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ABSTRACT

Micron’s Automata Processor (AP) is a configurable memory-
based device, purpose-built to emulate a theoretical non-

deterministic finite automata (NFA). While NFAs are not

particularly suited for floating point computation, they are

extremely powerful and efficient pattern matchers and have

been shown to provide large speedups over traditional von

Neumann execution for rule-based, data-mining applications.
While these kernels like associative rule mining, Brill tag-

ging, protein motif identification have seen impressive orders

of magnitude speedups, the exact capabilities of the AP and

its advantage over traditional von Neumann architectures

like CPUs and GPUs remains an open research area.

As an example of the potential power of the AP, we demon-
strate its ability to simulate probabilistic automaton and ac-
complish stochastic computation using a random or stochas-
tic input stream. The combination of probabilistic automata
and stochastic computation open up a wide range of appli-
cation kernels, previously not known to be implementable
on the AP, with the potential for impressive speedups over
CPUs and GPUs. This paper first presents the construction
of probabilistic automata, and shows how they can be used
to simulate Markov chains, Brownian motion, and stochas-
tic computation. We then suggest small, low-cost changes
to the AP architecture that would enable more efficient con-
struction of these previously unimplementable application
kernels.
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1. INTRODUCTION

As the breakdown in Dennard scaling makes it increas-
ingly expensive to improve performance of traditional von
Neumann architectures, heterogeneous computing, involving
GPUs, DSPs, FPGAs, ASICs and other processors has pro-
vided promise as a possible path forward. Micron, leveraging
their experience and IP in memory and semiconductor tech-
nology, has developed the Automata Processor (AP) [2, 3], a
configurable memory-based processor, purpose-built to em-
ulate a theoretical non-deterministic finite automata (NFA).
While NFAs are not particularly suited for traditional inte-
ger or floating point computation, they are extremely pow-
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erful and efficient pattern matchers, and have been shown to
provide large speedups over von Neumann architectures like
CPUs and GPUs for rule-based data-mining applications [5,
6].

The AP emulates an NFA using a connected network of
State Transition Elements (STEs) consuming an input stream
of 8-bit symbols. Each STE is activated when it matches the
current input symbol and is also activated by a connected
STE. STEs can be designated as "start” STEs, thus activat-
ing on the input stream alone. Similar to traditional theo-
retic NFAs, STEs can also accept (report), thus generating a
single bit output on activation. Alongside STEs, which are
enough to emulate NFAs, the AP is augmented with boolean
logic and counters (elements that activate after a set thresh-
old of activations), and are thus strictly more powerful than
theoretical NFAs. Micron’s efficient implementation of the
AP using traditional memory technology allows for powerful
non-von Neumann computation.

However, the AP’s added boolean and counter elements
make it strictly more powerful than theoretical NFAs, and
while kernels that exploit rule-based pattern matching, like
association rule mining, parts-of-speech tagging, and pro-
tein motif identification [6, 5], have already seen impressive
speedups over CPU implementations, other strengths and
capabilities of the architecture are largely unknown.

This paper attempts to explore and expand non-obvious
abilities of the AP by examining the uses of random and
stochastic symbol sequences as input. Random input is de-
fined as simply an input stream of uniformly distributed ran-
dom symbols. Stochastic input is defined assigning a partic-
ular probability distribution to such random input. Because
activations of STEs in the AP are conditional on the input
stream, a probabilistic input stream immediately provides
probabilistic activations. Thus probabilistic automata (PA)
are implementable using the AP.

Practically, PA (also known as stochastic automata) are
incredibly useful as a modeling formalism for finance, man-
ufacturing, communication, bioinformatics, and many other
disciplines. For example, Markov chains (a specific case of
PA) are used extensively in practically all fields concerned
with simulation. We present a proof of concept implemen-
tation of a simple simulation showing the construction and
application of Markov chains on the AP. We also explore an-
other previously unknown capability of the AP enabled by
random input and the addition of boolean logic and coun-
ters: stochastic computation.

The rest of the paper is organized as follows. Section 2
describes the AP programming model and architecture in



further detail. Section 3 discusses the theory of Markov
Chains, and several basic implementations and their various
properties. Section 4 shows how linear Markov chains can be
used to implement a simple asset price motion simulation.
Section 5 gives a brief overview of stochastic computation
and a potential implementation and use case in AP hard-
ware. And finally section 7 shows how a few small changes
to AP hardware could unlock speedups on a powerful new
set of applications.

