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Abstract

There are many computer applications in which safety and not reliability is the
overriding concern. Reduced, altered, or no functionality of such systems is acceptable as
long as no harm is done. This report is concerned with the role of software in such systems
and the definition of what it will mean for software to be viewed as safe. A precise
definition of what software safety means is essential before any attempt can be made to
achieve it. Without this definition, it is not possible to determine whether a specific
software entity is safe. Informal, intuitive notions of software safety must be rejected if for

no other reason than to protect the legal interests of the software engineer.

Software must be viewed as merely one of many components that make up a
system. In the overall system context, software is no different from any of the other
components of which the system is composed. Viewing software as a system component, a
definition of software safety based on the establishment of precise specifications for the
software’s response to its own failure and to the failure of other components is presented.
The definitions presented here define software to be safe if it complies with these
specifications. A consequence of the definition is that the software engineer is freed from
responsibilities other than the correct implementation of certain parts of the software
specifications. This facilitates placement of responsibility in the event that an accident
does occur. A case study is presented, demonstrating the feasibility of these definitions
through the creation of formal software safety specifications for a software-controlled,

safety-critical surgical device.
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Chapter 1 - Introduction

A variety of issues are forcing many engineers building critical applications to
consider the benefits of replacing mechanical and analog equipment with digital systems.
For example, digital emergency shutdown systems are being developed for nuclear power
plants [1] and digital flight control systems are either in use or are being planned for many
commercial and military aircraft [2]. As more critical systems become dependent on
computer control, the likelihood of a software fault causing physical damage or

endangering human life increases.

Compounding the problem js the fact that mechanical and analog systems have
demonstrated extraordinary reliability. Mechanical and electrical engineers have devoted
considerable effort to determining the failure characteristics of the components they use.
Combined with appropriate models, this information leads to useful predictions of failure
rates thereby enabling effective designs [3, 4]. Any digital system must be similarly reliable
to be considered an acceptable replacement. For digital systems that include software, the
software also must achieve this level of reliability. In this paper the meaning of safety as it

applies to software is discussed.

In everyday use, the term “safety” is subjective. Each observer has his? own
definition of what constitutes unsafe behavior. Informally though, most people agree that a
system is safe if it does no harm even if it provides less than complete functionality. Thus,
operation in which service subsequent to a failure is incomplete but where no harm is done

is generally viewed as safe. This notion of safety is very important and is clearly different

IFor simplicity, throughout this report the male pronoun is used in the generic sense to mean either
male or female,
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from the notion of reliability. In an informal sense, safety is a “subset” of reliability and
might, as a result, be easier to achieve than reliability. Also in an informal sense, safety is
vastly more important that reliability in many systems. For example, in most cases it is
merely an inconvenience if a car fails to start although the car would be viewed as
unreliable. It matters a great deal if a car fails to stop since then the car is unsafe. The

distinguishing factor in these cases is the hazards associated with each type of failure.

The possibility of erroneous software causing harm is very real, and this situation
has lead to the appearance of papers in the literature discussing the safety issues raised by
software [5-13]). Similarly, several standards that purport to address the development of
safe software have been developed. In the informal sense just mentioned, the notion of
safety might be applied to software with the interpretation that software is safe if it does no
harm without concern for the provision of complete functionality. Again, it might be the

case that developing safe software is simpler than developing correct software.

Much of what has been written about software safety has been within a framework
of systems engineering rather than software engineering [6, 8, 11). The rationale behind
this approach is that safety cannot be assured without examining the software within its
systems context. Although this is a valid and important argument, it tends to obscure the
demarcation between systems and software engineering. This demarcation is important
since they are separate fields whose practitioners have different skills. In addition, this
approach does not permit a clear assignment of responsibility to be made. The software
engineer is faced with a confusing set of concepts and questions that do not permit him to
be certain of exactly what his role is. More importantly, the software engineer is unable to
be certain of whether the software he has engineered will be viewed as “safe” by the

community. To deal with this situation, the general approach developed to date needs to
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be formalized to include a more precise definition of the role of software engineering in

safety-critical computer applications.

System-safety engineers have developed a precise terminology and an extensive
body of theory to support system-safety analysis. This terminology and theory permit
precise, formal analysis of safety at the systems level. In particular, there is a formal notion
of what constitutes a safe system. It is not sufficient to view software safety in anything less
than a similarly formal way. A precise framework for discussion has to be developed and
agreed upon. Such a framework must permit an unambiguous assessment of whether a
particular software entity is safe or not in a formal sense. In a world in which public
exposure to computerized devices is large and increasing, it is essential that developers and
regulators know exactly what the term safe software means. Developers must know what is
required of them to permit their development activities to be judged as competent
(software) engineering. Regulators need to be able to specify what constitutes safe
software in order to protect the public. Finally, a precise framework permits the
assignment of responsibility in the event that a software entity is deployed that is unsafe

according to the framework.

Here we propose precisely such a framework by providing formal definitions of
software safety and related terms. The fundamental separation between software and
systems engineering concerns is stressed. This separation offers benefits to practitioners in
both fields. It permits systems engineers to free themselves from software details and treat
software as they would any other component in building a safe system. It permits software
engineers to free themselves from system concerns and fo concentrate on software issues.
In effect, this separation permits the role of the software engineer in the development of

safety-critical systems to be defined.



A case study that tests the viability of these definitions is also presented. This study
focuses on the determination and specification of the software safety requirements for a
software-controlled, safety-critical surgical device. The results of this study demonstrate
that software safety requirements can be determined at the level of systems analysis,
without software engineering involvement. Furthermore, an exact process for determining

the software safety requirements is documented.

