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Abstract
Experiments to determine the potential for program-level and/or phase-level adaptation of branch predictor

configuration for the purpose of total processor energy savings were performed. The performance and energy-
efficiency of an 8-wide issue, out-of-order processor with six different branch predictors were evaluated on the
SPECcpu2000 benchmark suite. Each branch predictor was compared to the branch predictor with the highest
overall average IPC. The comparison was performed at both the program-level and at 1M instruction intervals to
determine the potential of adaptation of the branch predictor configuration to improve overall processor energy-
efficiency. The results of these experiments indicate little potential for branch predictor adaptation for the
SPECcpu2000 benchmark suite using the branch predictors evaluated. Additional results show that the piecewise
linear branch predictor consumes significantly more energy than its close-performing competitors and that the
hashed perceptron predictor is comparable both in performance and energy to the overall best-performing branch
predictor in this study, O-GEHL.

1 Introduction
Energy efficiency has become important for most new chip designs. Basically, for a processor to be energy

efficient, the architectural requirements such as power consumption, energy consumption, and performance must
be balanced. Extending battery life in mobile devices and reducing utility costs for wall-powered systems are
growing concerns. Therefore, better understanding the factors that affect overall chip energy efficiency is im-
portant. Understanding the tradeoffs that affect overall chip energy efficiency helps system designers focus their
efforts on the areas in which energy can be most effectively reduced without adversely impacting performance.

The fetch unit contributes a large portion of total power consumption in a microprocessor. For example,
Montanaro et al. [14] measure the StrongARM’s fetch engine power consumption at 27% of total chip power.
Understanding how fetch organization affects processor energy efficiency is important to processor design. There
has been prior work that examines segments of the fetch engine design space [7, 17, 19, 18, 9, 8, 1, 12, 22, 16],
most of which do not consider energy efficiency.

Branch prediction is one critical function of the fetch engine. It is one of the most powerful and widely-used
techniques to expose instruction level parallelism. Branch prediction accuracy has been shown to be critical to
higher performance.

Recent work by Parikh et al. [16] explored the energy efficiency of branch predictors, and generally concluded
that the better the predictor, the better the chip’s energy efficiency. Existing and newly proposed branch pre-
dictors can contribute to more than 5% of overall chip power, so understanding the relationship between branch
predictor energy-efficiency and ov erall processor energy-efficiency is important. For example, recently proposed
branch predictor designs [11, 20] which have shown significantly better prediction accuracy at a larger area cost
have not addressed the issue of energy-efficiency. The tradeoff between the power consumption, energy consump-
tion, and improved performance of these designs is unclear and has not been previously evaluated. Understanding
this tradeoff is necessary to determine the benefit of implementing these designs.

Program phase tracking and prediction [21] has been proposed and applied in guiding remote profiling [15].
It has shown promising results in terms of low power and resource overhead and in terms of profile collection
efficiency. This technical report explores the energy efficiency potential of using program phase behavior to adapt
branch predictor configuration.



2 Related Work
We are not aware of any research that adapts the branch predictor configuration for energy-efficiency.
Parikh et al. [16] explored the role of branch predictor organization on power, energy, and performance tradeoffs

for fetch engine design. They found that although extra power may need to be expended to improve the branch
prediction accuracy, overall processor power and energy dissipation can be reduced.

Co, Weikle, and Skadron develop a metric for determining a branch predictor energy budget for comparing
branch predictor designs [5] based on Parikh’s insight [16]. This work does not address adaptation of branch
predictor configuration.

Several techniques have been proposed that are related to adaptation for energy- or power-efficiency. Dynamic
optimization has been applied to adapting cache configuration in an adaptive computing environment [10] and
has been shown to significantly reduce L1 data and L2 cache energy consumption. This technical report does
not focus on caches, but rather focuses on evaluating the potential of branch predictor reconfiguration for overall
processor energy-efficiency.

Within the adaptive computing environment research area, adaptive issue queues have also been proposed [3, 6].
Issue queues act as a bridge between the front-end and the back-end of the processor. Dynamically adapting the
size of the issue queues based on monitoring the issue queue occupation rate and the utilization rate of the
execution units was shown to achieve significant energy savings. This work achieves significant energy savings
which affect overall processor energy efficiency. We evaluate the energy saving potential of adapting the branch
predictor configuration within the fetch unit.

Program phase tracking and prediction [21] has been proposed and applied in guiding remote profiling [15].
It has shown promising results in terms of low power and resource overhead and in terms of profile collection
efficiency, but has not been used to adapt the fetch unit for energy-efficiency.

Chaver, et al. [4] present the Phase-Based Adaptive Fetch Mechanism (PBAFM) which achieves significant
fetch energy savings, while at the same time improving overall performance. Applications are statically divided
into modules and a software-based feedback mechanism is used to monitor resource demands and make configu-
ration choices. The hardware is adapted to carry out reconfiguration between four fetch schemes: SEQ1, SEQ3,
concurrent trace cache access, and modified sequential trace cache access. Resizing the trace cache and the branch
target buffer is also evaluated. A profiling pass using reduced inputs is used to determine the fetch policy and
structure sizes for each phase. This information is encoded into the binary so that the hardware may adapt at
runtime. Our work focuses on the adaptation potential of branch predictors only.

