
Exploiting Sequential
Debuggers in a Parallel
Environment: An Introduction
to the Mentat Assistant
Debugger

Anh Nguyen-Tuong

Andrew S. Grimshaw

1

Exploiting Sequential Debuggers
in a Parallel Environment: An
Introduction to the Mentat
Assistant Debugger

Anh Nguyen-Tuong

Andrew S. Grimshaw

1.0 Introduction

The traditional sequential technique of cyclic debugging — setting
breakpoints to stop a program, examining the program state, recompiling
the program and re-executing it until the errors are corrected — does not
work well in a parallel environment if programmers simply attach a
debugger to concurrently running processes. For programs with hundreds
or thousands of concurrent components, this method would be
unmanageable and would quickly turn into an exercise in frustration and
futility . Clearly, a better way is needed to assist programmers in
debugging their parallel code. Unfortunately, the alternative is oftentimes
to rely on the judicious insertion of print statements to pinpoint errors.

Our philosophy in designing debugging tools for Mentat [2][3][4] — a
high performance, object-oriented parallel processing system — is that
debugging should be decoupled from the parallel environment. We
believe that programmers are more productive if they can use the
debugging environment with which they are already familiar. After all,
why should users learn a new debugging tool when they have invested so
much time in learning a sequential debugger?

The Mentat Assistant Debugger (MAD) is a set of tools that enables
programmers to debug their Mentat applications with the debugger of
their choice. MAD supports a style of debugging known as post-mortem
debugging: debugging occurs after a Mentat program runs to completion
or until an error occurs. MAD is based on the record and replay [5]

Mentat System

2

technique and consists of two phases. In the recording phase, objects that
comprise a Mentat application log their incoming messages to a file. In
the playback phase, objects can faithfully reproduce their original
execution by extracting the appropriate messages from the log file. The
programmer can then replay a specific object, i.e. reproduce its
execution, under the control of a sequential debugger and use the
traditional cyclic debugging technique.

Though we will focus on debugging in this technical report, MAD can
also be used as a generic playback tool to improve and modify the
implementation of Mentat objects as well as perform optimizations. The
power of MAD lies in its playback capabilities and the fact that
programmers can focus on a single object and execute it in complete
isolation from other objects.

MAD is simple to use and requires little intervention. The programmer
does not invoke special functions to record or playback messages as these
capabilities are transparently embedded into all Mentat objects.

MAD does not handle all classes of bugs. It is best suited for Bohrbugs
[1]: repeatable errors which usually manifest themselves by a memory
fault, a floating point exception, or incorrect results. MAD is not
designed to catch timing dependent errors, or Heisenbugs [1].

This technical report describes the interface and implementation of the
Mentat Assistant Debugger. We assume that the reader is familiar with
Mentat and provide only a brief introduction to Mentat in Section2.0. In
Section3.0, we show the interface to MAD. In Section4.0 we describe
the implementation of the recording and playback phases and conclude in
Section5.0.

2.0 Mentat System

Mentat is an object-oriented parallel processing system designed to
simplify the task of writing portable, high-performance, parallel
application software. The fundamental objectives of Mentat are to (1)
provide easy-to-use parallelism, (2) facilitate the portability of
applications across a wide range of platforms, and (3) achieve high
performance. The first two objectives are addressed through Mentat’s
underlying object-oriented approach: high-level abstractions mask the

The Mentat Assistant Debugger

3

complex aspects of parallel programming, i.e. communication,
synchronization, and scheduling.

Programmers write Mentat applications in the Mentat Programming
Language (MPL [6]) — an extended C++ designed to simplify the task of
programming parallel applications. The basic idea in the MPL is to allow
the programmer to specify those C++ classes that are of sufficient
computational complexity to warrant parallel execution. This is
accomplished using thementat keyword in the class definition.
Instances of Mentat classes are called Mentat objects and possess a name,
a thread of control, an address space and a unique identifier (Mentat
UID). Mentat objects are address-space disjoint and typically
implemented as heavyweight Unix processes. Programmers use Mentat
objects much as they would any other C++ objects.