Throughout this report the terms systems engineer and software engineer are used
to mean those undertaking the systems engineering and software engineering tasks,
respectively, Naturally, many individuals might be involved in each task or a single
suitably-trained individual may perform both tasks. It is essential, however, that these two
domains be kept logically separate no matter what the associated staffing is. In particular,
the requisite documentation must be developed in all cases even if a single individual is

performing both functions.



Chapter 2 - Software Safety

2.1 System Safety

The field of systems engineering has distanced itself from the subjectivity
associated with safety by formalizing the everyday notion [3, 4]. This has been done by
introducing the concepts of hazard, risk, and acceptable level of risk. A hazard is a situation
that could lead to harm and therefore must be avoided. The hazards associated with a
system are determined in a process called hazard analysis. Risk is a combination of the
probability that a hazard will occur and the severity of its consequences. In a probabilistic
sense, the risk associated with a hazard can be thought of as the expected loss. System

safety is concerned with keeping the total risk to an acceptable level®.

In a formal sense, a system is considered safe if it can be demonstrated that the
system does not surpass the acceptable level of risk for any identified hazard. If a system
performs a harmful action, but the action was not identified as hazardous behavior, the
system is still acting safely in the sense of the systems-engineering formalization. Similarly,
if the probability of a hazard is sufficiently low as to make the risk acceptable, the system is
safe despite the fact that the hazard can still occur. These discrepancies from the everyday

notion of safety are necessary by-products of the formalization of an informal concept.

Despite the formalization, the determination of system safety remains dependent
on human judgment. All hazardous behavior must be determined, the probability that such
behavior will result in an accident must be correctly estimated, and the risk calculated.

Finally, an acceptable level of risk must be determined for the system as a whole, and each

2For a more detailed summary of these concepts see the work of Leveson [8] .
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behavior whose associated risk exceeds the acceptable level must be identified and dealt
with. If any of these steps is not performed correctly, a system propetly assessed as safe in

the formal sense might be unsafe in the conventional sense.

2.2 Software Safety

For software to be judged safe, some authors have suggested that the system that it
controls must be judged safe. In fact, defining software safety in terms of system safety has
been proposed as the correct approach to software safety [5, 6, 11]. We argue that this
approach is fundamentally wrong and potentially harmful. With software safety defined by
this equivalence, any assessment of software safety is indirect since the software is safe if
and only if the system is safe. Since the software and hence the safety of the software is the
responsibility of the software engineer, this approach to assessment implies that the
software engineer be capable of assessing system safety. This is an unacceptable situation
because the software engineer is, by definition, not qualified to determine whether a

system is safe within the framework of safety defined by systems engineering.

To make any progress, the notion of software safety must be formalized to at least
the extent that safety has been formalized in systems engineering. Equating software
safety with systems safety is not the way to achieve this formalization. As an example of
the difficulty that the equivalence leads to, consider the case of a control system that
commanded the undercarriage of an aircraft to be raised while the aircraft was on the
ground {8]. This has been cited as a software safety failure. It almost certainly was not.
The deficiency is more likely to be an omission of this special case from the specifications.
The reason that those who cite it claim that it is a software safety violation is because they
understand the hazard and feel confident in specifying that such action should not occur. It

is a coincidence that they understand this hazard.



In general, the hazards associated with a system will not be understood in detail by
the software engineer. Consider a second (hypothetical) example in which a full-authority
digital flight control system commands a B-747 to flare on final approach at an air speed of
128 knots, a height of 180 feet, a head wind of 15 knots, flaps set to 30 degrees, and with a
14% fuel reserve. Does flaring the aircraft under these circumstances constitute a hazard?
Unlike the landing-gear example, most software engineers are not capable of making that

determination. It is not a coincidence that they do not understand this hazard.

The fundamental difficulty here lies in the placement of responsibility. The
responsibility for identifying the hazards, assessing the risks, and thereby defining system
safety, the only safety that really matters, has to lie with those that have detailed knowledge
of the application. Software engineers do not have the required application expertise
necessary to define safety in this manner. They are not qualified to make the potentially
life-threatening decisions involved in determining acceptable levels of risk, and they cannot
be required to have a complete understanding of every application domain for which they
are asked to build safe software. Equating software safety and system safety is as

inappropriate as equating power-supply safety and system safety, and for the same reasons.

How then can a theory of software safety be developed? Such a theory has to have
at least the formality of the theory of safety defined by system engineers. Yet it must not
suffer from the unacceptable disadvantages that arise when software and system safety are
considered equivalent. Further, the theory must not depend on the software engineer
having any specific detailed knowledge of the system being developed. Such a theory is

developed in the remainder of this chapter.



2.3 The Role of Software in a System

As has been noted many times, in isolation, software is never unsafe. But, in
practice, software is never used in isolation. Software is always used within a system, and it
is merely one of many components of a complete system. It is a component of a complete
system in the same sense that entities such as computer hardware, sensors, actuators,
power supplies, packaging, and even human operators are each merely components of a

system.

An important part of hazard analysis is the performance of component hazard
analyses. Such an analysis attempts to identify those system hazards that a component
could effect individually. As this form of analysis considers components only in isolation,
hazards caused by device interactions cannot be detected. Proponents of software safety
have suggested that a software hazard analysis be performed to assess the possible software
hazards [6]. This report postulates that the notion of a software hazard analysis is entirely

without merit.

Components can affect system safety in one of two ways: either an individual
component can be unsafe, or several components can interact in an unsafe manner.
Components can be classified according to whether or not they can individually cause the
system to be unsafe. Component hazard analyses attempt to identify those components
that could individually pose a threat to system safety. Such an analysis is meaningless for
components that cannot directly cause hazards. In isolation, computing hardware and
software are inherently safe, and thus they must fall into the class of components for which

a component hazard analysis is meaningless.



