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Abstract

The Spring system is a highly integrated collection of software and hardware that synergisti-
cally operates to provide end-to-end support in building complex real-time applications. In this
paper, we show how Spring’s specification language, programming language, software genera-
tion system, and operating system kernel are applied to build a flexible manufacturing testbed.
The same ingredients have also been used to realize a predictable version of a robot pick and
place application used in industry. These applications are good examples of complex real-time
systems that require flexibility. The goal of this paper is to demonstrate the integrated nature
of the system and the benefits of integration; in particular, the use of reflective information and
the value of function and time composition. The lessons learned from these applications and
the project as a whole are also presented.
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1 Introduction

Complex real-time systems suffer from the lack of tools and runtime software that sufficiently
support predictably meeting timing constraints. While it is true that many real-time design tools
exist, they are surprisingly limited in their abilities to deal with time. As a result, there is often
a large gap between the specification of the real-time behavioral constraints expressed by the
design and the constraints on actual behavior supported by the final run-time system, in spite of
the fact that some of these tools can also automatically produce code. Most of the systems are
implemented in C and assembler, neither of which has any direct support for meeting deadlines
or concurrency. While predictable Operating System kernels such as VRTX and VXworks can be
purchased, they provide necessary but not sufficient support for meeting deadlines. For example,
while the kernel primitives are predictable, quite often worst case execution times for computations
running on this system are only estimated (via testing), and delays due to blocking are approximated
via analysis of possible blocking situations. Further, the hardware itself is usually composed of
commodity components designed for average case performance, often significantly reducing the
predictability of worst case execution times. By costly and careful engineering, systems using all
these components can be made to function according to the design constraints. However, not only
are such systems costly, but due to the required hand tuning they are extremely brittle; a simple
change can precipitate a tortuous period of redesign and analysis.

The Spring system is a highly integrated collection of software and hardware that synergisti-
cally operates to provide end-to-end support in building complex real-time systems. The specifi-
cation language, called SDL [Niehaus et. al. 1995], explicitly supports specifying a computation’s
real-time behavioral constraints, end-to-end constraints, concurrency, and details of the hardware-
software platform that are required to accurately analyze the system and achieve predictability. The
programming language, Spring-C [Niehaus 1994], works in concert with the specification language.
Its structure constrains the programmer in ways which ensure that worst case execution behavior,
including execution times, can be automatically predicted for the particular hardware platform
being used. Of course, such platforms should have predictable instruction execution times. A key
aspect of the Spring-C compiler is that it automatically identifies all of a computation’s potential
blocking points, i.e., points during execution when it can block for resources or wait for synchronous
communication to occur.

The Spring software generation system (SGS), which includes the SDL and Spring-C compilers
as well as related tools such as assemblers, linkers and loaders, integrates the information gathered
and derived by its components concerning each computation’s execution behavior. This behavioral
information describing blocking points, worst case execution times and other information is made
available (a) off-line for analysis by scheduling and simulation tools, and (b) on-line for dynamic
scheduling and other analysis by the kernel. We refer to the data used at run-time as reflective
information!. The explicit way in which the Spring system automatically addresses blocking and its
effect on meeting deadlines is one of its key contributions. The run-time kernel, called the Spring
kernel [Stankovic and Ramamritham 1991}, not only provides predictable primitives, but also gives
significant added value by solving the central decision problem for the end-users of real-time systems
— whether a collection of active modules, sharing resources, communicating, and subject to time
constraints will predictably satisfy those constraints. To do this, the Spring kernel makes use of
the reflective information? and utilizes an on-line planning and scheduling algorithm. This creates

!This is also sometimes called meta data, e.g., in CORBA. However, Spring was the first real-time OS to elevate
to a central principle the integrated use of reflective information in real-time systems.

2Examples of reflective information include: worst case execution time, resource requirements and mode of use,
and precedence and communication relationships between tasks. Other examples of are given throughout the paper.



an ability to dynamically compose computations along both the function and time dimensions.
The Spring system also uses a careful hardware layout, SpringNet [Stankovic et. al., 1993], to
simplify the design and analysis problem. For complex real-time systems, the extra hardware cost
is negligible with respect to overall system cost.

The Spring system was in development for more than ten years and many results produced
along the way have been published. In this paper, except for a small part of Section 2, we focus on
parts of the system that have not previously been described in the open literature. The main goal
is to demonstrate the integrated nature of the system and the benefits of integration — in particular,
the use of reflective information and the value of function and time composition. Few real-time
research projects have developed novel ideas, implemented them in an integrated and complete
manner, and then used them in application-based case studies. There is great value to undertaking
a project such as this, and reporting on the key results and observations.

In Section 2, the main components of this integrated system are described. This section shows
how these components have been designed to work synergistically. The inter-process communication
(IPC) capabilities of the Spring kernel are then discussed in (Section 3). This section shows how
the different components of Spring are applied to deal with communicating processes.

To study the integrated approach provided by Spring we employed our solutions on two real-
world case studies: (1) a flexible manufacturing testbed and (2) a robot pick and place application
used in industry. These applications are good examples of complex real-time systems that require
flexibility and which can demonstrate the value of reflection and (function and time) composition.
In this paper, we describe only the first application in Section 4 which also contains multi-level
scheduling. (The second application is discussed in [Bickford et. al. 1996].) The lessons learned
from these applications and the project as a whole are presented in Section 5. Section 6 discusses
the state of art related to this work. Section 7 summarizes the paper.

2 The Spring System - Development Environment and Architec-
ture

This section presents a brief overview of the Spring development environment and the Spring target
system architecture. Figure 1 illustrates the high level system design and is divided into three parts.
The heavy black line divides the Spring-C and System Description (SDL) languages in the current
implementation below from an illustration of its potential to serve as a target for higher level real-
time languages above. The dotted line divides the portions of the Spring environment residing on
the host above from the portions on the target system below.

The programming model defined by the Spring-C and SDL languages presents a virtual machine
for use by application programs. This virtual machine is supported on the target node hardware by
the Spring operating system which is responsible for ensuring that the real-time behavior specified
by the programmer in the source code is delivered by the program executing on the physical
machine. For example, behavioral assertions made by the programmer in the source language,
including assertions about temporal behavior, are processed and extended by the programming
tools to produce the reflective information used by the operating system at run time to determine
the best way to produce the desired behavior. Behavioral requirements thus flow from top to
bottom in the diagram, and can have a significant influence on how the hardware implementing
the physical machine is used.

Similarly, characteristics of components at lower levels in the diagram which constrain the
possible execution behaviors have an influence on portions of the system illustrated at higher levels
in the diagram. The SDL provides a medium within which each layer of the system can make
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information available to other parts of the system. For example, imagine that the target hardware
implements a non-uniform memory access (NUMA) architecture where the access time depends
on the location of the information in the NUMA hierarchy relative to the CPU accessing it. In
this situation, the SDL provides each part of the system with the information it needs. The
SDL describes the target node’s NUMA architecture and the location of every piece of executable
program code. This information is used by the programming tools which provide execution time
predictions for use by the scheduler at run time.

