Exploiting Sequential
DebuggersinaParalld
Ervironment: An Introduction
to the Mentat Assstant

Debugger

Anh Nguyen-Tuong

Andrew S. Grimshaw

Exploiting Sequential Dalmgers
In a Rarallel Ewvironment: An
Introduction to the Mentat
Assistant Debgger

Anh Nguyen-Tuong
Andrew S. Grimshaw

1.0

Introduction

The traditional sequential technique ofclic dehugging — setting
breakpoints to stop a progranxaenining the program state, recompiling
the program and rexecuting it until the errors are corrected — does not
work well in a parallel enronment if programmers simply attach a
delugger to concurrently running processes. programs with hundreds
or thousands of concurrent components, this methanildv be
unmanageable andowld quickly turn into anxercise in frustration and
futility. Clearly a better ay is needed to assist programmers in
delugging their parallel code. Unfortunatellge alternatie is oftentimes

to rely on the judicious insertion of print statements to pinpoint errors.

Our philosoply in designing deligging tools for Mentat [2][3][4] — a
high performance, object-oriented parallel processing system — is that
delugging should be decoupled from the paralleViremment. V¢
believe that programmers are more prodeetif they can use the
delugging enironment with which the are alreadydmiliar. After all,
why should users learn awmealelugging tool when thehave invested so
much time in learning a sequential dgger?

The Mentat Assistant Delgger (MAD) is a set of tools that enables
programmers to deig their Mentat applications with the dejger of
their choice. MAD supports a style of digjging knevn as post-mortem
delugging: delogging occurs after a Mentat program runs to completion
or until an error occurs. MAD is based on the record and replay [5]

Mentat System

2.0

technique and consists ofdwwhases. In the recording phase, objects that
comprise a Mentat application log their incoming messages to a file. In
the playback phase, objects caathfully reproduce their original
execution by &tracting the appropriate messages from the log file. The
programmer can then replay a specific object, i.e. reproduce its
execution, under the control of a sequential utger and use the
traditional gclic delugging technique.

Though we will focus on deigging in this technical report, MAD can
also be used as a generic playback tool to ingrand modify the
implementation of Mentat objects as well as perform optimizations. The
power of MAD lies in its playback capabilities and thactf that
programmers can focus on a single object axetwe it in complete
isolation from other objects.

MAD is simple to use and requires little intention. The programmer
does not imoke special functions to record or playback messages as these
capabilities are transparently embedded into all Mentat objects.

MAD does not handle all classes afgs. It is best suited for Bohrgs
[1]: repeatable errors which usually manifest themesely a memory
fault, a floating point »xeption, or incorrect results. MAD is not
designed to catch timing dependent errors, or Heiggn[].

This technical report describes the inaed and implementation of the
Mentat Assistant Delgger We assume that the reader asniliar with
Mentat and preide only a brief introduction to Mentat in Secti21®. In
Section3.0, we sha the interfice to MAD. In Sectiod.0 we describe

the implementation of the recording and playback phases and conclude in
Section5.0.

Mentat System

Mentat is an object-oriented parallel processing system designed to
simplify the task of writing portable, high-performance, parallel
application softwre. The fundamental objeats of Mentat are to (1)
provide easy-to-use parallelism, (2)acflitate the portability of
applications across a wide range of platforms, and (3) \aheh
performance. The first wvobjectves are addressed through Merstat’
underlying object-oriented approach: higkide abstractions mask the

The Mentat Assistant Debugger

3.0

complx aspects of parallel programming, i.e. communication,
synchronization, and scheduling.

Programmers write Mentat applications in the Mentat Programming
Language (MPL [6]) — anxtended C++ designed to simplify the task of
programming parallel applications. The basic idea in the MPL is to allo
the programmer to specify those C++ classes that are 6€iesoif
computational complaty to warrant parallel »ecution. This is
accomplished using therent at keyword in the class definition.
Instances of Mentat classes are called Mentat objects and possess a narr
a thread of control, an address space and a unique identifier (Mentat
UID). Mentat objects are address-space disjoint and typically
implemented as hegweight Unix processes. Programmers use Mentat
objects much as tlgavould ary other C++ objects.