Such components can only be analyzed in their systems context. These components
cannot be considered unsafe in isolation because, when isolated, these entities are
separated from the notion of hazard. It is only in the context of the complete system that
the various hazards have meaning. None of the components changes and suddenly
becomes “unsafe” when incorporated into a system. Any design deficiency in a component
is present when the component is isolated just as when it is part of a system. A deficiency
in a component can only lead to a hazard, however, when the component is part of a
system because it is the system that defines the hazard. For such components, hazard is a
system concept, not a component concept. In particular, the notion of hazard is not a

software concept.

As an example of this idea, consider software developed for an automatic
emergency shutdown system for a nuclear power plant. This software is perfectly safe
when being used with a reactor simulator, say for operator training. The reason the
software can be considered safe in this case is that it is isolated from the physical system,
and thus there are essentially no hazards. However, if such software were operating as part
of a power-generating reactor system, the system and therefore the software is capable of
unsafe behavior because of the hazards that the system defines. In this example, the two
systems define two different sets of hazards and therefore two different sets of safety

COncerns.

That software safety depends on how the software is used seems to present a
dilemma for the software engineer. On the one hand, he is aware that a software defect
can lead to a system hazard and therefore that great care must be exercised in building
software for safety-critical systems. On the other hand, it appears that the context of use

rather than the software itself determines whether software is safe.
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This dilemma is illusory, since it is the context of use that defines the software
requirements specifications from which the software is built. The specifications contain non-
functional requirements, such as timing and reliability requirements, as well as functional
requirements, and, in practice, all requirements have to be met. The software engineer is
expected to analyze the requirements specifications and implement them using appropriate

software-engineering methods.

Examples such as the nuclear reactor shutdown system above are misleading. In
that example, there were, in principle, two different pieces of software involved, 7ot one as
the wording implies. The software used for operator training could be different from the
software used to control a production reactor because the specification for the operator-
training system need not include non-functional reliability requirements for the shutdown
system. In practice, of course, it is likely that the same software would be used for both
although it need not be. In more conventional terms, the difference between the two
pieces of software lies in the different requirements specifications that they have to meet.
Although the functional requirements might be identical, the non-functional requirements
in the form of the reliability with which certain functions must be implemented are entirely

different.

Tn summary, software is a component of a system just like the other components
from which the system is built. As a result of the system design, functional and non-
functional requirements are imposed on all of the components including the software. For
safety-critical systems, these requirements will include reliability requirements on the
software just as they do for the other components. Such requirements will be derived by
the systems engineer from the formal considerations of system safety including the system

hazard analysis and risk assessment.
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2.4 A Theory of Software Safety

Since software is a system component, the development of a theory of software
safety must enforce separation of the theory from systems safety yet permit smooth
integration with it. Without separation, we risk needlessly complicating and weakening our
conclusions about software with external systems concerns. Without integration, we risk
reaching conclusions about software that do not contribute to the safety of the associated
systems. The development of a theory of software safety must begin with an examination

of the systems-engineering process that determines the safety of a system.

As part of a complex system design process, the systems engineer develops
component specifications from the system requirements. Each component is assigned
functionality that contributes to the desired system functionality. For the purposes of
analyzing software safety issues, assume for the moment that these specifications are
entirely free of safety concerns. They will be referred to as the intrinsic functionality

specifications:

Definition: Intrinsic Functionality Specifications

The intrinsic functionality of a component is the required functionality of the
component without regard to safety.

Informally, the intrinsic functionality of a component is what the component is supposed to
do during normal operation. Taken together, the intrinsic functionalities of all the

components implement the desired system functionality.

As well as specifying the intrinsic functionality of the components and being
reasonably confident that the system will provide the desired normal service when built, the

systems engineer must consider the safety aspects of the system. This involves examining
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the possible hazardous states that the system can enter, and determining how each
component might contribute to the system entering a hazardous state as a result of that
component’s failure. The systems engineer performs a probabilistic analysis based on the
known failure rates of the components, and, using techniques such as system fault trees [3,

4}, tries to ensure that the system-wide risks are kept below an acceptable level.

It is extremely important to note that this system-level analysis is impossible unless
certain assumptions are made about component failure modes. For example, a system
fault tree might analyze a state in which a power supply fails and its output is no longer
available. For a power supply, it is very unlikely that an explosion of the power supply
would be considered. Thus, the assumption is being made that removal of output power is
a reasonable failure mode for the power supply but that explosion is not. To ensure this
failure mode, power supplies sometimes employ an overvoltage protection circuit
(sometimes called a “crowbar”) that deliberately short-circuits a power supply and thereby
blows a fuse if an overvoltage condition arises. Note that this requires circuitry over and
above that needed to provide the required intrinsic functionality. A second example of this
approach from the area of computing hardware design is the concept of fail-stop
computers [14]. With a certain probability, a fail-stop computer either works correctly or

stops.

Assumptions about the failure modes of a component actually impose an additional
set of specifications on the component. Essentially, for the system safety analysis to be
valid, a component must fail according to the assumptions. If it does not, nothing precise
can be said about the subsequent behavior of the system. These specifications will be

referred to as the failure interface specifications for the component:
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Definition: Failure Interface Specifications

The failure interface for a component is the required functionality that must be
provided with a certain probability in the event that the component is unable to
provide its intrinsic functionality.

The failure interface for a component states essentially what the component must do with a
high degree of assurance. A component may fail in any manner whatsoever internally but,
in the event that it is unable to provide its intrinsic functionality, the interface that it
provides to other components in the system has to be its failure interface. The failure
interface might be inert and safe thereby having what is generally called a fail-safe
characteristic. It might also define limited functionality, essentially that functionality that

must be present to ensure continued safe system operation or shutdown.

