
1

Distributed Transaction Processing on an
Ordering Network

Rashmi Srinivasa, Craig Williams, Paul F. Reynolds Jr.
Department of Computer Science

University of Virginia, Charlottesville
{rashmi, craigw, reynolds}@virginia.edu

Technical Report CS-2001-08
February 2001

Abstract
The increasingdemandfor high throughputsin transactionprocessingsystemsleadsto high

degreesof transactionconcurrency and hencehigh datacontention.The conventionaldynamic
two-phaselocking (2PL)concurrency control(CC) techniquecausessystemthrashingathighdata
contentionlevels, restrictingtransactionthroughput.Optimistic concurrency control (OCC) is an
alternative strategy, but OCC techniquessuffer from wasted resourcescausedby repeated
transaction restarts. We propose a new technique, ORDER, that enlists the aid of the
interconnectionnetwork in a distributeddatabasesystemin orderto coordinatetransactions.The
network in anORDERsystemprovidestotal orderingof messagesata low cost,enablingefficient
CC. We comparethe performanceof dynamic2PL andORDER,usingboth an analyticalmodel
and a simulation. Unlike previously-proposedmodels for 2PL, our analytical model predicts
performanceaccuratelyeven under high data contention. We study the effects of various
parameterson performance,anddemonstratethat ORDERoutperformsdynamic2PL for a wide
range of workloads.

1 Introduction
Concurrency control (CC) is an integral part of a databasesystem,and is the activity of

coordinatingtheactionsof transactionsthatoperatein parallel,accessshareddata,andpotentially
interferewith oneanother[BeHG87]. Thereare two costsassociatedwith CC: lost opportunity
costandrestartcost.Theformercostis asignificantfactorin conservativemethods,which involve
waiting to ensurethat there will be no conflict or interference.Someof this waiting may be
unnecessary, constituting a lost opportunity cost. The latter cost is significant in aggressive
methodswhich optimisticallyexecutetransactions,basedon theassumptionthat therewill beno
conflict. If a conflict doesarise,sometransactionsmustbeabortedandrestarted,thusincurringa
restartcost.A scalableCC techniquethat hasboth a low lost opportunitycostanda low restart
cost is a much-sought-aftergoal. Dynamic two-phaselocking (2PL) is the CC techniquethat
currentdatabasesusealmostexclusively [Date95,GrRe92,BeHG87]. A dynamic2PL system
thrashesathighdatacontentionlevels,restrictingperformanceto levelsinconsistentwith available
resources.

This papermakestwo contributions:a new CC technique— ORDER,anda new analytical
model for 2PL. ORDERusesthe interconnectionnetwork in a distributeddatabaseasan aid to

2

concurrency control. The network can be a powerful coordination mechanism if it provides the
property of total ordering at a low cost. We compare the performance of 2PL and ORDER using
both an analytical model and a simulation, and demonstrate that ORDER outperforms dynamic
2PL for a wide range of workloads. Unlike previously-proposed models for 2PL, our analytical
model continues to predict performance accurately even at high data contention levels. We also
study the performance effects of various parameters like communication delay, transaction size,
transaction composition and number of sites.

We consider a distributed
database management system with a
collection of sites interconnected by a
network [BeHG87]. Each site runs
one or more of the following software
modules: a transaction manager
(TM), a data manager (DM) and a
concurrency control scheduler (CCS).
A client runs only the TM module,
and a server runs only the DM and
CCS modules. TMs supervise
interactions between users and the
DDBMS, CCSs coordinate
transactions, and DMs manage the
actual database. The network is assumed to be perfectly reliable and point-to-point FIFO. Figure 1
shows the system architecture. The database is a collection of data items or objects, and each
object is managed by a single DM. Users interact with the DDBMS by executing transactions,
which are on-line queries or application programs. Transactions communicate with TMs, TMs
communicate with CCSs and DMs, and DMs manage data. In order to execute a transaction, a
client issues read, predeclare, write, commit, lock-release and abort operations. A server responds
with read-response and lock-set operations.

2 Related Work
2.1 Concurrency Control Techniques

Traditionally, CC techniques have been classified into four categories (locking, timestamp-
ordering, optimistic and hybrid). In two-phase locking (2PL) [EGLT76], a transaction obtains
locks in a growing phase and releases locks in a shrinking phase. In the static version of 2PL, a
transaction obtains all of its locks in the beginning, while in dynamic 2PL, a transaction obtains a
lock only when it needs to access the corresponding object. A 2PL scheduler requires a strategy to
prevent, avoid or detect-and-break deadlocks. Some strategies are waits-for-graphs [Holt72,
KiCo74], preordering and predeclaration of locks [BeGo81] and timestamp-priority-based restarts
[RoSL78]. Variations on the basic 2PL technique include primary copy 2PL [Ston79], voting 2PL
[Thom79], multiversion 2PL [BeHG87, StRo81], centralized 2PL [AlDa76, Garc79], altruistic
locking [SaGS94] and increment/decrement locks [GrRe92].

In timestamp-ordering techniques, a unique timestamp is assigned to each transaction, and
conflicting transaction operations are ordered according to their timestamps. Different TO-based
CC techniques are basic timestamp ordering (BTO) [ShMi77a, ShMi77b], conservative timestamp
ordering (CTO) [BeGo80] and multiversion timestamp-ordering (MVTO) [Reed78]. Variations on
the basic TO techniques include Thomas Write Rule [Thom79] and transaction classes [BGRP78,
BeSR80].

Optimistic (OPT) schedulers schedule each operation as soon as it is received. When a
transaction is ready to commit, all involved OPT schedulers check whether committing the

DMTM

transaction
data

Figure 1: System Architecture

CCS

network

servers

DM dataCCS

DM dataCCS

clients

transaction

TM

transaction

transaction

TM

transaction

transaction

3

transaction will violate serializability, and abort the transaction if necessary. Such schedulers are
also called certifiers [Bada79, Casa79, BaHR80].

Hybrid CC techniques include 2PL-TO combinations [BeGo81], distributed optimistic 2PL
(O2PL) [CaLi91], optimistic with dummy locks (ODL) [HaDo91], hybrid optimistic CC and
broadcast optimistic CC [YuDi92], and dynamic locking with no waiting (DLNW) [RyTh90b].
Current databases use dynamic 2PL and its variants almost exclusively [Date95, GrRe92,
BeHG87].
2.2 Analytical Models

There have been numerous analytical studies of the performance of CC schemes. An
approximate mean value analysis method is used in [TaGS85] to analyze the performance of 2PL
in a centralized database system. A similar approximate mean value analysis method is used to
analyze 2PL, OPT and several hybrid concurrency control schemes in centralized databases in
[YuDi92, YuDi93, YuDL93]. These analyses combine a data contention model with a conventional
queueing model for hardware resource contention [Lave83] and iterate between the two models.
Approximate mean value analysis and the iterative method are also used in [RyTh90a, RyTh90b,
Thom93, Thom98, ThRy91] in order to analyze 2PL and OPT in a centralized database system and
estimate the lock contention level at which dynamic 2PL starts thrashing. Gray uses approximate
mean value analysis to estimate wait probability and deadlock rate in a fully-replicated distributed
database, but assumes that replicate updates are performed sequentially [Gray96]. In [CDIY90,
CiDY92], approximate mean value analysis is used to estimate the probability of conflict and
response time of transactions using the OPT CC technique in a restricted form of distributed
database: remote transactions execute entirely at a central site that replicates all data. In yet
another form of distributed database, class 1 transactions use 2PL and execute entirely at the local
primary-copy site; class 2 transactions use OPT and access data that is at a single known remote
site [CiDY90]. Analytical models for 2PL in a distributed database are presented in [JeKT88,
ShWo97], but the models do not permit simultaneous processing of a transaction at multiple sites.
Basic timestamp ordering and multiversion timestamp ordering techniques have been analyzed in
[Li87, ReTH96, Sing91a, Sing91b].
2.3 Concurrency Control based on Ordering

Database concurrency control based on totally-ordered-multicast has been proposed [NeTo93,
ScRa96], but never implemented or simulated, and nothing is known about its performance. In
[NeTo93], a communication primitive called a publication makes all recipients deliver a message
at the same logical time called the publication time. A publication can be implemented in the
following way: the sender broadcasts a message and solicits proposed publication times from all
processors. The sender then picks the maximum proposed time and broadcasts it to everyone.
Database concurrency control is proposed as a possible application, where processors publish their
lock-requests and lock-releases. Since the lock-requests and lock-releases are totally ordered, there
can be no deadlock.