2. MICRON’S AUTOMATA PROCESSOR

The AP aims to reproduce the power of a theoretical
NFA’s non-deterministic parallelism. For problems with large,
combinatorially difficult search spaces, non-determinism can
be a powerful tool, enabling a fast, parallel exploration of
problem instances. Previous implementations of NFAs in
hardware fall into two categories: specialized hardware for
DFA and NFA execution, and FPGA implementations. Spe-
cialized hardware to execute DFAs and NFAs has been cre-
ated to accelerate regular expression matching. Unfortu-
nately, these architectures are application specific and can
only solve problems framed as regular expression matching.
FPGA implementations of NFAs and DFAs can be much
more flexible in their capabilities, but suffer from density and
throughput limitations and often do not expose automata
level programmability to the application developer, prevent-
ing the creation of automata that cannot be expressed as
regular expressions [3].

Micron’s unique memory-derived architecture takes ad-
vantage of the bit-level parallelism inherent in SDRAM ar-
rays to gain improvements in state density over such pre-
vious NFA and DFA implementations. Micron also allows
configuration of the AP using both PCRE and Automata
Network Markup Language (ANML) offering programmers
fine-grained control over automata construction [3].

2.1 AP Execution Model

AP automata are made up of a directed graph of STEs,
boolean logic elements, and counter elements. Each STE
can recognize an arbitrary character set of 8-bit symbols.
An STE 7activates” when it 1) recognizes the current input
symbol and 2) it is "enabled.” An STE is considered enabled
when it is either configured to consume input from the input
stream (a ”start” STE), or an STE connected to it activated
on the previous cycle. STEs can also latch activation, and
then activate for the rest of execution. STEs can be con-
figured to report on activation, producing a 1-bit output.
This is analogous to accepting an input string in an NFA.
An example of an AP design recognizing whether or not all
input strings over 0,1 contain a 1 in the third position from
the end is shown in Figure 1. Note the streaming nature of
this design, i.e. a report will be generated for all satisfying
substrings of the input, and not simply at the end of data
input.

The AP also contains boolean logic elemens, which pro-
vide AND, OR, NOT, NAND, NOR, sum-of-products,
and product-of-sums capability. The AP also provides spe-
cial counter elements, which only activate after a pre-set
threshhold of input activations is reached. Both of these
elements (boolean and counter) are not available to theoret-
ical NFAs and expand the set of languages recognized by the
device past regular languages. For example, boolean AN D
elements can combine the results of two NFAs or NFA paths,

Figure 1: An graphical representation of four STEs repre-
senting the NFA that recognizes all strings over 0,1 contain-
ing a 1 in the third position from the end. The first STE
is configured as a start STE and is implicitly activated by
every input symbol (indicated by the infinity symbol). The

last STE is configured to report when activated (indicated
by the 'R’ symbol.

providing the power of infinite, non-consuming look-ahead.
Figure 2 shows how two latching STEs and an AND ele-
ment can be used to detect whether a string contained both
a lower-case letter and a number [2]. Note that unlike the
previous example, this design only reports on the end of data
input, symbolized by the FE.

2.2 AP Architecture

The AP implements STEs using 256 bit memory columns
AN Ded with an enable signal. Each 256-bit column vector
represents a character set of 256 possible 8-bit characters
that this STE could be activated by. Any character, or
character set, supplied as a row address will then force all
STEs columns that recognize that character set to read out
a 1. For example, the Kleene star operator would simply fill
all bit rows in the STE column with 1s. Thus an STE is
capable of recognizing an arbitrary character set of possible
input symbols on every cycle. If a column reads a 1, and
the STE is enabled, the STE activates and sends its output
signal to the routing matrix.

The routing matrix enables STEs to enable any other STE
within the same AP core, and is pre-configured (placed and
routed) based on the compiled AP application design.

Columns of STEs are organized into blocks and a number
of blocks makes up an AP core. Because the routing matrix
only exists within cores, STEs are prevented from enabling
other STEs across cores. In the current AP hardware, a
block contains 256 STEs, 4 counters, and 12 boolean ele-
ments. AP cores contain 96 blocks, offering a total of 24,576
STEs per core.

As previously discussed, a boolean elements combine ac-
tivations as logical signals. They are extremely useful in
combining the results from different automata and coordi-
nating computation.

