Distributed Transaction Processing on an
Ordering Network

Rashmi Srinrasa, Craig Wiams, Paul E Reynolds Jr
Department of Computer Science
University of Mrginia, Charlottesville
{rashmi, craigw reynolds}@virginia.edu

Technical Report CS-2001-08
February 2001

Abstract

Theincreasingdemandfor high throughputsn transactiorprocessingsystemdeadsto high
degreesof transactionconcurreng and hencehigh datacontention.The corventional dynamic
two-phasdocking (2PL) concurreng control (CC) techniquecausesystenthrashingat high data
contentionlevels, restrictingtransactiorthroughput.Optimistic concurreng control (OCC)is an
alternatve stratgy, but OCC techniquessuffer from wasted resourcescausedby repeated
transaction restarts. We propose a new technique, ORDER, that enlists the aid of the
interconnectiometwork in a distributed databaseystemin orderto coordinatetransactionsThe
network in anORDERsystemprovidestotal orderingof messageat alow cost,enablingefficient
CC. We comparethe performanceof dynamic2PL and ORDER, usingboth an analyticalmodel
and a simulation. Unlike previously-proposedmodelsfor 2PL, our analytical model predicts
performanceaccurately even under high data contention. We study the effects of various
parameter®n performanceand demonstratéhat ORDER outperformsdynamic2PL for a wide
range of vorkloads.

1 Introduction

Concurreng control (CC) is an integral part of a databasesystem,and is the actwity of
coordinatingthe actionsof transactionshatoperatan parallel,accesshareddata,andpotentially
interferewith one another[BeHG87]. Therearetwo costsassociatedvith CC: lost opportunity
costandrestartcost. Theformercostis a significantfactorin conserative methodswhichinvolve
waiting to ensurethat there will be no conflict or interference.Someof this waiting may be
unnecessaryconstituting a lost opportunity cost. The latter cost is significantin aggressie
methodswhich optimistically executetransactionshasedon the assumptiorthattherewill be no
conflict. If a conflict doesarise,sometransactionsnustbe abortedandrestartedthusincurringa
restartcost. A scalableCC techniquethat hasboth a low lost opportunitycostanda low restart
costis a much-sought-aftegoal. Dynamic two-phaselocking (2PL) is the CC techniquethat
currentdatabasesise almostexclusively [Date95,GrRe92,BeHG87]. A dynamic 2PL system
thrasheathigh datacontentionlevels, restrictingperformanceo levelsinconsistentwith available
resources.

This papermakestwo contritutions: a new CC technigue— ORDER,anda new analytical
modelfor 2PL. ORDER usesthe interconnectiometwork in a distributed databasesan aid to

concurrency control. The network can be a powerful coordination mechanism if it provides the
property of total ordering at alow cost. We compare the performance of 2PL and ORDER using
both an analytical model and a simulation, and demonstrate that ORDER outperforms dynamic
2PL for a wide range of workloads. Unlike previously-proposed models for 2PL, our analytical
model continues to predict performance accurately even at high data contention levels. We also
study the performance effects of various parameters like communication delay, transaction size,
transaction composition and number of sites.

We consider a distributed {ansaction
database management system with a 5
collection of sitesinterconnected by a transaction
network [BeHG87]. Each site runs

. transaction
one or more of the following software ' ey
modules: a transaction manager ansaction
(TM), a data manager (DM) and a : network

concurrency control scheduler (CCS).
A client runs only the TM module, transaction

and a server runs only the DM and ; ccs| pm RET
CCS modules. TMs supervise transaction

interactions between users and the L 1 | I
DDBMS, CCSs coordinate clients servers
transactions, and DMs manage the Figure 1. System Architecture

actual database. The network is assumed to be perfectly reliable and point-to-point FIFO. Figure 1
shows the system architecture. The database is a collection of data items or objects, and each
object is managed by a single DM. Users interact with the DDBMS by executing transactions,
which are on-line queries or application programs. Transactions communicate with TMs, TMs
communicate with CCSs and DMs, and DMs manage data. In order to execute a transaction, a
client issues read, predeclare, write, commit, lock-release and abort operations. A server responds
with read-response and |ock-set operations.

2 Related Work
2.1 Concurrency Control Techniques

Traditionally, CC techniques have been classified into four categories (locking, timestamp-
ordering, optimistic and hybrid). In two-phase locking (2PL) [EGLT76], a transaction obtains
locks in a growing phase and releases locks in a shrinking phase. In the static version of 2PL, a
transaction obtains al of itslocks in the beginning, while in dynamic 2PL, a transaction obtains a
lock only when it needs to access the corresponding object. A 2PL scheduler requires a strategy to
prevent, avoid or detect-and-break deadlocks. Some strategies are waits-for-graphs [Holt72,
KiCo74], preordering and predeclaration of locks [BeGo81] and timestamp-priority-based restarts
[RoSL78]. Variations on the basic 2PL technique include primary copy 2PL [Ston79], voting 2PL
[Thom79], multiversion 2PL [BeHG87, StRo81], centralized 2PL [AlDar6, Garc79], atruistic
locking [SaGS94] and increment/decrement locks [GrRe92].

In timestamp-ordering techniques, a unique timestamp is assigned to each transaction, and
conflicting transaction operations are ordered according to their timestamps. Different TO-based
CC techniques are basic timestamp ordering (BTO) [ShMi77a, ShMi77b], conservative timestamp
ordering (CTO) [BeGo80] and multiversion timestamp-ordering (MVTO) [Reed78]. Variations on
the basic TO techniques include Thomas Write Rule [Thom79] and transaction classes [BGRP78,
BeSR80].

Optimistic (OPT) schedulers schedule each operation as soon as it is received. When a
transaction is ready to commit, al involved OPT schedulers check whether committing the

transaction will violate serializability, and abort the transaction if necessary. Such schedulers are
also called certifiers [Bada79, Casa79, BaHR80].

Hybrid CC techniques include 2PL-TO combinations [BeGo81], distributed optimistic 2PL
(O2PL) [CaLi9l], optimistic with dummy locks (ODL) [HaDo91], hybrid optimistic CC and
broadcast optimistic CC [YuDi92], and dynamic locking with no waiting (DLNW) [RyTh90b].
Current databases use dynamic 2PL and its variants almost exclusively [Date95, GrRe92,
BeHG87].

2.2 Analytical Models

There have been numerous analytical studies of the performance of CC schemes. An
approximate mean value analysis method is used in [TaGS85] to analyze the performance of 2PL
in a centralized database system. A similar approximate mean value analysis method is used to
analyze 2PL, OPT and severa hybrid concurrency control schemes in centralized databases in
[YuDi92, YuDi93, YuDL93]. These analyses combine a data contention model with a conventional
gueueing model for hardware resource contention [Lave83] and iterate between the two models.
Approximate mean value analysis and the iterative method are also used in [RyTh90a, RyTh90b,
Thom93, Thom98, ThRy91] in order to analyze 2PL and OPT in a centralized database system and
estimate the lock contention level at which dynamic 2PL starts thrashing. Gray uses approximate
mean value analysis to estimate wait probability and deadlock rate in afully-replicated distributed
database, but assumes that replicate updates are performed sequentially [Gray96]. In [CDIY 90,
CiDY92], approximate mean value analysis is used to estimate the probability of conflict and
response time of transactions using the OPT CC technique in a restricted form of distributed
database: remote transactions execute entirely at a central site that replicates all data. In yet
another form of distributed database, class 1 transactions use 2PL and execute entirely at the local
primary-copy site; class 2 transactions use OPT and access data that is at a single known remote
site [CiDY90]. Analytical models for 2PL in a distributed database are presented in [JeKT88,
ShWao97], but the models do not permit simultaneous processing of a transaction at multiple sites.
Basic timestamp ordering and multiversion timestamp ordering techniques have been analyzed in
[Li87, ReTH96, Sing9la, Sing91b].