These examples should make it apparent that the designs of each layer of a real-time system
must be carefully coordinated with that of the others to create a system with truly predictable
behavior. We use the term wvertical slice to describe this approach to system design, since it slices
across the traditional boundaries between system layers whose design and implementation are
often addressed almost independently in conventional systems [Halang and Stoyenko 1991]. Passing
reflective information, using the SDL, across layers is key to developing flexible yet predictable real-
time systems. Note that the runtime system also passes reflective information between system and
application layers, and vice versa.

The programming model, Spring-C source language, and software generation system (SGS) are
the most prominent sections of the host’s development environment. However, the analysis and
support tools, which include the system debugger, are of significant practical importance. Spring’s
development environment is currently implemented on UNIX workstations, and the SGS provides
support for program compilation, linking, analysis, and debugging. The executable files prepared
by the SGS are downloaded onto the Spring target node using the debugger, and then executed
under the supervision of the operating system. The SGS’s support for cross compilation decouples
the selection of host and target architectures. The SGS currently supports three host architec-
tures, DEC Vaxstations, Decstations, and DEC Alphas as well as one target architecture, the
Motorola 68020. However, many parts of the SGS are extensions of the Free Software Foundation’s
tools [Stallman 1992], which support a wide range of hosts, and share their portability.

The SGS supports the programming environment, which presents the programmer with a vir-
tual machine capable of supporting real-time computations. The target system implements the
virtual real-time machine which manages computations’ execution according to their requirements
and constraints. The target system runs the Spring operating system which includes Spring’s sched-
uler. The Spring scheduler uses the reflective information supplied by the SGS and is responsible
for ensuring that computations execute according to their constraints. This information is supplied
in the form required by the Spring scheduler, which manages computations represented as prece-
dence related groups of tasks with resource and deadline constraints [Zhao and Ramamritham 1987,
Niehaus 1994]. This algorithm is responsible for dynamic time composition and will be discussed
further in Section 4.

2.1 SGS Data Flow

This section discusses how information, including reflective information, about application pro-
grams flows among the various elements of the SGS and programming environment in the course
of creating and downloading the application’s executable images, as illustrated in Figure 2. A
novel feature, and important contribution, of Spring’s SGS is the richness and extensive coordi-
nating role played by the SDL. Another novel feature and important contribution of the SGS is
its translation from a process based representation of a computation used by the programmer to
a representation of a computation’s execution behavior as precedence-related tasks used by both
on-line and off-line schedulers [Zhao and Ramamritham 1987, Niehaus et. al. 1990, Niehaus 1994].
Detailed discussion of the translation method is available elsewhere [Niehaus 1994, Niehaus 1991].
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Figure 2: Programming Environment Information Flow

It is important to note, however, that the reflective information used by the system is accumulated
and derived in the course of this translation.

Figure 2 is divided into three sections horizontally, illustrating the processing of Spring-C and
SDL source files, and how the information specified or derived from the source files is used off-
line by different simulation and analysis tools. The vertical dotted line at the right illustrates the
border between the host and target systems. The reflective information and executables created
on the host are downloaded to the target and are used at run-time. The bottom section of the
figure illustrates how the reflective information is used by off-line workload generators, scheduling
simulators, and simulations of the Spring Scheduling Co-Processor (SSCoP). These aspects of the
system are peripheral to this paper and are discussed elsewhere [Gene 1990, Niehaus et. al. 1993].

The top section of Figure 2 illustrates how Spring-C source files are compiled and linked by
the SGS, while the middle section illustrates the processing of source files which contain only SDL
statements. The Spring-C compiler spr_cc produces object files containing both compiled code and
behavioral information either specified in or derived from the Spring-C source during compilation.
The SDL compiler sdl_cc produces object files containing only descriptive information.

The sdl_merge tool accumulates a description of the application in a database file called
“full.db” as a series of source files are compiled. This information is used by many elements of the
programming environment, both for off-line analysis as well as for on-line dynamic scheduling. For
example, note the arrows pointing out of the file full.db which represent information used by the
Spring-C compiler spr_cc, the linking loader spr_ld, spr_grp which is a tool deriving task group
structure when synchronous communication relations exist among processes used to implement a



computation, and sbug which is a tool supporting the downloading and debugging of executables
on the target system.

Each time an SGS tool runs it reads the accumulated behavioral descriptions from full.db,
as well as those from any libraries referenced by the source file, as specified by command line
arguments. This information flow allows spr_cc, for example, to take the worst case execution time
predictions derived for procedures during the compilation of their source files into account when
compiling the source of procedures calling them, and thus derives an execution time prediction of the
calling procedure. Other examples of SDL information accumulated and used during compilation
include: the target node structure specification, the system layout specifying the location of each
executable and shared memory segment within the target node, and process descriptors specifying
the properties of each process. The target node structure description includes the address and
size of each memory segment. The system layout tells sbug where to download every executable
image, and tells the Spring operating system the name, size, and location of every shared memory
segment. The process descriptors tells the system everything it needs to know about each process,
including the executable implementing it, any synchronous communication it engages in with other
processes, and the representation of the process behavior as a set of tasks required by the Spring
scheduler.

While Spring’s approach is more complex than those of some conventional systems, the compi-
lation ordering constraints are no different in principle from those requiring that all the object files
required to build an executable be produced before linking occurs. The SDL plays a central role
in supporting and coordinating the compilation and execution of program code. Some of the SDL
information is supplied by the programmers, while other information is derived during compilation.
The crucial point is that all of the information, supplied or derived, is represented by the SDL in
a common form which ts thus available to every part of the system.

The Spring SGS, and the role of the SDL within it, represents an important contribution for
three reasons. First, it supports information of a wider range and at a greater level of detail than
other real-time systems, thus supporting the increase reflectivity, predictability, and flexibility of
the Spring system. Second, the generation and use of the SDL information has been fully integrated
into all aspects of the SGS and run-time system. The SDL thus facilitates the vertical slice approach
to integrated design illustrated in Figure 3 by simplifying extensive information exchange among
normally separate system layers. Third, the extensibility of the SDL greatly simplifies creating and
integrating new features and tools into the system, thus making it easier to maintain an integrated
design as the system evolves.

The extent to which the SGS facilitates the design of predictable complex real-time applications
is illustrated by its use in (a) the specification and translation of communicating processes, discussed
in Section 3 and (b) in the development of the flexible manufacturing application, discussed in
Section 4.

2.2 Spring Node Architecture

A brief description of the Spring node and network architecture will enable a better understanding
of the issues discussed in the rest of the paper. SpringNet is a physically distributed network of
multiprocessor nodes each running the Spring kernel [Stankovic et. al., 1993]. Each multiprocessor
contains one (or more) application processors (APs), one (or more) system processors (SPs), and
an I/O subsystem. Ultimately, SPs could be specifically designed to offer hardware support to
system activities such as guaranteeing computations [Niehaus et. al. 1993]. The I/O subsystem is
partitioned from the Spring kernel, handling non-critical I/O, slow I/O devices, and fast sensors.
One of the most important features of a Spring node (also found in some other real-time
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architectures) is its functional partitioning, which enhances predictability by shielding applications
running on the APs from external interrupts. Environmental interrupts directly affect only the
SP and I/O processors, indirectly affecting the APs and the applications executing on them by
generating work whose execution must be added to the execution plan maintained by the scheduler.
In addition, functional partitioning provides the ability to manage different classes of processes
separately.