The MPL compiler transforms the user’s MPL source code and inserts
statements to interact with the Mentat run-time libraries in order to
automatically handle synchronization, communication and scheduling on
behalf of the user. The implication for debugging is that users must work
with the modified code and not their original source code. This situation
is similar to debugging C++ programs where the C++ pre-processor
transforms the code into C1.

3.0 The Mentat Assistant Debugger

Prior to the advent of MAD, debugging in Mentat mainly consisted of
inserting print statements in the objects that contained errors in order to
pinpoint the bug, making changes to the source code, recompiling the
objects, and re-executing the entire application to determine whether the
errors were corrected. The problem with this method is that it is not
possible to trace through the execution of individual objects and examine
their private state. In addition, print statements from Mentat objects were
routed to the same console and the resulting race conditions often
resulted in a meaningless jumble of sentence fragments2. This whole
process was unnecessarily time consuming as users had to modify and
recompile their objects just to find bugs. Moreover, users had to run the
entire application even if the bugs were localized to a single object.

1. There now exist debuggers such as CC_ObjectCenter that work directly with C++.

2. This is a common situation in parallel processing systems.

The Mentat Assistant Debugger

4

Debugging applications with MAD consists of two phases. In the
recording phase, Mentat objects record their incoming messages to a log
file before processing them normally. At the end of the recording phase,
the log file produced thus contains the history of all inter-object
communication.

During playback, an individual object can reproduce its execution by
replaying its original message history. Our assumption is that the
behavior of an object is solely determined by its incoming messages and
the receipt order of these messages. Thus, an object now “receives”
messages from the log file instead of receiving them from other objects.
In addition, outgoing messages are intercepted and never sent as they do
not directly affect the behavior of the sending object3.

To debug an object, programmers simply run the object in playback mode
under the control of a sequential debugger. Print statements are no longer
necessary as the sequential debugger can be used to pinpoint the bug with
such traditional techniques as setting breakpoints, watching variables,
etc. While this technical report focuses on debugging, the playback
capability can also be used for performance optimization.

The rest of this section describes the interface to the recording
(Section3.1) and playback phases (Section3.2) as well as the compiler
flags needed to use debuggers efficiently (Section3.3).

3.1 Recording phase

The recording phase is simple to use. Any Mentat application can be
recorded by prefixing its invocation with the commandmad_record.
For example, if the original Mentat program was invoked with:
test_fib 10, then the modified command would be:mad_record
test_fib 10. All Mentat objects created bytest_fib or its children
execute in record mode. The output of the recording phase is a single log
file containing messages received by all Mentat objects for a given
application.

3. This is not strictly true. An object can send a message to itself thereby affecting its own behav-
ior. However, this message would be recorded and played back like any other messages.

The Mentat Assistant Deb ugger

5

3.2 Playbac k phase

In playback mode, the user starts the programmad_view. mad_view
parses the log file and presents the user with a list of class names for all
objects recorded in the log file. Clicking on a class name displays a list of
instances for that particular class (Figure 1). Instances that crashed are
identified with the string “crashed” appended to their name (Figure 2).

Figure 1 mad_view at a glance

Note that there may be more than one instance of a class during the
execution of an application. For example, in Figure 1, there are six
instances of the classfibonacci_class. Though we can use the
Mentat UID to distinguish between them, we prefer to index instances of
the same class by the order in which they appear in the log file. A future
improvement would be to use the variable names from the program’s
source code instead of the current indexing scheme.

To reproduce the execution of a specific object, the user must first click
on an object instance from the instance list or type the name directly in
the “Object” text field and then click on the “Playback” button. To debug

Specify deb ugger here

List of c lasses
in log file

Instances of an

Information field

Current instance selected

Arguments f or pla ybac k

Clic k here to
playbac k instance Clic k here to

debug instance
with specified deb ugger

object c lass

contained

Quit MAD

The Mentat Assistant Debugger

6

the object, the user selects an object instance and clicks on “Debug
Object”. MAD will then run the specified object under control of the
debugger specified in the text field “Debugger”.