3 Simulation Technique
The SimpleScalar toolset’s [2] out-of-order processor simulator (sim-outorder) augmented with Wattch power

models was used. An 8-wide issue processor with 256 KB caches was simulated on the SPECcpu2000 benchmark
suite.

The branch predictors listed in Table 1 were simulated. Total processor energy, branch predictor energy,
energy-delay-squared product (ED

2), and instructions per clock (IPC) were collected for the entire simulation
run. These statistics were also collected at 1M instruction intervals to capture any potential for phase adaptation.
1

4 Experimental Results
An ”overall best” branch predictor was determined for both the integer and floating point benchmark suites

based on average best IPC for an entire benchmark run(at the program level). For both the integer and floating
point benchmarks, the O-GEHL branch predictor was determined to be overall best. The hashed perceptron
predictor was a close competitor to O-GEHL for some benchmarks for some statistics. The 32 KB piecewise
linear branch predictor included in the evaluation often had lower IPC and higher ED

2 (both are worse) than
O-GEHL.

In order for adapting branch predictor configuration potential to exist, for one benchmark or segment of a
program, more than one branch predictor should be a significantly better choice than the overall best. In our
plotted results, this corresponds to the branch predictor lines crossing over one another, and over the 0% (O-
GEHL) line with statistical significance. The crossing over demonstrates that there is potential benefit from
choosing a branch predictor different from the overall best for a program or program segment.

Generally, the lack of positive difference in predictor performance along all the statistics between programs in-
dicates little potential for adaptation at the program level. Similarly, when examining the potential for adaptation
at the phase level, few opportunities for adapting the branch predictor are available.

11M instruction intervals were chosen because Lau [13] and Sherwood [] use this interval and show that program phases are in the
10M+ instruction range on average for SPECcpu2000.
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Branch Predictor Area (KB) Configuration

gshare 8 L1: 15-bit, L2: 32K 2-bit counters, XOR: on
hybrid 8 8K-entry metachooser

8K-entry bimodal
L1: 14-bit global history register
L2: 16K-entry 2-bit counters

piecewise linear 32 34360 7-bit general weights,
2396 bias weights,
220 16-bit local history registers,
26-bit global history register

bimodal 1 4K-entry 2-bit counters
hashed perceptron 8 64 global history x 10 perceptrons per history,

10 local history
O-GEHL 8 8 2K-entry 4-bit counter tables, 1K-entry 1-bit tag table

Table 1: Branch predictor configurations evaluated.

4.1 Program Level Potential for Branch Predictor Adaptation
At the program level, IPC, ED

2, total processor energy, and branch predictor energy were plotted for each
benchmark, for each branch predictor simulated. Results show that when examining the raw data, there is little
potential for adapting branch predictor configuration at the program level to make energy efficiency gains.

To verify this, percent difference of each branch predictor from the overall best branch predictor was calculated
and plotted.

Figure 1 shows the results for the integer and floating point benchmarks respectively.2 For IPC, there is no
predictor in the study which performs significantly better (positive percent difference) than the calculated overall
average best predictor (O-GEHL). In addition, the relationship between the branch predictors does not change or
cross over. This indicates that the predictors have a clear hierarchy of performance regardless of benchmark. In
other words, for the evaluated predictors, there is not a better choice depending on which benchmark is evaluated.

In terms of energy, only the hashed perceptron shows a significant improvement in branch predictor energy
(negative percent difference) of approximately 19% on average and reasonable improvement in total processor
energy (negative percent difference) of 1-4%. However, this does not translate to significant energy-efficiency
improvement, as seen by the less than 0.5% improvement in ED

2. The reason for this result could be due to the
fact that the branch predictor does not comprise much of the total processor energy. Rather, the larger structures
such as caches could be dominating the processor energy.

Figure 2 shows the breakdown of total processor energy by component for mcf, crafty, and gcc. It shows that
the branch predictor comprises a very small percentage of the total processor energy. So, in order for the branch
predictor to make a significant improvement to the energy-efficiency of the processor, it must improve runtime
enough to significantly improve the ED

2.
Overall, at the program level, these results show that there is not much room for adapting the branch predictor

for significant energy-efficiency savings.
4.2 Phase Level Potential for Branch Predictor Adaptation

For analysis at the phase level, the same statistics analyzed for the program level were plotted, but at 1M in-
struction intervals (IPC, ED

2, total processor energy, branch predictor energy). To simplify the plots, each graph
represents data for all the branch predictors for one benchmark. Again, the raw data showed little potential for
adapting the branch predictor configuration for energy efficiency improvement. To verify this, percent difference
of each branch predictor from the overall best branch predictor was calculated and plotted.

