
Using Scalloped Sectors to Generate Poisson-Disk Sampling Patterns

Daniel Dunbar
University of Virginia

Greg Humphreys
University of Virginia

Abstract

Sampling distributions with blue noise characteristics are
widely used in computer graphics. Although Poisson-disk
distributions are known to have excellent blue noise char-
acteristics, they are generally regarded as too computation-
ally expensive to generate in real time. We present a new
data structure that alllows sampling by dart-throwing in
O(N log N) time. We also show how a novel and efficient
variation on this algorithm can be used to generate Poisson-
disk distributions in O(N) time and space.

1 Introduction and Background

Almost all problems in computer graphics involve sampling.
It is well known that the properties of the sampling distri-
bution can greatly affect the quality of the final result. In
particular, blue-noise patterns perform especially well in this
setting because of the low-energy annulus around the DC
spike in their frequency spectrum. High quality sampling
patterns are especially important when sampling the image
plane in a raytracer, not only because they do a better job of
capturing the continuous function being sampled, but also
because in this setting the function being reconstructed is
displayed directly, so any sampling errors will be especially
apparent to a viewer.

Poisson-disk distributions have excellent blue noise spectra
and also mimic the distribution of photoreceptors in a pri-
mate eye [Yellot 1983]. These distributions have proven diffi-
cult to generate directly, so many alternate approaches have
been developed, few of which can guarantee the Poisson-
disk property. In this paper, we describe an O(N log N)
algorithm for directly generating maximal Poisson-disk dis-
tributions identical to those produced by a dart-throwing
technique. We then present a variation of this algorithm
that both yields better spectral distributions and runs in
linear time and space. This algorithm generates point sets
with excellent blue noise characteristics very quickly; it can
generate over 200,000 points per second on a modern CPU.

1.1 Previous Work

Sampling theory is a well researched area of computer graph-
ics, and it has even deeper roots in the signal processing and
information theory literature. Stochastic sampling was first
introduced to computer graphics by Dippé and Wold [1985].
Cook analyzed the spectral properties of various stochastic
point processes [Cook 1986]. In that paper, he extols the
virtues of Poisson-disk distributions because of their blue
noise properties and relationship to photoreceptor distribu-
tions, but ultimately advocates the use of jittered grids be-
cause the straightforward dart-throwing algorithm for gen-
erating Poisson-disk distributions is prohibitively expensive.
Since then, many algorithms have been proposed for gener-
ating point distributions; e.g. [Ulichney 1988; Shirley 1991;

Hiller et al. 2001; Kollig and Keller 2002; Kollig and Keller
2003].

Mitchell’s O(N2) “best-candidate” algorithm attempts to
mimic dart-throwing while providing a termination guaran-
tee [Mitchell 1991]. Whenever a new sample is to be drawn,
a number of candidate samples are randomly generated, and
the candidate that is farthest from the existing point set is
accepted. This algorithm cannot guarantee the Poisson-disk
property, but in practice it generates excellent point sets if
enough candidates are drawn. The primary drawback of this
technique is its long running time.

McCool and Fiume generated high-quality tile sets with a
toroidal distance function so that they could be repeatedly
tiled across the plane [McCool and Fiume 1992] and intro-
duced the use of Lloyd’s relaxation to improve the blue noise
properties of the set. Lloyd’s relaxation transforms a point
set by moving each point to the center of its associated
Voronoi region and is typically applied iteratively or used
to generate distributions directly [Hiller et al. 2001]. Once
the tiles have been generated, this method generates large
point sets very efficiently. However, the tiling process intro-
duces easily recognizable structures. This is acceptable for
most sampling applications as long as the tile size is large
enough, but is disastrous if the points are being used to dis-
tribute objects or as part of a texture basis function. Several
schemes have been proposed to solve this problem.

Multiple authors have proposed using Wang tiles to solve
this problem. Cohen et al. populated a set of Wang tiles
with small point distributions that were intended to tile the
plane [Cohen et al. 2003]. Lagae et al. showed that cor-
rectly applying this technique requires careful attention to
how points are placed at the boundary of a tile and presented
Poisson-disk tiles to address these issues [Lagae and Dutré
2005]. Most recently, Kopf et al. have extended these tech-
niques to allow generation of point sets with blue noise prop-
erties satisfying an arbitrary density function [Kopf et al.
2006]. Their technique produces high quality point sets very
efficiently once the tile set has been computed.

