup for matrix multiply.

(a) 8-processor Sun 3/60 network (b) 32-processor Intel iPSC/2
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Mentat inherits features from both, ease of use from the object-oriented paradigm, and models

and compiler techniques from the parallel processing domain.

What distinguishes Mentat from other distributed object-oriented systems is the combina-

tion of its objectives: easy-to-use high performance via parallelism, and reliance on compiler and

run-time techniques to transparently exploit parallelism at multiple levels by managing inter-

object data dependence. Many other systems [1,7] have fault-tolerance (e.g., transaction support),

the use of functional specialization (e.g, file servers), and the support of inherently distributed

applications (e.g., email), as their primary objectives. For most of these systems high-perfor-

mance is simply not an issue, leading the implementations to rely on blocking RPC-like mecha-

nisms, as opposed to the non-blocking invocations of Mentat. Alternatively, many systems permit

parallelism, but require the programmer to exploit and manage it.

In the object-oriented parallel processing domain Mentat differs from systems such as

[2,4] (shared memory C++ systems) in its ability to easily support both shared memory MIMD

and distributed memory MIMD architectures, as well as hybrids. PC++ [10] on the other hand, is

a data parallel C++. Mentat accommodates both functional and data parallelism, often within the

same program. ESP [12] is perhaps the most similar of the parallel object-oriented systems. It too

is a high-performance extension to C++ that supports both functional and data parallelism. What

(a) 8-processor Sun 3/60 network (b) 32-processor Intel iPSC/2
Figure 14. Speedup for Gaussian elimination.
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distinguishes Mentat is our compiler support. In ESP remote invocations either return values or

futures. If a value is returned, then a blocking RPC is performed. If a future is returned, it must be

treated differently. Futures may not be passed to other remote invocations, limiting the amount of

parallelism. Finally, ESP supports only fixed size arguments (except strings). This makes the con-

struction of general purpose library classes, e.g., matrix operators, difficult.

In the parallel processing (as opposed to distributed systems) domain there exists a spec-

trum of languages for writing parallel applications, from fully explicit manual approaches to

implicit compiler-based approaches. In fully explicit approaches a traditional language such as C

or Fortran is extended with communication and synchronization primitives such as send and

receive or shared memory and semaphores. The advantages of this approach are that 1) it is rela-

tively easy to implement, 2) it reflects the underlying hardware model, and 3) the programmer can

use application domain knowledge to optimally partition and schedule the problem. However, the

programmer must also correctly manage communication and synchronization. This can be a diffi-

cult task, and can overwhelm the programmer, particularly in the presence of “Heisenbugs”3.

Low-level primitives such as send and receive are the assembly language of parallelism. Anything

can be done with them, but at the cost of increased burden on the programmer. Therefore, much as

high-level languages and compilers were developed to simplify sequential programming, compil-

ers have been built for parallel systems.

In fully automatic compiler-based approaches the compiler is responsible for performing

dependence analysis and finding and exploiting opportunities for parallelism [11]. Compiler-

based approaches are usually applied to Fortran. Ideally, application of this approach would per-

mit the automatic parallelization of “dusty deck” Fortran programs. The advantage of compiler-

based techniques is that the compiler can be trusted to get communication and synchronization

right. The problem is that compilers are best at finding fine-grain and loop level parallelism, and

not good at detecting large-grain parallelism. This is because they lack knowledge of the applica-

3. Heisenbugs are timing dependent bugs, in particular, those bugs that go away when debugging, or tracing,
is turned on. They are among the most frustrating to find.
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tion, forcing them to “reason” about the program using a fine-grain dependence graph. Message

passing MIMD architectures require medium-to coarse-grain parallelism in order to operate effi-

ciently. Thus, purely compiler-based approaches are inappropriate for this class of machines

because of the mismatch of granularity. Recently, there have been attempts to exploit programmer

knowledge to improve data distribution [5]. This approach is best suited to data parallel problems.

Mentat strikes a balance that captures the best aspects of both explicit and compiler-based

approaches. The user makes granularity and partitioning decisions using high-level Mentat class

definitions, while the compiler and run-time system manage communication, synchronization,

and scheduling. We believe that such hybrid approaches offer the best ease-of-use/performance

trade-off available today. In the long term, we expect compiler technology to improve, and the

need for programmer intervention to decrease.

With respect to applications portability, there have been several mechanisms introduced

recently that provide for application portability across platforms. Examples include PVM [3], and

Linda [6]. They, like Mentat, achieve portability by providing a virtual machine interface to the

programmer. The virtual machine can then be ported to new architectures, and if the applications

programmer is limited to that interface, the application will port.4

The key difference between Mentat and these systems is the level at which applications

must be written. Other systems are low-level, explicit parallel systems, suffering all of the disad-

vantages, and gaining all of the advantages, of fully explicit systems.Mentat provides a high-level

language, eliminating the disadvantages.