Counter elements allow activation after a preset thresh-
hold and are a simple, but powerful manifestation of storage
on the AP. Every time a counter is activated via its count
input, its internal storage increments from 0. A counter
also has a reset input which sets the internal count to zero
when activated. When the counter’s internal threshhold is
reached, the counter activates. Counters can be configured
to either reset their count after activation, or continue to
activate (i.e. latch activation) until they are explicitly reset.

3. MARKOV CHAINS

In informal terms, Markov Chains are automata with prob-
abilistic transitions between states. To be formally consid-



Figure 2: An AP design recognizing all strings with both
a lower-case letter and a number. The AND element is
configured to only report on the end of the data stream.

ered Markov chains, transitions in the automata must 1) be
stochastic processes (i.e. they occur with some set prob-
ability), and 2) respect the Markov property, which states
that every probabilistic transition depends only on the cur-
rent state, and is not influenced by memory of prior states.
An example Markov Chain implementing an unfair coin is
illustrated in Figure 3.

Markov chains are defined by stochastic transition matri-
ces which hold all transition probabilities from a start state
(row) to a transition state (column). Each row of the tran-
sition matrix must be stochastic, i.e. each column must add
up to 1. Logically, this makes sense because we must al-
ways make some transition in a time step, even if it is to
the current node. The transition matrix for the unfair coin
example in Figure 3 is shown in Table 1.

The follwing section describes how we can use probabilis-
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Figure 3: A simple Markov chain, which simulates an un-
fair coin toss, with two states Heads and Tuails. Transition
probabilities between these states are unfair meaning that
the probability of transitioning to/flipping Heads is different
than Tails.

Table 1: Stochastic transition matrix of a Markov chain
representing an unfair coin. Note the probability of transi-
tioning “to heads” or “to tails” from any state is always .9,
and .1 respectively.

To Heads | To Tails
From Heads 0.90 0.10
From Tails 0.90 0.10

tic input and STEs to create Markov Chains on the AP
hardware.

3.1 Mapping Markov Chains to the AP Hard-
ware

To easily communicate the concept of probabilistic tran-
sitions and Markov Chains on the AP, we first begin with
an simple-to-understand construction that is not necessarily
STE efficient but clearly illustrates the mapping.

Star-State Construction:

Consider the unfair coin example described in Section 3
and shown in Figure 3. To produce probabilistic transitions
we first restrict the input symbols to be random and uni-
formly distributed over some range. The method to create
a random input symbol stream is not discussed here as it is
orthogonal to the Markov chain implementation, however,
random number generation is extremely important in this
context and deserves the utmost attention in a full imple-
mentation.

Each Markov chain can be constructed in the following
manner provided a stochastic transition matrix:

Algorithm 1: Construct AP Markov Chain Simulation

Data: Square Stochastic Matrix StochMat; Set of
possible input symbols X
Result: AP Markov Chain Simulator
1 INITIALIZATION;

2 foreach FromState do

3 Create a reporting STE which recognizes Kleene
star representing FromState;

4 Randomly select a single FrromState to be start

| state, activating on start of data;

CONSTRUCTION;

foreach FromState do

foreach ToState do

Create transition STE TransNode;

TransProb < StochM at[FromState][ToState);
10 Without replacement, randomly select
TransProb = |X| symbols from X as the
character class recognized by TransNode;

11 Add edge from FromState to TransNode;

12 Add edge from TransNode to ToN ode;

© 0 N o wm

An example of this construction for the unfair coin ex-
ample is shown in Figure 4. For illustrative purposes, we
restrict the input symbols to be within the character class
[0 — 9]. For this construction, we randomly choose a single
state out of all possible states to act as the start state, al-
though choosing multiple or all states as start states implic-
itly implements an interesting feature called Markov chain



Figure 4: A simple Markov chain, which simulates an un-
fair coin toss, with two states Heads and Tails. Transition
probabilities between these states are unfair meaning that
the probability of transitioning to/flipping Heads is different
than Tails.

coupling, which reduces the time it takes the Markov chain
to reach a stationary distribution.

Proof of construction: To prove that this construction
indeed simulates a Markov Chain, we must show that 1) the
transitions are stochastic according to the transition matrix
and 2) that the Markov property is respected.

(1) The fact that transitions between states are stochastic
transitions should be obvious when provided with random
input. Given a state X, we have constructed all transition
nodes to contain random buckets of symbols according to the
probability presented in the given stochastic matrix. When
presented with a uniformly distributed random symbol, we
will therefore transition to the transition node with the same
probability as the ratio of symbols in that transition node
to the total number of possible input symbols. We can thus
always construct these sets of buckets to be identical to the
transition matrix. Because we can easily direct transition
nodes to activate the desired "to state” star-node, it is trivial
to see that this construction simulates stochastic transitions
between states according to the desired stochastic matrix.