Simply removing the service provided by a component is not an adequate failure
interface if this leads to cessation of a required system service. For many systems, removal
of service is a primary hazard. For example, it is not safe to remove power from a heart
pacemaker under any circumstances. From the user’s perspective, a pacemaker is only safe
as long as it is generating appropriate stimulation pulses. The provisions that have to be
made to cope with component failure within a system are, therefore, very dependent on the
specific component and what it is doing. A pacemaker might invoke a backup, fixed-rate
pulse generator in the event that its primary demand-driven circuit fails. Similarly, an
avionics system might put an aircraft into level flight at a safe altitude if normal flight

control functions cannot be maintained.

The concept of hazardous states introduced by Leveson et al. [5] is just a special
case of failure interface specifications. A hazardous state by that definition is a state that
must be avoided. Hazardous states are not a sufficiently powerful concept for an adequate

treatment of software safety because they are restricted to the notion of state. A state is a
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static concept whereas what is required is a vehicle for specifying minimal functionality.
This minimal functionality might be no functionality, it might be freedom from certain

states, or it might be some critical subset of the intrinsic functionality.

The correct implementation of failure-interface specifications for a component
does not guarantee safe operation after the component fails. It merely ensures the
possibility of safe operation. The failure-interface specifications ensure that other non-
failed components have a well-defined state from which to proceed. Subsequent safe
operation depends on the remaining components functioning in such a way that hazards do
not arise within the new state. The components that remain fully functional might have to
provide a different service after a failure than they did before in order to accommodate the

new state of the system.

Requiring a specific response to the failure of a component by those that remain
operational imposes yet further specifications on each component, ie., exactly what the
component is to do in the event that another component fails and presents its failure
interface. These specifications will be referred to as the recovery functionality specifications

for the component:

Definition: Recovery Functionality Specifications

The recovery functionality of a component is the functionality required of the
component in the event that one or more other components in the system fail.

It is precisely the recovery functionality of a system’s software component that is being
used when the software checks the operation of another component or responds to a
failure indication of another component. But software is not the only system component
capable of operating in this way. For example, actuators are often designed not to respond

to commands outside their normal operating range. From a practical point of view, some
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components will have no recovery functionality. For example, a sensor can do nothing
productive when other components fail in an embedded control system. Conversely, the

software can often do a great deal.

Any component in a safety-critical system is expected to comply with all three of
the sets of specifications just defined. This leads to the definition of component

specifications:

Definition: Component Specifications

The specifications for 2 component consist of the intrinsic specifications, the
failure interface specifications, and the recovery functionality specifications.

In a safety-critical system, hazards will be avoided if the system safety analysis is correct
and each component meets the second and third of the sets of specifications. This leads to

the definition of the component safety specifications:

Definition: Component Safety Specifications

The safety specifications of a component consist of the failure interface
specifications and the recovery functionality specifications.

The goal of the component safety specifications is to provide the necessary framework to
support the safety analysis performed by the systems engineer. Provided all the
components of a system comply with their individual safety specifications, the entire system

can be deemed safe in this formal sense.

With respect to component failure, software is no different from any other
component. It might be possible for software to detect its own failure and present a
prescribed failure interface to the rest of the system subsequent to its failure. If other
components have appropriate recovery functionality, safe system operation (which might

be no operation) can continue. Similarly, software can provide recovery functionality in
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order to cope with the failure of other components and thereby avoid system hazards. In

practice, the software in most non-trivial systems will contain such functionality.

Finally, software safety can be defined. Since software is a system component,

software safety is defined as:

Definition: Software Safety

Software is safe if it complies with its component safety specifications, i.e., its
failure interface specifications and its recovery functionality specifications.

The reason that software is incorrectly viewed as somehow different from other
system components in some safety discussions is because it is perhaps the most complex
system component, and because it is uniquely capable of providing the functionality
necessary to cope with the failure of many other components. However, in the formal
sense needed to enable a theory of software safety to be developed, it is essential that

software be viewed properly as a system component.

A system is made up of a set of interacting components of which software is but
one. Each component, including the software, may be capable of dealing with its own
failure by containing facilities to detect its own failure and presenting a well-defined
interface to the remainder of the system. In addition, each component, including the
software, might be designed to detect and cope with the failure of other system

components.

2.5 Software Failure

Consider software that is part of a system for which hazards have been identified
and risks estimated. There are only two events that can lead to a hazard that might be

viewed as the responsibility of the software. The first is for the software safety
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specifications to define the correct action but for the software not to act as specified. The
second is for the software to act as specified but for the safety specifications to define the
wrong action. Typically, the former would be regarded as an implementation error and the
latter as a specification error. Clearly, the responsibility for the former lies with the
software engineer. His expertise is precisely that of developing an implementation from a
set of specifications. But what about the Jatter? We maintain that, formally, the latter is
the responsibility of the systems engineer. It is he who defines what the software is to do,
i.e., defines the software’s component specifications and thereby the software’s safety
specifications. Thus, as noted in the context of system safety above, software that performs

as specified cannot be viewed as having failed.

This view does not preclude the software engineer from contributing to the
development of the component specifications. The software engineer has the responsibility
of informing the systems engineer about what functionality is appropriate for the software.
In fact, the software engineer is uniquely qualified to determine what can be implemented
and verified efficiently in software. If he notices what appears to be an anomaly in the
specifications because of his informal knowledge of the application domain, he is free to
question the specifications. Further, if the specifications are written in a formal notation,
the software engineer is free to perform any analysis that might detect defects in the
specifications. The software engineer does not have the authority to act unilaterally to
implement anything other than exactly what is finally specified. As noted above, the’
software engineer is untrained and, by definition, unqualified to make the decisions

associated with such acts.

To clarify the assignment of responsibility, the following definition is introduced:
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Definition: Software Safety Failure

A software safety failure occurs whenever the software component of a safety-
critical system does not comply with its safety specifications.