The MPL compiler transforms the useMPL source code and inserts
statements to interact with the Mentat run-time libraries in order to
automatically handle synchronization, communication and scheduling on
behalf of the usehe implication for delgging is that users musbwk

with the modified code and not their original source code. This situation
is similar to debgging C++ programs where the C++ pre-processor
transforms the code into'C

The Mentat Assistant Debugger

Prior to the adent of MAD, delngging in Mentat mainly consisted of
inserting print statements in the objects that contained errors in order to
pinpoint the g, making changes to the source code, recompiling the
objects, and rexecuting the entire application to determine whether the
errors were corrected. The problem with this method is that it is not
possible to trace through theeeution of indvidual objects andx@mine

their private state. In addition, print statements from Mentat objects were
routed to the same console and the resulting race conditions often
resulted in a meaningless jumble of sentence fragfmefitss whole
process \&s unnecessarily time consuming as users had to modify and
recompile their objects just to findidps. Morewer, users had to run the
entire application\en if the lugs were localized to a single object.

1. There nw exist deluggers such as CC_ObjectCenter thatkndirectly with C++.
2. This is a common situation in parallel processing systems.

The Mentat Assistant Debugger

3.1

Delugging applications with MAD consists of awphases. In the
recording phase, Mentat objects record their incoming messages to a loc
file before processing them normal”t the end of the recording phase,
the log file produced thus contains the history of all iotgect
communication.

During playback, an indidual object can reproduce itxezution by
replaying its original message histor@ur assumption is that the
behaior of an object is solely determined by its incoming messages and
the receipt order of these messages. Thus, an object‘neceives”
messages from the log file instead of reiog them from other objects.

In addition, outgoing messages are intercepted avet sent as thyedo

not directly afect the behdor of the sending objett

To delug an object, programmers simply run the object in playback mode
under the control of a sequential dgher Print statements are no longer
necessary as the sequentialudger can be used to pinpoint theglwith

such traditional techniques as setting breakpointtching \ariables,

etc. While this technical report focuses on wghng, the playback
capability can also be used for performance optimization.

The rest of this section describes the imtesf to the recording
(Section3.1) and playback phases (SectbR) as well as the compiler
flags needed to use dejgers diciently (Sectior3.3).

Recording phase

The recording phase is simple to useyAvientat application can be
recorded by prefixing its wocation with the commanaad_r ecor d.

For example, if the original Mentat program aw irvoked with:

test _fib 10, then the modified commandowld be:mad_r ecord

test _fi b 10. All Mentat objects created ltiyest _fi b or its children
execute in record mode. The output of the recording phase is a single log
file containing messages reomil by all Mentat objects for awgn
application.

3. This is not strictly true. An object can send a message to itself thefettingfits avn beha-
ior. However, this message auld be recorded and played bacleléy other messages.

The Mentat Assistant Deb ugger

3.2 Playback phase
In playback mode, the user starts the prognad vi ew mad_vi ew
parses the log file and presents the user with a list of class names for al
objects recorded in the log file. Clicking on a class name displays a list of
instances for that particular class (Figure 1). Instances that crashed are
identified with the string “crashed” appended to their name (Figure 2).
Figure 1 mad_view at a glance
E i
File Instances of an
Hame of log file: mentat_main.log object c lass
Specify deb ugger here T
\