(2) It is also not hard to see that the Markov property
is always respected. Because transitions only involve the
current state, and a random input symbol, there is no way
for previous states, or iterations, to effect the probability of
the next state transition.

4. SIMULATING ASSET PRICE MOTION
USING RANDOM WALKS ON LINEAR
MARKOV CHAINS

Asset price motion is concerned with simulating and pre-
dicting the price of a financial asset over some set amount
of time. Based on randomly generated input, an asset price
is adjusted over time according to a motion function. This
function is often chosen to be Brownian motion. Brownian
motion was originally developed as a part of particle theory
and defined to model the random motion of particles in a
system, but has been re-purposed as a proposed model for
behavior of the price of assets and financial markets.

Because Brownian motion is a stochastic process, it can be
simulated using random walks on Markov chains []. Random
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Figure 5: Asset price simulation modeling a random walk
with transitions of +/-$0.01 or no change.
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Figure 6: Linear Markov chain modeling a random walk
with transitions of +/-$0.01 or no change.

walks are driven by random transitions (defined by a motion
function) between states of a walker over some dimensional
space of states. In our asset price example, the state space is
simply all discrete prices that the asset could occupy, thus
a 1D number line. At any given time, the price could go
up or down depending on a random input, and the added
or subtracted amount would be determined by the motion
function. At the end of the simulation, the final state of the
walker is the predicted asset price of the simulation.

An example of a 1D random walk simulation of an as-
set price is illustrated in Figure 5. 1D random walks can
be simulated using linear Markov chains, or Markov chains
with diagonal or banded stochastic matrices. As long as
the transitions to neighboring (or nearly neighboring) states
correctly encode the proposed transition function. An ex-
ample of the linear Markov chain that produced the prior
simulation is shown in Figure 6. Note that by definition,
our linear Markov chain is only capable of modeling dis-
crete, non-continuous values. However, as long as we can
create enough states, we can model to arbitrary precision
with arbitrary price bounds. Our random walk construction
described in the next section shows how we can implement
this arbitrary precision on the AP without this 1-1 corre-
spondence between states and discrete values.

For our explanitory example, we will simply set the cost
function to be +/-$0.01 with equal probability, and then ex-
plain how to construct simulated arithmetic Brownian mo-
tion cost functions.

4.1 Mapping an Asset Price Simulation to the
AP Hardware
We now show how Markov chains on the AP can be used

to simulate asset price motion via random walks on a linear
Markov chain. We first present the construction of a +/-1



Figure 7: How a linear Markov chain can be implemented
on the AP. This chain corresponds to the transition matrix
in section 4.1.1.

linear Markov chain "walker” simulation, and then present a
method to avoid the 1-1 correspondence between states and
discrete values in the simulation.

4.1.1 Linear Markov Chain Random Walker:

To construct a linear Markov chain "walker,” we first need
to define the appropriate diagonal stochastic transition ma-
trix according to our transition function. Because we define
our current transition function to increment or decrement by
$0.01, or remain at the current price with equal probability,
we know that the transitions from each state to its neighbor
will have a probability of 0.33. Thus the transition matrix
looks like the following;:

033 .33 0 0 0 0 o --- 0
.33 : : : : : : :
0 33 .33 0 0 0 0 0
0 33 .33 33 0 0 0 0
0 0 .33 33 33 0 0 0
0 0 0 .33 .33 .33 0 0
0 0 0 0 .33 33 .33 0

: 0 0 0 0 .33 .33 .33

0 0 0 0 0 0 .33 .33

Each state then represents a certain value of the asset
with cent precision, and can transition to its +%$0.01 or -
$0.01 neighbor or remain at the current price with equal
probability. Later we will discuss how to modify the transi-
tion matrix to simulate other, more complicated transition
functions.

Because we only have three transitions, up, down, or stay
with equal probability we can simplify the construction of
the Markov chain to consider only random input in the range
[0—2], where a 1 will force a transition to the neighboring up
state, and 0 to the neighboring down state, and a 2 will cause
the walker to remain in the current state. An illustration
of a section of such a Markov chain walker as it would be
implemented on the AP is shown in Figure 7.

