
Reconciling behavioral mismatch through component restriction

Mark Marchukov
University of Virginia

Dept. of Computer Science
Charlottesville, VA 22903

USA
+1 804 982 2292

march@cs.virginia.edu

Kevin Sullivan
University of Virginia

Dept. of Computer Science
Charlottesville, VA 22903

USA
+1 804 982 2206

sullivan@cs.virginia.edu

ABSTRACT
In component-based software development there are often
mismatches between system-level requirements and com-
ponent behaviors. In general, bridging such mismatches
requires mutual adaptation of system requirements and
components. One kind of mismatch occurs when compo-
nents permit behaviors that are not permitted by the sys-
tem-level requirements. We identify restriction, the dis-
abling of component behaviors, as an important way to
bridge such mismatches. Unlike extension, which is well
studied, restriction has received little attention. We present
a model for reasoning about requirements for restriction,
and a corresponding technique for implementing restric-
tion, based on matching of partial models of component
behaviors against state-machine-based partial system speci-
fications. Our approach respects several difficulties in
component-based development: (a) behaviorally complex
components, (b) poorly documented component specifica-
tions, (c) inability to change core component implementa-
tions, and (d) a general lack of built-in restriction mecha-
nisms in practice. To address these difficulties we use
lightweight incremental specification of component opera-
tions, obtained by reverse-engineering, and external adap-
tors that adjust the behaviors of components by manipulat-
ing their input streams. We describe our experience using
this approach to restrict shrink-wrapped package compo-
nents in the Galileo fault-tree analysis tool.

Keywords
component-based development, behavioral mismatch, re-
striction

1. INTRODUCTION
Component-based software development (CBSD) is con-
struction of software systems largely out of pre-fabricated
executable parts called software components, that are usu-
ally obtained from commercial vendors [19]. The rationale
behind CBSD is that massive reuse of the functionality of

existing, market-proven components will lead to shorter
development time and better product quality. The key as-
sumptions of CBSD differ significantly from those of tra-
ditional coding-based approach to software development.
In particular, system integrators normally cannot modify
the implementations of components they use, nor is the
source code of components available to them.

Like any other software project, a CBSD project is guided
by a set of requirements for the run-time behavior of the
system under development. We call these system-level re-
quirements. Depending on context, we will use the term
behavior to denote the set of all sequences of externally
visible input and output actions that a system can exhibit at
run-time (the behavior of a system), or one such sequence
(a behavior). The behavior of a component-based system is
synthesized out of behaviors of its components that we will
collectively call its implementation base. Thousands of
components are currently available on the market. Exam-
ples include ActiveX controls [1], Java beans [9] and Mi-
crosoft Windows applications with built-in support for
OLE Automation [4], such as the members of Microsoft
Office application suite. In general, any piece of executable
code that can be activated from another application can
serve as a component. As a rule, for most new systems
there is no single component, or a collection of components
whose behavior immediately satisfies all the system-level
requirements. A typical situation observed in almost any
CBSD project is one of mismatch between the required
behavior and the behavior that can be immediately ob-
tained from a component or a set of components. We call
this situation behavioral mismatch. We identify two types
of mismatches. A negative mismatch occurs when the im-
plementation cannot or is not guaranteed to exhibit a re-
quired behavior. A positive mismatch takes place when
some of the behaviors that the implementation may exhibit
is prohibited by the system-level requirements.

Bridging mismatches between system-level requirements
and the collective behavior of the system implementation
base is at the heart of component-based development. It
usually involves a combination of the following three ap-
proaches: (1) changing the behavior of components by ad-
aptation and integration; (2) changing the system-level
specification; (3) searching for an alternative implementa-

2

tion base whose behavior better matches given system-level
requirements.

We concentrate on the first of these three approaches,
namely, changing the behavior of implementation base in
order to bring it in correspondence with system-level re-
quirements. There has been substantial research in this area,
however most of it has concentrated on reconciling nega-
tive mismatch through extending components or systems of
components so that they can exhibit new behaviors. In-
heritance [20] has been studied and applied mostly as a
class extension mechanism. Frameworks exploit inheri-
tance as a mechanism for extending collections of collabo-
rating classes. Microsoft’s Component Object Model [3],
one of the most widely used standards for software compo-
nents, supports aggregation, as an alternative to inheri-
tance. In our previous work [17] we demonstrated that
aggregation is difficult to use for purposes other than com-
ponent extension. Work on extensible operating systems [2]
and adaptable binary programs [7] addresses the problem of
dynamic extension of executable binary programs. Re-
search on component integration [16] and specific integra-
tion mechanisms for CBSD [15] also deals with the prob-
lem of extending a set of components with integration in-
frastructure, so that the resulting system satisfies certain
new requirements.

In this paper, we identify the dual problem of positive be-
havioral mismatch as being equally important, especially
for systems composed of large commercial packages with
extensive functionality and rich behavior. Positive mis-
match has received comparatively little attention from the
research community and industry. Bridging a positive be-
havioral mismatch requires preventing a component-based
implementation from exhibiting behaviors that violate sys-
tem-level requirements. We call the corresponding opera-
tion over components component restriction.