In [ScRa96], a concurrency control technique based on totally-ordered-multicast and group
communication [BiJo86] is proposed. In the proposed system, all sites at which a data item is
replicated are members of the group corresponding to that data item. A transaction sends
operations in a totally-ordered-multicast to all groups corresponding to the data items accessed.
The total ordering of operations across groups ensures serializability of transactions. The proposed
system does not address the issue of transactions that have dependencies among operations, or
transactions that issue unilateral aborts. The paper does not provide an implementation for the
property of total ordering of messages across groups, but refers to Totem [MMAB96] as a system
that provides such a property. Finally, the paper does not address performance.

4

3 Ordering Network Aided CC
The total ordering propertyguaranteesthat messagesaredeliveredin the sameorderat all

destinations.This orderingguaranteecan be exploited by a distributed databaseto ensurethat
transactionsareviewedin thesameorderatall destinations.A network thatprovidestotalordering
at a low cost can be used as the basis for efficient concurrency control of transactions.
3.1 ORDER Algorithm

The ORDERCC techniqueis basedon the total orderingproperty. A network that provides
total ordering at a low cost is the isotach network [ReWW97, Will93]. An isotachnetwork
maintainsisotach logical time, anextensionof Lamport’s logical time[Lamp78].Isotachtimesare
assignedto send anddeliver eventsassociatedwith a message,andarelexicographicallyordered
n-tuplesof integers,of which thefirst componentis calledthepulse. Theothercomponentsarepid
and rank, and act as tie-breakers amongevents occurring in the samepulse. The pid is the
identifierof thesitethat issuedthemessage,andrank = r if themessageis therth messageissued
by thatsite.In an isotachsystem,a sitecancontrol the logical time at which themessagesthat it
sends are delivered, by controlling the logical time at which it sends messages.

An implementationof an isotachnetwork is as follows. Every network switch hasa token manager
attachedto oneof its ports,andevery hosthasa switch interface unit (SIU) connectingit to the nearest
switch. Isotachlogical time is implementedthroughthe exchangeof specialmessagescalled tokens by
neighbouringtoken managersand SIUs. A token indicatesthat the senderhasadvancedits local logical
clock.Thesystemcanachieve total orderingof messagesif thedestinationSIUsreorderreceivedmessages
accordingto pulse, pid andrank. Theisotachnetwork guaranteesthatamessageis receivedat its destination
SIU before the receiptof the token ending the pulse in which the messageshouldbe delivered.Token
managersare critical to the scalability of an isotachnetwork. Without them, every SIU would have to
exchangetokenswith everyotherSIU, which is clearlyimpracticalfor largenetworks.An isotachnetwork
has been simulated in software [Rege97] and implementedas a small hardware prototype
[LaMy00]. Williams presentsamethodof executingatomicactionsin anorderedandsequentially-
consistentmanner[Will93]. Other methodsfor guaranteeingtotal ordering include ISIS/Horus
[BiJo86], Totem [MMAB96], Transis [DoMa96] andpublications [NeTo93].

Given a fastandscalableimplementationof the total orderingguaranteein the network, we
canbuild anefficient CC technique.Thecostof usinganorderingmechanismcanbedividedinto
two components:the latency penalty (theadditionaldelaybeforea messageis receiveddueto the
ordering mechanism)and the inherent ordering delay (the additional delay before a received
messagebecomesdeliverabledue to the needto wait for logically precedingmessages).On a
prototypeisotachsystemoptimizedfor large messages,the latency penaltyis a factorof 2.31 to
1.43(for large messages)timesthat of a conventionalnetwork [LaMy00]. The inherentordering
delayis insignificanton theprototype,but couldbesignificantif thevarianceof network latency is
high. If the latency penalty and inherent ordering delay are low, ORDER can potentially
outperform a conventional CC technique like 2PL.

An ORDER systembasedon an isotachnetwork, and derived from the isotach isochron
schedulingtechnique[Will93] is presentedbelow. A TM startsthe executionof a transactionby
issuingall the reads and predeclares of the transactionas a single atomic action.The network
delivers the atomic action in a total order using the isotachtechniquefor implementingtotal
ordering describedabove. Figure2 shows the algorithmsexecutedby various modulesin an
ORDER system.
TM Algorithm:
event: receive op from transaction;

assert: op is a read/predeclare/write/commit/abort;
if op == read/predeclare

if op == last read/predeclare of transaction
mark op as last_of_atomic_action;

5

send op to network;
else if op == write store op locally;
else if op == commit/abort

look up stored writes for the transaction;
generate a commit/abort operation for each write;
send commit/abort operations to network;

event: receive op from network;
assert: op is a read-response;
forward op to transaction;

Network Algorithm:
event: receive op from TM;

assert: op is a read/predeclare/commit/abort;
if op == read/predeclare

if op is not marked last_of_atomic_action
save op along with other operations from that transaction;

else
collect all saved operations from that transaction;
assign a timestamp to the atomic action;
add timestamp to all operations in the atomic action;
deliver operations (in order) to destination CCS modules;

else if op == commit/abort
deliver operations (without ordering) to destination CCS modules;

event: receive op from CCS;
assert: op is a read-response;
deliver op (without ordering) to TM module;

CCS Algorithm:
event: receive op for object x from network;

assert: op is a read/predeclare/commit/abort;
assert: reads and predeclares arrive totally ordered;
let queue = operation queue for object x;
if op == read

if queue is empty send op to DM;
else if operation at tail(queue) is a commit

send read-response with commit value;
else append op to queue;

else if op == predeclare
append op to queue;

else if op == abort
let pos = position of corresponding predeclare on queue;
delete the predeclare at pos;
if pos == head(queue)

while operation at head(queue) is a read/commit
send operation at head(queue) to DM;

else
let src_op = first commit/predeclare ahead of pos;
if src_op == commit

while operation at pos(queue) == read
send read-response with value of src_op;
delete operation at pos(queue);

else if op == commit
let pos = position of corresponding predeclare on queue;
replace predeclare with op;
if pos == head(queue)

while operation at head(queue) is a read/commit
send operation at head(queue) to DM;

else
pos = pos + 1;
while operation at pos(queue) is a read

send read-response with value of op;

6

delete operation at pos(queue);
event: receive op from DM; assert: op is a read-response;

send op to network;

Figure 2: The ORDER System Algorithms

Eachserverbuffersreadsandpredeclares in queuescorrespondingto theobjectaccessed,and
immediately executesa read if it is at the headof a queue.As a transactionreceives read
responses,it issueswrites correspondingto the previously-issuedpredeclares. The TM doesnot
sendthesewrites acrossthenetwork to thedestinations,andstoresthemlocally instead.Whena
transactionhasreceived responsesto all of its reads andhasissuedall of its writes, it sendsout
commits(or aborts if it decidesto performaunilateralabort).TheTM sendscommits(carryingthe
valuesof the correspondingwrites) and aborts as regular messagesrather than totally-ordered
messages.The network delivers thesecommits or aborts as quickly as it can,without ordering
them with respect to other messages.On receipt of a commit, the destination finds the
correspondingpredeclare on its queue,replacesthepredeclare with thecommit, andexecutesany
commits andreads that arereadyto be executed.On receiptof an abort, a destinationfinds the
correspondingpredeclare on a queue,deletesthepredeclare, andexecutesany commits andreads
thatarereadyto beexecuted.A transactionis completewhenall of its operationshave beeneither
committed or aborted.
3.2 Qualitative Comparison Between ORDER and Dynamic 2PL