Figures 3-5 and Figures 6-8 show the IPC and ED
2 results for the integer and floating point benchmarks

respectively.
For a branch predictor to be considered a good candidate in terms of IPC, the lines should be above the

0% line. With the exception of mcf which is memory-bound, and a few sections of bzip, none of the evaluated
predictors show an IPC improvement greater than 2% over O-GEHL.

In terms of ED
2 negative percent difference is better (below 0% line). When combined with the IPC results,

the ED
2 results show that when running gcc, gzip, or parser the processor could improve its ED

2 by selecting the
hashed perceptron predictor, but with the potential of sacrificing some performance (IPC). Overall, the hashed

2For clarity of viewing the data, the data for the simplest branch predictor, bimodal, and the two branch predictors performing
closest to O-GEHL are shown.
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perceptron predictor is a close competitor to O-GEHL in IPC and ED
2, whereas the piecewise linear branch

predictor included in the study has consistently slightly worse IPC, and much higher ED
2.

Figures 9-11 and Figures 12-14 show the percent difference from O-GEHL for total processor energy and branch
predictor energy for the integer and floating point benchmarks respectively.

For both total processor energy and branch predictor energy metrics, lower is better. Negative percent difference
is better. For all the benchmarks except mcf, the piecewise linear and bimodal predictors cause total energy to be
worse than that of O-GEHL. Hashed perceptron is a close competitor to O-GEHL, but still generally performs on
average 1-2% worse than O-GEHL. For mcf, hashed perceptron shows from 5-15% improvement in total processor
energy over O-GEHL for the first 200M instructions.

In terms of branch predictor energy, the 32KB piecewise linear branch predictor consistently consumes greater
than 50% more energy than the O-GEHL predictor and the hashed perceptron predictor consumes about 20%
less.

Overall, the phase level the results show that for the branch predictors evaluated there is little potential for
adapting the branch predictor for improved energy efficiency on the SPECcpu2000 benchmark suite.

5 Conclusions
Several branch predictor configurations were simulated using an 8-wide SimpleScalar out-of-order processor

simulator on the SPECcpu2000 benchmark suite to determine the potential for branch predictor adaptation to
improve overall processor energy efficiency. Statistics were gathered at the whole program and phase level and
analyzed. Results show that there is little potential for adapting branch predictor configuration to improve
overall processor energy efficiency. Of the branch predictors evaluated, there is no branch predictor which can
offer significant energy efficiency gains over the overall best predictor for the benchmarks. Additional findings
show that the 32KB piecewise linear branch predictor does not perform as well as the O-GEHL branch predictor
at a much higher energy consumption and that the hashed perceptron predictor is a close competitor to O-GEHL.
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Figure 1: Percent difference from O-GEHL for integer (top) and floating point (bottom) benchmarks. Left-to-
Right, Top-to-Bottom: IPC, ED

2, total processor energy, branch predictor energy.
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Figure 2: Breakdown of processor energy by component for mcf, crafty, and gcc.
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Figure 3: Integer Group 1: Percent difference from O-GEHL for integer benchmarks per 1M instruction interval
for (a) IPC and (b) ED

2.
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Figure 4: Integer Group 2: Percent difference from O-GEHL for integer benchmarks per 1M instruction interval
for (a) IPC and (b) ED

2.
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Figure 5: Integer Group 3: Percent difference from O-GEHL for integer benchmarks per 1M instruction interval
for (a) IPC and (b) ED

2.
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Figure 6: Floating Point Group 1: Percent difference from O-GEHL for floating point benchmarks per 1M
instruction interval for (a) IPC and (b) ED

2.
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Figure 7: Floating Point Group 2: Percent difference from O-GEHL for floating point benchmarks per 1M
instruction interval for (a) IPC and (b) ED

2.
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Figure 8: Floating Point Group 3: Percent difference from O-GEHL for floating point benchmarks per 1M
instruction interval for (a) IPC and (b) ED

2.
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Figure 9: Integer Group 1: Percent difference from O-GEHL for integer benchmarks per 1M instruction interval
for (a) total processor energy and (b) branch predictor energy.
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Figure 10: Integer Group 2: Percent difference from O-GEHL for integer benchmarks per 1M instruction interval
for (a) total processor energy and (b) branch predictor energy.
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Figure 11: Integer Group 3: Percent difference from O-GEHL for integer benchmarks per 1M instruction interval
for (a) total processor energy and (b) branch predictor energy.
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Figure 12: Floating Point Group 1: Percent difference from O-GEHL for floating point benchmarks per 1M
instruction interval for (a) total processor energy and (b) branch predictor energy.
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Figure 13: Floating Point Group 2: Percent difference from O-GEHL for floating point benchmarks per 1M
instruction interval for (a) total processor energy and (b) branch predictor energy.
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Figure 14: Floating Point Group 3: Percent difference from O-GEHL for floating point benchmarks per 1M
instruction interval for (a) total processor energy and (b) branch predictor energy.
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