6. Summary

Writing software for parallel and distributed systems that makes effective use of the avail-

able CPU resources has proven to be more difficult that writing software for sequential machines.

4. Virtual machine abstractions are nothing new. This concept was carried to its logical extreme in the 1970’s
in the UCSD P-machine. There existed p-machine implementations for every major microprocessor of the
day, 6502, 6809, Z-80, 8080, and the 8086. Programs were object-code compatible between supported archi-
tectures. Only one executable was ever needed.
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This is true even though most of the work has been done by programmers that have a good under-

standing of the machines on which they’re working.   Given the current software crisis for sequen-

tial machines, it is unlikely that parallel architectures will be widely used until software tools are

available that hide the complexity of the parallel environment from the programmer.

We have presented the Mentat approach to solving the parallel software problem. The key

idea is to have programmers use application domain knowledge to decompose the problem, and to

use compiler technology to correctly manage scheduling, communication, and synchronization.

By exploiting the strengths of both programmers (domain knowledge) and the compiler (correct-

ness) we can leverage the programmers’ efforts, freeing them from detail, and increasing their

productivity.

Our approach includes extending the object-oriented paradigm’s encapsulation techniques

to include parallelism encapsulation. Programmers use domain knowledge to specify those

classes that are computationally complex. We then apply compiler technology to encapsulate the

parallelism internal to an object, and to exploit parallelism opportunities between objects.

It is possible, indeed probable, that a good programmer could write a more efficient and

concurrent program using raw send and receive.   We believe, though, that send and receive (and

semaphores) are the assembly language of parallelism. Just as early high level language compilers

could be beaten by a good programmer writing in assembly language, MPL performance can be

beaten by a hand coded application using send and receive. Extending the analogy, just as high

level languages now have good optimizing compilers that do as well as most programmers, and

better than many, we expect MPL compiler technology to improve. Indeed, several optimizations

are already planned. The question that must be answered for both high level languages versus

assembly languages and for MPL versus raw send and receive is whether the simplicity and ease

of use are worth the performance penalty. We believe that they are.
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Appendix A

The Mentat Philosophy on Parallel Computing

The Mentat philosophy on parallel computing is guided by two observations. First, that

the programmer understands the problem domain of the application and can make better data and

computation partitioning decisions than can compilers. The truth of this is evidenced by the fact

that most successful production parallel applications have been hand-coded using low-level prim-

itives. In these applications the programmer has decomposed and distributed both the data and the

computation. Second, the management of tens to thousands of asynchronous tasks, where timing

dependent errors are easy to make, is beyond the capacity of most programmers unless a tremen-

dous amount of effort is expended. The truth of this is evidenced by the fact that writing parallel

applications is almost universally acknowledged to be far more difficult than writing sequential

applications. Compilers, on the other hand, are very good at ensuring that events happen in the

right order, and can more readily and correctly manage communication and synchronization, par-

ticularly in highly asynchronous, non-SPMD, environments.

These two observations lead to our underlying philosophy; exploit the comparative advan-

tages of both humans and compilers. Humans understand the problem domain and can best make

partitioning decisions, while compilers “understand” data dependence and scheduling. Therefore,

in Mentat, programmers tell the compiler using a few key words what computations are worth

doing in parallel and what data are associated with the computations. The compiler then takes

over and does what it does best, manage parallelism.
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Appendix B

Intra-Object and Inter-Object Parallelism Encapsulation

A key feature of Mentat is the transparent encapsulation of parallelism within and between

Mentat object member function invocations. Consider for example an instance matrix_op of a

matrix_operator Mentat class with the member function mpy that multiplies two matrices

together and returns a matrix. As a user, when I invoke mpy in X = matrix_op.mpy(B,C); it is

irrelevant whether mpy is implemented sequentially or in parallel; all I care about is whether the

correct answer is computed. We call the hiding of whether a member function implementation is

sequential or parallel intra-object parallelism encapsulation.

Similarly we make the exploitation of parallelism opportunities between Mentat object

member function invocations transparent to the programmer. We call this inter-object parallelism

encapsulation. It is the responsibility of the compiler to ensure that data dependencies between

invocations are satisfied, and that communication and synchronization are handled correctly.

Intra-object parallelism encapsulation and inter-object parallelism encapsulation can be

combined. Indeed, inter-object parallelism encapsulation within a member function implementa-

tion is intra-object parallelism encapsulation as far as the caller of that member function is con-

cerned. Thus, multiple levels of parallelism encapsulation are possible, each level hidden from the

level above.

To illustrate parallelism encapsulation, suppose X,A,B,C,D and E are matrix pointers.