An importantdifferencebetweenORDER and dynamic2PL is that in 2PL, a read lock is
acquiredas a result of a read operationand is held until the commit hasbeenreceived by the
server, whereasin ORDER,a read operationdoesnot resultin lock acquisition.2PL andORDER
alsodiffer with respectto deadlocks.Sincedeadlockcannotoccurin ORDER,deadlockdetection
is unnecessary, while serversin 2PL incur deadlockdetectioncosts.Moreover, whena deadlock
occursin 2PL, a transactionmustbe abortedandrestarted,a costnever incurredin ORDER.In
2PL, the servershave to sendexplicit lock-set operationsto the client in responseto writes. The
client in ORDERneedsno suchnotification.On commit,a client in 2PL mustsendlock-releases
to theserversin orderto releasetheread locks.ORDERdoesnot incur this costsinceit doesnot
useread locks.

ORDERincurstwo that2PL doesnot — the latency penaltyandthe inherentorderingdelay.
Moreover, a transactionis forcedto predeclareall of its accessesandacquireall its write locks in
thebeginning.2PL doesnot requirepredeclaration,andlocksareacquiredon demand.In orderto
reveal the influenceof the above trade-offs on overall performance,we designedan analytical
model and a simulation, and studied the performanceof 2PL and ORDER under different
workloads and system parameters.

4 Analytical Model
Wepresentananalyticalmodelof 2PLandORDERin a fully distributeddatabase.Ourmodel

usesaniterativemethodsimilar to somepreviousones[YuDi92,CDIY90, TaGS85].However, our
model captures the high-data-contentionscenario accurately. Our model combines a data
contentionmodel and a queueingmodel of hardware contention,and yields an expressionfor
meantransactionresponsetime.Theprobabilityof dataconflict for any transactiondependsonthe
CC techniqueandthetransactionresponsetime,which in turn dependson theconflict probability.
For example,if lock contentionprobability increases,transactionresponsetime increasesdueto
additionallock waits.A longertransactionresponsetime leadsto a longerlock holdingtime, and
hence to a higher lock contention probability. Our iterative approachcapturesthe above
dependency.

7

4.1 Assumptions

We assumean open system model with Poisson transactionarrivals. We assumethat
transactionoperationsarrive at eachobjectasa Poissonprocess,andthataccesscontentionevents
for a transactionareindependent.We modelthenetwork latency from anexponentialdistribution,
andassumesufficient I/O bandwidthto enablemodellingtheI/O serverasaninfinite serverwith a
load-independentservicetime.We assumethatall transactionsareof thesamesize,andthatthere
areno inherentaborts.Finally, weassumethataccessesto objectsaredistributeduniformly among
all objects. With a non-uniform distribution, we would get higher contention at lower loads.

In orderto maketheanalysistractable,wemakeafew simplifying assumptionsabout2PL.All
locks are assumedto be requestedat the start of the transactionand held until the end of the
transaction,asin static2PL. We assumethatdeadlocksandrestartsdon'toccur, andthatall locks
areexclusive. The latter assumptionis relaxed in a later section.For both 2PL andORDER,we
assumethat the operationor lock requestthat spendsthe maximumamountof time waiting in a
queueat theCCSmoduleis theonewhoseresponsearrivesthelatestat theclient thatinitiatedthe
transaction.In the analyticalmodel for ORDER,we assumethat a read is satisfiedonly after it
reachesthe headof the CCSqueueandis processedby the DM. Finally, we ignorethe inherent
orderingdelayin theanalysisof ORDER.We do not make thesesimplifying assumptionsin our
simulation. Table1 shows the parameters we use in our model.

Table 1: Analytical Model Parameters

4.2 Analytical Model of 2PL

Thetotal responsetime of a transactionis modelledas:R = REXEC + RCONT, whereRCONT is
the longesttime spentby any lock requestof the transactionwaiting for locks,andREXEC is the
executiontime of the transactionexcluding this longestlock-wait-time.REXEC modelshardware
resourcecontention, and is estimatedusing queueing models, while RCONT models data
contention.
4.2.1 Data Contention RCONT

Transactionsarrive at eachof theC clientsat rateλ. EachtransactionmakesK lock requests,
andthe requestsareuniformly distributedover theentiredatabaseof D objects.We assumelock
requestsarriving at an object form a Poissonprocesswith meanλ*C*K/D, and all locks are
exclusive. The K lock contention events for a single transaction are independent of one another.

Let the meanlock-holding time of an object be TH. Since we assumethat all locks are
requestedat thestartof thetransaction,TH is approximatelyequalto R’, whereR’ is theportionof
theresponsetimeof a transactionwhenthetransactionis holdingat leastonelock.Wewill compute
R’ in thenext section.Let TR bethemeanremainingtimethata lock requestwill haveto wait for the
current lock-holder to release the lock. TR = R’ / 2 [YDRI85].

The probability of contention for a lock request is the lock utilizationρ.

Number of clients C Number of servers S

Number of objects in database D Number of accesses by transaction K

Probability of read PR Client MIPS MC

Server MIPS MS Initial processing (instructions) IINPL

Computation perread (instructions) ICOMP TM overhead per operation (instructions) ITM

Network overhead per message (instructions) INW I/O overhead per access (instructions) IIO

CCS overhead per access (instructions) ICC I/O delay per access (seconds) DIO

Avg. network latency per message (seconds) DNW Mean transaction arrival rate per client (tps) λ

8

ρ = (arrival rate of lock requests at an object) / (service rate of lock requests at that object)
= (λ * C * K / D) / (1 / TH) = λ * K * TH * C / D .. (1)
In the following discussion, we use the term queue length at an object to mean the number of

lock requests waiting to be processed at that object, plus the number of lock requests being
processed at that object. At any object, the probability that the queue length < x is equal to (1 - ρx).
Let the probability that a transaction will not have to wait for any of its K locks be P0.
Probability (queue length < 1 at all K objects) = (1 - ρ1)K = P0
Probability (queue length < x at all K objects) = (1 - ρx)K

Each of the K lock requests of a transaction has to wait before the lock is free and can be
granted to the transaction. Our aim is to find the longest amount of time that one of these lock
requests will have to wait. This longest wait time corresponds to the longest queue length among
the queues at the K objects. Let the probability (longest queue length = 1) be P1, the probability
(longest queue length = 2) be P2, and so on.
P1 = Prob (queue length < 2 at all K objects) - Prob (queue length < 1 at all K objects)

= (1 - ρ2)K - (1 - ρ)K

Px = Prob (queue length < x+1 at all K objects) - Prob (queue length < x at all K objects)
= (1 - ρx+1)K - (1 - ρx)K

Let (P0 + P1 + P2 + + Pn) be approximately equal to 1. Then the data contention wait for a
transaction is approximately
RCONT={P0*0} + {P1*TR} + {P2*(TR+1*TH)} + + {Pn*(TR+(n-1)*TH)}............................. (2)

Previous models have assumed that the queue length at any object is never greater than one.
With this assumption, the effect of transaction t1 waiting at object o1 for transaction t2 while
transaction t2 is waiting at a different object o2 for transaction t3, is captured; but the effect of t1
waiting at o1 for t2, while t2 is waiting at the same object o1 for t3, is not captured. Since queue
lengths increase as data contention increases, traditional analytical models are inadequate to model
RCONT at high data contention levels. Our analysis, on the other hand, is able to capture response
time at high data contention levels.
4.2.2 Hardware Resource Contention REXEC