List of c lasses
contained in log file

N

ass: Class Instances: I

fibonacci_ class[0]
fibonacci class[1] A
fibonacci_class[?]
fibonacci_class[3]
fibhonacci_class[4]
fibonacci_ class[b]

instance_manager
test_fib

tmu
fibonacci_class
adder_class

fibonacci_class[2]: 28 events 11704 bytes - Information field
Object : [fibonacci class[2] ~&——— |[Current instance selected
Arguments: | n
Playhack| Debug Object| uit
_/(Arguments f or playback
Click here to

playback instance

Click here to
debug instance
with specified deb ugger

Quit MAD

Note that there may be more than one instance of a class during the
execution of an application.df example, in Figure 1, there are six
instances of the cladsi bonacci _cl ass. Though we can use the
Mentat UID to distinguish between them, we prefer toxndstances of

the same class by the order in whichytappear in the log file. A future
improvement vould be to use theaviable names from the program’
source code instead of the current xdg scheme.

To reproduce thexecution of a specific object, the user must first click
on an object instance from the instance list or type the name directly in
the “Object” text field and then click on the “Playbackition. 1o delug

The Mentat Assistant Debugger

Figure 2

the object, the user selects an object instance and clicks orugDeb
Object”. MAD will then run the specified object under control of the
delugger specified in thexefield “Debugger”.

The output of the object is displayed in the wiwdo whichnmad_vi ew
is started unless the dedger specified handles input and output in its
own window (e.g. xdbx in Figure 2).

Snapshot of mad_view and xdbx

[=[wontatAssistamtDebugger [/[

File

F xdbx 2.1 (patch level) I_IF
fimp_mntnetics.ufi/an?s/pythonircy_envZ.trans.c 3190

int food{int, int});
public:
_mentat_rev_env2() { }

Wame of log fil=: =z=nd =nw.log

rev_env? SELF;

Debugger: wdbw

int _mentat_recv_env?::food(int i, int j)

Class:

Class Instances:

instancs_managsr
mentat_main
send_snv

rov_env

im helper
class_ssrvsr
rov_anvz

rew_enwv2 [0]
rov_envi [1]
Tov_envz [2]
rov_envz [2]

rev_enva [4]_erashsd

rew_env2 [5]

printf("child #%d.%d\n", i, j);

if (i == 2)

i/= (i -2);
rtf (VAR _TO_ARG(({(char *) & j, sizeof (int), MULL, FALSE))
return 0;

}

mentat_message * _HMENTAT_ server_loop{computation_instance *
{

_mentat rev env? class_instance;
int predicate mmmber;

bool done = FALSE:;
mentat_message *msg[2?];

-
rev_env2[4]: [CRASH:float] 4 ewents 1280 bytes | run I | cont | | nexk | | step | |stop ai |stop i1 ||:1e1ete|
Ubject :|rcv_env2 [4]_orashed |where| | up | | down | |print| |print | | func | | file |
L gument s | | statusl | displai |u.ndispl | dump | | searchl | quit |

Playbaekl Debug Object B class instance. food(argl, arg2?); -

trace: 3190

printf(“child #%d.%d\n", i, j):
child #2.1

trace: 3191 if (i == 2)

trace: 3192 iJf= (i - 2);

Floating peoint exception in host : playbacking..., class
rov_env? 15898

gignal ABRT (abort) in kill at 0x22ad8

kill+8: hgeu noerr

(xdbx) _

Figure2 shavs that one instance of the clasxv_env2, i.e.
rcv_env2[4], has crashed during the recording phase. In this
example, the user seleatsv_env?2[4], and @ecutes it with the xdbx
delugger by clicking on “Delng Object”. Xdbx then displays the user’
source code (as transformed by the Mentat compiler).