Consider the sequence of statements

X = matrix_op.mpy(B,C);

A = matrix_op.mpy(X,matrix_op.mpy(D,E));

On a sequential machine the matrices B and C are multiplied first, with the result stored in X, fol-

lowed by the multiplication of D and E. The final step is to multiply X by the result of D*E. If we

assume that each multiplication takes one time unit, then three time units are required to complete

the computation.
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In Mentat, the compiler and run-time system detect that the first two multiplies, B*C and

D*E, are not data dependent on one another and can be safely executed in parallel. The two

matrix multiplications will be executed in parallel, with the result automatically forwarded to the

final multiplication. That result will be forwarded to the caller, and associated with A. The execu-

tion graph is shown in Figure 1-a.

The difference between the programmer’s sequential model, and the parallel execution of

the two multiplies afforded by Mentat, is an example of inter-object parallelism encapsulation. In

the absence of other parallelism, or overhead, the speedup for this example is a modest 1.5.

However, that is not the end of the story. Additional, intra-object, parallelism may be realized

within the matrix multiply. Suppose the matrix multiplies are themselves executed in parallel

(with the parallelism detected in a manner similar to the above). Further, suppose that each

multiply is executed in eight pieces (Figure 1-b). Then, assuming zero overhead, the total

execution time is 0.125 + 0.125 = 0.25 time units, resulting in a speedup of 3/0.25= 12. As matrix

multiply is implemented using more pieces, even larger speedups result. The key point is that the

programmer need not be concerned with data dependence detection, communication,

synchronization, or scheduling; the compiler does it!

(a) (b)

*

**

B C D E

A

Figure 1. Parallel Execution of Matrix Multiply Operations.
(a) Inter-object parallelism encapsulation.
(b) Intra-object parallelism encapsulation where the multiplies of (a)
have been transparently expanded into parallel subgraphs.
.

Speedup =
TSequential

TParallel

= 3
2

= 1.5
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Appendix C

A Brief Introduction to C++

C++ is an object-oriented extension of C developed by Bjarne Stroustrup of AT&T Bell

Labs that avoids the performance penalty usually associated with object-oriented languages. C++

supports object-oriented concepts such as objects, classes, encapsulation, inheritance, polymor-

phism, and function and operator overloading. The most important extensions revolve around

classes. Classes are structurally similar to C structs, and in many implementations are imple-

mented as structs.

Classes support the concept of encapsulation via the provision of private and protected

member variables and member functions. Private members (e.g., top) may only be accessed by

member functions of the class (e.g., push()). Protected members may be accessed only by

members of the class and be members of derived classes. Non-accessible members may still be

indirectly manipulated via public member functions. By limiting access to members, the language

provides support for encapsulation.

Inheritance means that classes may be defined in terms of other classes, inheriting their

behavior (public, private, and protected members). When a class may have at most one super (par-

ent) class, we say a language supports single inheritance, and a tree-like class structure

results.When there may be multiple super classes we say the language supports multiple inherit-

ance. C++ supports multiple inheritance.

A limited form of polymorphism is supported in C++ via virtual functions. Multiple

classes, all derived from the same base class, may all define different implementations of a virtual

function. When the function is invoked on a pointer or reference to an instance of the base class

the appropriate function is bound and called. The function binding is done at run-time and

depends on the class of the object to which the pointer points. This can be contrasted with com-

pile-time binding where the compiler decides at compile-time which function to use. The canoni-
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cal example is a base class shape and a virtual function draw(). The classes square and

triangle are derived from shape. Suppose x is defined as shape *x;, at run-time x may

point to a shape, a square, or a triangle. When x->draw() is executed the correct draw

(square or triangle) will be bound and invoked.

Function and operator overloading permits the programmer to redefine, or overload, the

meaning of both the standard binary and unary operators, as well as user defined functions. The

compiler determines which function to use based on the number and type of the arguments.

Classes in C++ are defined in a manner similar to structs in C. The class int_stack

class int_stack {
protected:

int max_elems, top;
int *data;

public:
int_stack(int size = 50);
void push(int);
int pop();

};

has three protected member variables defined, max_elems, top, and data. They may not be

directly manipulated by users of instances of int_stack, but may be used by derived classes.

The constructor for int_stack, int_stack(int size), is called whenever a new

instance is created.   Constructors usually initialize private data structures and allocate space.

Instances are created when a variable comes into scope, e.g., {int_stack x(40);}, or

when instances are allocated on the heap, e.g., int_stack *x = new int_stack(30);.

The member functions push(int) and int pop() operate on the stack and are the sole

mechanism to manipulate private data.

To illustrate member function invocation, suppose that x is an instance of int_stack.

Member functions are invoked using either the dot notation, x.push(5);, or if x is a pointer,

the arrow notation, x->push(5);.

[13] B. Stroustrup, ”What is Object-Oriented Programming?” IEEE Software, pp. 10-20, May, 1988.

[14] B. Stroustrup, The C++ Programming Language, 2nd ed. Addison-Wesley, Reading, Mass., 1991.