Ostromoukhov et al. described a fast technique for impor-
tance sampling a provided density function [Ostromoukhov
et al. 2004]. Their algorithm generates point sets with lo-
cal blue noise characteristics by using a clever modification
of Penrose tiles and exploiting the tilings’ aperiodic nature.
However, when used to generate many points from a con-
stant density function, the resulting point sets have larger
angular anisotropy than techniques based on randomness.

Jones presents an algorithm for generating 2D Poisson-disk
distributions in O(N log N) time [Jones 2006]. Like our tech-
nique, Jones’ method builds a point set incrementally by
storing neighboring regions of points in a balanced tree and
inserting points into these regions one by one. However,
neighbor regions are represented as Voronoi cells and Jones’
method requires an incremental Delaunay triangulation al-
gorithm with O(log N) performance when adding a point.
This makes the implementation more complicated than that
of our algorithm. Furthermore, in this paper we show a
variation of our algorithm that runs in linear time.

2 Dart-Throwing in O(N log N)

The dart-throwing method for computing Poisson-disk dis-
tributions iteratively refines an existing point set by gen-
erating a series of random candidate points in the sample
domain and keeping only the first such point that is farther
than the minimum distance 2r from all other points. Each
sample effectively invalidates a disk of radius 2r centered
around that point.

This algorithm is simple to implement and extends naturally
to any domain with a well-defined and computable distance
metric. However, the algorithm may not terminate, so in
practice the algorithm is stopped after some fixed number
of consecutive candidates have failed to be accepted.

One side effect of this approximation is that the generated
point set is usually not maximal (there may be regions where
a point could be placed without violating the distance crite-
rion), so some regions of the domain may be undersampled.
This problem is usually ignored, although Jones’ technique is
guaranteed to generate maximal distributions [Jones 2006].
Furthermore, since a large number of sample points is typ-
ically required, the algorithm is too slow to use directly.
Consequently, several schemes for precomputing small dis-
tributions and tiling them have been proposed [Hiller et al.
2001; Cohen et al. 2003; Lagae and Dutré 2005].

We call the subdomain within which it is legal to add a point
the available subdomain. Let D(x, r) be the disk of radius r
around a point x. For a domain X and existing point set P ,
the available subdomain is given by

AX = X −
[

p∈P

D(p, 2r).

The key to emulating dart-throwing efficiently is the obser-
vation that we do not need to sample the entire available
subdomain. Consider the annulus between radii 2r and 4r
around some point. Every point in this annulus must be un-
available in any maximal distribution and therefore within
a distance of 2r from some other point. This means that
there must be at least one point that lies inside the annu-
lus, and hence the union of all such annuli, intersected with
the available subdomain, must contain at least one point.
Therefore, it is possible to emulate dart-throwing by sam-
pling from only this region, which we call the available neigh-
borhood of a point set P . By carefully choosing the repre-
sentation for this region, dart-throwing can be implemented
in O(N log N) time.

2.1 Representing the Available Neighborhood

The problem of representing the available neighborhood can
be divided into two parts: developing a spatial structure
for the available region of the annulus, and partitioning the
available neighborhood so that these structures can be effi-
ciently updated upon the insertion of a new point. In ad-
dition, it must be possible to quickly generate a uniformly
distributed random point inside the region.

Our solution to the first part of this problem involves a new
data structure, the scalloped region. This data structure can
be used to efficiently represent arbitrary boolean operations
on 2D disks. We divide scalloped regions into a disjoint
union of scalloped sectors (Figure 1). A scalloped sector is

α1

α2

C1

C2

g(α)

h(α)

A(α)

r1

r2

Figure 1: A scalloped sector is a sector bounded above and
below by circular arcs. In the above diagram, α ranges from
α1 to α2, and g(α) and h(α) are the distance functions from
the sector’s apex to the near and far arcs, respectively. A(α)
is the partial area of the sector up to α, represented by the
light gray area in the figure.

defined as the sector lying between angles α1 and α2 and
bounded by near and far circular arcs. For convenience, the
circular arcs are required to be non-intersecting, although
they are allowed to meet at the edge of the sector. For the
purposes of exposition the scalloped sector is assumed to
be placed with the sector apex at the origin; in practice the
apex is at some point P and the other coordinates are stored
relative to this point.