4.1.2 Bounding Walkers with Counters:

With the above construction, we only have enough STEs
per AP core to represent 10,000 discrete prices, or values
from $0.00 to $100.00. This is not a realistic implementation
as prices may be out of this range, and also may have much
larger variation, or need more precision. As well, because
this construction utilizes almost all STEs on a core, it would
preclude parallel simulations or heterogeneous functionality.
Therefore, we propose bounding small walkers with counters
as a way to reduce the STE costs of such simulations.

R
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Figure 8: A linear Markov chain walker bounded by coun-
ters. This construction can represent discrete values with
arbitrary precision without a linear increase in states.

The intuition behind counter bounding is that if we can
keep track of how many times we “fall off” the edge of a small
walker in both directions, we can simulate an infinite sized
walker. We accomplish this by using two counters: one to
count up falls, and one to count down falls. If the simulation
ever falls off either end of the walker, it activates both the
corresponding counter, as well as the STE on the other end
of the walker, thus "wrapping around” in a ring. At the end
of the simulation, the end price will be the current price plus
the difference between the counters multiplied by the size of
the counter. An example of such a construction is shown in
Figure 8.

We can also use this technique to bound higher dimen-
sional random walk Markov chains. For every dimension,
we need two counters to keep track of whenever we “fall off”
the top or bottom of each. The difference in the counters
times the size of the walker plus the value in the walker,
will always give the coordinate of the random walk in that
dimension.

4.1.3 Extracting Values from Counters:

As the value stored within counters is not readily avail-
able, we need some way to extract it. We accomplish this be
reserving a single symbol for "counter pumping.” Consider a
counter with target 16 and internal value 13. To know 13,
we activate the counter using the pumping symbol until it
activates (3 cycles). In post-processing, we now know that
the value stored in the counter was the target (16) minus
the number of cycles pumped before activation (3), thus 13
is known.

Because counters can have large targets, we may need to
pump a large number of times, wasting time and power.
Therefore, in practice, two counters may need to be used to
keep track of digits of the count, bounding the number of
pumps to be the radix of the chosen counting scheme. For
example, to construct a two digit counter, have the first digit
activate the second digit when it reaches its target and then
reset its count to 0. Pumping these counters will therefore
efficiently extract each digit of the number.

4.2 Final Construction

We construct a prototype asset price simulator based on
the example described in the previous section. The full pro-
totype, including walker, bounding counter structures, and
pumping system, are shown in Figure 9.

We purposefully use four counters in this construction be-
cause in that case, we can tune the size of the walker such
that the entire simulation fits inside a single AP block.
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Figure 9: A linear Markov chain walker bounded by counters. This construction can represent discrete values with arbitrary

precision without a linear increase in states.

Table 2: Stochastic bit-stream representations of a few dif-
ferent probabilities. Note that there can be multiple differ-
ent representations of different ratios, reflecting the random,
stochastic nature of this number system.

Prob. | Stochastic Stream
0 (0/10) 0000000000
1 (10/10) 1111111111
6 (6/10) 0110100111
.6 (6/10) 1110001110
6 (6/10) 1010101011

While simulation of Brownian motion is just one example
of the uses of Markov chains, other practical uses for simu-
lations of Markov chains exist. For example, Markov Chain
Monte Carlo simulation, which was voted one of the ten most
important algorithms of all time, is heavily used in theoret-
ical and applied science and mathematics, and although not
feasible for large, continuous state spaces, could be practi-
cally implemented on the AP when states are sparsely con-
nected (linear arithmetic Brownian motion), or when the
application calls for a relatively small, known transition ma-
trix (credit default modeling).

S. STOCHASTIC COMPUTATION

Stochastic computation (SC) was first described in the
early 60’s [4] as a method of computing on probabilities rep-
resented by continuous binary input streams. Each input
stream represents a probability using the proportion of 1’s
to 0’s in a randomly generated sequence. For example, out of
10 bits, Table 2 shows stochastic bit-stream representations
of a few different probabilities. Note that there can be mul-
tiple different representations of different ratios, reflecting
the random, stochastic nature of this number system.

The main advantage of computation on stochastic bit streams

is that its remarkably simple and utilizes extremely low-cost
digital elements. For example, multiplication of two stochas-
tic input streams, shown in Figure ??, requires a single AND

01101010 (4/8)

00101010 (3/8)
10111011 (6/8)

Figure 10: Approximate multiplication of two stochastic in-
put streams [1]. This example illustrates exact computation
of 4/8 x 6/8.