With this definition in hand, it is clear that the closest workable approximation of perfect
software safety involves close cooperation between the software engineer and systems
engineer. The proper form of communication between these two parties is the software
specifications, and in particular the software safety specifications. In past definitions of
software safety, the specifications were never mentioned. In particular, failures that
resulted from faithful implementation of errant specifications were sometimes labeled
software safety failures. This is clearly unacceptable to the software engineering

community.

2.6 Achieving Satfe Software

The purpose of establishing the detailed framework of definitions above was to
permit a precise definition of safe software to be produced within a formal framework.
Such a framework must permit a clear statement of what it means for software to be safe
for a specific system. Without such a definition, there is no hope of being able to build safe
software because it would be impossible to determine what the goals of the software were.
The definitions that have been developed here provide precisely the basis that is needed
for such a determination. It is not sufficient to seek software that is “safer” or “more
reliable” in some sense because what is achieved might not be adequate. With no formal
definition of safety, it is not possible to state that a given software entity is safe. It is also
pointless to develop software safety standards such as the United Kingdom standard 00-55

[15, 16] since that prescribes a method for achieving something that is not itself defined.
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A fortunate consequence of having the formal framework of definitions is that it
defines the role of the software engineer. No branch of engineering is perfect [17] and so
although one might know what software safety means, it might not be achievable. The next

step is to determine how to achieve it.

By the definition presented here, software is safe if it complies with its safety
specifications. In a formal sense, the software engineer’s responsibility is to implement the
software and demonstrate that the safety specifications developed by the systems engineer
are implemented correctly. Once it is developed, showing that software is safe according to
this definition is, therefore, an exercise in verification. Informally, however, the software
engineer is encouraged to analyze the specifications, report anything that appears to be a
deficiency, and generally be on the lookout for any defect in the system that could detract
from safe operation. Recall, however, that this is not a formal responsibility of the

software engineer because he is not qualified to accept this responsibility.

There are many techniques for software verification including formal proof,
inspection, testing, and static analysis. Typically, several of these techniques are applied to
the verification of any given system. In the verification of software safety, proportionately
more resources might be used and more diverse methods might be applied than is usual in
non-safety-critical systems. Anderson and Witty [18] present some simple design

techniques for developing safe software that can be verified easily.

Software fault tree analysis [5, 7] has been described as a technique “that is useful
for partially verifying the safety aspects of software” [7]. Though a correct staterent, this
description of the role of software fault trees has been misinterpreted by many
practitioners. Software fault tree analysis is a technique for establishing certain properties

of software in a formal manner. Software fault tree analysis is limited to verifying safety
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properties involving an undesired output not being generated. Such properties cover only a
small subset of the specifications usually defined for safe systems. Safety specifications
also include requirements for proactive actions in the event that something goes awry.
Showing that something will happen under appropriate circumstances js beyond the

capabilities of software fault trees, and will require other verification techniques.

Those familiar with the use of fault trees in systems safety analysis should not think
that the techniques are similar based on the similarity on their names. System fault tree
analysis is a general technique for documenting the various hazard conditions in a system
and how they might arise. It is a stochastic technique in which the probabilities of
hazardous events arising can be estimated. Software fault tree analysis has no probabilistic
component and is related only distantly to system fault tree analysis through the common
use of logical operators within the tree structure. System fault tree analysis is applied
before the system is constructed and helps the development of an adequate design. By
contrast, software fault tree analysis is applied after the software is constructed and helps

achieve verification.

Software fault tree analysis is a verification technique and must be viewed as such.
Showing that software has met required safety properties is a verification problem, and all
techniques that can contribute need to be applied. The role of the software engineer is
clear in this case. It is his responsibility to show that the software safety specifications have

been implemented correctly.

In summary, achieving safe software requires that safety specifications be prepared,
that the software be carefully implemented, and that compliance of the software with its
safety specifications be verified. The software is safe to the extent that this verification is

successful. However, the system of which the software is a part might not be safe because
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the safety specifications might be defective in a manner that is unknown to the software
engineer. The required verification might be performed with any available software

verification technique of which software fault trees is but one.
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Chapter 3 - Research Directions

3.1 Overview

The theoretical definitions developed up to this point are intellectually appealing,
but unless they can be shown to be applicable to actual safety-critical systems, their
usefulness must be considered suspect. A criticism that has been leveled at much of the
previous theoretical work in software engineering is that it is merely an ivory tower
creation that has no applicability and thus no real benefit to software engineering
practitioners. Even when theories are shown to be applicable to real-world systems, the
actual procedures for applying the theory to other systems are often omitted or extremely
vague. This offers little to the practitioner struggling with the task of building safe

software,

It is quite difficult for researchers to find actual software-controlled, safety-critical
systems upon which to test theoretical hypotheses. However, precisely such a system is
currently being developed by the Department of Physics of the University of Virginia. This
device is the Magnetic Stereotaxis System, hereafter referred to as the MSS. The MSS is
an experimental, high-energy, software-controlled medical device with clear safety
implications. Sometimes referred to as the “Video Tumor Fighter”, after one of its many
uses, this system utilizes magnetism to manipulate surgical implants within the brain.
Although presently in the developmental stages, the MSS has the potential to drastically

change the manner in which neurosurgery is performed.

Access to this device enables the collection of experimental data to either
corroborate or refute our theoretical approach to software safety. A series of experiments

have been planned to test the feasibility of the theoretical definitions of software safety
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presented here. The balance of this report presents the results of the first such experiment.
This experiment is intended to demonstrate the feasibility of capturing all of the system
safety ramifications on the software in a software safety specification. Furthermore, the
experiment is intended to determine processes for performing that task. The end result of
this experiment, the MSS software safety specification, will serve as a precise basis for future

experiments in creating, assessing, and maintaining safe software.