We first compute the utilizations at the client and the servers. In order to execute a transaction,
the number of instructions to be executed at the client is
Ic = IINPL + K*(ITM+INW) + K*(ITM+INW) + K*PR*ICOMP+ K*(ITM+INW)
where IINPL accounts for the initial processing; the three K*(ITM+INW) terms account for the
Transaction Manager and network overhead on lock requests, lock responses and commits/aborts
respectively; and K*PR*ICOMP accounts for the computation in response to the reads.
Arrival rate at the client = λ transactions per second
Service rate at the client = µc = (MC / IC) * 106 transactions per second
Client Utilization ρc = λ / µc = (λ * IC) / (MC * 106)
Processing time at the client = RCL = (1/µc) / (1-ρc) seconds

In order to execute a transaction, the total number of instructions executed at the servers is
Is = 3*K*(INW+ICC) + K*IIO
where 3*K*(INW+ICC) accounts for the network and CCS module overhead of processing lock
requests, responses and commits/aborts; and K*IIO accounts for the I/O overhead of database
reads and writes.
Arrival rate at a server = λ * C / S transactions per second
Service rate at a server = µs = (MS / IS) * 106 transactions per second
Server Utilization ρs = (λ * C / S) / µs = (λ * C / S * IS) / (MS * 106)
Processing time at a server to do a transaction’s worth of work = RSV = (1/µs) / (1-ρs)

There are two phases in the execution of a transaction. In the first phase, the client sends lock
requests to the servers, the servers process the lock requests and send lock responses, and the client

9

performs transaction computation. A read lock request results in a database access at the server,
while a write lock request does not. Therefore, we assume that the response time in the first phase
is dominated by the response time of the read lock requests. We also assume that the first phase
response time is dominated by the lock request l that has to wait for the maximum amount of time
on a CCS module queue. The response time for the transaction in this first phase is given by
RPHASE1= RCL1 + (network traversal time of l + server-and-disk processing time of l + network

traversal time of l’s response + client processing time of l’s response) + RCOMP; where
RCL1 = RCL * [IINPL + K*(ITM+INW)]/Ic (initial processing and sending of lock requests); and
RCOMP = RCL * (K*PR*ICOMP)/Ic (transaction computation in response to reads).
RPHASE1= RCL1 + DNW + RSV*(INW+ICC)/Is + RCONT + RSV*IIO/Is + DIO + RSV*(ICC+INW)/Is

+ DNW + RCL * (INW+ITM)/Ic + RCOMP
RPHASE1 has a data contention component (RCONT) and a hardware contention component
R’PHASE1.
R’PHASE1=RCL1 + DNW + RSV*(INW+ICC)/Is + RSV*IIO/Is + DIO + RSV*(ICC+INW)/Is

+ DNW + RCL * (INW+ITM)/Ic + RCOMP
In the second phase of execution of a transaction, the client sends commits to the servers. A

committed write results in a database access at the server, while a committed read does not. We
assume that the response time in the second phase is dominated by the response time of the
committed writes. The response time for the transaction in the second phase is given by
RPHASE2= RCL2 + DNW*(1/1 + 1/2 + + 1/K) + RSV*(INW+ICC)/Is + DIO + RSV*IIO/Is; where
RCL2 = RCL * K*(ITM+INW)/Ic (sending of commits and lock-releases), and
DNW*(1/1 + 1/2 + + 1/K) = network traversal time of the slowest of the K operations.

The hardware component of the response time of a transaction is REXEC = R’PHASE1 +
RPHASE2, and can be computed directly from the parameters to the analytical model.
4.2.3 Total Response Time R

The hardware contention component REXEC is computed as described in the previous section.
The data contention component RCONT depends on the mean lock-holding time TH and the mean
remaining lock-holding time TR. Recall that TH is approximately equal to R’, where R’ is the
portion of the response time of a transaction when the transaction is holding at least one lock.
R’ = R - [portion of response time when transaction is holding no locks]

= R - [RCL1 + DNW + RSV*(INW+ICC+IIO)/IS + DIO] .. (3)
We use an iterative model in order to compute mean transaction response time R. We start with an
initial value of zero for RCONT.
Step 1: R = REXEC + RCONT
Step 2: Compute R’ according to equation 3.
Step 3: TH = R’
Step 4: TR = R’ /2
Step 5: Compute ρ according to equation 1. If ρ >= 1.0, stop; the system is unstable.
Step 6: Compute RCONT according to equation 2.
Step 7: If RCONT has not changed by a significant amount, stop; else go to Step 1.

The iterative process continues until the computation of RCONT has converged; that is, until
the difference between successive-iteration values of RCONT is very small. The mean transaction
response time is then computed as R = REXEC + RCONT.
4.2.4 Modelling Shared and Exclusive Locks

Allowing shared locks in addition to exclusive locks changes the behaviour of the lock-request
queues at the CCS modules in the servers. Since multiple transactions can hold shared locks (read
locks) simultaneously, a lock-request queue behaves as if contiguous reads are compressed into a
single read. Consequently, effective queue lengths at the servers can be smaller than actual queue
lengths. If the actual queue length is m, the expected number of reads on the queue is PRm, and the

10

expectednumber of writes is (1-PR)m. In order to make our model tractable,we make the
following simplifying assumption.If PR > 0.5, thenthecontiguousread sequencesareuniformly
spacedamongthewrites.And if PR <= 0.5,thenthewritesareuniformly spacedamongthereads.
With this assumption, if the actual queue length ism, the corresponding effective queue length is
Qm’ = 2*(1-PR)*m, if PR > 0.5;
Qm’ = m, if PR <= 0.5.

Therefore, equation 2 is replaced with
RCONT={P0*0} + {P 1*TR} + {P2*(TR+(Q2’-1)*T H)} + {P3*(TR+(Q3’-1)*T H)} +

+ {Pn*(TR+(Qn’-1)*T H)} ...(2’)
4.3 Analytical Model of ORDER

As in the 2PL model, the total responsetime of a transactionis modelledas the sum of a
hardwareresourcecontentioncomponentREXEC andadatacontentioncomponentRCONT. RCONT
is the longesttime spentby any operationof the transactionin the CCSmodule,waiting to be
processed.
4.3.1 Data Contention RCONT

We assumethatoperationsarriving at anobjectform a Poissonprocesswith meanλ*C*K/D.
Let themean“object-holdingtime” beTH. Theobject-holdingtime of anobjectis theamountof
time for which anoperationeffectively “locks” theobject,disallowing accessby otheroperations.
In theORDERalgorithm,theobject-holdingtime of a read is zero,becausea read is immediately
executedwhen it reachesthe headof the CCS queue.On the other hand,a predeclare hasan
object-holdingtime of R’, becauseit holds the object from the startof the transactionuntil the
correspondingcommittedwrite arrives.Theobjectutilization in theORDERsystemdiffers from
the 2PL lock utilization (equation 1) as follows.
ρ = (arrival rate of predeclares at an object) / (service rate of predeclares at that object)

= (λ * C * K * (1 - PR) / D) / (1 / TH) = λ * K * (1 - PR) * TH * C / D................................. (1’)
Thedatacontentionis derivedin thesameway asin §4.2.1,exceptthatthetermqueue length

at an object now refersto the numberof predeclaresat that object.RCONT is still describedby
equation 2.
4.3.2 Hardware Resource Contention REXEC

In theORDERalgorithm,thenumberof instructionsto beexecutedat theclient differs from
that in 2PL, becauseof threereasons:the server doesnot sendlock-set messagesto the client;
writes arestoredlocally; andtheclient doesnot sendread lock-releases to theservers.In orderto
executea transaction,thenumberof instructionsto beexecutedat theclient in anORDERsystem
is
Ic = IINPL + K*(I TM+INW) + K*PR*(I TM+INW) + K*(1-PR)*I TM + K*PR*I COMP+ K*(1-
PR)*(I TM+INW)

where IINPL accountsfor the initial processing;K*(I TM+INW) accountsfor the TM and
network overheadon reads andpredeclares; K*PR*(I TM+INW) accountsfor theTM andnetwork
overhead on read-responses; K*(1-PR)*I TM accounts for the TM overhead on writes;
K*PR*I COMP accountsfor the computationin responseto the reads; and K*(1-PR)*(I TM+INW)
accounts for the TM and network overhead oncommits.