01011100 (4/8)

01001000 (2/8)

11101011 (6/8)

Figure 11: Approximate multiplication of two stochastic in-
put streams [1]. This example illustrates inexact computa-
tion of 4/8 x 6/8.

gate, whereas a digital multiplier would require thousands
of individual logic gates!

While SC is simple to implement, the technique suffers
from two main drawbacks that have prevented its main-
stream adoption. The first and most significant drawback
is the inherent inaccuracy involved in SC. Because a prob-
ability cannot be measured exactly, and therefore must be
estimated, random variance in SC is inevitable. And al-
though higher order terms of computations are computed
first (available early, before lower order terms), high preci-
sion of lower order terms cannot be guaranteed. The second
drawback, related to the first, is that in order to reduce vari-
ance, such that results from stochastic computations have an
acceptable precision, a large amount of time and bandwidth
is required. For example, if we compute using a generating
process

p=k/N (1)
where k is the proportion of 1s out of N bits, then the stan-
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Figure 12: Stochastic filter showing how to extract bit pulses
from symbols in the range [\x00-\x0F].

dard deviation of the sampled probability is

o(p) = [p(1 — p)/N]'/? (2)

Therefore the accuracy of a stochastic measurement or com-
putation increases on the order of the square root of the time
or length of the input sequence [4].

Using examples from the fundamental introduction to SC
”Stochastic Computing Systems” by B.R. Gaines [4], we first
show how arithmetic, traditionally thought of as a weakness
by automata, can be implemented using automata coupled
with boolean logic elements and counters. We then show
how the output of multiple, uncorrelated functions across
different automata could be used to reduce the critical path
of precise computation. Finally, we end with a proposal for
small adjustments to the AP hardware (such as decrement-
ing counters and distributed random number generators),
which would enable more stochastic computing capabilities.

6. MAPPING STOCHASTIC COMPUTATION

TO THE AP HARDWARE

Stochastic streams can be naturally implemented on the
AP using activations to represent bits flowing through the
device. By using only STEs with unconditional activation
(i.e. Kleene star), an activation acts as a binary pulse, just
as in a digital computer, flowing through all star states it
connects to. The following sections explain how to create
and control such input, compute on stochastic streams, and
then convert stochastic output to binary, all on the AP.

6.1 Stochastic Input

6.1.1 Direct Modulation:

While input on the AP is normally thought of in terms
of discrete 8-bit symbols, we consider treating individual bit
of the input stream as a separate stochastic stream. This
means that naively, we have control over 8 inputs into any
stochastic function we construct. We call this input method
direct modulation. However, we still need some way to con-
vert the symbol representation of the input streams into ac-
tivation pulses. This can be done by creating filter nodes
that only activate on the character set of symbols with that
bit set. This essentially filters the input symbol on a par-
ticular digit, creating a corresponding activation pulse every
time that bit is sent into the AP. For example, the character
set to filter bit 0 and 1 of a hypothetical 4-bit input symbol
is shown in Figure 12.

Table 3: Stochastic transition matrix of a Markov chain that
generates a stochastic stream with probability p.

1 State | 0 State
1 State P 1—p
0 State D 1-p

AN

A*B

Figure 13: Stochastic multiplication on the AP using an
AND element.

6.1.2 Markov Chain Input Generation:

Because 8 inputs may not be enough input for the desired
function and precludes the use of the input stream for other
application input while in simultaneous operation, we intro-
duce another method of generating input using the Markov
chains introduced in Section 3.

Markov chains can be set up to generate arbitrary Bernoulli
processes by the following construction: Create a two state
Markov chain simulating a coin toss according to Algorithm 1
using the stochastic matrix in Table 3 and pick p to be the
generating probability of the desired stochastic stream. On
a random symbol input, the chain will activate the 1 state
with probability p. We consider this state a stochastic gen-
erator, as it now represents the stochastic number p. There-
fore, any stochastic number stream can be created on-chip
by constructing a Markov chain with a stochastic generator
node.

6.2 Stochastic Computation with Boolean and
Counter Elements

This section presents various binary arithmetic functions,
their implementations according to Gaines [4], and our con-
struction using AP elements. We always consider operations
on two stochastic number streams A and B. For further
discussion on these constructions, we refer the reader to the
Gaines paper [4].