3.2 Experimental Design

The experiment consists of a system safety analysis of the MSS, with special
attention paid to the safety ramifications of the software component. The first step in the
system safety analysis is a hazard analysis performed by the systems engineers in order to
ascertain what should constitute a system hazard. From these hazards, system fault trees
are created to determine what combinations of component failures can lead fo a system
hazard. These fault trees permit the determination of software safety requirements, from

which a formal software safety specification is derived.

An important result of this experiment is a detailed description of the processes
used. Such a description permits systems engineers to emulate our processes in order to
evaluate the safety of other software-controlled systems. The systems engineer thus is able
to derive software safety specifications from the systems safety analysis in a rigorous
manner. This can be accomplished without requiring either software engineering expertise
or new, specialized software safety techniques. Instead, the processes presented here rely
on existing systems safety techniques amended slightly to handle the special properties of a
software component. With these processes, the systems engineer is able to enhance the
safety of the system by enabling the software engineer to contribute towards system safety

within a controlled framework.
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Certain aspects of the system safety analysis will not be discussed in this report. In
particular, system hazards that are determined to have no software involvement are
omitted. Similarly, component hazard analyses for the various subsystems are also
excluded. One final difference between the processes documented here and the required
system safety analysis is the lack of failure probabilities in the former. Because the system
design has yet to be finalized, individual component failure probabilities are not presently
available. As a result, the process has been modified to exclude failures that require
multiple independent devices failures as sufficiently improbable, but to include all failures
that depend on the failure of a single device. Computing hardware failures have been
omitted, under the assumption that arbitrarily reliable hardware can be built, but all
software failures are included, as no meaningful probabilistic bounds can be placed on
these. In addition, device failures brought about by devices actually failing are
distinguished from the apparently similar cases in which software commands the devices to

act incorrectly.

3.3 Basis for Evaluation

In order for this experiment to provide any useful answers, it is necessary first to
clarify the questions that are being asked of it. This crucial step serves to guide the
experiment and provides a basis for assessing the results. One cannot expect to find
answers to all of these questions. Answers to but a few would constitute a successful
experiment. Furthermore, insight gained into any of the questions, even if not constituting

a direct answer, would be extremely valuable.

It is critical to keep in mind that a single experiment cannot possibly prove

universal results. At best one can hope for a proof of feasibility or a negative result. This
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experiment is intended to determine whether, for a single particular system, the definitions
we propose here are viable. A negative result would not necessarily relegate these
definitions to worthlessness, though it would rule out any universal applicability. From a
single experiment, it cannot be determined whether the definitions are globally applicable,
though some insight into this possibility might be gained. Particularly, there promise to be
large classes of systems, for which applicability could be demonstrated by a single
experiment. In addition the knowledge gained from this experiment might permit the
definitions to be refined so as to be more widely applicable. Future experiments should

permit further refinement until strong arguments can be made about their universality.

3.4 Testing the Theoretical Definitions

In all previous work concerning software safety, software safety has been tightly
coupled with systems safety. Our fundamental assertion is that this is not necessary.
Software safety can be separated from systems safety in a manner that isolates all of the
system safety ramifications of the software within the software safety specifications. The
safety specifications provide a means of translating the systems engineers concerns info
requirements that the software engineer is qualified to work with. Thus the primary

questions to be answered by this experiment are:
Question: Can software safety be separated from systems safety?

Question: Can a software safety specification adequately capture the safety requirements
imposed on the software by the system?
Because the theoretical definitions of software safety are based on the premise that
software can be treated as a component by the systems engineer, this premise must be

subjected to scrutiny. In particular, the systems engineer’s ability to model software
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properties at the system level must be questioned. If this proves feasible, system safety
techniques could be applied to software-controlled systems, just as they are to any
conventional system, rather than necessitating the development and application of

specialized software safety techniques.

This experiment focuses on the aspects of the system safety analysis that deal with
software requirements. Special care is taken to treat software as a black box, dealing only
with required behavior, and ignoring any implementation-specific knowledge. The result of
the system safety analysis is a formal software safety specification, specifically stating the
software failures that could lead to system safety being compromised. These processes
depend on the assumption that software is not too complex to be treated as a component

during systems safety analyses.

Question: Can software be treated as a component in system safety analyses?
Is software too complex to be treated as a component?

The definitions we developed make a distinction between those elements of the
software safety requirements that are part of the failure interface specification, and those
that are taken from the recovery functionality specification. Although these categories are
theoretically distinct, this experiment tests whether this separation is useful in practice. It
is also aimed at uncovering any other categorizations that are useful in practice, but might
not have been apparent at the theoretical level.

Question: Are the categorizations of software safety requirements presented useful? Do other

alternative categorizations present themselves?
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3.5 Software Failure Modes

Component failure modes are a well-understood systems engineering concept. The
failure modes of a given component are the manners in which the component can fail.
These are usually limited in number and classifiable according to their effects. This
concept has not been extended to software safety in large part because of the belief that
software failure modes are practically innumerable. This report argues that the concept of

component failure modes can be extended to software.

Previous work in software safety analysis has made the tacit assumption that
software is too complex to be treated as a system-level component [8]; we challenge that
assumption based on the following reasoning. Any observed device failure mode can be
either caused by the device failing, or software instructing that the device act
inappropriately. All device actions that the software could command are also actions that a
failed device could perform without having been commanded. Thus, software failures are
only distingnishable Ey their effects on other devices. Therefore, the software failure

modes can be determined from the possible software-initiated device failures.