In contrastto a 2PL system,theserversin anORDERsystemdo not sendlock-set messages,
nor do they receive and processread lock-releases. In order to executea transaction,the total
number of instructions executed at the servers is
Is = K*(I NW+ICC) + K*PR*(I NW+ICC) + K*(1-PR)*(I NW+ICC) + K*I IO
whereK*(I NW+ICC) accountsfor thenetwork andCCSmoduleoverheadof processingreads and
predeclares; K*PR*(I NW+ICC) accountsfor thenetwork andCCSmoduleoverheadof processing
read-responses; K*(1-PR)*(I NW+ICC) accountsfor the network and CCS module overheadof

11

processingcommits; andK*I IO accountsfor the I/O overheadin performingthe databasereads
andwrites.

RPHASE1andRPHASE2arecomputedin the samemanneras in §4.2.2,except that the RCL2
componentof RPHASE2changesto includethe local storageof writes andexcludethesendingof
read lock-releases:
RCL2 = RCL * {K*(1-P R)*I TM + K*(1-PR)*(I TM+INW)/Ic} (storageof writes and sendingof
commits)

The averagenetwork latency DNW in an ORDER systemwill probablybe higher than the
DNW of the conventionalnetwork usedby 2PL, becausethe network in an ORDER systemis
doingextra work in orderto deliver messagesin order. Theseverity of this latency penaltyaffects
the difference in performance between 2PL and ORDER.
4.4 Analytical Model of Best Case

We usethe No DataContention(NDC) algorithmasthe bestcasealgorithmthat assumesa
zero ordering cost and no data conflicts. NDC allows us to isolate the effects of hardware
contentionfrom datacontentionandorderingcost.NotethatNDC guaranteesa correctexecution
only in theabsenceof datacontention.Themodelof NDC is thesameasthatof ORDER,except
that the data contention component of response time (RCONT) is always zero.

5 Simulation
We simulated the NDC, ORDER and dynamic 2PL systemsand performed detailed

performancestudies.Servers in the 2PL simulationdetectdeadlocksusingwaits-for graphs,but
the cost for deadlockdetectionis set to zero.Whena transactionis abortedin order to resolve
deadlock,a new transactionis startedin order to simulatea restart.Locks can be sharedor
exclusive, with no upgradefrom sharedto exclusive. In the ORDER simulation,a read can be
satisfiedby a committedwrite in front of it on the CCSqueue.Note that the inherentordering
delay(which was ignoredin the analyticalmodel)comesinto effect in the ORDERsimulation,
becausethenetwork candelaymessagesso that they aredeliveredaccordingto a total order. We
modelthelatency penaltyby multiplying theconventionalnetwork’s averagelatency by a latency
penalty factor. Transactionsareof variablesize.Thebaselineparametersthatweusedarestandard
ones culled from performance studies of CC techniques in the literature.

• Client’s initial processing of a transaction (IINPL) = 100K instructions
• Client’s computation perread (ICOMP) = 20K instructions
• Transaction Manager overhead at client per operation (ITM) = 1K instructions
• Network overhead at client/server per message (INW) = 5K instructions
• I/O overhead at server per object access (IIO) = 5K instructions
• Overhead at CC module at server per object access (ICC) = 1K instructions
• Number of clients = 8
• Number of servers = 8
• Database size = 32000 or 4000 objects
• Number of high-contention objects (hot spots) = 1/20th of database size
• High-contention access probability = 0.33
• Size of a transaction = 8-24 object accesses (uniform distribution)
• Probability of a transaction’s access being aread = 0.75
• Commit probability of a transaction = 1
• MIPS rating of each client = 400
• MIPS rating of each server = 800
• Average communication delay per message (DNW) = 20 * 10-6 seconds
• Latency penalty factor (for ORDER) = 2
• I/O delay per object access (DIO) = 4 * 10-3 seconds
• Mean arrival rate of transactions at each client (λ) = 201 transactions per second
• Percentage of read-only transactions = 0

12

• Percentage of write-only transactions = 0
• Local deadlock detection period (for 2PL) = every 10 operations arriving at CCS module
• Global deadlock detection (for 2PL) = 100 times a second
• Deadlock detection cost (for 2PL) = 0
We ran the simulation and the analytical model for different arrival rates of transactions and

for different database sizes, and measured the average transaction response time. Figure 3 and
Figure 4 show the results for NDC, ORDER and 2PL, for two database sizes: 32000 and 4000
objects. The smaller the database the higher the degree of data contention, because the same
number of transactions are contending for a smaller number of objects. Henceforth in this paper,
the database size = 32000 case will be referred to as the low data contention scenario, and the
database size = 4000 case will be referred to as the high data contention scenario. Since data
contention has no effect on NDC, there is only one graph for NDC.

In this experiment, the latency
penalty factor for ORDER was set
to 2, and no hot spots were used in
the simulation or in the analytical
model. Each point in the graphs is
an average over 6 independent runs.
For all three algorithms, as
transaction arrival rate increases,
response time increases slowly until
a knee when it shoots up to a high
value. In the NDC case, the
performance degradation at the
knee is due to hardware resource
contention: the increased
transactions compete for the limited
CPU resources available. At high
data contention levels, the knees of
the ORDER and 2PL curves occur
at a lower transaction arrival rate.

0 200 400 600 800

Arrival Rate
(trans/sec/site)

0

20

40

60

80

A
vg

 R
es

p
T

im
e

(m
s)

NDC Analytical
NDC Simulation

0 200 400 600 800

Arrival Rate
(trans/sec/site)

0

20

40

60

80

A
vg

 R
es

p
T

im
e

(m
s)

Order Analytical
Order Simulation

0 200 400 600 800

Arrival Rate
(trans/sec/site)

0

20

40

60

80

A
vg

 R
es

p
T

im
e

(m
s)

2PL Analytical
2PL Simulation

(b) ORDER (c) 2PL(a) NDC

Figure 3: Database size = 32000 objects (low data contention)

0 200 400 600 800

Arrival Rate
(trans/sec/site)

0

20

40

60

80

A
vg

 R
es

p
T

im
e

(m
s)

Order Analytical
Order Simulation

0 200 400 600 800

Arrival Rate
(trans/sec/site)

0

20

40

60

80

A
vg

 R
es

p
T

im
e

(m
s)

2PL Analytical
2PL Simulation

Figure 4: Database size = 4000 objects (high data contention)

(a) ORDER (b) 2PL

13

As more and more transactions are introduced into the system, the data conflict probability
increases, causing longer CCS queue wait times and longer response times. The data conflict
probability is higher in the 4000-object database because the same number of operations are
competing for access to a smaller set of objects. The graphs show that our analytical model tracks
the simulation results very well, and predicts the knee of the curve accurately even at high data
contention levels. As noted, the analytical model makes several simplifying assumptions not made
in the simulation. The close agreement between the results of the analytical model and simulation
indicates that the effect of these assumptions is either insignificant or self-cancelling. Future work
will explore the effect of each assumption.