The current Spring target node, as illustrated in Figure 4, contains 5 processors: one system
processor (SP), three application processors (APs), an I/O board, and a “global” memory (GM)
board not associated with any processor. Each SP and AP has a Motorola 68020 CPU, 68851
MMU, 68881 FPU, and 4Mb of local memory which is also visible on the system bus. The func-
tional partitioning aspect of the Spring architecture is implemented by having the system code,
including the scheduler, run on the SP while application code runs on the APs. We currently have
3 multiprocessor nodes connected via two networks: an Ethernet to support non real-time traffic
and for downloading the system from the development platform, and a fiber optic register insertion
ring connecting 2 Mb shared memory boards in each node. The I/O board is currently a stand-alone
UNIX system supporting both the Spring file system and the node’s Ethernet connection. The SP
can interact with other external devices and sensors through its serial (RS-232) ports. Other I/O
boards, not running UNIX, could be added to support time critical devices.

The shared memory (sometimes called reflective memory), illustrated in Figure 4, provides a
shared memory model for its 2 Mb (of physically distributed but logically centralized memory),
and is implemented via the off-the-shelf product called Scramnet [SYSTRAN 1991]. The memory
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Figure 4: Spring Node Architecture

is “reflective” in that the reflective memory boards in each of the Spring nodes always contain the
same information, subject to transmission delays on the fiber optic ring connecting them. The
reflective memory boards thus effectively represent a single memory board shared among all the
nodes on the ring.

The isolation of application processes on the APs enables the system to protect them from
external interrupts, which are handled by the SP. This, in conjunction with the execution guarantees
provided by the scheduler, allows us to construct a more macroscopic view of a predictable system.
Context switches are reduced because APs do not handle interrupts, which simplifies predicting
a computation’s execution behavior. Better execution time behavior predictions make it easier
to guarantee that a computation will complete by its deadline. Our strategy also partitions the
real-time processes into those that require static resource allocation, those requiring a dynamic
scheduling algorithm in the front-end, and those, which typically have higher levels of functionality
and greater latency, handled by the dynamic on-line guarantee routine. Those requiring static
allocation on dedicated I/O boards are typically fast I/O device drivers and critical processes.
Slow I/O devices can be multiplexed through a front-end processor, which might use a cyclic or
rate monotonic scheduler. The APs support the higher level application processes given dynamic
on-line guarantees.

There are two levels in the non-uniform memory access (NUMA) hierarchy of the current Spring
node architecture, which are represented by the SDL description of a Spring node and are taken into
account by the SGS when predicting execution time behavior. Access by a processor to the memory
on its board, a local access, is fastest. Access by a processor to the memory of other processors
or to the GM board, a global access, is substantially slower due to system bus use and must also



contend with the local processor if the access is to memory on another processor board. The system
ensures a predictable worst case global access time by using the VME backplane in round robin
mode, which enforces fair contention [Motorola 1986]. The reflective memory represents a potential
third level in the NUMA hierarchy, especially if its access time includes the time for updating all
other boards on the ring, but in the current configuration its access time is the same as access
to any other memory on the system bus. An additional level in the NUMA hierarchy would also
be created by instruction and data caches, which the current Spring target architecture does not
possess.

The NUMA hierarchy must be accounted for during compilation, since the time for a memory
access, and thus a substantial part of program execution time, is determined by the location of the
referenced data structure relative to the CPU generating the reference within the NUMA hierarchy.
The node description and process layout sections of the SDL provide the SGS with the explicit
information it requires about the location of data structures within the NUMA hierarchy, and the
CPUs upon which code accessing the data will run. This enables the SGS to distinguish local
and global memory accesses, and thus to produce accurate worst case execution time predictions
[Niehaus 1994]. This explicit support for obtaining WCETs is missing in most other real-time
systems.

3 Interprocess Communication (IPC)

The goal of IPC in the Spring kernel is to provide an efficient and predictable communication
system that allows programs to exchange information in such a way that the system can dynamically
schedule invoked end-to-end application computations so that they predictably meet their deadlines.
The IPC subsystem is thus specifically designed to facilitate analysis of communication resource
requirements [Nahum and Yates 1990], knowledge of which is used by the SGS at compile-time,
and by the scheduler at run-time. In this section we discuss how SGS facilitates the predictable
execution of communicating tasks.

Under Spring IPC, messages are sent to ports. Messages are units of information that are passed
between processes via either synchronous or asynchronous send and receive calls. Messages have
fixed sizes, and strict copy-by-value semantics. Messages can have deadlines that determine when
they must be delivered to a port. Messages and ports are also typed by both real-time requirements
and semantic content. The real-time typing includes: critical, essential, soft real-time and non-real-
time messages. The semantic typing distinguishes synchronous or asynchronous message delivery,
which is determined by the port to which the message is sent. Ports are kernel protected data
structures owned by the receiver. Ports are assigned to the reflective (Scramnet) memory when
processes are on different nodes. Hence, when a message enters a port at one site there is a fast
and predictable delivery time to the destination because there are no collisions and contentions on
the ring. This delivery time, both local and remote, is known to the off-line analysis and on-line
schedulers as part of the reflective information.

Application software specifies its IPC requirements as it does all other programming resources,
by using a combination of SDL and Spring-C statements. Application processes request connections
via the provided IPC system calls which allocate, free, query, and use ports. They specify the types
of messages, ports and the specific behavioral requirements such as synchronous or asynchronous
semantics and delivery deadlines.

The integrated nature of the Spring system is illustrated by the fact that the properties of the
synchronous IPC subsystem play a vital role in translating from the programming to the run-time
representation of a computation. The Spring programming model represents a computation as a set

10
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of communicating processes, a process group. However, at run-time the Spring scheduler requires
that the behavior of the process group be represented as a set of tasks, a task group, with known
worst case task execution time, resource use, execution precedence relations, and communication
relations. The SGS is responsible for translating from the programming representation of a com-
putation as a process group to the run-time representation as a task group. The SGS’s use and
production of the reflective information supported by the SDL was discussed briefly in Section 2.1,
illustrated in Figure 2, and is discussed in detail elsewhere [Niehaus et. al. 1990, Niehaus 1991,
Niehaus 1994].

Consider the role of the IPC subsystem in the compilation and execution of a simple pro-
cess group containing two processes: one performing a synchronous send and one performing a
synchronous receive. When the spr_cc compiles the source code of the sending and receiving pro-
cesses, it identifies the points at which the IPC calls are made as well as collect all the details
on the type of IPC and its parameters. In the course of compilation and linking, each process is
decomposed at the IPC class into a set of tasks.

In this simple example, each process is represented by two tasks, and the computation im-
plemented as a group of two processes is represented by a group of four tasks. The task group
represents the computation as a whole because of the synchronous communication interactions be-
tween the processes which are mapped onto execution precedence relations by the SGS. Precedence
constraints created by the SGS among the four tasks allow the scheduler to construct a schedule
that, if feasible, guarantees that the entire process group completes on time and that, barring
transmission errors, the synchronous IPC semantics are satisfied.