The user can use all the features of xdbx to find the cause of the crash. Ir
this case, the user enables tracing. As the object runs, xdbx displays eac
statementecuted in its output winde When the object crashes, xdbx
displays the dénding line in its source wineo

Implementation

3.21

mad_playback

For users without access to an X-terminal, we alswigeoa tetual
interface to the playback phasead_pl ayback. In fact,nad_vi ewis
simply a graphical front-end fomad_pl ayback. The interfce to
mad_pl ayback is shavn belaw:

usage: nmad_playback [-h] [-f log file] [-ddebugger] object [args...]
debugger specifies the debugger to use
object is the nane of the object optionally indexed as
[i] where i is the ith instance in the log file
[+4] is the first instance that crashed
[*] attenpts to match all instances
-h prints out a usage statenent

exanpl es: nmad_pl ayback test _fib 5
mad_pl ayback -ddbx test _fib
mad_pl ayback -ddbx fibonacci_cl ass[3]

3.3 Compiler fla gs needed f or deb ugging
Two steps are necessary topde full detugging support. The first is to
keep the symbol table for thgezutable by setting theg flag at compile
time. The second is to ent the Mentat compiler from discarding the
transformed source code generated by usingtheans flag. Here is an
example makfile:
MPLC = nplc
CFLAGS = -trans -g
gauss: gauss.c
$(MPLC) $(CFLAGS) gauss.c -0 $(MENTAT_USR BIN)/gauss -1 m
4.0 Implementation
In this section, we describe the implementation of the recording and
playback phases as well as the format of the log file.
4.1 Specifying recor ding or pla yback mode

Upon startup a Mentat main program attempts to read ahge vof
predefined Unix enronment \ariables to determine the name of the log
file (MD_FI LE) and whether it shouldxecute normallyin record mode
or in playback modeMD_MODE). In addition to theseariables)VD_0BJ
specifies the class nhame and instance of the object during playback.

Implementation

4.2

mad_r ecord andnmad_pl ayback are shell scripts which set these
ernvironment \ariables on behalf of the user

Recording phase

To start the recording phase, the user pesfitheir usual program with
the command nad_record. mad _record sets MD MODE to
recordi ng andVD_FI LE to nent at _mai n. | og (unless the user
chooses a dérent name for the log file) beforevoking the main
program.

The main program transparently creates an instant®afecor der,

a Mentat object to which all objects which comprise the application will
forward a cop of their incoming messagdeD r ecor der then writes
the messages to a log file (Figure 3).ehsure that the resulting log file
is visible to the usern.e. on a locally mounted file system, the main
program places thigD_r ecor der on the same host as itself and places
the log file in the uses’current wrking directory

The main program propates thedct that it is in recording mode to all
member functions which it wokes. The imoked member functions then
execute in recording mode and in turn, progtagthis &ct to all member
functions that the invoke. The end result is that all member functions
that transitvely trace their imocation to the main progranxecute in
recording mode.

The mechanism for propating information from one member function

to the nat is via Mentats ewvironment mechanism. Thevioker of a
member function afays sends an implicit gument — its evironment.

Thus, an object alays executes a member function within the comtget

by the irvoker. In this case, the gmonment alvays contains the pBical
address of thevD recor der object. Erironments are by deflt
invisible to users though users can access and manipulate the
ervironment directly

4. Mentat emironments should not be confused with their Unix counterpan ghough the
sene a similar purpose. Unix einonments allav a shell to pass information to child processes
whereas Mentat @ironments allv Mentat objects to pass information to other objects. The
value of Mentat erironment \ariables is not restricted to strings.

Implementation

421

4.2.2

When receiving a message in recording mode, a Mentat object extracts
the name (i.e. the physical address) of the MD _r ecor der object from
the environment and forwards a copy of the message to the
MD_r ecor der object. The object then proceeds normally (Figure 3).

Overhead & Performance

The overhead of the recording phase consists of the amount of storage
consumed by the log file and the additional network traffic generated by
sending messages to the MD recor der object. Since the log file
contains a copy of all messages exchanged between Mentat objects for a
given application, its total size is determined by the number and size of
messages sent, with an additional fixed overhead (36 bytes) for each
message. The network traffic is essentially doubled since all messages are
also sent tothe MD_r ecor der object.