In the next section we present an example that illustrates
the need for restriction in a real component-based applica-
tion. Section 3 discusses the rationale for restriction and the
conditions under which it is necessary. Section 4 presents a
formal model of component-based systems that makes our
notion of behavioral mismatch precise and serves as a basis
for our approach to implementing one kind of restriction. In
section 5 we demonstrate how restriction can be imple-
mented in a way that uses matching partial models of com-
ponent behaviors against the relevant system-level re-
quirements expressed in a state-machine-based form. In
section 6 we describe an application of our method to re-
stricting the implementation of a real component-based
system. Section 7 describes related work. Section 8 dis-
cusses future work and concludes.

2. A MOTIVATING EXAMPLE
In this section we give an example of positive behavioral
mismatch in an existing component-based application: a
fault-tree analysis tool called Galileo [18]. Galileo supports

a reliability engineering computation, the details of which
are not important here. Galileo provides an interface that
permits the user to edit tree-based system reliability mod-
els, called fault-trees, in either textual or graphical form. In
order to build at low cost a richly functional tool that also
leverages existing knowledge of PC-based application in-
terfaces, Galileo uses Microsoft Word [8] as a component
to implement its text editing and display functions, and
Visio Technical [23] as a component to implement graphi-
cal editing and display (Figure 1). For performance reasons,
Galileo does not require the graphical and textual views to
be always consistent with each other. Instead, Galileo’s
specification contains a weaker consistency requirement:
Once the user makes a change to one of the views, she must
not be able to edit the other view without first issuing a
special command that synchronizes the contents of the
views. However, the user is free to browse through either
view at any time.

This semi-consistency requirement ensures that the current
state of the model is always visible to the user through one
of the views. Semi-consistency requires that Galileo may
not exhibit behaviors containing a pair of actions that
change different views and are not separated by a synchro-
nization request.

Obviously, a “raw” implementation base consisting of un-
constrained Word and Visio running side-by side may eas-
ily exhibit such behaviors. Nothing prevents the user from
making inconsistent changes into a document containing a
textual definition of a fault tree, and the Visio diagram
containing the graphical representation of the same tree.
Enforcing semi-consistency at the implementation level
requires that the editing capabilities of Word and Visio
must be periodically disabled. When a Word document
containing the textual representation of a fault-tree is modi-
fied, the Visio diagram with the graphical representation of
that tree must become view-only until the user issues a syn-
chronization request, and vice versa. This will effectively
restrict the Word+Visio implementation base to only those

Figure 1. The Galileo fault tree analysis tool.

3

behaviors that satisfy the semi-consistency requirement.

Another system-level requirement that Galileo imposes on
its implementation says that the user must not be able to
terminate Word or Visio separately. This requirement was
not a part of the original Galileo specification, but became
critical once the designers of Galileo made a decision to use
a standard application integration framework based on Mi-
crosoft’s Active Document Architecture, which is a part of
Microsoft’s OLE [4]. Reliable functioning of the current
implementation of Galileo is not guaranteed if Word or
Visio is terminated in the middle of a session, while the
other component is still running. Like semi-consistency,
this requirement rules out certain possible behaviors of
Galileo’s implementation, namely those where termination
of Word or Galileo precedes a request to end the current
session of the tool as a whole.

3. POSITIVE BEHAVIORAL MISMATCH
The Galileo example demonstrates that positive behavioral
mismatch is not merely a theoretic possibility. In this sec-
tion we identify two sources of mismatch and discuss its
possible bridging techniques.

3.1 Enforcing system-wide abstractions
Recent case-studies of industrial CBSD projects [5,21,22]
make clear that only a small part of system-level require-
ments can be reasonably defined before the initial search
for components begins. The details of system behavior and
feature set come from individual components in the imple-
mentation. For example, Galileo uses Word’s search-and-
replace mechanism to allow the user to rapidly change re-
petitive fragments of a fault tree.

Some component behaviors, however, cannot be inherited
by the system in this manner, because they allow the user to
break the abstraction that the system designer intends to
maintain. System-wide abstractions that the components of
the system are not designed to support are the first source
of positive behavioral mismatch. For example, an abstrac-
tion that Galileo attempts to present to its user is a single
fault-tree being edited through two separate views. The
goal of the semi-consistency requirement is to enforce this
abstraction. But because Word and Visio have not been
specifically designed to work together as coherent views of
a single abstract model, they allow the user to arbitrarily
modify their contents at any time. Thus, the user can inad-
vertently or intentionally break the abstraction that the de-
signers of Galileo intend. Although this will not render the
tool useless, it decreases its usability.

3.2 Maintaining system integrity
Another source of positive behavioral mismatch comes not
from the original intentions of the system designer, but
from the requirements of a particular implementation
framework that he uses. For example, taking advantage of a
standard component integration infrastructure may signifi-
cantly reduce the amount of integration effort needed in a

component-based project [18]. However, such an infra-
structure may fail to function properly, leading to system
crashes, unless certain state invariants always hold for the
implementation base. For example, components may have
to always be running or ready to receive event notifications
from the integration infrastructure. A requirement to main-
tain the system-wide invariants disallows certain possible
behaviors of the implementation, creating a condition of
positive behavioral mismatch.