The circular arcs are each described by a center C given in
polar coordinates (d, γ), a radius r, and a sign k ∈ {−1, 1}
which selects either the near or far side of the circle. We refer
to the near circular arc as (C1, r1, k1) and the far circular arc
as (C2, r2, k2). For some angle α from the sector apex then
we label the distance functions to the near and far bounding
arcs as g(α) and h(α), respectively.

2.1.1 Distance to Bounding Arcs

Let f(α) be the distance along a ray from the sector apex
at angle α to a particular circular arc. If the ray intersects
the circle at a point Q then the points C, Q, and the sector
apex form a triangle with sides d, r, and f(α) as in Figure 2.
Additionally, the angle opposite the side of length r is α−γ.

By the Law of Cosines,

r2 = f2(α) + d2 − 2f(α)d cos(α− γ)

and solving for f(α) gives

f(α) = d cos(α− γ)±
q

r2 − d2 sin2(α− γ).

The parameter k is used to select either the near or far side
of the circle, resulting in the equation

f(α) = d cos(α− γ) + k
q

r2 − d2 sin2(α− γ).

α
γ

(0, 0)

Q

C

r

d

f(α)

Figure 2: The distance f(α) from the sector apex at the
origin to a bounding arc described by the center of a circle
C and a radius r can be solved using the Law of Cosines.

2.1.2 Uniform Sampling in Scalloped Sectors

The area of a scalloped sector up to some angle α is given
by

A(α) =

Z α

α1

Z h(θ)

g(θ)

r dr dθ

=

Z α

α1

h2(θ)− g2(θ)

2
dθ

=

Z α

α1

h2(θ)

2
dθ −

Z α

α1

g2(θ)

2
dθ

and the area of the full sector is A(α2). Since g and h are
simply variations of f we omit the full formula for A(α) and
only note that the indefinite integral

Z
f2(α) dα = r2(α− γ)

+ kr2 sin−1(sin(α− γ)
d

r
)

+ rkd cos(sin−1(sin(α− γ)
d

r
)) sin(α− γ)

+ d2 cos(α− γ) sin(α− γ).

In order to uniformly sample from within a scalloped
sector we would like to have a transformation from a
uniformly distributed point in [0, 1]2 to the sector. If
this transformation preserves relative areas then the point
in the sector will also be uniformly distributed. The fol-
lowing theorem establishes the transformation which we use.

Theorem 1. Let S be a 2D surface described in polar co-
ordinates by an angular interval (α1, α2) and functions g(α)
and h(α) with 0 < g(α) < h(α), where the functions f and g
give the distance to the near and far boundary of the surface.
That is, S is the image by [0, 1]2 of x where

x(u, v) = (r(u, v) cos(θ(v)), r(u, v) sin(θ(v)))

θ(v) = α1 + (α2 − α1)v

r(u, v) = g(θ(v)) + (h(θ(v))− g(θ(v)))u.

Let

A(α) =

Z α

α1

Z h(θ)

g(θ)

r dr dθ

be the area of S up to some angle α, then A−1 exists and

x(u, v) = (r(u, v) cos(θ(v)), r(u, v) sin(θ(v)))

θ(v) = A−1(vA(α2))

r(u, v) =
p

g2(θ(v)) + (h2(θ(v))− g2(θ(v)))u

is a map from [0, 1]2 to S that preserves area up to multipli-
cation by a constant.

Proof. Observe that x([0, 1]2) = x([0, 1]2) = S and that A
is the integral of a strictly positive function and therefore is
monotonic and invertable.

The partial derivatives of x are

xu = (ru cos(θ), ru sin(θ))

xv = (rv cos(θ)− rθ′ sin(θ), rv sin(θ) + rθ′ cos(θ))

and

E = 〈xu,xu〉 = r2
u

F = 〈xu,xv〉 = rurv

G = 〈xv,xv〉 = r2
v + r2(θ′)2

are the coefficients of the first fundamental form. The area
element of the surface

dA =
p

EG− F 2 du ∧ dv

= rruθ′ du ∧ dv

and so it is only necessary to verify that rruθ′ is constant.

Since A(A−1(x)) = x then taking the derivative of both sides
yields

(A−1)′(x)A′(A−1(x)) = 1.