A stochastic multiplier is constructed by simply AN Ding
A and B together. We can obviously use the AND capability
of the boolean elements to implement this functionality with
no cycle penalty. An example of stochastic multiplication
was already shown in Figure ??. Stochastic multiplication
as implemented on the AP is shown in Figure 13 below.

Stochastic addition is conceptually more complicated than
multiplication. Because stochastic numbers are probabili-
ties, and are defined to exist within the [0,1] range, adding
such numbers may not make sense. Stochastic addition is
therefore scaled where P(A) + P(B) = (P(A) + P(B))/2.
This is analogous to randomly picking bits from either stream



11111011 (7/8)

10110011 (5/8)

00100110 (3/8)

10010101 (4/8)

Figure 14: Stochastic adder.

to compose a new stream. Gaines constructs stochastic
adders using a MU X of two streams, selected by a fair coin
stream C. An example of a scaled stochastic adder is shown
in Figure 14. We can construct a stochastic MUX on the AP
by AN Ding A with a .5 probability stream C and B with
the compliment of C', thus implementing a scaled stochastic
adder. Our general construction of this stochastic adder is
shown in Figure 15.

A scalar division of stochastic streams can be accomplished
by counting the number of activations of the numerator A,
and activating when this count reaches a scalar C. An ex-
ample of a scalar divider is shown in Figure 16. This is
the exact functionality of the AP’s counter element, and so
scalar division is trivial to implement on the AP. Our gen-
eral construction of a scalar divider on the AP is shown in
Figure 17 using 7 as an example scalar target.

Stochastic division, i.e. dividing A by B, can be accom-
plished using counters with decrement capability. Because
the counter elements on the current generation of the AP do
not have this functionality, this efficient construction cannot
be implemented. However, this functionality could be easily
added to the architecture, and is discussed in Section 7.

Subtraction requires a negative representation in binary.
In his work, Gaines discusses three different stochastic num-
ber systems that support addition of negative numbers and
their corresponding computation. We refer the reader to
Gaines [4] for a discussion of these models, and leave their
corresponding AP constructions for future work.

6.3 Stochastic Output

Eventually we may need to read out a stochastic value
from the AP if it is not consumed internally. This can be
accomplished by using the AP’s reporting capability [2] and
computing the ratio of reports to a desired input length off-
chip. However, depending on the report frequency, and the
number of STEs reporting at any one time, this may cause
a reporting bottleneck. To stalls resulting from this bot-
tleneck, we can also use counters to implement stochastic
integration. Simply count the number of activations of a
stochastic result, and then extract the value when necessary
after a certain number of counted cycles. We can then delay
reporting until after a desired number of cycles N, pump
the counters to extract their value A (as described in Sec-
tion 4.1.3), and compare the counter value with the number

Figure 15: Stochastic addition on the AP using two AND
elements and a selector signal C'.

11111011 (7/8) 00000001 (1/8)

Figure 16: Stochastic division on the AP using a counter
with target 7.

counter

Figure 17: Stochastic division on the AP using a counter
element.
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Figure 18: Example of how a two degree polynomial can be
evaluated on the AP. This automata evaluates A2 x X2 +
Al x+ X 4+ AO0. Note that this implementation takes only 9
boolean elements.

of cycles passed as an estimate of the stochastic result A/N.

6.4 Chaining Stochastic Arithmetic

To evaluate arbitrary functions, we must be able to pipe
computed stochastic streams to new computing elements.
We can accomplish this by using Kleene star STEs. Fig-
ure 18 shows how an arbitrary two degree polynomial can
be evaluated on the AP by chaining together successive mul-
tiplications and additions. Note that re-using a stochastic
input stream for multiple different computations may intro-
duce correlation among streams. Correlation of input can
have disastrous results, and ruin the precision of the com-
putation. For example, consider the computation of AZ.
If we use the same input A to supply both inputs of our
multiplying AN D gate, the result is trivially always A, not
A?. Thus, correlation should be avoided at all costs. In-
put streams can be de-correlated by involving separate in-
put streams to represent the same probability, or separate
Markov chain generators for the same probability. Other
de-correlation techniques may be able to cheaply allow a
single stochastic stream to be consumed by many different
functions and is left for future work.