6 Performance Evaluation
We ran extensive experiments on our simulations, and studied performance for various

workloads and system parameters. We used a b-c pattern of hot spot access, where a fraction b of
object accesses go to a fraction c of the database (hot spots), and b > c [TaGS85].
6.1 Transaction arrival rate

Figure 5 shows the effect of
varying the arrival rate of
transactions. As the arrival rate
of transactions increases, the
response time increases for all
three schemes, hitting a knee and
then going rapidly up as the
system goes into an unstable
region. The response time graphs
show that the knee of the curve
occurs at a lower arrival rate for
2PL than for ORDER. The sharp
increase in the response time of
NDC is due to hardware resource
contention. For ORDER and
2PL, the sharp degradation in
performance occurs at a lower
arrival rate than for NDC
because of data contention.

0 200 400 600 800

Arrival Rate
(trans/sec/site)

0

50

100

150

A
vg

 R
es

p
T

im
e

(m
s)

2pl
order
ndc

0 200 400 600 800

Arrival Rate
(trans/sec/site)

0

50

100

150

200

A
vg

 R
es

p
T

im
e

(m
s)

2pl
order
ndc

Figure 5: Effect of transaction arrival rate

(a) Low data contention (b) High data contention

14

Figure 6 shows the
throughput and percentage
aborts curves for the database
size = 4000 case. The
throughput graph shows that
the peak throughput is reached
at the knee arrival rate, after
which the throughput levels
off and drops as the system
becomes unstable. Aborts
increase steadily in the 2PL
system as transaction arrival
rate increases, since increased
response time means longer
lock-holding times, which in
turn means a higher
probability for deadlock.

Figure 7 shows that
modelling queue lengths
accurately is important for
predicting performance under high contention. The graphs plot average queue length at the CCS
modules, average read wait and average write wait for the high data contention case. At the knee
arrival rate, average queue length increases sharply, causing read and write/predeclare operations
to wait longer, increasing response time. The increased response time in turn causes the mean
lock-hold time to increase, causing operations to wait longer, further increasing response time. The
average queue length of 2PL increases beyond one when the system reaches the knee, showing that
the queue length = 1 assumption made in traditional analytical models for 2PL is insufficient in
order to predict the knee of the curve. The queue length in 2PL is initially lower than that in
ORDER because 2PL staggers its request of locks while ORDER requests all of its locks in the
beginning. However, when increased data contention sets in, the lower lock-holding time of
ORDER keeps the queue length and operation wait time low.

0 200 400 600 800

Arrival Rate
(trans/sec/site)

0

1000

2000

3000

4000

5000

A
vg

 T
hr

ou
gh

pu
t

(t
ps

)

2pl
order
ndc

0 200 400 600 800

Arrival Rate
(trans/sec/site)

0

2

4

6

8

P
er

c
A

bo
rt

s

2pl

Figure 6: Throughput and aborts (high data contention)

(a) Throughput (b) Percentage aborts

0 200 400 600 800

Arrival Rate
(trans/sec/site)

0

1

2

3

4

5

A
vg

 C
C

S
Q

le
ng

th

2pl
order

0 200 400 600

Arrival Rate
(trans/sec/site)

0

50

100

150

A
vg

 R
ea

d
W

ai
t

(m
s)

2pl
order

0 100 200 300 400 500

Arrival Rate
(trans/sec/site)

0

50

100

A
vg

 W
ri

te
 W

ai
t

(m
s)

2pl
order

Figure 7: Data contention wait curves

(a) Average CCS queue length (b) Average read wait (c) Average write wait

15

6.2 Network latency and ordering cost

Figure8 shows the effect
of varyingtheaveragenetwork
latency andthe latency penalty
factor(for ORDER)in thehigh
data contentionscenario.The
ORDER technique is
representedby four different
curves, each representing a
differentlatency penaltyfactor.
The order-2 curve uses a
latency penaltyfactorof 2, and
corresponds to the ORDER
curves presented in earlier
graphs. As network latency
increases, operations arrive
later, causing lock-holding
timesandobject-holdingtimes
to increase, in turn causing
higher response times. The
increased data contention at
high network latenciescauses
both ORDERand2PL to peak
at lower arrival rates.

In order to discover how
efficient the network hasto be
in providing the property of
total ordering, we studied the
effect of four different latency
penaltyfactors— 1, 2, 3 and4
— on ORDER.Recall that the
latency penalty factor of the
isotachprototype is 1.43-2.31.
The higher the latency penalty
factor, the longer operations
take to arrive, the longer the
object-holding times, and the
longer the responsetime of
ORDER. In addition, in our
experiments, since network
latency is drawn from an
exponential distribution, the
higher the mean latency, the
higher the variancein latency.
In an ORDER system,a high
latency variancemeansthat the
probability of operations
arriving out of order is high, and therefore,the inherentorderingdelay is high. However, the
inherentorderingdelayis still a smallercontributor to the overall responsetime thanthe object-

0 200 400 600 800

Arrival Rate
(trans/sec/site)

0

50

100

150

200

A
vg

 R
es

p
T

im
e

(m
s)

order-1
order-2
order-3
order-4
2pl
ndc

0 200 400 600 800

Arrival Rate
(trans/sec/site)

0

50

100

150

A
vg

 R
es

p
T

im
e

(m
s)

order-1
order-2
order-3
order-4
2pl
ndc

(a) Network latency = 20µs (b) Network latency = 80µs

Figure 8: Effect of network latency and ordering penalty.

0 200 400 600 800

Arrival Rate
(trans/sec/site)

0

50

100

150

200

250

A
vg

 R
es

p
T

im
e

(m
s)

order-1
order-2
order-3
order-4
2pl
ndc

(d) Network latency = 500µs

Figure 8: Effect of network latency and ordering penalty.

0 200 400 600 800

Arrival Rate
(trans/sec/site)

0

50

100

150

200

250

A
vg

 R
es

p
T

im
e

(m
s)

order-1
order-2
order-3
order-4
2pl
ndc

(c) Network latency = 200µs

16

holding times. The effect of varying the latency penalty factor becomes more apparent in the
graphs for higher network latencies. At latencies of 20µs, 80µs and 200µs, all of the ORDER
variants perform better than 2PL. At a latency of 500µs, order-1 and order-2 still outperform 2PL,
but the performance of order-3 is similar to that of 2PL. Moreover, order-4 performs worse than
2PL. In summary, ORDER outperforms 2PL at low to moderate network latencies. When the
average network latency is high (500µs), the network must provide the total ordering guarantee in
a very efficient way in order to outperform 2PL.
6.3 Transaction size

Figure 9 shows the effect of varying the transaction size. As the transaction size increases, the
number of operations active in the system at any time increases, thus increasing data conflict. In
addition, a bigger transaction has a longer lifetime, thus increasing data conflict and the probability
of deadlock in 2PL. As before, the lower lock-holding time of ORDER keeps the queue length and
operation wait time of ORDER lower than in 2PL.

6.4 Number of clients

Figure 10 shows the effect of varying the number of clients submitting transactions. As the
number of clients increases, the number of transactions active in the system increases, and data
conflict increases. The probability of deadlock in 2PL increases, and the percentage of aborts
consequently increases. Once again, the queue length, operation wait time and response time
curves for 2PL have knees at a lower value for number of clients, as compared to ORDER.
6.5 Transaction composition

Figure 11 (a) shows the effect of varying the probability of read while transaction size is held
constant. More reads implies more computation by the transaction, and more time before the
commit decision can be made (for all three schemes). This effect dominates in the earlier portion
of the curves. However, more reads also implies that the queue length (and lock-holding time)
goes down because read locks are shared (2PL) and reads can be satisfied earlier (ORDER). When

0 10 20 30 40

Transaction Size
(#ops)

0

100

200

300

400

500

A
vg

 R
es

p
T

im
e

(m
s)

2pl
order
ndc

0 10 20 30 40

Transaction Size
(#ops)

0

1000

2000

3000

A
vg

 R
es

p
T

im
e

(m
s)

2pl
order
ndc

Figure 9: Effect of transaction size

(a) Low data contention (b) High data contention

0 10 20 30

Num Clients

0

50

100

A
vg

 R
es

p
T

im
e

(m
s)

2pl
order
ndc

Figure 10: Number of clients

(high data contention)

17

the probability of read becomes 100%, there are no writes, and therefore the disk access time of
the second phase goes away for all 3 schemes. Hence the sharp drop in response time.