Figure 5 illustrates a simple synchronous exchange between P2 the sender and P1 the receiver.
In the task pair representing P2 the first task ends when the process leaves the program code and
enters the IPC sync_send call, and the second task begins with the return from that call. In the
task pair representing P1 the first task ends when the process leaves the program code and enters
the IPC sync_recv call, and the second task begins with the return from that call. It should thus
be easy to see that a precedence constraint exists between the first and second tasks in the pair
representing each process to ensure that the scheduler constructs a schedule which executes the
task representing the entry to each IPC call before it executes the task representing the return
from that call.

There are, however, two other precedence constraints in the task group, from the first task in the
pair representing each process to the second task in the pair representing the other process, which
enforce the synchronous IPC semantics. These precedence constraints are created by the spr_grp
command, illustrated in Figure 2, on the basis of its analysis of synchronous communication patterns
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within the process group. Specifically, it uses the task group structure to match all synchronous
send and receive pairs. The precedence constraint from the first task representing P1, the receiver,
to the second task representing P2, the sender, ensures that the receiver process must have entered
its sync_recv call before the sender returns from its sync_send call.

The precedence constraint from the first task representing P2 to the second task representing
P1 has a minimum delay CD associated with it. This relation ensures that the sender must have
entered its sync_send call at least C'D time units before the receiver can return from its IPC call.
This ensures that the message has been sent and that it has at least C'D time units in which to
makes its way from the sender to the receiver. The spr_grp command determines the value C'D
by consulting the SDL data base provided by the full.db file, illustrated in Figure 2, describing
the node structure, the network structure, the tasks’ location, and thus the communication delays
which exist between the two tasks in question. Note also that the minimum delay C'D is associated
with the precedence constraint between the first and second tasks representing P2. This enforces
the Spring synchronous IPC semantics which require that the sync_send call not return until the
message is available on the receive side.

The full set of task group information (e.g., worst case execution time, resource use, synchronous
communication, and execution precedence constraints) is made available to the run-time kernel, and
connection information is available to the operating system on all nodes where the communicating
tasks reside. The distributed scheduling algorithms then utilize the communication and task infor-
mation to guarantee the application level end-to-end deadline constraint. The algorithm is beyond
the scope of this paper; details can be found in [Di Natale and Stankovic 1994]. Thus at run-time,
for example, if a guaranteed task performs a synchronous receive, the scheduler knows when to
schedule that task such that a message should be present. If there are no messages available, it
means that either the scheduler has not scheduled the tasks correctly, or that an error has occurred,
such as a lost message or failed task. The error code returned to the receiver is interpreted as an
exception that must be handled by the application.

In summary, the Spring IPC provides a set of predictable primitives whose design and imple-
mentation have been very closely coordinated with the requirements of the real-time scheduler. The
flow of information from the application, through the SGS, to the run-time system has been illus-
trated. Armed with this information the system can dynamically schedule groups of communicating
tasks representing computations in a manner that guarantees deadlines are met.

4 Case Study: Flexible Manufacturing

The flexible manufacturing application discussed in this section illustrates how a complex real-time
system that requires flexibility has been developed using the components of Spring discussed in
the previous three sections. More specifically, the SGS is shown to easily support flexible timing
and functional composition of computations managing manufacturing activities. This application
motivated an additional form of application support, the remote process invocation(RPI). Our
experience with this application has shown how the reflective information processed and derived by
the SGS and then made available to the Spring scheduler enables responsive control of the varied
jobs presented by a manufacturing environment.

4.1 Model of a Flexible Manufacturing Testbed (FMT)

The FMT models dynamic manufacturing systems in which raw materials and orders arrive non-
deterministically, and the goal is to produce goods in a timely fashion. The value of completing
the order is a function of the intrinsic value of the manufactured object and the time at which the
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manufactured object is produced relative to the order arrival. A single controlling process directs
manufacturing processes that service orders. The controlling process decides which orders to service
based upon the current raw materials and the current pool of pending, as-yet-unserviced orders.
The controlling process also bases its decisions on expectations concerning the future arrival of raw
materials and of new orders.

While the FMT is not intended to precisely model all the intricate details of a real-world
manufacturing system, it is a comprehensive undertaking. The FMT involves an integration of
different technologies besides real-time systems (support for predictable response and low-level
systems integration): robotics (coarse reaching, grasping, automated assembly); computer vision
(object recognition); and automated reasoning (AI techniques for process advisors).

Figure 6 illustrates the key physical components of the testbed: a rotating platform with ten
bins, a linear platform with five bins, four tubes for holding completed orders, a flapper, and a
robotic arm. The raw materials of products are represented by balls-either white, gray, or black—
and arrive nondeterministically into bins on the rotating platform. The manufacturing of an order
consists of transporting balls of the color specified in the order from the rotating platform to the
linear platform, and from the linear platform to an available tube. To move a ball from the rotating
platform to a tube, the ball must first be pushed into an assigned slot of the linear table. This
is done by first moving the linear table so that the assigned slot is in front of the flapper, which
is not mobile. When the ball has rotated in front of the flapper, the flapper kicks the ball onto
the linear platform. A scanner is then instructed to find the precise location of the ball within
the particular linear table bin so that the robotic arm can be instructed to grasp from a precise
location. Once the ball has been picked up by the grasper, it is moved to a point above the assigned
tube, and released. Collectively, the physical components represent a set of finite-capacity stations
in a manufacturing facility. A product must pass between stations in order to be machined and
combined with other parts. Eventually, the part passes through the last station and is transported
to a holding station until it leaves the manufacturing site.
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4.2 Run-Time Operation of the Testbed

Scheduling in many real manufacturing sites exists at two levels of abstraction. At the higher
level of abstraction, the scheduling involves objects such as materials, machines, and orders. The
decisions made at this level include the selection of which orders to service and when to service them,
based on the value and deadline of each order and the availability of raw materials. The feasibility
of servicing an order is determined by the scheduler operating at the lower level of abstraction,
which, as opposed to the higher level scheduler, deals with the computational resources needed to
move robots, assemble products, etc. For example, the higher level scheduler may decide to make
a certain product, but the actual manufacturing floor may not be capable of servicing this order
in time. In this situation, feedback information from the lower level to the higher level allows the
higher level scheduler to make more informed decisions concerning future orders, which increases
system productivity as a whole.

In the FMT, two separate schedulers are used to schedule at the two levels of abstraction. The
high level scheduling is performed by a process called the AI Planner, the low level scheduling
is done by the Spring scheduler, and servicing of an order is done by the Spring kernel. When
an order arrives at the Al Planner from the outside world, the AI Planner consults its model of
the environment, which includes the raw resources available, and the state of the manufacturing
system, which includes knowledge of orders currently being serviced. When the AI Planner decides
to pursue the servicing of an order, the order is passed to the Spring scheduler via an interface,
which maps the AI Planner’s representation of work into the Spring representation of work as
processes.