The output of the object is displayed in the window in whichmad_view
is started unless the debugger specified handles input and output in its
own window (e.g. xdbx in Figure 2).

Figure 2 Snapshot of mad_view and xdbx

Figure2 shows that one instance of the classrcv_env2, i.e.
rcv_env2[4], has crashed during the recording phase. In this
example, the user selectsrcv_env2[4], and executes it with the xdbx
debugger by clicking on “Debug Object”. Xdbx then displays the user’s
source code (as transformed by the Mentat compiler).

The user can use all the features of xdbx to find the cause of the crash. In
this case, the user enables tracing. As the object runs, xdbx displays each
statement executed in its output window. When the object crashes, xdbx
displays the offending line in its source window.

Implementation

7

3.2.1 mad_pla ybac k

For users without access to an X-terminal, we also provide a textual
interface to the playback phase:mad_playback. In fact,mad_view is
simply a graphical front-end formad_playback. The interface to
mad_playback is shown below:

usage: mad_playback [-h] [-f log_file] [-ddebugger] object [args...]

debugger specifies the debugger to use

object is the name of the object optionally indexed as:

[i] where i is the ith instance in the log file

[+] is the first instance that crashed

[*] attempts to match all instances

-h prints out a usage statement

examples: mad_playback test_fib 5

mad_playback -ddbx test_fib

mad_playback -ddbx fibonacci_class[3]

3.3 Compiler fla gs needed f or deb ugging

Two steps are necessary to provide full debugging support. The first is to
keep the symbol table for the executable by setting the-g flag at compile
time. The second is to prevent the Mentat compiler from discarding the
transformed source code generated by using the-trans flag. Here is an
example makefile:

MPLC = mplc

CFLAGS = -trans -g

gauss: gauss.c

$(MPLC) $(CFLAGS) gauss.c -o $(MENTAT_USR_BIN)/gauss -lm

4.0 Implementation

In this section, we describe the implementation of the recording and
playback phases as well as the format of the log file.

4.1 Specifying recor ding or pla ybac k mode

Upon startup a Mentat main program attempts to read the value of
predefined Unix environment variables to determine the name of the log
file (MD_FILE) and whether it should execute normally, in record mode
or in playback mode (MD_MODE). In addition to these variables,MD_OBJ
specifies the class name and instance of the object during playback.

Implementation

8

mad_record andmad_playback are shell scripts which set these
environment variables on behalf of the user.

4.2 Recording phase

To start the recording phase, the user prefixes their usual program with
the command mad_record. mad_record sets MD_MODE to
recording andMD_FILE to mentat_main.log (unless the user
chooses a different name for the log file) before invoking the main
program.

The main program transparently creates an instance ofMD_recorder,
a Mentat object to which all objects which comprise the application will
forward a copy of their incoming messages.MD_recorder then writes
the messages to a log file (Figure 3). To ensure that the resulting log file
is visible to the user, i.e. on a locally mounted file system, the main
program places theMD_recorder on the same host as itself and places
the log file in the user’s current working directory.

The main program propagates the fact that it is in recording mode to all
member functions which it invokes. The invoked member functions then
execute in recording mode and in turn, propagate this fact to all member
functions that they invoke. The end result is that all member functions
that transitively trace their invocation to the main program execute in
recording mode.

The mechanism for propagating information from one member function
to the next is via Mentat’s environment mechanism. The invoker of a
member function always sends an implicit argument — its environment4.
Thus, an object always executes a member function within the context set
by the invoker. In this case, the environment always contains the physical
address of theMD_recorder object. Environments are by default
invisible to users though users can access and manipulate the
environment directly.

4. Mentat environments should not be confused with their Unix counterpart even though they
serve a similar purpose. Unix environments allow a shell to pass information to child processes
whereas Mentat environments allow Mentat objects to pass information to other objects. The
value of Mentat environment variables is not restricted to strings.