The impact on performance depends on the granularity of the application
and its communication pattern. However, our primary focus is not
performance but rather on providing easy-to-use debugging tools in a
paralel processing environment. Once the application is bug free, users
can simply run their application with recording turned off.

The MD_recorder object

The main duty of the MD_r ecor der object is to record messages in a
log file. Itsinterface is shown below:
persistent nentat class MD recorder {
publi c:
void create(string *app_nane, int pid, int Miid);
voi d record_ment at _nmsg(nment at _nessage *msg, string *cname, int Miid);
void record_crash(string *cnanme, int Miid, int type);

b

create() is invoked once by the main program upon startup.
app_nane is the name of the application, pi d the Unix process
identifier of the main program and Mui d is a unique identifier generated
by Mentat for each object. cr eat e() creates the log file and names it
<app_nane>. | og.

record_nentat _nsg() recordsthe message contained inmsg inthe
log file. cnane isthe class name of the object that sent the message and
Mui d isits unique identifier. cnanme and Mui d are also recorded in the
log file and are used during the playback phase to distinguish objects.

Implementation

Figure 3

record_crash() recordsthefact that an object has crashed. When an
object in recording mode crashes, an attempt is made to invoke
record_crash() with the cause of the crash containedint ype.

Forwar ding of incoming messa ges to MD_recor der object

incoming message

name of
data MD_recorder
log file| ——

Algorithm for logging messages:

Object X receives a message

/Object X

i

receive messa ge

P

process messa ge

Object X forwardsincoming messagesto MD _r ecor der object using the name contained in

the message
VD r ecor der object logs messagesto log file

Object X processes the message normally

4.2.3 Format of log file

The log file consists of a sequence of event records (Figure 4). An event
record contains a header and an optional variable size data region. There

are five types of events defined:

E _MSG A message is | ogged

E_CRASH: hj ect
E_CRASH_FLOAT: Obj ect
E_CRASH MEMORY: (Obj ect
E_CRASH_PI PE: Obj ect

has
has
has
has

crashed, unknown cause

crashed due to a floating point exception
crashed due to a nmenory exception

crashed due to a pipe exception

The event E_CRASH isthe catch all event and is used when the cause of
the crash is unknown, i.e it was not due to a floating point, memory, or

pipe exception.

10

Implementation

4.3

The header contains the class name of the object that forwarded the
message, its Mentat UID, the size of the data region, the event number
and the event type. The data region contains the message forwarded in
the case of an E_MSG event.

The utility for viewing log filesismad_r eader and isincluded with the
standard Mentat distribution. Shown below is a sample output of
mad_r eader :

mad_reader: logFile <mentat_main.log> filter <all> verbosity <0>
1 instances of class tnu

1 instances of class fibonacci_class

1 instances of class test_fib

1 instances of class instance_nmnager

With the -| flag specified, mad_r eader displays a more verbose output
and shows the Mentat UID, the event number, the class name of the
object, the size of the event data region and the event type.

mad_reader: |ogFile <mentat_main.log> filter <all> verbosity <1>
selected event: >>> [337382338] event #0 <<<: <tnu> size[336]
type[M5G

sel ected event: >>> [367874194] event #1 <<<: <fibonacci_class>
si ze[336] type[MG

sel ected event: >>> [1934742628] event #2 <<<: <test_fib> size[280]
type[Ms@G

sel ected event: >>> [1621621013] event #3 <<<: <instance_nanager>
si ze[432] type[M5G

sel ected event: >>> [1934742628] event #4 <<<: <test_fib> size[280]
type[M5@G

sel ected event: >>> [1621621013] event #5 <<<: <instance_manager>
si ze[352] type[MG

sel ected event: >>> [1934742628] event #6 <<<: <test_fib> size[280]
type[M5G

Playback phase

The goal of the playback phase is to reproduce the behavior of a single
objects in isolation from other objects. Once this is done, programmers
can debug their objects using their favorite sequential debugger. More
importantly, programmers only need to pay attention to a single object at
atime and can use the traditional cyclic debugging style of debugging. In
other words, programmers have the tools to transform a complex task
(debugging a concurrent application) into a much simpler one
(debugging a single object).