3.3 Putting the burden on the user.
A positive behavioral mismatch manifests itself only when
a behavior that a component-based implementation exhibits
during an execution actually violates a system-level re-
quirement. The behavior of a deterministic component is
controlled by the input that the component receives from
the user. Given a sufficiently “careful” user who never ex-
ercises her option to force a system into an illegal behavior,
the implementation may never actually violate any re-
quirements. For example, if the user always presses the
synchronization button when switching from changing the
graphical view of Galileo to changing its textual view, and
back, the semi-consistency requirement of Galileo will al-
ways be satisfied. Likewise, if the user never attempts to
terminate one of the components of Galileo while the other
one is running, a prohibited behavior leading to an incon-
sistent state of the system never actualizes. This observa-
tion may suggest that given a sufficiently careful and in-
formed user, positive behavioral mismatches do not create
a problem. We believe that in most cases this “lazy solu-
tion” is unacceptable because it may significantly decrease
the perceived value of the system to the user. To reconcile
behavioral mismatches is a responsibility of the system
designer.

3.4 Bridging behavioral mismatches
One way to reconcile a positive mismatch between the be-
havior of an implementation and a system-level require-
ment is to amend or remove the requirement. Although
acceptable in some cases, this approach has a number of
obvious disadvantages: (1) it may prevent system designers
from presenting desirable system-wide abstractions to the
user; (2) it may complicate component integration by pre-
cluding the use of a standard integration framework. In
addition, as industrial case studies [21,22] indicate, chang-
ing requirements in a CBSD project often involves lengthy
negotiations with the customer, may require changes in the
implementation base, and negatively affects the overall
development schedule.

The opposite approach to bridging positive mismatches is
component restriction. It does not involve altering the re-
quirements. Instead, restriction relies on changing the sys-
tem implementation so that the implementation no longer
can exhibit a behavior prohibited by the requirements. Be-
cause software components are usually distributed in an
unmodifiable binary form, restriction rarely can be per-

4

formed by changing component source code. In some
cases, components will be designed to be restricted in the
required ways; however, in practice, we have not encoun-
tered such components. (Anecdotally, Microsoft Word does
have a read-only mode that can be set programmatically,
but this mode marks the underlying file as being read-only
as far as the system is concerned, and does not preclude
editing of the displayed text.) A more practical approach to
restriction relies on external component adaptors developed
by system designers. Such adaptors play the role of a “care-
ful user” that intercepts the input streams from the real us-
ers and filters them by discarding all requests that lead to
an illegal system behavior. In the rest of the paper we de-
scribe this approach and its formal foundations in detail.

4. COMPONENTS AND REQUIREMENTS
In this section we present a simple formal model of compo-
nent-based systems and system-level requirements that
makes our notion of positive behavioral mismatch precise.
In the next section we use this model as a basis for one
general method of implementing restriction.

4.1 A model of software components
A software component is an executable program that can
interact with its environment. For simplicity, in this paper
we consider only sequential systems, i.e., those where only
one thread of control can be active at a time. The environ-
ment of a typical component comprises the network and
file input-output subsystems of the operating system (OS),
the graphical user interface (GUI) system, and possibly
other applications and components.

We call individual kinds of interactions between a compo-
nent and its environment actions. We distinguish two types
of component actions. Input actions are triggered by mes-
sages from the execution environment, i.e., transfers of
control with, possibly, some data to the component. Exam-
ples of input actions are:

• getting a message from the GUI system with a notifi-
cation that a key has been pressed or mouse moved;

• a return from an “open file” system call with a “file
not found” error status code;

• receiving an event notification from another compo-
nent;

Output actions are triggered by the component transferring
control along with, possibly, some data to the environment.
The following are examples of output actions:

• making an OpenFile(“readme.txt”) system call;

• returning control to the GUI system with a “message
processed successfully” status code;

• notifying a registered event handler about an internal
event, e.g., “new document created”.

The set of actions of a component is finite.

We model a software component as a state machine that
changes its state as it performs input and output actions.
Our model is similar to the I/O automata of Lynch and
Tuttle [13] and collaboration specification of Yellin and
Strom [24]. It is, however simpler and more constrained
than those models. Unlike I/O automata, our model is
strictly deterministic. Unlike collaboration specifications, it
does not allow states in which both input and output actions
may occur. Any state of a component is either an input state
or an output state. In an input state a component is assumed
to wait indefinitely for one of several possible input actions
to occur. In an output state a component immediately exe-
cutes an output action. No internal choice is allowed,
namely, while several transitions may end in an output
state, exactly one transition leaves it.

Figure 2 gives an example of a model of a hypothetical
switch component. Its set of actions contains two input
actions: click-on and click-off that the execution environ-
ment (in this case a GUI system) triggers by delivering
messages to the component when the user clicks on the
“On” and “Off” input fields respectively. The component
also has two output actions: display-on and display-off that
the switch performs in order to change its appearance on
the screen. Our model of this component has two input
states: on and off, and two nameless output states depicted
as small black circles. off is the start state. Solid lines are
transitions corresponding to input actions (input transi-
tions). Dashed lines are output transitions.