Figure 11 (b) shows the effect of varying the percentage of read-only transactions. For read-
only transactions, the second phase involving disk writes is absent. In addition, more reads implies
lower lock-holding time and queue lengths. On the other hand, more reads implies more
transaction computation. But the first two effects dominate, and response time decreases as the
percentage of read-only transactions increases (for all three schemes).

Figure 11 (c) shows the effect of varying the percentage of write-only transactions. In
ORDER, write-only transactions have an advantage over read-write transactions because no
communication from servers to client is necessary in order for the client to make its commit
decision. 2PL offers no such advantage because the client must wait for lock-sets before
committing. Another advantage of write-only transactions (for both schemes) is that they perform
no computation. Therefore, the response time for NDC and ORDER go down as the percentage of
write-only transactions increases. However, for 2PL, the increased writes heighten the already-
serious data conflict situation, causing queue length, operation wait time, response time and
percentage of aborts to go up.

7 Conclusion
The conventional 2PL CC technique causes system thrashing at high data contention levels,

restricting transaction throughput to levels inconsistent with the available resources. We have
presented a new concurrency control technique called ORDER, that uses a total ordering guarantee
provided by the network in order to achieve efficient CC. We have presented a new analytical
model for 2PL. Unlike previously-proposed 2PL models, our analytical model continues to predict
performance accurately even at high data contention levels.

Our analytical model and simulation agree in predicting that ORDER outperforms dynamic
2PL under high data contention. ORDER’s advantage disappears only when network latency is
high and ordering is implemented inefficiently. The performance of the isotach prototype implies
that ORDER is a good candidate for high contention databases. In both ORDER and 2PL, as
parameters change adversely, queue lengths increase, increasing operation wait time and response
time. In 2PL, aborts also increase due to deadlocks, further increasing response time. The mean
lock-holding time in ORDER is lower than that in 2PL, letting ORDER sustain good performance
longer. We have demonstrated that ORDER outperforms 2PL for a wide range of workloads. In

0 20 40 60 80 100

Read Probability

0

5

10

15

20

A
vg

 R
es

p
T

im
e

(m
s)

2pl
order
ndc

Figure 11: Transaction composition (high data contention)

(a) Read probability

0 20 40 60 80 100

%Read-only Transactions

0

5

10

A
vg

 R
es

p
T

im
e

(m
s)

2pl
order
ndc

(b) Read-only transactions

0 20 40 60 80 100

%Write-only Transactions

0

5

10

15

20

A
vg

 R
es

p
T

im
e

(m
s)

2pl
order
ndc

(c) Write-only transactions

18

future work, we plan to study the effect of high-variance network latenciesand recovery
techniques on ORDER and 2PL.

8 References

AlDa76 Alsberg P. A. and Day J. D., A Principle for Resilient Sharing of Distributed Resources,
Proceedings of the 2nd International Conference on Software Engg., Oct 1976.

Bada79 Badal D. Z., Correctnessof ConcurrencyControl and Implications in DistributedDatabases,
Proceedings of COMPSAC 79 Conference, Nov 1979.

BaHR80 Bayer R., Heller H. and Reiser A., Parallelismand Recoveryin DatabaseSystems,ACM
Transactions on Database Systems 5/2, Jun 1980.

BeGo80 BernsteinP.A. and GoodmanN., TimestampBasedAlgorithms for ConcurrencyControl in
DistributedDatabaseSystems,Proceedingsof the 6th InternationalConferenceon Very Large
Databases, Oct 1980.

BeGo81 BernsteinP. and GoodmanN., ConcurrencyControl in DistributedDatabaseSystems,ACM
Computing Surveys 13/2, Jun 1981.

BeHG87 BernsteinP. A., HadzilacosV. and GoodmanN., ConcurrencyControl and Recovery in
Database Systems, Addison-Wesley, 1987.

BeSR80 BernsteinP. A., ShipmanD. W. and Rothnie J. B., ConcurrencyControl in a Systemfor
Distributed Databases (SDD-1), ACM Transactions on Database Systems 5/1, Mar 1980.

BGRP78 BernsteinP.A., GoodmanN., RothnieJ.B. andPapadimitriouC. A., TheConcurrencyControl
Mechanismof SDD-1: a Systemfor DistributedDatabases(the fully redundantcase),IEEE
Transactions on Software Engg., SE-4/3, May 1978.

BiJo86 Birman K. P. andJosephT. A., Low-Cost Managementof ReplicatedData in Fault-Tolerant
Distributed Systems, ACM Transactions on Computer Systems 4/1, Feb 1986.

CaLi91 CareyM. andLivny, Conflict DetectionTradeoffsfor ReplicatedData,ACM Transactionson
Database Systems 16/4, Dec 1991.

Casa79 CasanovaM. A., The ConcurrencyControl Problemfor DatabaseSystems,PhD dissertation,
Harvard University; Technical Report TR-17-79, Center for Research in Computing
Technology, 1979.

CiDY90 Ciciani B., Dias D., Yu P., Analysis of Replicationin Distributed DatabaseSystems,IEEE
TKDE 2/2, Jun 1990, pp 247-261.

CiDY92 CicianiB., DiasD., Yu P., Analysisof Concurrency-Coherency ControlProtocolsfor Distributed
Transaction Processing Systems with Regional Locality, IEEE TSE 18/10, Oct ‘92, pp 889-914.

CDIY90 Ciciani B., Dias D., Iyer B., Yu P., A Hybrid Distributed CentralizedSystemStructurefor
Transaction Processing, IEEE TSE 16/8, 1990, pp 791-806.

Date95 Date C. J., An Introduction to Database Systems, Sixth Edition, Addison-Wesley, 1995.

DoMa96 Dolev D. andMalkhi D., The TransisApproachto High Availability ClusterCommunication,
CACM 39/4, April 1996, pp 64-70.

EGLT76 EswaranK. P., Gray J. N., Lorie R. A. and Traiger I. L., The Notions of Consistencyand
Predicate Locks in a Database Systems, Communications of the ACM 19/11, Nov 1976.

Garc79 Garcia-MolinaH., Performanceof UpdateAlgorithms for ReplicatedData in a Distributed
Database, PhD dissertation, Computer Science Dept., Stanford University, Jun 1979.

Gray96 Gray J., The Dangers of Replication and a Solution, ACM SIGMOD Conf., 1996, pp 173-182.

GrRe92 Gray J. N. and Reuter A., Transaction Processing: Concepts and Facilities, Morgan-Kaufmann.

HaDo91 Halici U. and Dogac A., An Optimistic Locking TechniqueFor ConcurrencyControl in
Distributed Databases, TSE 17/7, Jul 1991.

Holt72 Holt R. C.,SomeDeadlockPropertiesof ComputerSystems,ACM ComputingSurveys4/3,Dec
1972.

19

JeKT88 Jenq B., Kohler W. H. and Towsley D., A Queueing Network Model for a Distributed Database
Testbed System, IEEE Transactions on Software Engineering 14/7, Jul 1988.