2.3 Concurrency Control based on Ordering

Database concurrency control based on totally-ordered-multicast has been proposed [NeT093,
ScRag6], but never implemented or simulated, and nothing is known about its performance. In
[NeTo093], a communication primitive called a publication makes al recipients deliver a message
at the same logical time called the publication time. A publication can be implemented in the
following way: the sender broadcasts a message and solicits proposed publication times from all
processors. The sender then picks the maximum proposed time and broadcasts it to everyone.
Database concurrency control is proposed as a possible application, where processors publish their
lock-requests and lock-rel eases. Since the lock-requests and lock-releases are totally ordered, there
can be no deadlock.

In [ScRa96], a concurrency control technique based on totally-ordered-multicast and group
communication [BiJo86] is proposed. In the proposed system, al sites at which a data item is
replicated are members of the group corresponding to that data item. A transaction sends
operations in a totally-ordered-multicast to all groups corresponding to the data items accessed.
Thetotal ordering of operations across groups ensures seriaizability of transactions. The proposed
system does not address the issue of transactions that have dependencies among operations, or
transactions that issue unilateral aborts. The paper does not provide an implementation for the
property of total ordering of messages across groups, but refers to Totem [MMAB96] as a system
that provides such a property. Finally, the paper does not address performance.

3 Ordering Network Aided CC

The total ordering propertyguaranteeshat messagesare deliveredin the sameorder at all
destinationsThis orderingguaranteecan be exploited by a distributed databasdo ensurethat
transactionsreviewedin thesameorderatall destinationsA network thatprovidestotal ordering
at a lav cost can be used as the basis fcieht concurreng control of transactions.

3.1 ORDER Algorithm

The ORDER CC techniqueis basedon the total orderingproperty A network that provides
total ordering at a low costis the isotach network [ReWW97, Will93]. An isotach network
maintaing sotach logical time, anextensionof Lamportslogicaltime [Lamp78].Isotachtimesare
assignedo send anddeliver eventsassociateavith a messageandarelexicographicallyordered
n-tuplesof integers,of whichthefirst components calledthe pulse. The othercomponentsrepid
and rank, and act as tie-brealers among events occurring in the samepulse. The pid is the
identifier of the sitethatissuedthe messageandrank = r if the messagés the rth messagéssued
by that site. In anisotachsystema site cancontrolthe logical time at which the messagethatit
sends are delered, by controlling the logical time at which it sends messages.

An implementationof an isotachnetwork is as follows. Every network switch hasa token manager
attachedo oneof its ports,and every hosthasa switch interface unit (SIU) connectingit to the nearest
switch. Isotachlogical time is implementedthroughthe exchangeof specialmessagesalled tokens by
neighbouringtoken managersand SlUs. A token indicatesthat the senderhasadwancedits local logical
clock. The systemcanachieve total orderingof message# the destinationSIUsreorderreceved messages
accordingo pulse, pid andrank. Theisotachnetwork guaranteethata messagés recevedatits destination
SIU before the receiptof the token endingthe pulsein which the messageshould be delivered. Token
managersare critical to the scalability of an isotachnetwork. Without them, every SIU would have to
exchangeokenswith every otherSIU, whichis clearlyimpracticalfor large networks.An isotachnetwork
has been simulated in software [Rege97] and implementedas a small hardware prototype
[LaMyO0Q]. Williams present&methodof executingatomicactionsin anorderedandsequentially-
consistentmanner[Will93]. Other methodsfor guaranteeingotal orderinginclude ISIS/Horus
[BiJo86], Totem [MMAB96], TransisfjoMa9q andpublications [NeT093].

Given a fastand scalableimplementatiorof the total orderingguaranteén the network, we
canbuild anefficient CC techniqueThe costof usinganorderingmechanisntanbedividedinto
two componentsthe latency penalty (the additionaldelaybeforea messagés receved dueto the
ordering mechanism)and the inherent ordering delay (the additional delay before a receved
messagéecomesdeliverabledue to the needto wait for logically precedingmessages)On a
prototypeisotachsystemoptimizedfor large messageghe latengy penaltyis a factorof 2.31to
1.43 (for large messagesimesthat of a corventionalnetwork [LaMy00]. The inherentordering
delayis insignificanton the prototype but couldbesignificantif thevarianceof network lateng is
high. If the lateny penalty and inherent ordering delay are low, ORDER can potentially
outperform a corentional CC technique l&2PL.

An ORDER systembasedon an isotach network, and derived from the isotachisochron
schedulingtechniqueWill93] is presentedelon. A TM startsthe executionof a transactiorby
issuingall the reads and predeclares of the transactionas a single atomic action. The network
delivers the atomic action in a total order using the isotachtechniquefor implementingtotal
ordering describedabove. Figure2 shavs the algorithms executedby various modulesin an
ORDER system.

TM Al gorithm

event: receive op fromtransaction;
assert: op is a read/predeclare/wite/commt/abort;
if op == read/predeclare

if op == last read/predeclare of transaction
mark op as | ast_of _atom c_acti on;

send op to network;
else if

op == wite store op locally;
else if op == conmit/abort
| ook

up stored wites for the transaction;
generate a conm t/abort operation for each
send comit/abort operations to network;
event: receive op from network;
assert: op is a read-response;

forward op to transaction;
Net work Al gorithm

wite;

event: receive op fromTM
assert: op is a read/predeclare/conmt/abort;
if op == read/predeclare

if op is not marked | ast_of _atom c_action
save op along with other operations fromthat transaction;
el se

collect all saved operations fromthat transaction;
assign a tinmestanp to the atonic action;
add tinestanp to all operations in the atom c action;

deliver operations (in order) to destination CCS nodul es;
else if op == conmit/abort
deliver operations (w thout ordering) to destination CCS nodul es;
event: receive op from CCS;
assert: op is a read-response;
deliver op (wthout

ordering) to TM nodul e;
CCS Al gorithm
event: receive op for object x from network;
assert: op is a read/predeclare/commt/abort;

assert: reads and predeclares arrive totally ordered;
| et queue = operation queue for object x;
if op == read

if queue is enpty send op to DM

else if operation at tail(queue) is a comit

send read-response with commt val ue;
el se append op to queue;

else if op == predeclare
append op to queue;
else if op == abort

l et pos = position of corresponding predeclare on queue;
del ete the predeclare at pos;

if pos == head(queue)

whil e operation at head(queue) is a read/conmt
send operation at head(queue) to DM
el se

let src_op = first conmt/predecl are ahead of pos;
if src_op == conmit
whil e operation at pos(queue) == read
send read-response with value of src_op;

del et e operation at pos(queue);

else if op == conmit

l et pos = position of corresponding predeclare on queue;
repl ace predeclare with op;
if pos == head(queue)

whil e operation at head(queue) is a read/conmt
send operation at head(queue) to DM
el se

pos = pos + 1;

whil e operation at pos(queue) is a read
send read-response with val ue of op;

del et e operation at pos(queue);
event: receive op fromDM assert: op is a read-response;
send op to network;

Figure 2. The ORDER System Algorithms

Eachsener buffersreads andpredeclaresin queuesorrespondingo the objectaccessedand
immediately executesa read if it is at the headof a queue.As a transactionreceves read
responsest issueswrites correspondingo the previously-issuedoredeclares. The TM doesnot
sendthesewrites acrossthe network to the destinationsandstoresthemlocally instead Whena
transactiorhasreceved response$o all of its reads and hasissuedall of its writes, it sendsout
commits (or abortsif it decidedo performaunilateralabort). The TM sendscommits (carryingthe
valuesof the correspondingnrites) and aborts as regular messagesatherthan totally-ordered
messagesThe network delivers thesecommits or aborts as quickly asit can,without ordering
them with respectto other messagesOn receipt of a commit, the destination finds the
correspondingredeclare on its queuereplaceghe predeclare with the commit, andexecutesary
commits andreads that arereadyto be executed.On receiptof an abort, a destinationfinds the
correspondingpredeclare on a queue deleteghe predeclare, andexecutesany commits andreads
thatarereadyto be executed A transactioris completewhenall of its operationhave beeneither
committed or aborted.