Implementation

9

When receiving a message in recording mode, a Mentat object extracts
the name (i.e. the physical address) of the MD_recorder object from
the environment and forwards a copy of the message to the
MD_recorder object. The object then proceeds normally (Figure 3).

4.2.1 Overhead & Performance

The overhead of the recording phase consists of the amount of storage
consumed by the log file and the additional network traffic generated by
sending messages to the MD_recorder object. Since the log file
contains a copy of all messages exchanged between Mentat objects for a
given application, its total size is determined by the number and size of
messages sent, with an additional fixed overhead (36 bytes) for each
message. The network traffic is essentially doubled since all messages are
also sent to the MD_recorder object.

The impact on performance depends on the granularity of the application
and its communication pattern. However, our primary focus is not
performance but rather on providing easy-to-use debugging tools in a
parallel processing environment. Once the application is bug free, users
can simply run their application with recording turned off.

4.2.2 The MD_recorder object

The main duty of the MD_recorder object is to record messages in a
log file. Its interface is shown below:

persistent mentat class MD_recorder {
public:
void create(string *app_name, int pid, int Muid);
void record_mentat_msg(mentat_message *msg, string *cname, int Muid);
void record_crash(string *cname, int Muid, int type);

};

create() is invoked once by the main program upon startup.
app_name is the name of the application, pid the Unix process
identifier of the main program and Muid is a unique identifier generated
by Mentat for each object. create() creates the log file and names it
<app_name>.log.

record_mentat_msg() records the message contained in msg in the
log file. cname is the class name of the object that sent the message and
Muid is its unique identifier. cname and Muid are also recorded in the
log file and are used during the playback phase to distinguish objects.

Implementation

10

record_crash() records the fact that an object has crashed. When an
object in recording mode crashes, an attempt is made to invoke
record_crash() with the cause of the crash contained in type.

Figure 3 Forwar ding of incoming messa ges to MD_recor der object

4.2.3 Format of log file

The log file consists of a sequence of event records (Figure 4). An event
record contains a header and an optional variable size data region. There
are five types of events defined:

E_MSG: A message is logged

E_CRASH: Object has crashed, unknown cause

E_CRASH_FLOAT: Object has crashed due to a floating point exception

E_CRASH_MEMORY: Object has crashed due to a memory exception

E_CRASH_PIPE: Object has crashed due to a pipe exception

The event E_CRASH is the catch all event and is used when the cause of
the crash is unknown, i.e it was not due to a floating point, memory, or
pipe exception.

data name of
MD_recorder Object X

receive messa ge

process messa geMD_recor der

Algorithm for logging messages:

• Object X receives a message

• Object X forwards incoming messages to MD_recorder object using the name contained in
the message

• MD_recorder object logs messages to log file

• Object X processes the message normally

incoming message

log file

Implementation

11

The header contains the class name of the object that forwarded the
message, its Mentat UID, the size of the data region, the event number
and the event type. The data region contains the message forwarded in
the case of an E_MSG event.

The utility for viewing log files is mad_reader and is included with the
standard Mentat distribution. Shown below is a sample output of
mad_reader:

mad_reader: logFile <mentat_main.log> filter <all> verbosity <0>

1 instances of class tmu

1 instances of class fibonacci_class

1 instances of class test_fib

1 instances of class instance_manager

With the -l flag specified, mad_reader displays a more verbose output
and shows the Mentat UID, the event number, the class name of the
object, the size of the event data region and the event type.

mad_reader: logFile <mentat_main.log> filter <all> verbosity <1>

selected event: >>> [337382338] event #0 <<<: <tmu> size[336]
type[MSG]

selected event: >>> [367874194] event #1 <<<: <fibonacci_class>
size[336] type[MSG]

selected event: >>> [1934742628] event #2 <<<: <test_fib> size[280]
type[MSG]

selected event: >>> [1621621013] event #3 <<<: <instance_manager>
size[432] type[MSG]

selected event: >>> [1934742628] event #4 <<<: <test_fib> size[280]
type[MSG]

selected event: >>> [1621621013] event #5 <<<: <instance_manager>
size[352] type[MSG]

selected event: >>> [1934742628] event #6 <<<: <test_fib> size[280]
type[MSG]

4.3 Playback phase

The goal of the playback phase is to reproduce the behavior of a single
objects in isolation from other objects. Once this is done, programmers
can debug their objects using their favorite sequential debugger. More
importantly, programmers only need to pay attention to a single object at
a time and can use the traditional cyclic debugging style of debugging. In
other words, programmers have the tools to transform a complex task
(debugging a concurrent application) into a much simpler one
(debugging a single object).