The mapping from the level of the AT Planner to the Spring scheduler is a complicated procedure
because the two schedulers operate at different levels of abstraction and with different resources.
The AI Planner is interested in managing the pool of available balls and in getting products
produced by certain times. The Spring scheduler is interested in resources and actions on a much
smaller scale — for example, invoking the flapper at the correct time, and activating the grasper in a
slot of the linear table in which there is a ball. The obvious requirement of the AI Planner/Spring
Interface program is to map orders to the low-level actions that will service the order. There are
three levels of abstraction that the interface uses to perform its mapping:

Task A task represents a fine grained model of execution behavior, and task groups are used
to represent the execution behavior of processes and process groups. A task has resource
requirements, precedence constraints with other tasks, a deadline, an arrival time, and a
worst case execution time (WCET). The task is an object that can be directly dispatched
and executed on a processor by the Spring operating system. The Spring scheduler builds a
schedule by assigning tasks to execute on processors at specific times.

Process A process’ execution behavior is represented by a set of tasks with precedence constraints
between them. There are six processes in the FMT, five of which are related to robotics
and computer vision routines: Move Linear Table, Flap, Scan Linear Table, Grasp Ball and
Deliver Ball. The sixth process, End Of Order, when executed, informs the AT Planner that
the order has been serviced.

Process Group A process group is set of processes with precedence constraints among them that
represents a single logical action. In the FMT, there are four process groups: Mowve Linear
Table PG, Flap PG, and End Of Order PG are each comprised of a single process. The
fourth process group, Scan Grasp Deliver PG, is a sequential ordering of Scan Linear Table,
Grasp Ball, and Deliver Ball. Figure 7 shows the individual tasks and their times for each

14



Move Linear Table Flap Ball Scan, Grasp,

into Flapping Position onto Linear Table and Deliver Ball
T1 T1
T2 ¢ 1 m
T2
T3
T2
Delay for Flap (15 sec.)
Delay for Move (15 sec.) ¥2 T3
T4 . ’ T5
T5 - Delay for Scan (5 sec.)
T5
6
T7
Scale: 1 cm = 2 mSec Delay for Grasp (10 se0)
Note: Delays for robotics and computer vision Ti?) :
routines not drawn to scale.
T11

T12  Delay for Deliver (10 sec.)

T13 :

T14

Figure 7: Tasks for Each Robotic Process Group

of the robotics and visions process groups (the End of Order process group is a single task
and is not included here). The “delays” in each process group will be discussed shortly. Note
that the creation of the tasks and the task groups representing the behavior of the process
groups is done automatically by the Spring SGS, as discussed in Section 2.1 and Section 3,

and the reflective information collected and derived by the SGS is kept for use by the system
at run-time.

The first step the AI Planner/Spring Interface program takes when a new order arrives
is to map the order to a set of process groups. This is a dynamic functional composition using
predeclared primitive process groups to create a set of process groups that meet the functional
requirements of the new order (which has dynamically arrived). Process groups for two types of
two-ball orders are shown in Figure 8. On the left of that figure is the structure for a two-ball
order in which the first ball must be placed in the tube before the second ball, and on the right is
a two-ball order in which the ordering of balls in the tube does not matter. The second step of the
interface is to take the SDL based task group representations of the process groups’ behavior and to
connect them, preserving precedence constraints between process group components, into a larger
task group representation of the execution behavior of the computation required to fill the order.
The end result of the mapping that the interface performs is a potentially complex task graph
(which contains all the time information needed to perform a time composition) that is passed to
the Spring scheduler. For example, a three ball order creates a task graph of 73 tasks each with a
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Figure 8: Process Groups Structures for Two-Ball Orders

worst case execution time, and hundreds of precedence constraints.

An important aspect of this scheduling hierarchy is the support for dynamic functional and tim-
ing composition. At run-time, primitive machine actions can be arbitrarily grouped with precedence
constraints, deadlines on individual actions, and an overall end-to-end deadline. This flexibility fa-
cilitates the creation of many different product orders. The Spring system can compose real-time
machine actions on-line because of the amount of reflective information generated by the SGS. For
example, the tasks of Figure 7 are automatically derived through analysis of the Spring-C source
code; the attributes of the tasks such as precedence constraints, resource requirements, and dead-
lines are generated and provided to the Spring scheduler automatically. This information enables
the Spring system to dynamically compose and execute the product orders.

In addition to mapping from the level of abstraction of an order to the level of abstraction of the
set of computations that, when executed, will produce the order, the AI Planner/Spring Interface is
also responsible for selecting particular instances of physical resources to use. Either the Al Planner
or the Spring scheduler can select the particular balls, the slots on the linear table, and the tube,
but there are fundamental problems with making either of the selections. If the AI Planner selects
the bins, slots, and tubes, the manufacturing system would miss important opportunism that the
Spring scheduler could provide. For example, the Spring scheduler could decide that the red ball in
bin two of the rotating table should be used, because that’s the nearest red ball when the flapper
is scheduled to execute. Using a red ball in any other position would mean wasted time waiting
for the ball to come around in front of the flapper. However, this opportunism is very difficult to
achieve, because it requires that the Spring scheduler be able to predict which ball to use based
on which schedule it can build. Dynamically making this decision is complicated and error-prone.
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For these reasons, an intermediate approach was chosen, which is to allow the AI Planner/Spring
Interface to select which balls to use, which slots of the linear table to use, and which tube to use.
In a general sense, the interface (an intermediate layer) performs resource allocation at a third level,
which is between the higher level of the AI Planner, and the lower level of the Spring scheduler.

In designing the FMT, we have recognized that we would like to allow the robotics and computer
vision routines to be executable directly on the Spring node, or on special-purpose architectures
external to the Spring node itself, as is sometimes required for robotics routines. To support this
flexibility, we have created the remote process invocation (RPI). If the robotics process is executed
directly on the Spring node, then all the tasks that comprise it are scheduled for execution on an
AP. If the process is executed remotely, Spring wraps the actual remote process in a pair of Spring
tasks, which are executed on the Spring node, that directly control the invocation of the remote
process. The SP schedules an RPI by scheduling a task to execute on an AP that informs the
remote process of its parameters and starts the remote process, and a task to execute on an AP
that confirms that the remote process has terminated successfully. For example, in Figure 7, to
move the linear table, Task 7'3 informs the linear table controller of its parameters and Task 74
checks if the move was successfully completed. The length of time between the two tasks is equal
to the WCET of the remote process. That way, if the remote process has not terminated in time,
the SP can begin cleanup and error-handling procedures immediately after the remote process was
supposed to finish. By scheduling this way, real-time properties and system-level safety are ensured.

In the Spring node being used in the FMT, a Sparc board is used as the I/O board shown in
Figure 4. From the perspective of the Spring kernel, the Sparc acts as a general platform on which
to run processes remotely. However, from a systems-integration perspective, the Sparc allows the
robotic and computer vision routines to be developed independently from the development of the
Spring kernel. For this reason, we currently execute the robotics and computer vision routines
remotely, while anticipating that eventually they will be executed directly on the Spring node.
Figure 7 reflects the fact that the robotics and computer visions routines are executed remotely.
Each delay in the picture represents the worst case duration of the corresponding robotic process.
Because the worst case execution times of the robotic processes are relatively long, the actual
overhead due to Spring is negligible. For example, the setup tasks for the Move Linear Table
process takes a total of 6.203 milliseconds, and the cleanup tasks take a total of 0.145 milliseconds.
The combined overhead to execute the processes remotely therefore represents .04% of the duration
of the actual robotic activity to move the linear table into position. The overheads for the other
two process groups are similar.