11

Implementation

Figure 4

Event records

header
36 bytes

data

Event Record O

cl ass nane 220 byt es)

Mentat uid (currently 4 bytes)
size of the data region (4 bytes)
event numnber (4 bytes)

event type (4 bytes)

variable dataregion (size is specified in header)

Event Record n

cl ass nane (20 bytes)

Mentat uid (currently 4 bytes)
size of the data region (4 bytes)
event nunber (4 bytes)

event type (4 bytes)

variable dataregion (size is specified in header)

The user starts the playback phase with the shell script
mad_pl ayback. While mad_vi ew presents a graphical front-end, the
underlying program is mad_pl ayback. In addition to the Unix
environment variables MD_MODE and MD_FI LE, mad_pl ayback aso
sets VD _OBJ. MD_OBJ contains the name of a Mentat class indexed
with anumber that describesitsrelative order in the log file. For example,
VD_OBJ=f oo[3], specifies the fourth instance of class f 0o. This
naming convention distinguishes between instances of the same class and
Is preferred over having users interact with Mentat UIDs.

An object reproduces its behavior by filtering the log file for the
appropriate messages. Messages that were not originally received by the
object are discarded while the remaining good messages are once again
“recelved”’ by the object. The difference during playback isthat messages
no longer come from other objects, but instead, are extracted from the log
file. Outgoing messages do not need to be sent and are discarded.

Note that playback works only when the behavior of an object is solely
determined by the messages it recelves. The user is responsible for
handling the case when the object’s behavior is dependent on covert
channels of communications such asfiles, pipes or clocks.

12

Conclusion

5.0

In general, an object in playback mode will execute faster than the
original version since it does not need to wait for messages to arrive but
instead extracts them directly from the log file. A future enhancement
would be to embed timestamps in the log file and enable users to control
the rate at which objects should be played back.

Conclusion

6.0

In this report, we have presented the interface and implementation of the
Mentat Assistant Debugger (MAD), a set of tools that enables Mentat
programmers to debug their applications using the sequential debugger of
their choice. MAD is easy to use and requires no modifications to
existing Mentat code. MAD leverages off the existing base of sequential
debuggers available in both the public domain and commercial sector and
Is designed to easily accommodate future improvements in debugging
technol ogy.

Acknowledgments

7.0

We would like to thank Mark Hyett, Lindsay Faunt and John Karpovich
for their invaluable help in writing this technical report.

References

[1] Jim Gray, “Why Do Computers Stop and What Can Be Done About It?” Tandem
Technical Report 85.7, June, 1985.

[2] A.S. Grimshaw, “Easy to Use Object-Oriented Parallel Programming with Men-
tat,” IEEE Computer, pp. 39-51, May, 1993.

[3] A.S Grimshaw, W. T. Strayer, and P. Narayan, “Dynamic Object-Oriented Paral-
lel Processing,” |EEE Parallel & Distributed Technology: Systems & Applications,
pp. 33-47, May, 1993

[4] A.S. Grimshaw, J. B. Weissman, and W. T. Strayer, “Portable Run-Time Support
for Dynamic Object-Oriented Parallel Processing,” to appear in ACM TOCS, and
earlier version is available in Computer Science Technical Report, CS-93-40, Uni-
versity of Virginia, July, 1993.

[5] T.J. LeBlanc and J. M. Méllor-Crummey, “Debugging paralel programs with
instant replay,” |EEE Transaction on Computers, C-36(4), pp. 471-482, April 1987.

[6] Mentat Programming Language Reference Manual, URL: http://www.cs.vir-
ginia.edu/~mentat.

13