3.2 Qualitative Comparison Between ORDER and Dynamic 2PL

An importantdifferencebetweenORDER and dynamic2PL is thatin 2PL, a read lock is
acquiredas a resultof a read operationandis held until the commit hasbeenreceved by the
sener, whereasn ORDER,aread operationdoesnot resultin lock acquisition.2PLandORDER
alsodiffer with respecto deadlocksSincedeadlockcannotoccurin ORDER,deadlockdetection
is unnecessaryvhile senersin 2PL incur deadlockdetectioncosts.Moreover, whena deadlock
occursin 2PL, a transactiormustbe abortedandrestarteda costnever incurredin ORDER.In
2PL, the senershave to sendexplicit lock-set operationgo the clientin responsdo writes. The
clientin ORDERneedsno suchnotification.On commit, a clientin 2PL mustsendlock-rel eases
to the senersin orderto releaseaheread locks. ORDERdoesnot incur this costsinceit doesnot
useread locks.

ORDERincurstwo that2PL doesnot— thelateny penaltyandtheinherentorderingdelay
Moreover, atransactioris forcedto predeclarall of its accesseandacquireall its write locksin
the beginning.2PL doesnot requirepredeclarationandlocks areacquiredon demandin orderto
reveal the influenceof the above trade-ofs on overall performancewe designedan analytical
model and a simulation, and studied the performanceof 2PL and ORDER under different
workloads and system parameters.

4 Analytical Model

We presenananalyticalmodelof 2PL andORDERIn afully distributeddatabaseOur model
usesaniterative methodsimilarto somepreviousones[YuDi92,CDIY90, TaGS85] However, our
model capturesthe high-data-contentionscenario accurately Our model combinesa data
contentionmodel and a queueingmodel of hardware contention,and yields an expressionfor
meantransactiorresponsgime. The probability of dataconflictfor ary transactiordepend®nthe
CCtechnigueandthetransactiorresponseime, whichin turn depend®n the conflict probability,
For example,if lock contentionprobability increasestransactiorresponsdime increaseslueto
additionallock waits. A longertransactiorresponsdime leadsto a longerlock holdingtime, and
henceto a higher lock contention probability Our iteratve approachcapturesthe above
dependeng

4.1 Assumptions

We assumean open system model with Poissontransactionarrivals. We assumethat
transactioroperationsarrive at eachobjectasa Poissormprocessandthataccessontentionevents
for atransactiorareindependentWe modelthe network latengy from anexponentialdistribution,
andassumesufiicient /O bandwidthto enablemodellingthe I/O senerasaninfinite senerwith a
load-independergervicetime. We assumehatall transactionsreof the samesize,andthatthere
arenoinherentaborts Finally, we assuméhataccesset objectsaredistributeduniformly among
all objects. Vith a non-uniform distribtion, we would get higher contention atwer loads.

In orderto make theanalysidractable we make afew simplifying assumptionabout2PL. All
locks are assumedo be requestedat the start of the transactionand held until the end of the
transactionasin static2PL. We assuméhatdeadlocksandrestartsdon‘toccur andthatall locks
areexclusive. The latter assumptioris relaxed in a later section.For both 2PL and ORDER, we
assumehat the operationor lock requestthat spendghe maximumamountof time waiting in a
gueueatthe CCSmoduleis the onewhoseresponsearrivesthe latestat the client thatinitiatedthe
transactionln the analyticalmodelfor ORDER,we assumehat a read is satisfiedonly after it
reachedhe headof the CCSqueueandis processedby the DM. Finally, we ignorethe inherent
orderingdelayin the analysisof ORDER.We do not make thesesimplifying assumptionsn our
simulation. Bblel shavs the parameters we use in our model.

Number of clients C Number of serers
Number of objects in database D Number of accesses by transaction

Probability of read Pr Client MIPS Mc
Sener MIPS Mg Initial processing (instructions) IinPL

Computation peread (instructions) lcomp TM overhead per operation (instructions)| Iy
Network overhead per message (instructions) Iy I/O overhead per access (instructions) o
CCS werhead per access (instructions) lce 1/0O delay per access (seconds) Do

Avg. netvork lateny per message (seconds) Dyw Mean transaction axal rate per client (tps) A

Table 1: Analytical Model Rrrameters
4.2 Analytical Model of 2PL

Thetotal responsdime of atransactioris modelledas:R = Rgxgc + Rcont WhereReonT IS
the longesttime spentby ary lock requesbf the transactionwaiting for locks, andRgxgc is the
executiontime of the transactiorexcluding this longestlock-wait-time. Rexgc modelshardware
resource contention, and is estimatedusing queueing models, while Rcont Models data
contention.

421 DataContention RconT

Transactionarrive at eachof the C clientsatrateA. EachtransactiormakesK lock requests,
andthe requestsare uniformly distributed over the entire databas®f D objects.We assumdock
requestsarriving at an objectform a Poissonprocesswith meanA*C*K/D, and all locks are
exclusive. The K lock contentionvents for a single transaction are independent of one another

Let the meanlock-holding time of an object be T. Since we assumethat all locks are
requesteatthestartof thetransactionT is approximatelyequalto R’, whereR’ is the portionof
theresponséime of atransactiorwhenthetransactions holdingatleastonelock. We will compute
R’ in thenext section.Let T bethemeanremainingtime thatalock requeswill have to wait for the
current lock-holder to release the loclg ¥R’/ 2 [YDRI85].

The probability of contention for a lock request is the lock utilizgpion

p = (arrival rate of lock requests at an object) / (service rate of lock requests at that object)
SA*C*KID)/ (/TR SA* K* TH* C/D et Q)
In the following discussion, we use the term gqueue length at an object to mean the number of
lock requests waiting to be processed at that object, plus the number of lock requests being
processed at that object. At any object, the probability that the queue length < x isequal to (1 - p¥).
L et the probability that a transaction will not have to wait for any of its K locks be P,
Probability (queue length < 1 at all K objects) = (1 - pY)K = P,
Probability (queue length < x at all K objects) = (1 - p¥)X
Each of the K lock requests of a transaction has to wait before the lock is free and can be
granted to the transaction. Our aim is to find the longest amount of time that one of these lock
requests will have to wait. This longest wait time corresponds to the longest queue length among
the queues at the K objects. Let the probability (longest queue length = 1) be P, the probability
(longest queue length = 2) be P,, and so on.
P, = Prob (queue length < 2 at all K objects) - Prob (queue length < 1 at all K objects)
=(L-p)<-(@2-p)
P, = Prob (queue length < x+1 at all K objects) - Prob (queue length < x at all K objects)
— (1 _ pX+1)K _ (l _ pX)K
Let (Py+ Py + P, + ... + P,) be approximately equal to 1. Then the data contention wait for a
transaction is approximately
Recont={Po*0} +{P* TR} + {Po*(TR+1*TR)} + ... + {P*(TRH(N-1)*TH)} oo (2
Previous models have assumed that the queue length at any object is never greater than one.
With this assumption, the effect of transaction t; waiting at object o, for transaction t, while
transaction t, is waiting at a different object o, for transaction tg, is captured; but the effect of t;
waiting at o for t,, while t, is waiting at the same object 0, for tg, is not captured. Since queue
lengths increase as data contention increases, traditional analytical models are inadequate to model
RconT a high data contention levels. Our analysis, on the other hand, is able to capture response
time at high data contention levels.