The remote process invocation is an important contribution for independent development of
processes. A process can be executed under real-time constraints, but not necessarily on a Spring
AP. The SGS fluently and robustly supports development of application code in this manner. It is
important to note that this addition to the SGS was directly motivated by the flexible manufacturing
domain.

4.3 Multi-Level Scheduling

The FMT utilizes schedulers operating at multiple levels of abstraction. The high-level scheduler
is called the AI Planner because of the use of Artificial Intelligence (AI) techniques, which have
traditionally not been used in hard real-time systems because of their inability to define a worst-case
behavior, both in terms of space and time. In addition, the efficiency and simplicity often required
for hard real-time systems are in contrast to the nature of some AI algorithms. In the flexible
manufacturing domain, however, the key is that while strict, millisecond-timing requirements will
be imposed on the low level scheduler, the high level scheduler is intended to deal with time on the
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range of seconds. Presumably, this implies that more computationally-intensive AI methods can
be explored.

The AT Planner ultimately decides how to run the manufacturing facility. Currently, the de-
cisions made by the Al Planner include whether to immediately reject an order from the outside
world because it is either not worth the effort or there are too many current pending orders; when to
submit an order to Spring given the AI Planner’s understanding of the state of the manufacturing
system; and when to re-submit an order to Spring, if Spring had previously rejected it because of
unavailability of low-level resources. Because the focus of this paper is on the Spring development
system, it is not necessary to describe the algorithms used by the AI Planner; instead, it is sufficient
to state that the AI Planner uses a view of the world that is frequently uncertain, due to machine
operations taking less than worst-case durations. To resolve the uncertainty, the AI Planner inter-
acts with the Spring scheduler, periodically querying the Spring scheduler on the state of certain
resources.

Feedback from the Spring scheduler is used to resolve the uncertainty in the AI Planner’s view
of the world:

e When the AI Planner submits an order to the Spring scheduler, if the order is schedulable,
the Spring scheduler replies with the scheduled start time (sst) and scheduled finish time (sft)
of the order.

e When the AT Planner is uncertain about the status of the low level machinery, it can ask the
Spring scheduler for such information. The Spring scheduler replies with a list of the sst and
sft of all of the orders currently existing in the Spring schedule. In addition, the AI Planner
can specifically request the sst and sft of a particular order.

e The AT Planner should be notified when an order completes, which the Spring scheduler does
by scheduling and executing the End of Order process group for each scheduled order.

This case study points out how reflective information is acquired during compilation and how
it is used at run-time. A key aspect is the need for reflective information not only to flow from
the application levels into the system, but also from the low level system operation back to the
applications. The AT Planner is an example of an application that greatly benefits from the ability
of the Spring system to provide precise, timely information concerning the current and planned
state of low-level resources.

In summary, a real manufacturing system, albeit a simplified version, has been implemented and
has directly tested the assumptions of integrated design, use of reflective information, and dynamic
function and time composition. We have presented a two-level partitioning of the overall scheduling
in the flexible manufacturing domain, discussed our initial attempts at passing information between
the two schedulers, and showed the synergy between the two schedulers.

5 Lessons Learned

The experience of designing and implementing an integrated set of real-time tools and kernel and
applying them to a flexible manufacturing testbed (Section 4) and a robotic pick and place appli-
cation (described in [Bickford et. al. 1996]) has taught us a number of lessons.

e The amount of information the Spring scheduler provides to applications regarding the rea-
sons for (the lack of) schedulability and the current state of execution can greatly affect
performance. Because the Spring system is reflective, the Spring scheduler has the ability
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to dynamically inform applications of resource usage, resource availability, and scheduling
results.

For example, in the FMT, the Al Planner used the information from the Spring scheduler
to update its internal schedule. The AI Planner’s schedule has a great deal of uncertainty;
this uncertainty can be resolved when the Spring scheduler sends periodic updates regarding
resource utilization and availability.

e Because the Spring scheduler is by necessity heuristic, it is impossible to give, with complete
certainty, the specific reasons for rejecting a request. That is, while an inability to schedule
a set of tasks is usually caused by lack of adequate access to a key resource, a multiprocessor
scheduler’s inability to find a schedule for a particular set of tasks may not be a product
of any intrinsic properties of the tasks, but rather of the manner in which the scheduler
attempted to build the schedule. This manifests itself in the FMT when the Spring scheduler
attempts to determine why an order is not currently schedulable, given the existence of other
orders in the current schedule. The Spring scheduler, or any other multiprocessor scheduler
for that matter, cannot definitively state the reason why a schedule cannot be built—at most,
a scheduler can provide its best estimate. Applications must be written in such a way that
they are cognizant of this limitation.

e The length of time into the future that a real-time scheduler schedules must be dependent
on the nature and predictability of the environment. In the FMT, a single three-ball order
submitted to an idle system causes the generation of a schedule that is projected to take 166
seconds in its worst case!3> Scheduling so far into the future in this domain caused problems,
because it was difficult to predict, for example, exactly when a particular bin would rotate
in front of the flapper (due to the physical forces at work, the rate of rotation varies largely
depending on the number of balls on the rotating table).

e The ability to specify both high level and detailed implementation facts in an integrated
manner, together with supportive analysis and development tools and a reflective run-time
kernel that makes use of that information, has several key benefits, including

— predictability - because each component part is carefully analyzed via development tools
and the composition is done via mapping software and the scheduling algorithms

— flexibility - the reflective information identifies what is permitted and the dynamic com-
position creates acceptable new combinations of tasks

— off-line analysis - all the tools can be run off-line to analyze the system a priori.

e The use of reflective information enhances robustness and provides a key approach to dealing
with large dynamic real-time systems. It is used for 2-way flow of information and is key in
admission control, planning, on-line analysis, and overload management.

e Careful timing analysis must focus on the effects of blocking and interrupts. Our dual ap-
proach of avoiding blocking by having the compiler identify all the potential blocking points
and then having the scheduler lay out an execution plan so that tasks sharing resources do not
execute at the same time and by using a front end processor to buffer the non-deterministic

3There is inevitably more parallelism available within the system which we, for debugging purposes, have chosen
to ignore for the moment. The focus of the research thus far has been not to create the most efficient manufacturing
system, but rather to create a realistic model of the manufacturing system in which to investigate research issues.
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effects of interrupts, provides great dividends in ease of analysis and understanding the oper-
ation of the system. Our approach to dealing with the blocking problem (automatically via
the compiler and scheduler) presents a second major paradigm for solving this problem (the
other being rate monotonic with priority ceiling [Sha and Goodenough 1988]).

Many realistically complex real-time applications contain large collections of tasks with so-
phisticated requirements such as precedence constraints, shared resources, communication re-
quirements, and varying deadlines and values for the tasks in the system. Simple approaches
like rate monotonic and earliest deadline scheduling are difficult to use in such cases.