The derivative of A,

A′ =

Z h(θ)

g(θ)

r dr

=
h2(θ)− g2(θ)

2

is such that A′(θ) 6= 0, thus

(A−1)′(x) =
1

A′(A−1(x))
,

and

θ′ = A(α2)(A
−1)′(vA(α2))

= A(α2)
1

A′(A−1(vA(α2)))

= A(α2)
1

A′(θ)
.

Finally,

ru =
h2(θ)− g2(θ)

2r

=
A′(θ)

r

and so dA = rruθ′ du ∧ dv = A(α2) du ∧ dv.

Corollary 1. Given a surface S as in Theorem 1 and a point
(ξ1, ξ2) selected from [0, 1]2 with a uniform distribution, then
x(ξ1, ξ2) is a uniformly distributed point on S.

Generating the point inside the sector is done by transform-
ing a uniformly distributed random point (ξ1, ξ2) in [0, 1]2 to
a point (d, θ) in polar coordinates using the transformation
x in Theorem 1. Although we do not have a closed form
equation for A−1, it is known to exist and in practice binary
search is sufficient to evaluate A−1 efficiently.

2.1.3 Uniform Sampling in the Available Neighborhood

The available neighborhoods is represented as a set of scal-
loped regions. In order to uniformly sample from the avail-
able neighborhood we first select a scalloped region in the
neighborhood using the regions’ areas as a probability distri-
bution. Subsequently we select a scalloped sector from the
scalloped region using the sectors’ areas as the probability
distribution. Finally we generate a point in the sector uses
the methods of the preceeding section.

The maximum number of scalloped regions depends on the
given radius r and the set of regions varies dynamically dur-
ing the sampling process. In order to efficiently sample from
the available neighborhood the scalloped regions are stored
in a binary tree ordered by the regions area. We also store
the sum of all areas below a given tree node with that node.
This allows selecting a scalloped region according to weight
in O(log N) time. Listing 1 shows how to select a region
using this tree structure for some random value p ∈ (0, 1).

Listing 1: Selecting Weighted Nodes

def choose (root , p) :

weight = p∗ root . sumOfWeights

node = root

while 1 :

i f node . l e f t :

i f weight<node . l e f t . sumOfWeights :

node = node . l e f t

else :

weight −= node . l e f t . sumOfWeights

i f weight<node . weight :

break

else :

weight −= node . weight

node = node−>r i g h t

return node

2.1.4 Disk Subtraction

Scalloped regions contain disjoint scalloped sectors stored in
a list and are typically initialized to contain a single scalloped
sector representing a disk or annulus. Subsequent modifica-
tions are performed by applying the requisite boolean opera-
tion on each individual sector and substituting the resulting
sectors for the old one.

We will only describe the method for disk subtraction; this
is the only operation necessary for Poisson-disk sampling.
There are a large number of cases that can occur during disk
subtraction due to the necessity of differentiating between
the near and far sides of the intersecting disk, tangent points
of the disk, and intersections of the disk with the sector

Figure 3: The subtraction of a scalloped sector by a disk
results in a number of new sectors. The rays corresponding
to the angles that need to be considered by our algorithm
are shown as dash lines and new sectors in shades of gray.

(a) (b) (c) (d) (e)

Figure 4: Cases for subdivided sectors occurring during sub-
traction by a disk.

boundary. For simplicity we have chosen a method that
restricts the number of cases that need to be considered.

Subtraction of a scalloped sector by a disk is performed by
computing the angles relative to the sector center of any
intersection points between the disk boundary and the near
and far bounding arcs. Additionally, the angles at which the
disk is tangent to a ray emanating from the sector center are
recorded. These angles are inserted into a list along with the
angular endpoints α1 and α2. Any angles outside the interval
(α1, α2) are discarded; the maximum number of angles in
the list is eight, four for intersections with the bounding
arcs, two for the angles of tangency, and two for the angular
endpoints. Finally, the resulting list is sorted. Figure 3
shows the angles that will be consider for an example disk
subtraction operation.

For every adjacent pair of angles in the list the resulting
sectors for that range are then output in order. Adjacent
angles have the property that the result of the subtraction
restricted to that angular range can result in only zero, one,
or two new sectors. The possible cases that can occur within
an angular range are shown in Figure 4.