6.5 Reducing Variance with Parallel Compu-
tation

While variance in stochastic computation is normally re-
duced by increasing the number of input bits (i.e. N from
equation 2), we can accomplish variance reduction by simply
running multiple computations in parallel. Practically, this
can be done by either averaging the scalar output of the re-
sulting computation or by doing scaled stochastic additions
on-chip. Each parallel computation will add N bits to the
computation, but require the same amount of time provid-
ing a clear resource/time trade-off. Quantifying exactly how

Figure 19: Counter implementing stochastic division of ar-
bitrary input streams.

variance is reduced by these two techniques is left for future
work.

7. PROPOSED ARCHITECTURAL ENHANCE-

MENTS

Random input, Markov chains, and stochastic computing
are an exciting initial exploration of the additional capabil-
ities (aside from REGEX processing) provided by boolean
logic and counter elements. However, small changes to the
AP hardware would make Markov chains and stochastic
computation much more attractive and powerful abilities of
the AP. Some of these proposed architectural enhancements
are discussed below.

Counter Decrement: Arbitrary stochastic division re-
quires the ability to decrement, as well as increment, the
value in a counter. Figure 19 shows how stochastic divi-
sion could be implemented if such a capability existed [4].
Counter decrement would also make techniques like counter
bounding more efficient. Because counters cannot be decre-
mented, we currently have to use two counters to keep track
of up and down counts when a walker falls up or down the
walker simulation. A decrement port in the counter element
would enable a single counter to keep track of the dimen-
sional coordinate, incrementing when the walker falls up and
decrementing when the walker falls down.

Per Core Pseudo-Random Number Generation: If
too many Markov chains share the same random input, they
may become correlated and produce output unsuitable for
random simulations or probabilistic generation. Because
each AP chip is limited to a single 8-bit input, this may be a
significant bottleneck, preventing massively parallel random
simulation. We therefore propose adding small hardware
pseudo-random number generators (PRNG) within each AP
half-core. STEs could then be directed to consume either
from the symbol stream, which would still exist for normal
input, or from their half-core’s PRNG. This would greatly
increase the possible number of parallel simulations, and also
eliminate any input stream bandwidth dedicated to random
input.

Adaptive Counter Elements: Some artificial intelli-
gence techniques such as Neural Networks and Hidden Markov
Models require adaptive threshold logic elements (ATLEs) to
be implementable. ATLEs fire which a certain input thresh-
old has been reached. Counters may seem like a natural
implementation target for an ATLE but counters are unable
to record parallel activation. A hardware ATLE, capable
of firing when a parallel target threshold is reached, would
make these computation models much easier to implement
on the AP.

Classed Reporting: Many small Markov chains can be
used for massively parallel simulation on the AP, however,
recording reports on every cycle from each simulation would
bottleneck the reporting system, and cause stalls in the ar-



chitecture. Counters could be used to reduce these stalls,
but counters are a scarce resource on the AP when com-
pared to STEs and would be required for every Markov chain
state in every simulation to generate the same output. We
therefore propose a hardware structure to facilitate classed
reporting. Classed reporting aggregates reports from classes
of STEs into a single count. The functionality here is very
similar to a histogram. The AP currently lacks a way to link
the reports of STEs with similar, parallel function. A hard-
ware structure build into the reporting vector could snoop
for reports of a certain class, increment a counter, and dis-
card the report until the end of data. When the data input
stream ceases, the structure could issue a single histogram
report, noting how many STEs of each class reported. This
would remove the reporting bottleneck for parallel simula-
tions, and may also help the efficiency of other classification
automata.

8. CONCLUSIONS AND FUTURE WORK

This paper is the first to explore the uses of random and
stochastic input on Micron’s Automata Processor. We first
show how random input enables the AP to act as a proba-
bilistic automata. We then explore three different uses for
random transitions or probabilistic input streams 1) Markov
Chains, 2) random walks, and 3) stochastic computation.
While the presented examples are admittedly small, toy ex-
amples, they are a useful initial exploration of non-obvious
capabilities of the AP enabled by boolean logic elements and
counters. We also propose new small hardware structures,
which will further enhance the power and efficiency of the
AP.

Future work investigating the usefulness might include,
but is not limited to:

e Quantifying how many Markov chains are able to con-
sume a single byte of random input, without introduc-
ing unacceptable correlation among simulations

e Quantifying how parallel execution increase the preci-
sion in time of stochastic computation as discussed in
section 6.5.

e Exploration of the efficiency of other useful manifes-
tations of PA, for example Stochastic Automata Net-
works, Stochastic Petri Nets, and Performance Evalu-
ation Process Algebras.

e Conducting a cost/benefit analysis of the additional
hardware structures proposed in section 7.
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