KiCo74 King P. F. and Collmeyer A. J., Database Sharing - an Efficient Method for Supporting
Concurrent Processes, Proceedings of the 1974 National Computer Conference 42, 1974.

LaMy00 Lack M. N. and Myers, P., The Isotach Messaging Layer: Ironman Design, Technical Report
CS-2000-17, Dept. of Computer Science, University of Virginia, May 2000.

Lamp78 Lamport L., Time, Clocks and Ordering of Events in a Distributed System, Communications of
the ACM 21/7, Jul 1978.

Lave83 Lavenberg S. (Ed.), Computer Performance Modeling Handbook, Academic Press, Orlando,
Florida, 1983.

Li87 Li V., Performance Models of Timestamp-Ordering Concurrency Control Algorithms in
Distributed Databases, IEEE TOC 36/9, Sept 1987.

MMAB96 Moser L. E., Melliar-Smith P. M., Agarwal D. A., Budhia R. K. and Lingley-Papadopoulos C.
A., Totem: a Fault-Tolerant Multicast Group Communication System, Communications of the
ACM 39/4, Apr 1996.

NeTo93 Neiger G. and Toueg S., Simulating synchronized clocks and common knowledge in distributed
systems, Journal of the ACM 40/2, Apr 1993.

Reed78 Reed D. P., Naming and Synchronization in a Decentralized Computer System, PhD
dissertation, Dept. of Electrical Engg., MIT, Sep 1978.

Rege97 Regehr J., An Isotach Implementation for Myrinet, Technical Report CS-97-12, Dept. of
Computer Science, University of Virginia, May 1997.

ReTH96 Ren J., Takahashi Y., Hasegawa T., Analysis of Impact of Network Delay on Multiversion
Conservative Timestamp Algorithms in DDBS, Perf Eval 26, 1996, pp 21-50.

ReWW97 Reynolds P. F., Williams C. and Wagner R., IEEE Transactions on Parallel and Distributed
Systems 8/4, Apr. 1997, pp 337-348.

RoSL78 Rosenkrantz D. J., Stearns R. E. and Lewis P. M., System Level Concurrency Control for
Distributed Database Systems, ACM Transactions on Database Systems 3/2, Jun 1978.

RyTh90a Ryu I., Thomasian A., Analysis of Database Performance with Dynamic Locking, JACM 37/3,
Jul 1990, pp 491-523.

RyTh90b Ryu I., Thomasian A., Performance Analysis of Dynamic Locking with the No-Waiting Policy,
IEEE TSE 16/7, Jul 1990, pp 684-698.

SaGS94 Salem K., Garcia-Molina H. and Shands J., Altruistic Locking, ACM Transactions on Database
Systems 19/1, Mar 1994.

ScRa96 Schiper A. and Raynal M., From group communication to transactions in distributed systems,
Communications of the ACM 38/4, Apr 1996.

ShMi77a Shapiro R. M. and Millstein R. E., Reliability and Fault Recovery in Distributed Processing,
Oceans 77 Conference record, vol II, 1977.

ShMi77b Shapiro R. M. and Millstein R. E., NSW Reliability Plan, Massachusetts Technical Report 7701-
1411, Computer Associates, Wakefield, MA, Jun 1977.

ShWo97 Sheikh F. and Woodside M., Layered Analytic Performance Modelling of a Distributed
Database System, Proceedings of the 17the International Conference on Distributed Computing
Systems, May 1997.

Sing91a Singhal M., Performance Analysis of the Basic Timestamp Ordering Algorithm via Markov
Modeling, Perf Eval 12, 1991.

Sing91b Singhal M., Analysis of the Probability of Transaction Abort and Throughput of Two Timestamp
Ordering Algorithms for Database Systems, IEEE TKDE 3/2, Jun 1991.

StRo81 Stearns R. E. and Rosenkrantz D. J., Distributed Database Concurrency Controls Using Before-
Values, Proceedings of the ACM-SIGMOD Conference on Management of Data, 1981.

Ston79 Stonebraker M., Concurrency Control and Consistency of Multiple Copies of Data in
Distributed INGRES, IEEE Transactions on Software Engg., SE-5/3, May 1979.

20

TaGS85 Tay Y., Goodman N., Suri R., Locking Performance in Centralized Databases, ACM TODS 10/4,
Dec 1985, pp 415-462.

Thom79 Thomas R. H., A Solution to the Concurrency Control Problem for Multiple Copy Databases,
Proceedings of the 1978 COMPCON Conference (IEEE), 1979.

Thom93 Thomasian A., Two-Phase Locking Performance and its Thrashing Behavior, ACM TODS 18/4,
Dec 1993, pp 579-625.

Thom98 Thomasian A., Concurrency Control: Methods, Performance, and Analysis, ACM Computing
Surveys 30/1, Mar 1998, pp 70-119.

ThRy91 Thomasian A., Ryu I., Performance Analysis of Two-Phase Locking, IEEE TSE 17/5, May
1991, pp 386-401.

Will93 Williams C., Concurrency Control in Asynchronous Computations, PhD Dissertation, Dept. of
Computer Science, University of Virginia, 1993.

YuDi92 Yu P., Dias D., Analysis of Hybrid Concurrency Control Schemes for a High Data Contention
Environment, IEEE TSE 18/2, Feb 1992, pp 118-129.

YuDi93 Yu P., Dias D., Performance Analysis of Concurrency Control Using Locking with Deferred
Blocking, IEEE TSE 19/10, Oct 1993.

YuDL93 Yu P., Dias D., Lavenberg S., On the Analytical Modelling of Database Concurrency Control,
JACM 40/4, Sept 1993, pp 831-872.

YDRI85 Yu P., Dias D., Robinson J., Iyer B., Cornell D., Modelling of Centralized Concurrency Control
in a Multi-System Environment, Perf Eval Rev 13/2 (Proc 1985 ACM SIGMETRICS), pp 183-
191.

	Distributed Transaction Processing on an Ordering Network
	Rashmi Srinivasa, Craig Williams, Paul F. Reynolds Jr.
	Department of Computer Science
	University of Virginia, Charlottesville
	{rashmi, craigw, reynolds}@virginia.edu
	Technical Report CS-2001-08
	February 2001
	Abstract
	1 Introduction
	Figure 1: System Architecture

	2 Related Work
	2.1 Concurrency Control Techniques
	2.2 Analytical Models
	2.3 Concurrency Control based on Ordering

	3 Ordering Network Aided CC
	3.1 ORDER Algorithm
	Figure 2: The ORDER System Algorithms

	3.2 Qualitative Comparison Between ORDER and Dynamic 2PL

	4 Analytical Model
	4.1 Assumptions
	Table 1: Analytical Model Parameters

	4.2 Analytical Model of 2PL
	4.2.1 Data Contention RCONT
	4.2.2 Hardware Resource Contention REXEC
	4.2.3 Total Response Time R
	4.2.4 Modelling Shared and Exclusive Locks

	4.3 Analytical Model of ORDER
	4.3.1 Data Contention RCONT
	4.3.2 Hardware Resource Contention REXEC

	4.4 Analytical Model of Best Case

	5 Simulation
	Figure 3: Database size = 32000 objects (low data contention)
	Figure 4: Database size = 4000 objects (high data contention)

	6 Performance Evaluation
	6.1 Transaction arrival rate
	Figure 5: Effect of transaction arrival rate
	Figure 6: Throughput and aborts (high data contention)
	Figure 7: Data contention wait curves

	6.2 Network latency and ordering cost
	Figure 8: Effect of network latency and ordering penalty.
	Figure 8: Effect of network latency and ordering penalty.

	6.3 Transaction size
	Figure 9: Effect of transaction size

	6.4 Number of clients
	6.5 Transaction composition
	Figure 11: Transaction composition (high data contention)

	7 Conclusion
	8 References