Classification is straightforward, for an angular range (α, β)
some interior angle θ ∈ (α, β) is chosen. Let s1 (s2) be
the distances along θ from the sector center to the near (far)
edge of the disk, or −∞ (+∞) if this distance does not exist.
The following sectors for the angular interval (α, β) are then
output:

• s1 ≥ h(θ) or s2 ≤ g(θ) – a sector with the same near

Figure 5: The maximum number of scalloped sectors that
can be generated from a single subtraction is ten, as is shown
here. If sector merging is used then the maximum is six
sectors.

and far bounding arcs as the original sector. This corre-
sponds to a disk falling completely outside the subrange
(Case (e)).

• s1 > g(θ) – a sector with the near bounding arc of the
original sector and the far bounding arc being the near
side of the disk. This occurs when the near edge of the
disk is above the near bounding arc (Cases (b), (d)).

• s2 < h(θ) – a sector with the near bounding arc being
the far edge of the disk and the far bounding arc of the
original sector. This occurs when the far edge of the
disk is below the far bounding arc (Cases (c), (d)).

The method may output more sectors than are necessary due
to the manner of dividing into angular ranges. Since sectors
are output in angular order this problem can be solved by
comparing newly output sectors to the previous two sectors.
If the bounding arcs are the same and the new sector simply
extends the angular range then the previous sector can be
updated to cover the full range and the new sector can be
discarded.

Since the maximum number of angles is eight the maximum
numbers of angle pairs considered is seven. If the full seven
are present then the first and last must be between the sector
bounding angles α1 or α2 and an angle of tangency. For
these pairs only one sector will be output. Further, two
pairs must represent the range where the disk intersects the
sector bounding arcs, and so only one sector either above
or below the disk can be output. Therefore the maximum
number of sectors that can be output by this method is ten,
one for each of the four pairs mentioned and two for each of
the other three pairs, which may output at most two sectors.
Figure 5 demonstrates a subtraction operation that achieves
this maximum. If sector merging is used then the maximum
is six, corresponding to one sector left and right of the angles
tangent to the disk and two sectors above and below the disk.

2.1.5 Available Neighborhoods of Points

The available neighborhood is partitioned into scalloped sec-
tors of outer radius 4r around each point in order to restrict

the number of sectors that must be updated after point in-
sertion to a small constant. Efficient sampling, however,
requires that all of these neighborhoods be disjoint. In gen-
eral, if an ordering relation is defined for a set S of sets it is
possible to derive a new set S′ of disjoint sets where[

s′∈S′

s′ =
[
s∈S

s,

by subtracting from each set the union of all members of S
that are less than it in the relation.

We use the generation order of the points as an ordering re-
lation and then define the available neighborhood of a point
p ∈ P as

Np = D(p, 4r)−
[

p′∈P

�
D(p′, 4r), p′ < p
D(p′, 2r), p′ ≥ p

.

The available neighborhood is N =
S

p∈P Np (Figure 6).
Each disjoint Np is computed using boolean disk subtraction.

2.2 Algorithm Details and Complexity

Our algorithm A1 for efficient dart-throwing begins with an
initial set consisting of a single point randomly chosen in
the domain. During sample generation, we maintain an as-
sociative map from candidate points (points with non-empty
available neighborhoods) to their associated neighborhoods.

A candidate point is then randomly chosen (using neigh-
borhood areas as a probability distribution) and a random
point within its neighborhood is added to the point set. The
available neighborhood for the new point is an annulus from
radii 2r to 4r, minus a disk of radius 4r around the nearby
points. The maximum distance required to search for neigh-
bors is 8r since the scalloped region and neighbor disk are
both bounded by 4r. All nearby neighborhoods are then up-
dated by subtracting a disk of radius 2r around the newly
inserted point. This process continues until no candidate
points remain.

The maximum number of scalloped sectors in an available
neighborhood is bounded by a constant. Furthermore, the
Poisson-disk distance condition bounds the number of neigh-
bors within a fixed radius. We can therefore use a uniform
grid to implement the neighbor search and update of the
available neighborhoods in O(1) time. Similarly, picking an
individual scalloped sector within an available neighborhood
and generating a point in that sector can be done in O(1)
time. By using the balanced tree data structure described
in Section 2.1.3, we can choose an available neighborhood
of a point according to its area and update the tree within
O(log N) time, so the time complexity of the entire algo-
rithm is O(N log N) where N is the number of generated
points. The space complexity is O(N).