The transition function of a component in our model need
not be total. We assume that there is no transition that
leaves an input state s and is labeled with an input action a,
if it is known that while the component is in state s it can-
not receive a message that triggers a. For example, given
that the “Print” menu item is the only means to initiate
printing in a text editor, the editor cannot start printing if
the Print” menu item has been removed through a user in-
terface customization procedure.

An execution of a component is a (possibly infinite) se-
quence of input and output actions that the component may
perform at run time. It corresponds to a path in the mul-
tigraph of component state machine. For example, possible
executions of the switch component defined above include
<click-on, display-on, click-off, display-off> and <click-off,
click-on, display-on, click-on, click-on>. A prefix is any
initial subsequence of an execution. Note that a prefix of an
execution is also an execution. The behavior of a compo-
nent is the set of all its possible executions.

off on

click
on

 display
on

click
off

 display
 off

 click
 off

 click
 on

Figure 2 A model of a simple switch component

5

Our model can be trivially extended from individual com-
ponents to entire component-based systems, i.e., integrated
sets of components. A system of components nCC ,,1 K

can be modeled as a “virtual” component bC whose set of

actions bA is a disjoint union of the action sets of compo-

nents nCC ,,1 K . The state space of bC is a subset of the

cross-product of the state spaces of nCC ,,1 K . Since our
sequential execution assumption guarantees that at most
one component can be active at a time, an execution of

bC can be modeled as a single sequence of actions frombA .
In the rest of the paper we apply the same model to both
individual components and whole implementations con-
taining several components.

4.2 A model of system-level requirements
System-level requirements can impose constraints on the
collective behavior of components comprising a system
implementation. Such requirements are often formulated in
terms of abstract actions. As component selection and ad-
aptation proceed these abstract actions are bound to con-
crete component actions. One abstract action can corre-
spond to several concrete ones, but any given concrete ac-
tion corresponds to only one abstract action. As a special
case, system-level requirements for a known and fixed im-
plementation base may be formulated directly in terms of
component actions. The following example illustrates
binding of abstract actions to concrete ones:

The semi-consistency requirement of Galileo can be for-
mulated in terms of abstract output actions “textual view
changed”, which we denote t.c, “graphical view changed”
(g.c) and “view contents have been successfully synchro-
nized” (s). Given an implementation consisting of Word,
Visio and a synchronization button augmented with view
synchronization code, these abstract actions map to sets of
concrete actions as shown in Table 1.

Collectively, the actions used in the definition of a system-
level requirement form the alphabet of that requirement.
The alphabet of the semi-consistency requirement is
{ t.c, g.c, s}. We model a system-level requirement as a
language in the alphabet of that requirement. For example,
the semi-consistency requirement corresponds to the regu-
lar language

(s+(t.c*+ g.c*) s)* (t.c*+g.c*+ε).

We model the process of binding the abstract actions of a
system-level requirement to concrete actions of a particular
component-based implementation as an application of ab-
straction function. An abstraction function is a partial map-
ping from the action set of a component or system of com-
ponents onto the alphabet of a system-level requirement.
Table 1 read from right to left defines an abstraction func-
tion for the semi-consistency requirement and the current
implementation of Galileo. An abstraction function is gen-

erally partial and many-to-one. If a system-level require-
ment is defined in terms of component-level actions, then
the mapping is one-to-one and is a partial identity function.

We say that an execution of a component-based imple-
mentation satisfies a system-level requirement, if replacing
concrete actions in the execution with abstract actions of
the requirement according to the abstraction function pro-
duces a string in the language of that requirement. Only
component actions in the domain of the abstraction func-
tion need to be replaced. All other component actions are
ignored and not included in the resulting string of abstract
actions. Their presence and order in the execution are not
constrained by the requirement. For example, the semi-
consistency requirement imposes no constraints on the
browsing actions, such as “move cursor up” or “scroll
down”. In fact, most operations that Word and Visio can
perform are not affected by the semi-consistency require-
ment. If an execution satisfies a requirement R, we call it
legal with respect to R. Otherwise an execution is illegal.

Finally, we can precisely define the notion of positive be-
havioral mismatch. We say that there is a positive behav-
ioral mismatch between a component-based implementa-
tion C and a system-level requirement R if the behavior (the
set of all possible executions) of C contains an execution
that is illegal with respect to R.

4.3 An algorithm for detecting illegal executions.
Whether a particular execution e of component C, and all
of its prefixes, satisfy a system-level requirement R can be
detected by the following simple algorithm.

During its execution the algorithm incrementally builds a
string α of abstract actions in the alphabet of R. Initially,
the string is empty. Let A be the abstraction function from
the actions of C to the alphabet of R. The algorithm con-
secutively reads in the actions from e. Let x be the next
action read. If x is not in the domain of the abstraction
function A, the algorithm goes on to reading the next ac-
tion, or stops and declares success, if it reached the end of
e. If x is in the domain of A, the algorithm appends A(x) to
the end of the string of abstract actions α and checks

Abstract action Concrete actions

change textual view
(t.c)

any change in Word document,
e.g., inserting a character

change graphical
view (g.c)

any change in Visio diagram,
e.g. deleting a line

successfully synchro-
nize view contents (s)

successful return from the view
synchronization routine that
handles the “synchronization
button pressed” events

Table 1. Mapping of abstract actions to concrete ac-
tions in the semi-consistency requirement of Galileo.