4.2.2 Hardware Resource Contention Rgxec

We first compute the utilizations at the client and the servers. In order to execute a transaction,
the number of instructions to be executed at the client is
le = hinpe + K*(IrmtInw) + K* (lrmtinw) + K*Pr*lcompt K* (Im+inw)
where Iyp accounts for the initial processing; the three K*(I+p+Inw) terms account for the
Transaction Manager and network overhead on lock requests, lock responses and commits/aborts
respectively; and K* Pr* | .omp @ccounts for the computation in response to the reads.
Arrival rate at the client = A transactions per second
Servicerate at the client = . = (M / 1) * 10° transactions per second
Client Utilizationp.=A/pe=A * 1)/ (M * 106)
Processing time at the client = R = (V) / (1-pc) seconds

In order to execute atransaction, the total number of instructions executed at the serversis
ls = 3*K*(Inwtlco) +K*lio
where 3*K* (Iywtlcc) accounts for the network and CCS module overhead of processing lock
requests, responses and commits/aborts; and K*1,5 accounts for the I/O overhead of database
reads and writes.
Arrival rate at aserver = A * C/ Stransactions per second
Servicerate at a server = g = (Mg/ 1) * 10° transactions per second
Server Utilization pg= (A * C/S) /pg= (A * C/S* 1g) / (Mg * 106)
Processing time at a server to do atransaction’s worth of work = Rg, = (1/Hg) / (1-pg)

There are two phases in the execution of a transaction. In the first phase, the client sends lock
regquests to the servers, the servers process the lock requests and send lock responses, and the client

performs transaction computation. A read lock request results in a database access at the server,
while awrite lock request does not. Therefore, we assume that the response time in the first phase
is dominated by the response time of the read lock requests. We also assume that the first phase
response time is dominated by the lock request | that has to wait for the maximum amount of time
on a CCS module gueue. The response time for the transaction in thisfirst phase is given by
Rpraser= Rep1 + (network traversal time of | + server-and-disk processing time of | + network
traversal time of |’s response + client processing time of I's response) + Reopmp; Where
Rcir = Rel * [hinee + K*¥(IemH naw)]/1 ¢ (initial processing and sending of lock requests); and
Rcomp = ReL * (K*Pr*lcomp)/1 (transaction computation in response to reads).
Rppaser= Reia + Daw + Rsy* (Inwtlec)/ls + Roont + Rsv*liof/ls + Dio + Rey* (Iectinw)/ls
+ Dnw + Rel * (Inwttm)/le + Recomp
Rpuaser has a data contention component (Rcont) and a hardware contention component
R pHAsEl-
R'praser=Rera + Dayw + Rsy* (Inwtle)/ls + Rsv*liofls + Dio + Rey™* (Iectinw)/ls
+Dnw + ReL ™ (Inwtrm)/le + Recomp
In the second phase of execution of a transaction, the client sends commits to the servers. A
committed write results in a database access at the server, while a committed read does not. We
assume that the response time in the second phase is dominated by the response time of the
committed writes. The response time for the transaction in the second phase is given by
Rprase2= Rerz + Dyw* (V1 + 12+ ... + 1K) + Rgy* (Inwtlcc)/ls + Dio + Rsy* 10/l where
Rolz = Rl * K¥(IlymtInw)/ ¢ (sending of commits and |lock-releases), and
Daw* (V1 + 12 + ... + UK) = network traversal time of the slowest of the K operations.
The hardware component of the response time of a transaction is Rexgc = R praser +
Rpnase2, and can be computed directly from the parameters to the analytical model.

423 Total Response TimeR

The hardware contention component Rgx gc iS computed as described in the previous section.
The data contention component Roont depends on the mean lock-holding time T and the mean
remaining lock-holding time Tr. Recall that Ty is approximately equal to R’, where R’ is the
portion of the response time of a transaction when the transaction is holding at least one lock.

R’ = R - [portion of response time when transaction is holding no locks]
=R- [RCL1+ DNW+ RS\/*(INW+ICC+I|O)/IS+ D|O] .. (3)
We use an iterative model in order to compute mean transaction response time R. We start with an
initial value of zero for RoonT-
Step 1: R = Rexec + Reont
Step 2: Compute R’ according to equation 3.
Step3: Ty =R’
Step4: Tr=R /2
Step 5: Compute p according to equation 1. If p >= 1.0, stop; the system is unstable.
Step 6: Compute Roon according to equation 2.
Step 7: If RconT has not changed by a significant amount, stop; else go to Step 1.

The iterative process continues until the computation of Rcont has converged; that is, until
the difference between successive-iteration values of Roont IS Very small. The mean transaction
response timeis then computed as R = Rexec + RconT-

424 Modeling Shared and Exclusive L ocks

Allowing shared locksin addition to exclusive locks changes the behaviour of the lock-request
gueues at the CCS modules in the servers. Since multiple transactions can hold shared locks (read
locks) simultaneoudly, alock-request queue behaves as if contiguous reads are compressed into a
single read. Consequently, effective queue lengths at the servers can be smaller than actual queue
lengths. If the actual queue length is m, the expected number of reads on the queueis Prm, and the

expectednumber of writes is (1-Pg)m. In order to make our model tractable,we make the
following simplifying assumptionlf Pg > 0.5, thenthe contiguousread sequenceare uniformly
spacedamongthewrites. And if Pg <= 0.5,thenthewrites areuniformly spacecamongthereads.
With this assumption, if the actual queue lengtim,ishe corresponding feictive queue length is
Qm' = 2*(1-Pr)*m, if PR > 0.5;
Qm’ =m, if Pg <= 0.5.

Therefore, equation 2 is replaced with
Reont={Pg*0} + {P 1*TR} + {P X (TRHQ-1)*T)} + {P3*(TRHQs-1)* T)} + ..

F P (T RHE(QR L) T)} coeeiieeeeeiii et (2)....

4.3 Analytical Model of ORDER

As in the 2PL model, the total responsdime of a transactionis modelledas the sumof a
hardwareresourceontentioncomponenReyec andadatacontentioncomponenReont ReconT
is the longesttime spentby ary operationof the transactionn the CCS module,waiting to be
processed.

431 DataContention ReonT

We assumehatoperationsarriving at an objectform a Poissorprocessvith meanA*C*K/D.
Let the mean“object-holdingtime” be T. The object-holdingtime of an objectis the amountof
time for which an operationeffectively “locks” the object,disalloving accessy otheroperations.
In the ORDERAalgorithm,the object-holdingtime of aread is zero,becausaread is immediately
executedwhenit reacheghe headof the CCS queue.On the other hand,a predeclare hasan
object-holdingtime of R’, becausét holdsthe objectfrom the startof the transactioruntil the
correspondingommittedwrite arrives. The objectutilization in the ORDER systemdiffers from
the 2PL lock utilization (equation 1) as falle.

p = (arrival rate of predeclares at an object) / (service rate of predeclares at that object)
SA*C*K*(A-PR)/D)/(A/Ty) =A*K*(1-Pr)*TH*C/Duceereeeieeeeee @)

Thedatacontentionis derivedin the sameway asin 84.2.1,exceptthatthe termqueue length
at an object now refersto the numberof predeclarest that object. Rcon IS Still describedby
equation 2.

432 Hardware Resource Contention Rexgc

In the ORDERalgorithm,the numberof instructionsto be executedat the client differsfrom
thatin 2PL, becauseof threereasonsthe sener doesnot sendlock-set messageso the client;
writes arestoredlocally; andthe client doesnot sendread lock-releases to the seners.In orderto
executea transactionthe numberof instructionsto be executedat the clientin anORDERsystem
is
le = Iinp + K*(Irmtinw) + KPR (ItmtInw) + K*(1-PR)*Itm + K*PR*l compt K*(1-
PR*(I Tm+Inw)

where |,yp. accountsfor the initial processing;K*(I rpy+Inw) accountsfor the TM and
network overheadon reads andpredeclares; K*P g*(1 1 +Inw) accountdor the TM andnetwork
overhead on read-responses; K*(1-Pg)*ltyy accounts for the TM overhead on writes;
K*PRr*l comp @ccountsfor the computationin responseo the reads; and K*(1-Pr)*(I rp+Inw)
accounts for the TM and netwk overhead orcommits.