If we drop the requirement that the available neighborhoods
be sampled according to an area-weighted probability den-
sity function then this new algorithm A2 runs in linear time.
In practice the cost of maintaining the sectors, intersecting
them with disks, and updating data structures dominates
the running time and this does not result in a performance
increase even for large point sets.

Pseudo code for the algorithm is given in Listing 2 and em-
pirical results confirm that the generated point sets exhibits
spectral properties matching those of dart-throwing.

p1

p2
p3

Np1

Np2

Np3

Figure 6: A partial point set and its neighborhoods. The
dashed lines represent scalloped sector boundaries within a
region.

3 Boundary Sampling

In this section, we show how the algorithms described in the
previous section can be modified to avoid the complexity
of sector operations, thereby generating Poisson-disk point
sets in linear time extremely quickly. First, notice that it is
possible to generalize either A1 or A2 by introducing a annu-
lus radius factor ca to vary the outer radius of the annulus
defining the available neighborhoods, where 2 < car ≤ 4.
This modification does not change the structure or asymp-
totic performance of either algorithm, and we will assume
that they are parameterized by ca for the rest of the paper.

With this change, the available neighborhood is defined as

Np = D(p, car)−
[

p′∈P

�
D(p′, car), p′ < p
D(p′, 2r), p′ ≥ p

.

Notice that the overall density of the generated point set
tends roughly to be inversely proportional to ca; this can be
exploited for applications such as randomized object place-
ment, in which it is desirable to tune the density of the point
set. Figure 7 graphs the density of a sample point set as ca

is varied.

A special case arises if ca is taken to be the minimum value
2. In this case, a point’s available neighborhood collapses
to a collection of circular arcs centered at the point. We
call these arcs the available boundary. By directly imple-
menting boundary sampling, we no longer need to represent
the available neighborhood as scalloped regions; instead, the
available boundary is represented as a set of per-point angu-
lar ranges at which a point can be placed on the boundary.

Additionally, if we select the new candidate point at random
instead of according to the length of its available boundary
(similarly to how we obtained the linear algorithm A2), it is
no longer necessary to explicitly store the neighborhoods for
every point already in the set. Once a candidate has been

Listing 2: Algorithm 1

def sample (rad iu s) :

pt = (random () , random ())

Npt = Annulus (pt , 2∗ radius , 4∗ rad iu s)

P = [pt]

C = {pt : Npt}
T = WeightedTree ()

T. i n s e r t (pt , Npt . area)

while C:

choose a random point in the

ava i l a b l e neighborhood

Np = choose (T, random ())

pt = Np. randomPoint ()

P. append (pt)

update the a va i l a b l e neighborhoods

of the new point and i t s neighbors

Npt = Annulus (pt , 2∗ radius , 4∗ rad iu s)

for n in . . . ne ighbor po in t s . . . :

Npt . subt rac tDi s c (n , 4∗ rad iu s)

i f n in C:

C[n] . subt rac tDi s c (pt , 2∗ rad iu s)

i f C[n] . isEmpty () :

C. remove (n)

T. remove (n)

else :

T. update (n , n . area)

i f not Npt . isEmpty () :

C[pt] = Npt

T. i n s e r t (pt , Npt . area)

return P

chosen, its available boundary can be quickly computed by
intersecting the boundary circles of the candidate with its
immediate neighbors. If the candidate point is P and Q is
some neighbor with polar coordinates (d, θ) then the angle
range about P that will be occluded is

(θ − cos−1(
d

4r
), θ + cos−1(

d

4r
)),

(Figure 8).

After the legal ranges have been determined, new points can
be repeatedly placed at available locations on the boundary
until the available boundary is empty. The addition of a new
point only requires subtracting a single angular range from
the candidate’s boundary.

The resulting algorithm A3, which we call boundary sam-
pling, is simple to implement and runs in O(N) time and
space. Pseudo code for the algorithm is given in Listing 3
and an implementation is available from our website. Our
implementation is approximately 200 lines of C++ code and
can generate over 200,000 points per second on a 3 GHz Pen-
tium 4.

4 Results

In this section, we show results from the boundary sampling
algorithm described in Section 3, and compare them to other
methods for computing Poisson-disk distributions.