6

whether the result is in the language of R. If it is, the algo-
rithm continues to next action in e, or declares success if
there are no more actions. Otherwise, it declares that an
illegal prefix of the execution has been found and stops.

5. IMPLEMENTING RESTRICTION
In this section we present a general method of implement-
ing component restriction. Our method is based on the
model presented in section 4.

5.1 Internal and external restriction.
Component restriction (or simply restriction) is an opera-
tion on a component or a system of components that pre-
vents it from exhibiting at run time a behavior that is pro-
hibited by system-level requirements but otherwise per-
mitted by the underlying components. There are essentially
two ways to prevent a component from engaging in an un-
desirable behavior: internal and external, which can be used
in combination. Internal restriction involves changing
component implementation, or using facilities that compo-
nent specifically provides to allow its clients to disable
some of its features or behaviors statically, i.e., before run-
time. For example, user-defined shapes in Visio drawings
can be pinned to specified coordinates, made unselectable,
and restricted in several other ways. However, the charac-
teristics of CBSD and current state-of-the-practice in com-
ponent design appear to make internal restriction infeasible
in many cases.

First of all, because component source code is usually un-
available, the obvious approach to restricting component
behavior — through changing component implementation
— is generally infeasible. Even when source code is avail-
able, it may be difficult to understand and modify correctly,
and the changes may not work for later versions of compo-
nent. Second, most software components available on the
market are not designed to support restriction. The problem
of positive behavioral mismatch and the need for restriction
do not appear to be widely recognized yet by software
component vendors.

External restriction is based on the observation that the
sequence of input and output actions that a component per-
forms during execution is defined by two factors. The first
factor is component implementation. The second is the se-
quence of messages (requests to perform an input action)
that a component receives from its environment. Thus, an
undesirable component behavior can be prevented by prop-
erly filtering the message stream that comes to a compo-
nent from its environment.

External restriction requires no special support from the
component or the availability of its source code. On the
down side, it is implementable only in those execution en-
vironments that allow interception of messages directed to
components. Fortunately, many popular component execu-
tion environments allow such interception. For example
interception of user interface messages is possible in both

the X-Window System and Microsoft’s Win32, the de facto
window system standards on the UNIX and PC platforms.

5.2 Implementing external restriction
To maximize the applicability of implementing restriction
to real-world software components, our proposed method
follows the external approach. The key questions that any
external restriction implementation must address are:

1. When a filter intercepts a message from the execution
environment to a component, how does it determine
whether to drop the message or deliver it to compo-
nent?

2. What messages must be intercepted?

To determine what message to drop, we use a version of the
algorithm for detecting illegal executions, described in sec-
tion 4.3. The use of this algorithm also determines our an-
swer to the second question. Namely, two kinds of mes-
sages need to be intercepted by a restriction filter:

a) messages that may trigger input actions in the domain
of the abstraction function of the requirement, and

b) messages that may trigger input actions that in turn
immediately initiate output actions in the domain of
the abstraction function.

All other messages need not be intercepted, as they do not
change the outcome of test for legality of an execution. In
more detail, our proposed method for implementing filters
for external restriction has the following three parts:

a) A model of a system level requirement.
To bring the behavior of implementation in correspondence
with a particular system-level requirement, system design-
ers must first clearly define the set of behaviors allowed by
that requirement. First, the designers must define the alpha-
bet of actions of the requirement. Then they implement a
recognizer for the language of the requirement, which we
call a requirement machine. All system-level requirements
that we have encountered — albeit simple ones — can be
recognized by finite-state machines. For example, figure 3
contains the diagram of an FSM recognizing the semi-

B GrTxt

s
t.c g.c

s s

g.ct.c

Figure 3. A requirement machine (requirement lan-
guage recognizer) for the semi-consistency require-
ment. t.c and g.c are “text changed” and “graphics
changed” actions respectively. s is the “views syn-
chronized successfully” action. Only text can be
changed in state Txt, only graphics in state Gr. B is
the start state. Both graphics and text can be
changed in state B. All states are accepting states.

7

consistency requirement. We anticipate requiring more
computationally complex recognizers for more demanding
restriction situations. However, we expect that the ideas
developed here in a finite state machine context will extend
to these more demanding situations.

b) The relevant message set and action detectors
The next step in implementing a restriction is to map the
abstract actions of the requirement to the concrete actions
of the component-based implementation, thus implicitly
defining an abstraction function. Table 1 gives an example
of such mapping. Then the designer must identify the set of
relevant messages, i.e., those messages that initiate compo-
nent actions in the domain of the abstraction function. For
example, changes to the content of a document are caused
by messages from the GUI system notifying the editor that
the user pressed a key or chose the “cut selection” com-
mand from the menu. Only relevant messages need to be
intercepted at run-time by the restriction filter. Identifica-
tion of relevant messages may involve a certain degree of
reverse engineering of components. In particular, the de-
signer must discover casual relationships between the mes-
sages the component receives and the input and output ac-
tions it performs in response to these messages.