In contrastto a 2PL systemthe senersin an ORDER systemdo not sendlock-set messages,
nor do they receve and processread lock-releases. In orderto executea transactionthe total
number of instructionsxecuted at the seevs is
ls = K*(Inwtlcd + KPR (Inwtled) + KX(1-Pr)*(Inwtlco) + K¥ o
whereK*(l \w+!cc) accountdor the network andCCSmoduleoverheadf processingeads and
predeclares; K*Pg*(I ywtlco) accountdor the network andCCSmoduleoverheadof processing
read-responses; K*(1-Pr)*(I ywtlco) accountsfor the network and CCS module overheadof

10

processingcommits; and K* | accountsfor the I/O overheadin performingthe databaseeads
andwrites.

RpHase1 @and Rpyaseoarecomputedin the samemannerasin 84.2.2,exceptthatthe Re| »
componenbf Rpyasezchangedo includethe local storageof writes andexcludethe sendingof
read lock-releases:

Rclo = RoL * {K¥(1-PR)*Itm + K¥(1-PRr)*(Itm+Inw)/Ic} (storageof writes and sendingof
commits)

The averagenetwork latengy Dyyy in an ORDER systemwill probablybe higher thanthe
Dyw Of the corventional network usedby 2PL, becausehe network in an ORDER systemis
doingextrawork in orderto deliver messages order The severity of this lateny penaltyaffects
the diference in performance between 2PL and ORDER.

4.4 Analytical Model of Best Case

We usethe No Data Contention(NDC) algorithm asthe bestcasealgorithmthat assumes
zero ordering cost and no data conflicts. NDC allows us to isolate the effects of hardware
contentionfrom datacontentionandorderingcost.Note thatNDC guarantees correctexecution
only in the absencef datacontention.The modelof NDC is the sameasthatof ORDER, except
that the data contention component of response tiggyR is alvays zero.

5 Simulation

We simulated the NDC, ORDER and dynamic 2PL systemsand performed detailed
performancestudies.Senersin the 2PL simulationdetectdeadlocksusing waits-for graphs,but
the costfor deadlockdetectionis setto zero.Whena transactionis abortedin orderto resohe
deadlock,a new transactionis startedin order to simulatea restart.Locks can be sharedor
exclusive, with no upgradefrom sharedto exclusive. In the ORDER simulation,a read can be
satisfiedby a committedwrite in front of it on the CCS queue.Note that the inherentordering
delay (which wasignoredin the analyticalmodel) comesinto effect in the ORDER simulation,
becausehe network candelaymessagesothatthey aredeliveredaccordingto a total order We
modelthe lateny penaltyby multiplying the corventionalnetwork’s averagelateng by alatency
penalty factor. Transactionsireof variablesize. Thebaselingparameterthatwe usedarestandard
ones culled from performance studies of CC techniques in the literature.

+ Client’s initial processing of a transactiof@,) = 100K instructions

+ Client's computation peread (Icomp) = 20K instructions

» Transaction Managewerhead at client per operatiory) = 1K instructions

* Network overhead at client/seev per messagepy) = 5K instructions

* 1/O overhead at seer per object accessd) = 5K instructions

» Overhead at CC module at senper object access@d) = 1K instructions

* Number of clients = 8

* Number of serers = 8

» Database size = 32000 or 4000 objects

* Number of high-contention objects (hot spots) = Yyp0database size

 High-contention access probability = 0.33

« Size of a transaction = 8-24 object accesses (uniform disnit)

 Probability of a transactios’access beingraad = 0.75

« Commit probability of a transaction = 1

« MIPS rating of each client = 400

* MIPS rating of each seev = 800

» Average communication delay per messaggpP= 20 * 10° seconds

 Lateng penalty fctor (for ORDER) = 2

* 1/O delay per object access|@p=4* 10° seconds

« Mean arval rate of transactions at each cliexjt£ 201 transactions per second

» Percentage of read-only transactions = 0

11

0

Percentage of write-only transactions= 0
Local deadlock detection period (for 2PL) = every 10 operations arriving at CCS module

Global deadlock detection (for 2PL) = 100 times a second
Deadlock detection cost (for 2PL) =

We ran the simulation and the analytical model for different arrival rates of transactions and
for different database sizes, and measured the average transaction response time. Figure 3 and
Figure 4 show the results for NDC, ORDER and 2PL, for two database sizes. 32000 and 4000
objects. The smaller the database the higher the degree of data contention, because the same
number of transactions are contending for a smaller number of objects. Henceforth in this paper,
the database size = 32000 case will be referred to as the low data contention scenario, and the
database size = 4000 case will be referred to as the high data contention scenario. Since data
contention has no effect on NDC, thereis only one graph for NDC.

—— NDC Analytical
— -o— - NDC Simulation

- 80— ® —
(%) I
E , £
o ! >
60 — I
E | E
8 g
40 —
g b &
<Y =)}
>]
g~ 20 2
0 T 71T 71T 71
0 200 400 600 800
Arrival Rate
(trang/sec/site)
(a) NDC

—¢«— Order Analytical —— 2PL Analytica
— - Order Simulation — -A—- 2PL Simulation
|]
]
|
80 | % 80+
I S
‘ N
60— : g 60 '\
! = !
| []
40 / g 40- |
o
20 — 9 20
<
y
OF——F— 7171 OdT——T 111
0 200 400 600 800 0 200 400 600 800
Arrival Rate Arrival Rate
(trang/sec/site) (trang/sec/site)
(b) ORDER (c) 2PL

Figure 3: Database size = 32000 objects (low data contention)

In this experiment, the latency
penalty factor for ORDER was set
to 2, and no hot spots were used in
the simulation or in the analytical
model. Each point in the graphs is
an average over 6 independent runs.
For al three algorithms, as
transaction arrival rate increases,
response time increases slowly until
a knee when it shoots up to a high
vaue. In the NDC case, the
performance degradation at the
knee is due to hardware resource
contention:; the increased
transactions compete for the limited
CPU resources available. At high
data contention levels, the knees of
the ORDER and 2PL curves occur
at a lower transaction arriva rate.

Avg Resp Time (ms)

—— Order Analytical —>— 2PL Analytica
— - - Order Simulation — -— - 2PL Simulation
A
80 80 - |
w |
1= |
60 o 60 I
e |
40 n e 0 :
— 4 —
, g !
] [n'd ,'
20 2 20 A
R YOVeeN
O4——T—T T OFT——T 111
0 200 400 600 800 0 200 400 600 800
Arrival Rate Arrival Rate
(trans/sec/site) (trans/sec/site)
(a) ORDER (b) 2PL

Figure 4: Database size = 4000 objects (high data contention)

12

As more and more transactions are introduced into the system, the data conflict probability
increases, causing longer CCS gueue wait times and longer response times. The data conflict
probability is higher in the 4000-object database because the same number of operations are
competing for access to a smaller set of objects. The graphs show that our analytical model tracks
the simulation results very well, and predicts the knee of the curve accurately even at high data
contention levels. As noted, the analytical model makes several simplifying assumptions not made
in the simulation. The close agreement between the results of the analytical model and simulation
indicates that the effect of these assumptions is either insignificant or self-cancelling. Future work
will explore the effect of each assumption.

6 Performance Evaluation

We ran extensive experiments on our simulations, and studied performance for various
workloads and system parameters. We used a b-c pattern of hot spot access, where a fraction b of
object accesses go to afraction ¢ of the database (hot spots), and b > ¢ [TaGS85].