The complexity normally attributed to software failures stems from the many
factors that can cause a failure, rather than the effects of the failure. However, system
safety analysis is only concerned with the failure modes, i.e. the effects of failure, not the
causes. The only reason that software failure modes are any more numerous than other
device failure modes is that software can effect numerous devices simultaneously. Thus in
determining the software requirements, the systems engineer need only consider the
failure modes of the other components that the software could initiate. The complete set

of software failure modes can be enumerated as all possible combinations of individual
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device failures. Although sound in theory, the experiment will test the usefulness of
software failure modes in practice.

Question: Are software failure modes a viable concept ?
Can software failures be classified solely according to observable effects?

The definitions presented in this report attempt to maintain a separation between
systems engineering and software engineering concerns. Primarily, software engineering
tasks should not require any systems engineering expertise, and systems engineering tasks
should require as little knowledge of software engineering as possible. It has been
suggested that software engineering expertise is required in order to understand the impact
that software failures can have on systems safety [6, 8). Software fajlure modes present an
alternative in which software engineering expertise is not required during the system safety
analysis. If possible, this must be tested experimentally.

Question: Is software engineering expertise required in order to understand software failure

modes?

3.6 Maintaining a High Degree of Rigor

The development of safety critical software requires a degree of rigor not necessary
in other software engineering tasks. The safety critical software community has begun to
advocate formal specifications and other formal methods as means of increasing the safety
of such software [19]. In fact, the U.K. Ministry of Defense has actually mandated the use
of formal methods on safety critical software [15]. Although clearly a needed step, this is
not necessarily sufficient. If an unsafe software specification is implemented perfectly, the
resultant device will be unsafe. Although it is impossible to verify a system safety analysis
formally, a rigorous approach is possible. When determining software safety specifications

a high degree of rigor must be enforced wherever possible.
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Although not strictly formal, rigorous methods must suffice when no formal
alternatives present themselves. As in any branch of engineering, mathematical constructs
cannot be proven to model real-world entities exactly. Some sort of informal, convincing
argument will have to be made. While it is a goal of this work to isolate the informality
that is necessarily present, it is equally important not to settle for a less rigorous approach
when a more rigorous alternative can be found.

Question: Can the gap between system safety analyses and formal software specifications be
bﬁdged rigorously?

Rather than creating an informal specification, this experiment demonstrates a
process that results in a formal safety specification. This permits all informality to be
eliminated by the systems engineer before the software engineer is invoived. Although a
desirable property, this degree of formality depends on the systems engineer being able to
communicate formally the software safety requirements to the software engineer. A
common argument against formal specifications is that they are incomprehensible to all but
a few mathematicians [20]. If this were the case, the systems engineer would be incapable
of formally specifying the software’s safety requirements. This experiment attempts gauge
the truth of that criticism.

Question: Are formal specifications a suitable means of communicating software safety
requirements?

The question of whether to include an informal, or natural language specification,
with the formal safety specification has been considered. The primary argument against
this is that it might not accurately reflect the contents of the formal specification.

Alternately, a natural language transliteration of the formal safety specification would
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make the specification more accessible. This experiment should offer some insight into
resolving this dilemma.

Question: Does the inclusion of a natural language specification make the formal specification

more accessible or does it weaken it unnecessarily ?

3.7 Determining the Correct Process

The previous chapter proposes a definition for software safety, but presents no
procedures for creating safe software. The problem of building safe software-controlled
systems has been decomposed into the two smaller problems of creating safety
specifications, and correctly implementing those specifications. It is a purpose of this
experiment to uncover processes for a practical application of the theory. Whether a
single, general process exists, or whether each system will require a customized process is
an open question. If a single process does exist, it would necessarily be quite general. It is
worthwhile to attempt to generalize as much as possible the processes that we have used, as
it is only in their general form that such processes might be applicable elsewhere.
Furthermore, these processes must be made as rigorous as possible in order to convince
skeptical audiences such as regulatory agencies.

Question: Does a single, universally applicable, process for determining software safety
requirements exist?

Previous discussions on software safety have suggested applying systems safety
analysis techniques directly to software [5, 6]. In contrast, the processes demonstrated here
use systems safety analysis techniques to analyze the system. Before applying these
techniques to software controlled systems, the systems engineer must be aware of the
special properties of software. When the presence of a software component invalidates or

limits the applicability of a given technique, the systems engineer must be made aware of
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this fact. Furthermore, when the software component endows a technique with additional

power, this should be taken advantage of.

Question: Are existing systems safety techniques applicable to systems containing a software
component? What amendments are necessary?

Finally, it is important that the process presented here be contrasted to those
presented elsewhere [6, 8]. Because we argue that our definition of software safety is
universal, it should encompass all other software safety techniques. If one process can be
shown to reveal problems that another processes failed to uncover, the various processes

could prove to be a valuable means of assessing one another,

Question: Can our definitions be rigorously demonstrated to encompass existing techniques?

3.8 Other Issues Raised

Besides testing whether building safe software is possible, the experiments
documented here should shed some light on the costs involved in building safe software.
This could aid in making decisions as to whether the cost of building safe software
exceeded the cost of building equivalent mechanical systems. There are a spectrum of
factors that might influence the techniques used, besides the technical nature of the system.
These include: cost, cost of failure, available expertise, resources, modifiability, time
restrictions, and regulatory scrutiny. As a result, there could conceivably be a spectrum of
techniques ranging from high cost, high assurance to low cost, low assurance. If means of
measuring the degree of software safety and the cost of building safe software existed,
systems engineers would be able to better appreciate the cost involved with assigning

safety-critical responsibilities to software.
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A problem that manifests itself with software-controlled systems is a willingness to
trust the software too much. An example is the Therac 25 incidents, in which inexpensive
safety features that would have limited the safety ramifications of the software were
omitted, with tragic results [21]. Although programmable general purpose computers are
often much easier and cheaper to use than special purpose hardware, there is a danger
associated with relying too much on the software to provide safety features. Because of the
complexity of software, it is often far more expensive and difficult to verify safety-critical
software than to provide equivalent mechanical safety devices. However, a computing
subsystem is capable of far more intricate behavior than any mechanical system, and as a

result can provide more versatile safety recovery.