At run-time, what action a component is about to perform
or has just performed is determined by the part of restric-
tion filter called the action detector. One filter may contain
several such detectors. There are two types of detectors.
Detectors of the first type, called message interceptors,
intercept raw system messages that the environment sends
to the component, and analyze their attributes. By the at-
tributes of a system message an action detector determines
whether the message is a relevant one, and if it is, what
action the component will perform if the message is deliv-
ered. Examples of message attributes that a detector may
analyze include message type (keyboard, mouse, network),
a key code, mouse pointer position, window or screen that
the message is associated with, or a data packet returned
from the network. A detector may also keep track of the
history of previously observed messages and take it into
account when deciding whether the current message is

relevant and what component action it will trigger.

Action detectors of the second type listen to events gener-
ated by components themselves and determine from event
parameters what action the component is about to perform
or has just performed. These detectors are not as universal
as message interceptors. They can only detect actions that
components announce through events. However, they re-
quire no reverse engineering and can be the best option in
situations where the same message may initiate several
different component actions at different times, depending
on the state of component.

Essentially, action detectors are reusable partial models of
component operations built by reverse engineering. They
are not specific to a particular restriction implementation
and can be reused across projects.

c) An abstraction function
When an action detector recognizes a component action, it
emits a code that uniquely identifies that action. In order to
check whether the execution so far has satisfied the system-
level requirement the filter must translate this code to the
code of the corresponding abstract action that can then be
submitted for checking to the requirement machine. This
translation is accomplished by the third element of restric-
tion filter: an implementation of the abstraction function.
This implementation can be as simple as a look-up table, or
it can use a more efficient algorithm.

When the abstraction function is a one-to-one correspon-
dence, the translation of action codes can be skipped alto-
gether by designing a requirement machine that accepts the
outputs of action recognizers directly. This may reduce the
response time overhead of the filter, but will also reduce
the reusability of filter parts by creating a dependency be-
tween its requirement machine and action detectors.

5.3 Functioning of a restriction filter.
Put together, the three parts of a restriction filter provide a
practical implementation of the illegal execution detection
algorithm described in section 4.1. However, they do not
only detect illegal executions, but also prevent them from

environment
(OS, GUI system,
other components)

Component
messages

action
detector

requirement
machine

component actions

events

compo-
nent

actions

deliver/drop

filtered
messages

abstraction function

abstract actions

abstraction function

abs-
tract

actions

undo

action
detectors/filters

action
detector

action
detectors

Figure 4. The structure of an external restriction filter.

8

happening. Figure 4 shows an interaction diagram that il-
lustrates the run-time operation of such a filter (the inter-
nals of the filter are shown in gray).

When a restriction filter intercepts a message from the exe-
cution environment to a component of the implementation
being restricted, it routes the message to an array of action
detectors. If none of the detectors recognizes the message
as relevant, the filter delivers the message to the compo-
nent. If a detector recognizes the message as initiating an
action, it generates a component action code. This code is
translated by the abstraction function to the code of an ab-
stract action in the alphabet of the requirement, which is
then fed to the requirement machine. If the machine in its
current state does not have a transition marked with this
action code, then appending this abstract action to the
string of abstract actions recognized so far would produce a
string not in the language of the requirement. At this point
the illegal execution detection algorithm described in sec-
tion 4.1 would stop and announce the detection of an illegal
execution. The goal of a restriction filter, however, is not to
just detect such executions, but to avert them. Had the mes-
sage intercepted by the filter been delivered to the compo-
nent, an illegal execution would result. To prevent this, the
filter drops the message. The requirement machine does not
change its state. Similarly, when the transition marked with
the abstract action code exists but leads to a non-accepting
state, the intercepted message is dropped and the machine
does not advance. Only if a transition marked with the ab-
stract action is present in the current state of the require-
ment machine and leads to an accepting state does the ma-
chine perform the transition and the filter delivers the inter-
cepted message to the component.

It appears that it is often possible to set up a restriction fil-
ter in such a way that most of the messages it intercepts are
relevant messages. In other words, external restriction does
not require complete wrapping of component. For example,
if all relevant messages are user interface messages, the
interface between the component and the network subsys-
tem of the OS need not be affected.

Handling component events follows a similar scenario. An
event is examined by one or more action detectors, and if
one of them recognizes a component action, the code of
that action is translated by the abstraction function to the
corresponding abstract action code, which is then delivered
to the requirement machine. As in the previous case, the
requirement machine determines whether the component
action detected leads to an illegal execution. However, an
action detected by listening to component events usually
cannot be averted, as events are typically notification de-
vices only. The closest approximation to blocking an action
in this case, is “undoing” the action immediately after it
occurs. Undoing may not work for actions that break a
system-wide invariant and may cause an immediate system
to crash. However, it is often acceptable as a means of en-

forcing an abstraction that the system designers want to
present to the user.

To undo an action, a filter may send a message to the com-
ponent, initiating an action that cancels the effects of the
last one and completely restores the component state. Un-
fortunately, in some cases an appropriate message may not
exist, or it may be difficult to identify. The “undo” facility,
which has become a standard part of any high-quality user
interface may greatly help with this task. When an “Undo”
operation is unavailable, the filter may still be able to de-
termine what action could cancel the effects of the one just
observed, e.g., by analyzing the attributes of event.