6.1 Transaction arrival rate

FigureS show; the effect of —a— 2pl —a—2pl
varying the arrival rate of —a— order —=— order
transactions. As the arrival rate —e— ndc —e— ndc

of transactions increases, the
response time increases for all
three schemes, hitting a knee and
then going rapidly up as the
system goes into an unstable
region. The response time graphs
show that the knee of the curve
occurs at a lower arrival rate for
2PL than for ORDER. The sharp
increase in the response time of
NDC isdue to hardware resource
contention. For ORDER and
2PL, the sharp degradation in
performance occurs at a lower
arrival rate than for NDC
because of data contention.

200

150 -]
] 150 -

S
i

100

Avg Resp Time (ms)
Avg Resp Time (ms)

al
o
i
a
o
P

0 2(I)O 4|00 6(|)0 8(I)O 0 2(I)O 4(I)O G(IJO 8(|)0
Arrival Rate Arrival Rate
(trans/sec/site) (trang/sec/site)

(@) Low data contention (b) High data contention

Figure5: Effect of transaction arrival rate

13

Figure6 shows the
throughput and percentage
aborts curves for the database
size = 4000 case. The
throughput graph shows that
the peak throughput is reached
at the knee arrival rate, after
which the throughput levels
off and drops as the system
becomes unstable. Aborts
increase steadily in the 2PL
system as transaction arrival
rate increases, since increased
response time means longer
lock-holding times, which in
turn means a higher
probability for deadlock.

Figure7 shows that
modelling queue lengths
accurately is important for

—a— 2pl
—&— order
—e— ndc

5000

4000

3000

2000

Avg Throughput (tps)

1000

0 2(|)O 4(|)0 6(I)O 8(|)0
Arrival Rate
(trans/sec/site)

(a) Throughput

—a— 2pl
8_
2]
T 6+
o
o)
<
o 44
&
o
2_
0 T T T T T
0 200 400 600 800
Arrival Rate
(trang/sec/site)

(b) Percentage aborts

Figure 6: Throughput and aborts (high data contention)

predicting performance under high contention. The graphs plot average queue length at the CCS
modules, average read wait and average write wait for the high data contention case. At the knee
arrival rate, average queue length increases sharply, causing read and write/predeclare operations
to wait longer, increasing response time. The increased response time in turn causes the mean
lock-hold time to increase, causing operations to wait longer, further increasing responsetime. The
average queue length of 2PL increases beyond one when the system reaches the knee, showing that
the queue length = 1 assumption made in traditional analytical models for 2PL is insufficient in
order to predict the knee of the curve. The queue length in 2PL is initialy lower than that in
ORDER because 2PL staggers its request of locks while ORDER requests all of its locks in the
beginning. However, when increased data contention sets in, the lower lock-holding time of
ORDER keeps the queue length and operation wait time low.

—a— 2pl
—a&— order

Avg CCS Qlength

0
0 200 400 600 800

Arrival Rate
(trans/sec/site)

(a) Average CCS queue length

—a— 2pl
—&— order
150 -
£ E
3 100 S
= 100 i %
° =
3 s
T 5] 3
o (@]
> T >
< 1 <
0
0 200 400 600
Arrival Rate
(trang/sec/site)
(b) Average read wait

Figure 7: Data contention wait curves

—a— 2pl
—=— order

100
50
0
0 100 200 300 400 500
Arrival Rate
(trang/sec/site)

(c) Average write wait

14

6.2 Network latency and ordering cost

Figure8 shows the effect —a— order-1 —=— order-1
of varyingthe averagenetwork —— order-2 —x— order-2
lateny andthe lateny penalty —e— order-3 —e— order-3
factor(for ORDER)in thehigh —*— order-4 —— order-4

—a— 2pl —a— 2pl

data contentionscenario.The

ORDER technique is
representecby four different 2007
curves, each representing a]
differentlateng penaltyfactor
The order-2 curve uses a
lateny penaltyfactorof 2, and
correspondsto the ORDER
curves presented in earlier
graphs. As network lateny
increases, operations arrive]
later, causing lock-holding oO+——T——T7——T1— ——T——T—
timesandobject-holdingtimes 0O 200 400 600 800 0 200 400 600 800
to increase,in turn causing Arrival Rate Arrival Rate
higher response times. The (trans/sec/site) (trans/sec/site)
increased data contention at (a) Network lateng = 2Qus (b) Network lateng = 8Qus
high network latenciescauses Figure 8: Effect of netvork lateng and ordering penalty

both ORDER and 2PL to peak

at lover arrval rates.

—e— ndc —e— ndc

150 _ 150

100 1007

50

Avg Resp Time (ms)
Avg Resp Time (ms)

50

0

. I.n order to discover how —&— order-1 — & order-1
efficient the network hasto be —— order-2 —x— order-2
in providing the property of —eo— order-3 —e— order-3
total ordering, we studied the —— order-4 —e— order-4

—a— 2pl —a— 2pl

effect of four different lateng
penaltyfactors— 1, 2, 3 and4
— on ORDER. Recall that the

—e— ndc —e— ndc

latengy penalty factor of the 20] & 250

isotach prototypeis 1.43-2.31. £ 200 E

The higher the lateny penalty @] o 200

factor the longer operations = 150 = 150

take to arrive, the longer the g—] @L

object-holding times, and the o 1007 @ 100

longer the responsetime of £ 50 S

ORDER. In addition, in our < < %0

experiments, since network o 0T 1
lateny is dravn from an 0 200 400 600 800 0O 200 400 600 800
exponential distribution, the Arrival Rate Arrival Rate
higher the mean lateng, the (trans/sec/site) (trans/sec/site)
higher the variancein lateng. (c) Network lateng = 20Qus (d) Network lateny = 50Qus

In an ORDER system,a high
lateny variancemeansthatthe
probability of operations
arriving out of orderis high, and therefore,the inherentordering delay is high. However, the
inherentorderingdelayis still a smallercontributor to the overall responsdime thanthe object-

Figure 8: Effect of netvork lateng and ordering penalty

15

holding times. The effect of varying the latency penalty factor becomes more apparent in the
graphs for higher network latencies. At latencies of 20us, 80us and 200us, all of the ORDER
variants perform better than 2PL. At alatency of 500us, order-1 and order-2 still outperform 2PL,
but the performance of order-3 is similar to that of 2PL. Moreover, order-4 performs worse than
2PL. In summary, ORDER outperforms 2PL at low to moderate network latencies. When the
average network latency is high (500us), the network must provide the total ordering guarantee in
avery efficient way in order to outperform 2PL.
6.3 Transaction size

Figure 9 shows the effect of varying the transaction size. As the transaction size increases, the
number of operations active in the system at any time increases, thus increasing data conflict. In
addition, abigger transaction has alonger lifetime, thus increasing data conflict and the probability
of deadlock in 2PL. Asbefore, the lower lock-holding time of ORDER keeps the queue length and
operation wait time of ORDER lower thanin 2PL.