6500

7000

7500

8000

8500
N

u
m

.
P

o
in

ts
N

u
m

.
P

o
in

ts

2 2.5 3 3.5 4

Annulus Radius FactorAnnulus Radius Factor

A1

A2

A3

Dart Throwing

Figure 7: The effects of varying the outer annulus radius for
an example point set with r = 0.01. The number of points
represent the average for 30 trials. For reference, lines for
boundary sampling (A3) and traditional dart throwing are
included although they do not use the annulus radius factor.

θ

P

Q

2r

|PQ|

2

Figure 8: If P and Q are points in a Poisson-disk set with
radius r then the angle range about P that Q occludes is
easily computed from the geometry of the situation.

The best tiling schemes can generate point sets very ef-
ficiently and with spectra comparable to dart-throwing
or Lloyd’s relaxation, although there will be energy and
anisotropy spikes associated with any tiling. Although we
do not currently have access to an implementation of a so-
phisticated tiling method, we expect that the runtime per-
formance of our algorithm is comparable to that of a tiling
scheme, but our results will be artifact-free and require no
precomputation.

We analyze the properties of two-dimensional noise distri-
butions in the style of McCool and Fiume, who compute
the radial power and anisotropy using the periodogram of a
point set [McCool and Fiume 1992]. The primary charac-
teristic of a blue noise distribution is a low energy annulus
around the central DC spike with energy returning to a rel-
atively constant value outside the annulus. The quality of a
distribution depends on the magnitude of the difference be-
tween the DC spike, the low energy annulus, and the average
energy in the high frequencies. Evaluating the distribution
in terms of radial power also requires analyzing the radial
anisotropy to ensure that the radial power spectrum is an
accurate representation of the pattern along all orientations.

Listing 3: Algorithm 2

def sample (rad iu s) :

pt = (random () , random ())

P = [pt]

C = [pt]

while C:

candidate = C. popRandom()

compute already occluded ang les

ranges = AngularRange (0 , p i ∗2)

for n in . . . ne ighbor po in t s . . . :

dx = n[0]− candidate [0]

dy = n[1]− candidate [1]

d = sq r t (dx∗dx + dy∗dy)

ang le = atan2 (dy , dx)

theta = acos (d/(4∗ rad iu s))

ranges . subt rac t (angle−theta , ang le+theta)

maximize boundary

while ranges :

ang le = ranges . randomAngle ()

pt = (candidate [0] + cos (ang le)∗2∗ radius ,

candidate [1] + s i n (ang le)∗2∗ rad iu s)

ranges . subt rac t ((angle−pi /3 , ang le+pi /3))

P. append (pt)

C. append (pt)

return P

Figure 9 shows the radial power spectra of boundary sam-
pling compared to both dart-throwing and linearized dart-
throwing. The graph shows that neither linearized sampling
nor boundary sampling significantly change the blue noise
properties of the resulting distributions.

Figure 10 displays averaged periodograms for 100 point sets
having a radius of 0.02, resulting in approximately 2000
points each. The boundary sampling periodogram shows
that the higher point density results in a greater magnitude
difference between the low energy annulus and the peak tran-
sition energy. The periodograms also show that the method
of Ostromoukhov et al. is significantly less uniform than
that of our method. They address this issue by precom-
puting relaxation vectors, but these precomputed tables are
only sufficient to improve the blue noise properties of small
local regions of the generated distribution. As the number of
points grows, the lookup table is no longer able to compen-
sate for the inherent structure of the Penrose tiling. Because
we are interested in using these point sets for sampling the
image plane in high quality image synthesis, hundreds of mil-
lions of points will likely be required, and the lookup tables
would become quite large.

Timing results for several methods of computing Poisson-
disk distributions are shown in Table 1. For methods that
require specification of a radius, one is chosen so that the
number of generated points is approximately equal to the
given value of N , and the time is computed as N times the
average number of points per second. The times for Ostro-
moukhov’s method were generated with code provided by
the authors of that paper, although they state that the pro-
vided code is not fully optimized. The results show that
although the linear approximation of dart-throwing (A2) is
more efficient than true dart-throwing (A1) for large num-
bers of points, the computational overhead of sector subtrac-

(a) A1: Dart-throwing (b) Best Candidate (c) Ostromoukhov et al. (d) A3: Boundary sampling

Figure 10: Averaged periodograms for several sampling methods. Boundary sampling generates the best blue noise spectrum
due to its extremely regular and dense sampling of the plane. Ostromoukhov et al.’s results are noisier because their technique
does not involve randomness, so averaging multiple runs does not provide smooth periodograms.