6. IMPLEMENTING SEMI-CONSISTENCY
We applied our method of implementing external restric-
tion to restrict the current implementation of Galileo with
respect to a version of the semi-consistency requirement.
The execution environment for Galileo is the GUI subsys-
tem of the Microsoft Windows 95 OS. Our restriction filter
intercepts the keyboard, mouse and menu item selection
messages that Windows sends to Word and Visio. Each of
these types of messages is handled by a separate action
detector. These detectors identify those messages that may
trigger a change in the Word document or Visio drawing
containing the textual or graphical representations of the
fault-tree respectively. Another action detector is built into
the integration infrastructure of Galileo. It observes the
notifications that the integration code generates when the
user selects a view synchronization command from the tool
menu. Once an action detector identifies a component ac-
tion, it uses an abstraction function to map the action code
to the corresponding system-level action code and then
submits it to the requirement machine similar to the one
shown in Figure 3, which is implemented as a simple C++
object. Depending on the result returned by the machine,
the filter drops the message or allows it to reach its target
component. View synchronization actions cannot be pre-
vented as only notifications of them are observed after the
actions themselves have completed. However, there is
never a need for this, since the semi-consistency require-
ment allows view synchronization in any state. Our action
detectors and requirement machine are completely inde-
pendent and can be reused in other projects that either have
the same semi-consistency requirement or require detection
of editing actions in Word and Visio.

Our work on implementing an external restriction filter for
Galileo required considerable knowledge of the details of
interface between components and the operating system. It
also involved a considerable amount of reverse-engineering
work to determine what messages components receive from
the operating system and what actions these messages trig-
ger. The only means to obtain this information was by us-
ing a general purpose OS message inspector and direct ob-
servation of changes in the visible component state.

Our filter appears to be sufficient to enforce the semi-

9

consistency of views in Galileo for most usage scenarios.
Because it relies on the knowledge obtained by reverse
engineering of Word and Visio, which are complex soft-
ware packages, there may still be some sources of positive
mismatch through which a user of Galileo can force the
tool to violate the semi-consistency of views. However, this
would most likely require an intentional attempt to break
the abstraction presented by the tool. The goal of the work
reported in this paper was not the detection of all sources of
positive behavioral mismatches in a component-based sys-
tem, but rather developing a general mechanism for bridg-
ing identified mismatches. Possible approaches to testing or
the formal verification of a particular restriction to ensure
that it prevents all behaviors that do not satisfy a particular
system-level requirement is a topic for future work.

7. RELATED WORK
The idea of disabling features and restricting behavior of
programs has been explored mostly as a source of program
optimization. Program specialization (partial evaluation)
[10] is a well-known approach to optimization by trans-
forming a program P into a more efficient program P’ that
is equivalent to P for a restricted subset of inputs. Speciali-
zation applies only to programs in a high-level language
and uses a simple and straightforward model of programs
as functions that map inputs to outputs. Neither of these
assumptions holds in CBSD, where source code is not
available and components are stateful and often highly in-
teractive.

Work on open implementation [11,12] is also driven mostly
by the issue of optimization: a black-box component (in-
cluding source code components) can be more reusable if
besides its “functionality” interfaces it exposes a meta-
interface through which a user can tune the component’s
implementation parameters to improve component’s effi-
ciency in a particular usage context. The ideas of open im-
plementation can be used in design of components that
natively support restriction. The restriction method we de-
scribed does not rely on any such support.

Parnas in his “Designing Software for Ease of Extension
and Contraction” [14] discusses the problem of removal of
services or features of programs in the context of program
families developed within the same organization with full
access to the source code. The question that Parnas ad-
dresses in his paper is how to design software so that its
designers can easily modify its source code to obtain an-
other program that has a subset of features of the original
one and is as efficient as an equivalent program written
from scratch. In contrast, we concentrate on the mecha-
nisms that the composers of software components with no
access to source code may use to obtain a subset of behav-
iors (essentially by temporarily disabling features).

Gentleman [6] acknowledged the importance of masking
unwanted component functionality in CBSD. However, he
did not describe a general approach to such masking.

8. CONCLUSION AND FUTURE WORK
Positive behavioral mismatch is an important problem
arising in component-based software projects. Its primary
sources are system-level abstractions that the implementa-
tion components are not designed to support, and con-
straints on component behavior imposed by the integration
infrastructure. Restriction, or preventing component-based
implementations from exhibiting illegal behaviors, is often
the best approach to bridge positive mismatches. To make
the problem of positive behavioral mismatch precise, we
developed a formal model of software components and
system-level requirements. Our model is not the only one
possible. We used it to develop one general method of im-
plementing restriction. Our method utilizes an external fil-
ter that detects and averts or cancels component actions that
lead to a behavior prohibited by a system-level require-
ment. The method does not rely on the availability of
source code, formal specification, or native support for
restriction in components. We have used it to restrict an
existing component-based application — a fault-tree analy-
sis tool Galileo — with respect to the semi-consistency
requirement. We see several directions for future work on
component restriction:

Automatic generation of restriction filters
Our method for implementing external restriction provides
a basis for automatic generation of restriction filters from
high-level reusable declarative specifications containing a
requirement machine description, an abstraction function
and a set of action detector specifications. Special tools
may assist with the reverse engineering necessary to de-
velop such action detector specifications. Such tools may
be used, for example, to test hypotheses about the casual
connections between system messages and component ac-
tions by matching component input and output against a set
of predicates given by the designer.