—a— 2pl —a— 2pl
—=— order —a— order —&— 2pl
—e— ndc —e— ndc —&— order
—e— ndc
500
@ D
= g 3000 P
= 400 < £ 100
£ £ o]
% 300 = 2000 £
@. [
@ 200 4 & so-
2 > 1000 o J
Z 100 < 2
<
0 0 i
0 10 20 30 40 0 10 20 30 40 0 —prrrrrrrr e
Transaction Size Transaction Size 0 10 .20 %0
(#ops) (#ops) Num Clients
(a) Low data contention (b) High data contention Figure 10: Number of clients
Figure9: Effect of transaction size (high data contention)

6.4 Number of clients

Figure 10 shows the effect of varying the number of clients submitting transactions. As the
number of clients increases, the number of transactions active in the system increases, and data
conflict increases. The probability of deadlock in 2PL increases, and the percentage of aborts
consequently increases. Once again, the queue length, operation wait time and response time
curves for 2PL have knees at alower value for number of clients, as compared to ORDER.
6.5 Transaction composition

Figure 11 (a) shows the effect of varying the probability of read while transaction size is held
constant. More reads implies more computation by the transaction, and more time before the
commit decision can be made (for all three schemes). This effect dominates in the earlier portion
of the curves. However, more reads also implies that the queue length (and lock-holding time)
goes down because read locks are shared (2PL) and reads can be satisfied earlier (ORDER). When

16

the probability of read becomes 100%, there are no writes, and therefore the disk access time of
the second phase goes away for all 3 schemes. Hence the sharp drop in response time.

—a— 2pl —a— 2pl —a— 2pl
—=— order —&— order —&— order
—e— ndc —e— ndc —e— ndc

20
- — —~ 20
(D) (2] B [%2)
E . ED E
)) ()
= 10 = -
7 g s g 10
x o o
(2] (=2 (@]
> 5 > >
< < z °
Ot—T—T1T 71T OdT—T1 T 71711 Or——T—T1 71T
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 10C
Read Probability % Read-only Transactions % Write-only Transactior
(a) Read probability (b) Read-only transactions (c) Write-only transactions

Figure 11: Transaction composition (high data contention)

Figure 11 (b) shows the effect of varying the percentage of read-only transactions. For read-
only transactions, the second phase involving disk writesis absent. In addition, more reads implies
lower lock-holding time and queue lengths. On the other hand, more reads implies more
transaction computation. But the first two effects dominate, and response time decreases as the
percentage of read-only transactions increases (for al three schemes).

Figure 11 (c) shows the effect of varying the percentage of write-only transactions. In
ORDER, write-only transactions have an advantage over read-write transactions because no
communication from servers to client is necessary in order for the client to make its commit
decision. 2PL offers no such advantage because the client must wait for lock-sets before
committing. Another advantage of write-only transactions (for both schemes) is that they perform
no computation. Therefore, the response time for NDC and ORDER go down as the percentage of
write-only transactions increases. However, for 2PL, the increased writes heighten the already-
serious data conflict situation, causing queue length, operation wait time, response time and
percentage of abortsto go up.

7 Conclusion

The conventional 2PL CC technique causes system thrashing at high data contention levels,
restricting transaction throughput to levels inconsistent with the available resources. We have
presented anew concurrency control technique called ORDER, that uses atotal ordering guarantee
provided by the network in order to achieve efficient CC. We have presented a hew analytical
model for 2PL. Unlike previously-proposed 2PL models, our analytical model continues to predict
performance accurately even at high data contention levels.

Our analytical model and simulation agree in predicting that ORDER outperforms dynamic
2PL under high data contention. ORDER'’s advantage disappears only when network latency is
high and ordering is implemented inefficiently. The performance of the isotach prototype implies
that ORDER is a good candidate for high contention databases. In both ORDER and 2PL, as
parameters change adversely, queue lengths increase, increasing operation wait time and response
time. In 2PL, aborts also increase due to deadlocks, further increasing response time. The mean
lock-holding timein ORDER is lower than that in 2PL, letting ORDER sustain good performance
longer. We have demonstrated that ORDER outperforms 2PL for a wide range of workloads. In

17

future work, we plan to study the effect of high-variance network latenciesand recorery
techniques on ORDER and 2PL.

8 References

AlDa76 Alsberg P. A. and Day J. D., A Principle for Resilient Sharing of Distributed Resources,
Proceedings of the 2nd International Conference on Software Engg., Oct 1976.

Bada79 BadalD. Z., Correctnesf ConcurrencyControl and Implicationsin Distributed Databases,
Proceedings of COMPSAC 79 Conference, Nov 1979.

BaHR80 Bayer R., Heller H. and ReiserA., Parallelismand Recoveryin DatabaseSystems,ACM
Transactions on Database Systems 5/2, Jun 1980.

BeGo80 BernsteinP.A. and GoodmanN., TimestampBasedAlgorithms for ConcurrencyControl in
Distributed DatabasesystemsProceeding®f the 6th InternationalConferenceon Very Large
Databases, Oct 1980.

BeGo81 BernsteinP. and GoodmanN., ConcurrencyControl in Distributed DatabaseSystems ACM
Computing Surveys 13/2, Jun 1981.

BeHG87 BernsteinP. A., HadzilacosV. and GoodmanN., ConcurrencyControl and Recoveryin
Database Systems, Addison-Wesley, 1987.

BeSR80 BernsteinP. A., ShipmanD. W. and Rothnie J. B., ConcurrencyControl in a Systemfor
Distributed Databases (SDD-1), ACM Transactions on Database Systems 5/1, Mar 1980.

BGRP78 BernsteinP.A., Goodman\., RothnieJ. B. andPapadimitriouC. A., The ConcurrencyControl
Mechanismof SDD-1: a Systemfor Distributed Databasegthe fully redundantcase),|EEE
Transactions on Software Engg., SE-4/3, May 1978.

BiJo86 Birman K. P. and JosephT. A., Low-Cost Managemenbf ReplicatedDatain Fault-Tolerant
Distributed Systems, ACM Transactions on Computer Systems 4/1, Feb 1986.

Caligl CareyM. andLivny, Conflict DetectionTradeoffsfor ReplicatedData, ACM Transaction®n
Database Systems 16/4, Dec 1991.

Casa79 CasanovaM. A., The ConcurrencyControl Problemfor DatabaseSystemsPhD dissertation,
Harvard University; Technical Report TR-17-79, Center for Researchin Computing
Technology, 1979.

CiDY90 Ciciani B., Dias D., Yu P, Analysis of Replicationin Distributed DatabaseSystems,|EEE
TKDE 2/2, Jun 1990, pp 247-261

CiDY92 CicianiB., DiasD., Yu P, Analysisof Concurreng-Cohereng Control Protocolsor Distributed
Transaction Processing Systems witlyieal Locality IEEE TSE 18/10, Oct ‘92, pp 889-914

CDIY90 Ciciani B., Dias D., lyer B., Yu P, A Hybrid Distributed CentralizedSystemStructurefor
Transaction Processing, IEEE TSE 16/8, 1990, pp 791-806

Date95 Date C. J., An Introduction to Database Systems, Sixth Edition, Addison-Wesley, 1995.

DoMa96 Dolev D. andMalkhi D., The TransisApproachto High Availability ClusterCommunication,
CACM 39/4, April 1996, pp 64-70.

EGLT76 EswaranK. P., Gray J. N., Lorie R. A. and Traiger|. L., The Notions of Consistencyand
Predicate Locks in a Database Systems, Communications of the ACM 19/11, Nov 1976.

Garc79 Garcia-MolinaH., Performanceof Update Algorithms for ReplicatedData in a Distributed
Database, PhD dissertation, Computer Science Dept., Stanford University, Jun 1979.

Gray96 Gray J., The Dangers of Replication and a Soluti€@yASIGMOD Conf., 1996, pp 173-182

GrRe92 Gray J. N. and Reuter A., Transaction Processing: Concepts and Facilities, Morgan-Kaufmann.

HaDo91 Halici U. and Dogac A., An Optimistic Locking Technique For ConcurrencyControl in
Distributed Databases, TSE 17/7, Jul 1991.

Holt72 Holt R. C., SomeDeadlockPropertieof ComputerSystemsACM ComputingSurveys4/3,Dec
1972.