Implementation

12

Figure 4 Event records

The user starts the playback phase with the shell script
mad_playback. While mad_view presents a graphical front-end, the
underlying program is mad_playback. In addition to the Unix
environment variables MD_MODE and MD_FILE, mad_playback also
sets MD_OBJ. MD_OBJ contains the name of a Mentat class indexed
with a number that describes its relative order in the log file. For example,
MD_OBJ=foo[3], specifies the fourth instance of class foo. This
naming convention distinguishes between instances of the same class and
is preferred over having users interact with Mentat UIDs.

An object reproduces its behavior by filtering the log file for the
appropriate messages. Messages that were not originally received by the
object are discarded while the remaining good messages are once again
“received” by the object. The difference during playback is that messages
no longer come from other objects, but instead, are extracted from the log
file. Outgoing messages do not need to be sent and are discarded.

Note that playback works only when the behavior of an object is solely
determined by the messages it receives. The user is responsible for
handling the case when the object’s behavior is dependent on covert
channels of communications such as files, pipes or clocks.

class name (20 bytes)
Mentat uid (currently 4 bytes)
size of the data region (4 bytes)
event number (4 bytes)
event type (4 bytes)

variable data region (size is specified in header)

he
ad

er
36

 b
yt

es
da

ta

Event Record 0

Event Record n

class name (20 bytes)
Mentat uid (currently 4 bytes)
size of the data region (4 bytes)
event number (4 bytes)
event type (4 bytes)

variable data region (size is specified in header)

Conclusion

13

In general, an object in playback mode will execute faster than the
original version since it does not need to wait for messages to arrive but
instead extracts them directly from the log file. A future enhancement
would be to embed timestamps in the log file and enable users to control
the rate at which objects should be played back.

5.0 Conclusion

In this report, we have presented the interface and implementation of the
Mentat Assistant Debugger (MAD), a set of tools that enables Mentat
programmers to debug their applications using the sequential debugger of
their choice. MAD is easy to use and requires no modifications to
existing Mentat code. MAD leverages off the existing base of sequential
debuggers available in both the public domain and commercial sector and
is designed to easily accommodate future improvements in debugging
technology.

6.0 Acknowledgments

We would like to thank Mark Hyett, Lindsay Faunt and John Karpovich
for their invaluable help in writing this technical report.

7.0 References

[1] Jim Gray, “Why Do Computers Stop and What Can Be Done About It?,” Tandem
Technical Report 85.7, June, 1985.

[2] A. S. Grimshaw, “Easy to Use Object-Oriented Parallel Programming with Men-
tat,” IEEE Computer, pp. 39-51, May, 1993.

[3] A. S. Grimshaw, W. T. Strayer, and P. Narayan, “Dynamic Object-Oriented Paral-
lel Processing,” IEEE Parallel & Distributed Technology: Systems & Applications,
pp. 33-47, May, 1993

[4] A. S. Grimshaw, J. B. Weissman, and W. T. Strayer, “Portable Run-Time Support
for Dynamic Object-Oriented Parallel Processing,” to appear in ACM TOCS, and
earlier version is available in Computer Science Technical Report, CS-93-40, Uni-
versity of Virginia, July, 1993.

[5] T.J. LeBlanc and J. M. Mellor-Crummey, “Debugging parallel programs with
instant replay,” IEEE Transaction on Computers, C-36(4), pp. 471-482, April 1987.

[6] Mentat Programming Language Reference Manual, URL: http://www.cs.vir-
ginia.edu/~mentat.