Judicious use of hardware can enhance predictability. Dedicating a scheduling processor, using
multiple busses and obtaining hardware support such as Scramnet for predictable distributed
communication makes it easier to get predictability. While we have no explicit proof we feel
that the extra hardware is well worth the relatively low cost given that large real-time system
solutions cost orders of magnitude more than the hardware and much of that cost is incurred
while trying to deal with the issues which are simplified by the extra hardware.

In creating the design for the application, the user (or tools that the user employs) must
know how the use of shared resources and synchronous communication affects the overall
run-time representation and subsequent timing performance. An understanding of the general
properties of the target hardware allows the designer to efficiently specify process and resource
layout. An understanding of the translation process and the ability to control key aspects
of it are also required. The software development environment should thus not be a black
box between the user and the completed executable. This increased level of awareness should
not be considered a disadvantage, since a real-time application and its execution environment
should be well-understood for enhancing the performance of the application.

For instance, in the robotic pick and place application, we originally thought that synchronous
communication would be the significant factor affecting the resulting run-time representation.
However, the SGS tools automatically analyzed the blocking, synchronization, and communi-
cation behavior of the application and revealed that contrary to expectation, this application
is most affected by the use of shared resources. This was due in part to the fact that we
constrained the vision and robotic processes to communicate among themselves only through
shared resources.

Tools are needed to help the user analyze the resulting task group patterns in order to
understand the behavior of the executable at run-time. It should be possible to view the task
group representation in a readable form. At this stage, the user is provided with information
that allows making intelligent changes or optimizing the application.

For instance, in the robotic pick and place application [Bickford et. al. 1996], using the Spring
SGS tools we were able to analyze the task groups’ structure and discovered that explicit
delays and synchronous communication account for only a small number of suspension points
and that most of the 685 tasks of the compiled application were due to resource use specified
by the Spring-C with statement. We decided to review the code to discover if the huge number
of tasks was inherently necessary. It turned out that simple changes to the code substantially
reduced the total number of tasks, while preserving the required semantics.

Within the Spring-C code the user should pay careful attention to the use of statements
that cause suspension points. In particular, how resource use is specified is important since
placement of with statements can greatly affect resulting task group patterns.
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Again, in the robot pick and place application [Bickford et. al. 1996], we discovered that there
were many sections of code in which we could move with statements to higher granularities
(e.g., one with surrounding a larger block of code, rather than several within the the same
block) to make the task decomposition more efficient. This reduced the total number of tasks
from 685 to 147.

Because of the automatic nature and added application level support of the tools and system,
we hypothesize lower overall effort and costs using our approach.

6 Related Work

This section discusses some of the related work most relevant to the issues considered in this paper.

6.1 Real-Time Languages

Burns and Wellings give a good description of real-time systems in general and describe their
implementation using straightforward adaptations of techniques used in conventional systems to
real-time [Burns and Wellings 1989]. Real-time languages often add statements about the tempo-
ral constraints of computations to the syntax of the language. However, most current real-time
languages using the process model for programming also assume the conventional run-time model
which manages a set of processes preempting one another according to their execution priority,
competing for resources, and blocking when resources are already in use, which tends to limit their
ability to predict execution time behavior.

Several language proposals have been made to explicitly deal with the specification of real-
time requirements and the assurance of predictability. In one of the early efforts, Kligerman and
Stoyenko produced a restricted language, Real-Time Euclid, which was designed to make schedu-
lability analysis possible under a number of assumptions about the system and process behav-
ior [Kligerman and Stoyenko 1986, Stoyenko 1987].

More recently, the Real-Time Mach system uses a language with C++ as its starting point,
adding constructs for specifying timing constraints including start time, deadline, exception han-
dling, and periods [Ishikawa et. al. 1990]. They assume the use of rate monotonic scheduling in
the underlying system, but little is said about how the WCET, which rate monotonic scheduling
requires, can be predicted in the object oriented environment. The programming language for
the Maruti system, MPL, also extends C++ and uses ideas close to those of Spring in some ar-
eas [Nirkhe et. al. 1990]. MPL provides several ways to specify temporal constraints on blocks of
code within an object. Loop bounds are specified and recursion forbidden to increase predictability.
Kenny and Lin describe the Flex language, another extension of C++, which includes a number
of timing constraint expressions and exception handling clauses [Kenney and Lin 1991]. This re-
search addresses the issues of approximate processing by adopting a polymorphism analogous to
operator overloading [Liu et. al. 1991]. In this instance polymorphism refers to supplying several
routines implementing the same function which have different properties in space and/or time.
They also describe support for monotonic algorithms which explicitly support computations with
unpredictable behavior by establishing an initial result early and then iteratively refining it until
the deadline is reached.

Real-Time Concurrent C [Gehani and Ramamritham 1991] extends Concurrent C by provid-
ing facilities for building systems with strict timing constraints. Real-Time Concurrent C allows
processes to execute activities with specified periodicity or deadline constraints, to seek dynamic
guarantees that timing constraints will be met, and perform alternative actions when either the
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timing constraints cannot be met or the guarantees are not available. The guarantee notion in
Real-Time Concurrent C was motivated by the similar notion in Spring.

6.2 Tools for Behavior Prediction

Several researchers have considered execution behavior prediction. Amerasinghe developed a tool
which analyzes the assembly language emitted for a program with respect to a model of the
target processor [Amerasinghe 1985, Chen 1985], but does not take the effects of pipelining and
instruction caching into account. Harmon produced a tool performing what he called micro-
analysis [Harmon et. al. 1992]. The tool worked directly with the executable code, first disas-
sembling it, and then deducing the looping structure. Park and Shaw took an approach at the
source level, using what they call source level timing schema for the basic elements in a restricted
subset of C [Park and Shaw 1991]. Each timing schema describes the execution time for a C lan-
guage statement or construct. One problem with this approach is that since the schema are for
source level constructs, the method has difficulty taking into account any optimizations performed
by the compiler which cross schema boundaries. To the extent the source level schema fail to
predict the assembler code actually produced by the compiler, they cannot take the properties of
pipelines and caches in the target hardware into account effectively.

An advantage of the approach taken by the Spring project is that its timing analysis is inte-
grated into the compiler, and is performed after compiler optimization but before final emission
of assembler code [Niehaus 1994, Niehaus 1991]. This enables Spring to take compiler optimiza-
tions into account while also basing its predictions on exactly the code that will be executed. It
also makes it possible to perform program transformations required to enhance predictability and
to fully implement the run-time model [Niehaus 1994]. Puschner and Koza take an approach to
determining execution times in the context of the MARS system [Puschner and Koza 1990], which
is very similar to that taken by Spring in many ways. They take a two phase approach, the
first phase combines information about program structure and timing, and the second analyzes
this representation to determine the worst case execution time. This permits them to consider
optimizations performed by the compiler and hardware features, but does not permit them to
perform transformations on the code during the same phase as their temporal analysis. More re-
cently, a project led by Whalley has addressed behavorial prediction for data caches and instruction
caches [White et. al. 1997, Arnold et. al. 1994].