A
v
e
ra

g
e

R
a
d

ia
l

P
o
w

e
r

(d
B

)
A

v
e
ra

g
e

R
a
d

ia
l

P
o
w

e
r

(d
B

)

Radial Frequency at Center of AnnulusRadial Frequency at Center of Annulus

A1

A2

A3

Figure 9: The blue noise properties of the distribution are
preserved even if only the boundary of the available neigh-
borhood is sampled. Sampling without regard to the prob-
ability density of available neighborhoods also preserves the
blue noise properties.

N 1000 10000 100000

Best Candidate 1.454 157.014 6.084h
Dart-throwing (A1) 0.573 5.905 141.901
O(N) Dart-throwing (A2) 0.667 6.442 61.186
Ostromoukhov et al. 0.015 0.095 1.546
Boundary Sampling (A3) 0.001 .058 0.496

Table 1: Timing results for generating point sets of varying
sizes. Times are in seconds except where otherwise noted.

tion still adds significant overhead compared to boundary
sampling (A3). For small numbers of points, A2 may per-
form more disk subtractions than A1, making it less efficient
than its O(N log N) counterpart.

5 Conclusion

We have described a new technique for efficiently imple-
menting the dart-throwing algorithm for the generation of
Poisson-disk point sets, based on the manipulation of dis-
joint unions of scalloped sectors. This algorithm runs in
O(N log N) time and motivates a new algorithm for gener-
ating 2D Poisson-disk point sets that runs in O(N) time and
space and produces excellent blue noise patterns.

References

Cohen, M. F., Shade, J., Hiller, S., and Deussen, O.
2003. Wang tiles for image and texture generation. ACM
Transactions on Graphics 22, 3, 287–294.

Cook, R. L. 1986. Stochastic sampling in computer graph-
ics. ACM Transactions on Graphics 5, 1, 51–72.

Dippé, M. A. Z., and Wold, E. H. 1985. Antialiasing
through stochastic sampling. In Computer Graphics (Pro-
ceedings of SIGGRAPH 85), ACM Press, New York, NY,
USA, 69–78.

Hiller, S., Deussen, O., and Kaufmann, A. 2001. Tiled
blue noise samples. In VMV ’01: Proceedings of the Vision
Modeling and Visualization Conference 2001, Aka GmbH,
265–272.

Jones, T. 2006. Efficient generation of poisson-disk sam-
pling patterns. Journal of Graphics Tools, to appear .

Kollig, T., and Keller, A. 2002. Efficient multidimen-
sional sampling. Computer Graphics Forum 21, 3, 557–
563.

Kollig, T., and Keller, A. 2003. Efficient illumination
by high dynamic range images. Rendering Techniques,
45–51.

Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski,
D. 2006. Recursive wang tiles for real-time blue noise.
ACM Transactions on Graphics 25, 3.

Lagae, A., and Dutré, P. 2005. A procedural object
distribution function. ACM Transactions on Graphics 24,
4, 1442–1461.

McCool, M., and Fiume, E. 1992. Hierarchical poisson
disk sampling distributions. In Proceedings of the confer-
ence on Graphics interface ’92, Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 94–105.

Mitchell, D. P. 1991. Spectrally optimal sampling for dis-
tribution ray tracing. In Computer Graphics (Proceedings
of ACM SIGGRAPH 91), ACM Press, New York, NY,
USA, 157–164.

Ostromoukhov, V., Donohue, C., and Jodoin, P.-M.
2004. Fast hierarchical importance sampling with blue
noise properties. ACM Transactions on Graphics 23, 3,
488–495.

Shirley, P. 1991. Discrepancy as a quality measure for
sample distributions. In Proceedings of Eurographics, 183–
194.

Ulichney, R. A. 1988. Dithering with blue noise. In Proc.
of the IEEE 76, 56–79.

Yellot, J. I. 1983. Spectral consequences of photoreceptor
sampling in the rhesus retina. Science 221 , 382–385.