18

JeKT88
KiCo74
LaMy00
Lamp78
Lave83
Li87

MMABO96

NeTo93
Reed78
Rege97
ReTH96
ReWw97
RoSL78
RyTh90a
RyTh90b
SaGS94
ScRa9%6
ShMi77a
ShMi77b

ShWo97

Sing9la
Sing91b
StRo81

Ston79

Jeng B., Kohler W. H. and Towsley D., A Queueing Network Model for a Distributed Database
Testbed System, |EEE Transactions on Software Engineering 14/7, Jul 1988.

King P. F. and Collmeyer A. J.,, Database Sharing - an Efficient Method for Supporting
Concurrent Processes, Proceedings of the 1974 National Computer Conference 42, 1974.

Lack M. N. and Myers, P., The Isotach Messaging Layer: Ironman Design, Technical Report
CS-2000-17, Dept. of Computer Science, University of Virginia, May 2000.

Lamport L., Time, Clocks and Ordering of Events in a Distributed System, Communications of
the ACM 21/7, Jul 1978.

Lavenberg S. (Ed.), Computer Performance Modeling Handbook, Academic Press, Orlando,
Florida, 1983.

Li V., Performance Models of Timestamp-Ordering Concurrency Control Algorithms in
Distributed Databases, |EEE TOC 36/9, Sept 1987.

Moser L. E., Mdlliar-Smith P. M., Agarwal D. A., Budhia R. K. and Lingley-Papadopoulos C.
A., Totem: a Fault-Tolerant Multicast Group Communication System, Communications of the
ACM 39/4, Apr 1996.

Neiger G. and Toueg S., Simulating synchronized clocks and common knowledge in distributed
systems, Journal of the ACM 40/2, Apr 1993.

Reed D. P., Naming and Synchronization in a Decentralized Computer System, PhD
dissertation, Dept. of Electrical Engg., MIT, Sep 1978.

Regehr J, An Isotach Implementation for Myrinet, Technical Report CS-97-12, Dept. of
Computer Science, University of Virginia, May 1997.

Ren J., Takahashi Y., Hasegawa T., Analysis of Impact of Network Delay on Multiversion
Conservative Timestamp Algorithmsin DDBS, Perf Eval 26, 1996, pp 21-50.

Reynolds P. F., Williams C. and Wagner R., IEEE Transactions on Parallel and Distributed
Systems 8/4, Apr. 1997, pp 337-348.

Rosenkrantz D. J., Stearns R. E. and Lewis P. M., System Level Concurrency Control for
Distributed Database Systems, ACM Transactions on Database Systems 3/2, Jun 1978.

Ryu I., Thomasian A., Analysis of Database Performance with Dynamic Locking, JACM 37/3,
Jul 1990, pp 491-523.

Ryu |., Thomasian A., Performance Analysis of Dynamic Locking with the No-Waiting Policy,
|EEE TSE 16/7, Jul 1990, pp 684-698.

Salem K., GarciasMolina H. and Shands J., Altruistic Locking, ACM Transactions on Database
Systems 19/1, Mar 1994.

Schiper A. and Rayna M., From group communication to transactions in distributed systems,
Communications of the ACM 38/4, Apr 1996.

Shapiro R. M. and Millstein R. E., Reliability and Fault Recovery in Distributed Processing,
Oceans 77 Conference record, vol 11, 1977.

Shapiro R. M. and Millstein R. E., NSW Reliability Plan, Massachusetts Technical Report 7701-
1411, Computer Associates, Wakefield, MA, Jun 1977.

Sheikh F. and Woodside M., Layered Anaytic Performance Modelling of a Distributed
Database System, Proceedings of the 17the International Conference on Distributed Computing
Systems, May 1997.

Singhal M., Performance Analysis of the Basic Timestamp Ordering Algorithm via Markov
Modeling, Perf Eval 12, 1991.

Singhal M., Analysis of the Probability of Transaction Abort and Throughput of Two Timestamp
Ordering Algorithms for Database Systems, IEEE TKDE 3/2, Jun 1991.

Stearns R. E. and Rosenkrantz D. J., Distributed Database Concurrency Controls Using Before-
Vaues, Proceedings of the ACM-SIGMOD Conference on Management of Data, 1981.
Stonebraker M., Concurrency Control and Consistency of Multiple Copies of Data in
Distributed INGRES, |EEE Transactions on Software Engg., SE-5/3, May 1979.

19

TaGS85
Thom79
Thom93
Thom98
ThRy91
Will93
YuDi92
YuDi93
YuDL93

YDRI85

Tay Y., Goodman N., Suri R., Locking Performance in Centralized Databases, ACM TODS 10/4,
Dec 1985, pp 415-462.

Thomas R. H., A Solution to the Concurrency Control Problem for Multiple Copy Databases,
Proceedings of the 1978 COMPCON Conference (IEEE), 1979.

Thomasian A., Two-Phase Locking Performance and its Thrashing Behavior, ACM TODS 18/4,
Dec 1993, pp 579-625.

Thomasian A., Concurrency Control: Methods, Performance, and Analysis, ACM Computing
Surveys 30/1, Mar 1998, pp 70-119.

Thomasian A., Ryu I., Performance Analysis of Two-Phase Locking, IEEE TSE 17/5, May
1991, pp 386-401.

Williams C., Concurrency Control in Asynchronous Computations, PhD Dissertation, Dept. of
Computer Science, University of Virginia, 1993.

Yu P, Dias D., Analysis of Hybrid Concurrency Control Schemes for a High Data Contention
Environment, |EEE TSE 18/2, Feb 1992, pp 118-129.

Yu P, Dias D., Performance Analysis of Concurrency Control Using Locking with Deferred
Blocking, |IEEE TSE 19/10, Oct 1993.

Yu P, Dias D., Lavenberg S., On the Analytical Modelling of Database Concurrency Control,
JACM 40/4, Sept 1993, pp 831-872.

Yu P, Dias D., Robinson J,, lyer B., Cornell D., Modelling of Centralized Concurrency Control

in a Multi-System Environment, Perf Eval Rev 13/2 (Proc 1985 ACM SIGMETRICS), pp 183-
191.

20

	Distributed Transaction Processing on an Ordering Network
	Rashmi Srinivasa, Craig Williams, Paul F. Reynolds Jr.
	Department of Computer Science
	University of Virginia, Charlottesville
	{rashmi, craigw, reynolds}@virginia.edu
	Technical Report CS-2001-08
	February 2001
	Abstract
	1 Introduction
	Figure 1: System Architecture

	2 Related Work
	2.1 Concurrency Control Techniques
	2.2 Analytical Models
	2.3 Concurrency Control based on Ordering

	3 Ordering Network Aided CC
	3.1 ORDER Algorithm
	Figure 2: The ORDER System Algorithms

	3.2 Qualitative Comparison Between ORDER and Dynamic 2PL

	4 Analytical Model
	4.1 Assumptions
	Table 1: Analytical Model Parameters

	4.2 Analytical Model of 2PL
	4.2.1 Data Contention RCONT
	4.2.2 Hardware Resource Contention REXEC
	4.2.3 Total Response Time R
	4.2.4 Modelling Shared and Exclusive Locks

	4.3 Analytical Model of ORDER
	4.3.1 Data Contention RCONT
	4.3.2 Hardware Resource Contention REXEC

	4.4 Analytical Model of Best Case

	5 Simulation
	Figure 3: Database size = 32000 objects (low data contention)
	Figure 4: Database size = 4000 objects (high data contention)

	6 Performance Evaluation
	6.1 Transaction arrival rate
	Figure 5: Effect of transaction arrival rate
	Figure 6: Throughput and aborts (high data contention)
	Figure 7: Data contention wait curves

	6.2 Network latency and ordering cost
	Figure 8: Effect of network latency and ordering penalty.
	Figure 8: Effect of network latency and ordering penalty.

	6.3 Transaction size
	Figure 9: Effect of transaction size

	6.4 Number of clients
	6.5 Transaction composition
	Figure 11: Transaction composition (high data contention)

	7 Conclusion
	8 References