6.3 Operating Systems

For relatively small, less complex, real-time systems, it is often the case that real-time systems are
supported by a stripped down and optimized versions of timesharing operating systems. To reduce
the run-time overheads incurred by the kernel and to make the system fast, the kernel underlying
the real-time system:

e has a fast context switch,

e has a small size (with its associated minimal functionality),
e responds to external interrupts quickly,

e minimizes intervals during which interrupts are disabled,

e provides fixed or variable sized partitions for memory management (i.e., no virtual memory)
as well as the ability to lock code and data in memory, and
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e provides special sequential files that can accumulate data at a fast rate.

To deal with timing requirements the kernel, providing a limited set of special services beyond those
provided by a conventional system, it:

e maintains a real-time clock,
e provides a priority scheduling mechanism,
e provides for special alarms and timeouts, and

e permits tasks to invoke primitives to delay by a fixed amount of time and to pause/resume
execution.

In general, these kernels, as minimal extensions of the techniques used by conventional systems,
perform multi-tasking. In addition, inter-task communication and synchronization are achieved
via standard, well-known primitives such as mailboxes, events, signals, and semaphores. In this
vein, many real-time UNIX operating systems [Furht et. al. 1991], and a standard for real-time
operating systems, called RT POSIX, have been developed [Gallmeister 1995]. There are also a
large number of proprietary real-time systems, over 70 commercial real-time kernels exist, which
take a similar design approach; examples include: QNX, LynxOS, OS-9, VxWorks, and VRTXsa.
Research projects also sometimes take this approach, the most obvious example being Real-Time
Mach, which is an extension of Mach [Tokuda et. al. 1990].

While familiar programming models and standards facilitates porting code to a real-time target,
how to predict and guarantee execution behavior under systems using this approach is still an open
question because of the many aspects of conventional operating system design which optimize
average case performance, rather than supporting the predictability of worst case behavior.

Research systems take a wider variety of approaches which focus more strongly on accurately
predicting execution behavior, at least for some section of the system, and satisfying execution
time behavior constraints. Real-time kernels are also being extended to operate in highly coop-
erative multiprocessor and distributed system environment. For example, the Real-Time Mach
kernel [Tokuda et. al. 1990] provides a distributed real-time computing environment that works in
conjunction with the static priority-driven preemptive scheduling paradigm. The kernel supports
the notion of real-time objects and real-time threads. Each real-time object is time encapsulated.
This is enforced by a time fence mechanism which provides a run time check that ensures that
the slack time is greater than the worst case execution time for an object invocation about to be
performed. If it is, the operation proceeds, else it is aborted. Each real-time thread can have a
value function, timing constraints, worst case execution time, phase, and delay value associated
with it. The Real-Time Mach kernel is also tied to various tools that a prior: analyze the system
wide schedulability of the system.

The MARS kernel [Kopetz et. al. 1989, Kopetz and Merker 1985] offers support for controlling
a distributed application based entirely on time events (rather than asynchronous events) from the
environment. Emphasis is placed on an a prior: static analysis to demonstrate that all the timing
requirements are met. An important feature of this system is that flow control on the maximum
number of events that the system handles is automatic and this fact contributes to the predictability
analysis. This system is based on a paradigm, i.e., the time driven model, that is different than
that found in timesharing systems. The scheduling approach is static table-driven. Support for
distributed real-time systems includes a hardware based clock synchronization algorithm and a
TDMA-like protocol to guarantee timely message delivery.
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The MARUTI system [Saksena et. al. 1995] focuses on support for dynamic on-line guarantees
that tasks will make their deadlines and on fault tolerance. It is object based and supports dis-
tributed systems. Each object has service access points which are the operations (services) that
the object provides. Information about objects such as their computation times and deadlines are
retained with the objects to be used by the dynamic planning-based scheduler. When an object is
invoked the scheduler determines if the object can be guaranteed to meet its timing constraint. If
so, the schedule for it is added to a calendar that represents the deterministic manner in which the
object will execute and all resources the object will require are reserved.

The Hexagonal Architecture for Real-Time Systems (HARTS) consists of multiple sites con-
nected by a hexagonal mesh network. Each site may be a uniprocessor or multiprocessor and
contains an intelligent network processor. The intelligent network processor handles much of the
low level communication functions. An experimental operating system called HARTOS [Shin 1991,
Shin et. al. 1995] is a distributed real-time kernel running on HARTS. On each site HARTOS runs
in conjunction with the commercial uniprocessor OS, pSOS, so, by itself, is not a full operating
system. Rather, HARTOS focuses on interprocess communication, thereby providing some support
for distributed real-time systems. In particular, HARTOS supports message send and receive, non-
queued event signals, reliable streams, and message scheduling that provides a best-effort approach
in delivering a message by its deadline.

The CHAOS system [Gheith and Schwan 1993] represents an object based approach to real-
time kernels. This approach allows easy creation of a family of kernels, each tailored to a specific
hardware or application. This is important because real-time applications vary widely in their
requirements and it would be beneficial to have one basic paradigm for a wide range of applications.
The family of kernels is based on a core that supports a real-time threads package. This core is
the machine dependent part. Virtual memory regions, synchronization primitives, classes, objects,
and invocations all comprise additional support provided in each kernel. One of the investigated
scheduling approaches is guarantee-oriented, employing a variation of the preemptive deadline-first
scheduling algorithm for its feasibility checking. Unlike the scheduling approach used in Spring
in which both timing and functionality of a task are guaranteed, here, it is verified that a set
of tasks can meet their deadline requirements based on optimistic assumptions about resource
availability, for instance. Thus, depending on blocking for resources, a task may not achieve its
desired functionality, even though it will meet its timing constraint.

7 Summary

The Spring project conducted research and made contributions to the state of the art in many areas
of real-time systems, but a significant but subtle contribution is that the individual contributions
were integrated into a single functioning system, and were then used in application-based case
studies. Among the most important benefits of integration demonstrated by our experience building
and using the system are the use of reflective information and the value of function and time
composition. The case studies have shown that the SGS, the Spring-C and SDL languages, and
the Spring kernel all work together to provide an effective application programming interface. The
value added to the application through its implementation using Spring concepts and tools include:

e Predictability: The application’s execution behavior is now analyzable and predictable. Block-
ing, concurrency, synchronization, and schedulability analysis, the most difficult aspects of
real-time systems analysis, are supported directly and largely automatically by the devel-
opment tools and the system in cooperation via reflective information. As an example, to
automatically support blocking analysis, the compiler identifies all the blocking points and
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the on-line scheduler plans execution to avoid blocking and still meet time constraints. De-
signers are not left to figure out the impact of blocking on their own. Further, the executables
produced contain all the information needed to predictably execute the application even when
tasks are functionally composed dynamically.

e Guarantees: The online guarantee algorithm dynamically creates a feasible schedule for the
task group representing the behavior of the application processes when the event requiring
their execution first arrives. By using reflective information (especially concerning potential
blocking points) this algorithm performs timing composition in a flexible manner.

o Flexibility: Throughout design and coding, and after, the user is greatly aided by being able
to specify timing constraints at many levels, especially at the level of end-to-end scheduling.
Making changes to these specifications is easy. The application is then able to tolerate updates
and changes in the environment (to some extent changes in the hardware). Reanalysis is
automatic when modifications are made. Dynamic recombination of real-time process
groups at runtime is also possible, providing the potential for even greater flexibility.
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