Restriction as a source of optimization.
Restriction can serve not only as a bridging technique for
positive behavioral mismatches, but also as a source of
component optimization. When a component specifically
designed to supports restriction receives a request to disable
a certain feature or behavior, it may specialize itself to per-
form the rest of its functions faster or with smaller memory
requirements. How exactly a component should be de-
signed to better support restriction for both optimization
and bridging positive behavioral mismatches is an open
research question.

REFERENCES
1. A. Williams, Developing ActiveX Web Controls,

Coriolis Group, 1996

2. Bershad, B.N., Savage, S., Pardyak., P, Sirer, E.G.,
Fiuczynski, M., Becker, D., Eggers, S., Chambers, C.,
Extensibility, Safety and Performance in the SPIN Op-

10

erating System, in Proc. 15th Symposium on Operating
Systems Principles, Copper Mountain, Colorado, Dec.
1995, pp. 267–284

3. Brockschmidt, K., “How OLE and COM Solve the
Problems of Component Software Design”, Microsoft
Systems Journal, v.11, no.5, pp. 63-82, May 1996

4. Brockschmidt, K., Inside OLE, Microsoft Press, 1995

5. Dean, J.C., Vigder, M.R., “System Implementation
Using Commercial Off-The-Shelf (COTS) Software”,
NRC Report No. 40173, 1997

6. Gentleman, W.M., Effective Use of COTS (Commer-
cial-Off-the-Shelf) Software Components in Long
Lived Systems (tutorial summary), in Proc. ICSE’97,
Boston, MA, Springer, pp. 635 – 636.

7. Graham, S.L., Lucco, S., Wahbe, R., Adaptable Binary
Programs, in Proc. 1995 USENIX Technical Confer-
ence, New Orleans, Louisiana, January 1995, pp. 315-
325

8. Hart-Davis, G., Word 97 Macro & VBA Handbook,
Sybex, 1997

9. JavaSoft, The JavaBeans 1.01 API Specification, July
24, 1997, available on the WWW at http://www.
javasoft.com/beans/spec.html

10. Jones, N.D., An Introduction to Partial Evaluation,
ACM Computing Surveys, Vol. 28, No. 3, (September
1996), pp. 480 – 504.

11. Kiczales, G., Beyond the Black Box: Open Imple-
mentations, IEEE Software, Vol. 13, No. 1, January
1996, pp. 8 –11

12. Kiczales, G., Lamping, J., Lopes, C.V., Maeda, C.,
Mendhekar, A., Murphy, G., Open Implementation
Design Guidelines, in Proc. ICSE’97, Boston, MA,
Springer, pp. 481 – 490.

13. Lynch, N.A., Tuttle, M.R., An Introduction to In-
put/Output Automata, MIT Technical Memo MIT-LCS-
TM373, 1988

14. Parnas, D.L., Designing Software for Ease of Exten-
sion and Contraction, IEEE Transactions on Software
Engineering, Vol. 5, No. 2, (March 1979), pp. 128 –
138.

15. Rader, J.A., Mechanisms for Integration and En-
hancement of Software Components, in Proc. 5th Int.
Symp. On Assessment of Software Tools and Tech-
nologies, Pittsburgh, PA, 2-5 June 1997, pp. 24–31

16. Sullivan, K.J. and D. Notkin, “Reconciling Environ-
ment Integration and Software Evolution,” ACM
Transactions on Software Engineering and Methodol-
ogy vol. 1, no. 3, July 1992, pp. 229–269

17. Sullivan, K.J., Socha, J., Marchukov, M., "Using For-
mal Methods to Reason About Architectural Stan-
dards," Proc. ICSE’97, Boston, MA, May 1997, pp.
503-513

18. Sullivan, K.J., Knight, J.C., Experience Assessing an
Architectural Approach to Large-Scale Systematic Re-
use, in Proc. ICSE-18, Berlin, Germany, March 1996,
pp. 220 – 228

19. Szyperski, C., Component Software: Beyond Object-
Oriented Programming, Addison-Wesley, 1998

20. Taivalsaari, A, On the Notion of Inheritance, ACM
Computing Surveys, Vol. 28, No. 3, (September 1996),
pp. 438–479

21. Tran, V., Hummel, B., Liu, D., Le, T.A., Doan, J. Un-
derstanding and Managing the Relationship Between
Requirement Changes and Product Constraints in
Component-based Software Projects, in Proc 31st An-
nual Hawaii International Conference on System Sci-
ences, Jan. 6-9, 1998, Kona, Hawaii, pp. 132–142

22. Tran, V., Liu, D., Hummel, B., Component-based
Systems Development: Challenges and Lessons
Learned, in Proc. 18th International Workshop on
Software Technology and Engineering Practice, Lon-
don, England, 1997, pp. 452–462

23. Visio Corporation, Developing Visio Solutions, 1997.
Also on the WWW at http://www.visio.com

24. Yellin, D., Strom. R., Protocol Specifications and
Component Adaptors, ACM Transactions on Pro-
gramming Languages and Systems, Vol. 19, No. 2
(February 1997), pp. 292 – 333

11