This experiment attempts to highlight the tradeoffs involved in using software to
provide system safety. This includes the cost of physical devices, the cost of verifying
software properties, and the enhanced device safety provided by additional safeguards.
Raising awareness of the difficulties and cost of software safety could prevent the mistake

of trusting the software too much from being made.
Question: What metrics for software safety can be found?
Question: What metrics for the cost of building safe software can be found?

Our definitions rely on the separation of software safety specification from
software implementation. Whether a complete separation is advisable is subject to
question. As an example, a system design that requires that the software component
perform an intractable or unsolvable calculation should not be considered, if there is an
alternative that eliminates this possibility. Similarly, if one possible approach leads to
software that is simple to prove while another is extremely costly to prove, this point should

be raised during the design of the system and specification of the software. For this
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reason, it might be advisable to have software engineering expertise present during the

system safety analysis, if only to assess the relative costs of various software approaches.
Question: To what degree should implementation concerns influence the specification.

One unique aspect of this experiment is the fact that prototype software is already
completed. It is instructive to compare the results of the case study with the existing
system at every phase. Because the original software was built with a naive view towards
software safety, a very rough measure of the efficacy of these processes can be obtained,
Comparing the results of this experiment to the “raw” results, might provide some insight
into which steps offer the largest “payoff” in terms of potential problems uncovered.
Question: How much “safer” is the software created through these processes than that created

under the “naive” approach.

Some of the software safety literature discusses the notion of defense in depth [6, 8].
Although this is a valuable systems engineering technique that offers the potential for
greatly increased safety measures, it relies on the independence of failures. The
independence of failures is easy to ensure when dealing with physical device failures. It is
not nearly as straightforward for software. As demonstrated by Knight and Leveson [22],
independence of failures can not be assumed when multiple versions of software are
developed from the same specification. Therefore, defense in depth permits separate
hardware and software means to guard against the same error, but is of questionable

usefulness when applied to multiple software guards.

Although no studies have been done on software using slightly different
specifications, it is reasonable to assume that the probability of coincident failures drops as

the similarity in specifications falls. If radically different specifications can provide guards
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against the same failure, this could be exploited, but extreme caution must be used in

assuring that the specifications are sufficiently diverse.

Question: Is there a manner in which defense in depth can formally contribute towards
software safety?

3.9 Summary

This chapter raises questions that should be addressed by the experiment being
performed. This forms a precise basis for evaluating the success of the experiment, as all
of these questions are of significant importance. Although one cannot hope for complete
answers to all of them, if some light is shed on some of these questions, the experiment can
be deemed a success. Furthermore, the documents resulting from this experiment will
provide a basis for future experiments exploring other aspects of software safety. Some of
these questions might not be fully answered until after these other experiments are

performed.
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Chapter 4 - Magnetic Stereotaxis System Overview

4.1 Magnetic Stereotaxis

Stereotaxis is a neurological technique used for biopsy, delivering hypothermia to
brain tumors, and treating various disorders. Conventional stereotaxis is limited by the
need for a direct path between the surface of the skull and the tumor to be operated on.
Such a path is often blocked by critically important or easily damaged brain tissue.
Establishment of a direct path through these regions can result in serious injury to the
patient, possibly even death. For this reason, conventional stereotaxis techniques often
cannot be used where they might otherwise be valuable. Magnetic stereotaxis utilizes

magnetism to overcome the limitations of conventional stereotaxis.

 Researchers at the University of Virginia and the University of Washington are
involved in ascertaining the viability of magnetic stereotaxis [23]. Magnetic stereotaxis
circumvents the limitations of conventional stereotaxis by permitting an indirect path to be
traced between the surface of the skull and the target location. The technique uses
magnets positioned exterior to the cranium to move a magnetic dipole (hereafter referred

to as the seed) within the interior of the brain.

One application of magnetic stereotaxis technology is in the treatment of deep-
seated brain tumors. After being maneuvered to the site of the tumor the seed can be
heated by the application of low frequency radio (RF) waves to the skull. Magnetic
stereotaxis also offers a potential solution to the problem of drug delivery to interior
regions of the brain. The brain is capable of blocking virtually all drugs from reaching the
interior regions. For many diseases, such as Parkinson’s disease, drugs are available, but

there is no suitable means of delivering them. The solution in the past has been to either
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withhold the drugs entirely, or use dangerously high doses in attempt to penetrate the

brain’s natural drug barrier.

Using magnetic stereotaxis, the seed could tow a catheter directly to the location
where the drugs are required. This catheter could be filled with the needed drug which
would then be released over time. If the catheter were attached with heat-sensitive glue,
the seed could be heated in order to release the catheter. If magnetic stereotaxis is
demonstrated to be workable, future research will involve finding a means of using it to
perform biopsies. At present, a prototype magnetic stereotaxis system (or MSS) is under

construction so as to better test the feasibility of magnetic stereotaxis.

4.2 The Prototype Magnetic Stereotaxis System

A prototype magnetic stereotaxis system is currently in development. The MSS
utilizes superconductive coils, as these are the only magnets capable of generating the
magnetic fields required to move the seed. The seed is tracked using bi-planar fluoroscopy.
The fluoroscope images are analyzed by a computer that determines the seed’s position
relative to skull markers that have been placed on the skull. A computer displays an image
of the seed superimposed onto a set of pre-operative magnetic resonance (MR) scans that

serve as the neurosurgeon’s “road map” [24].

The magnetic stereotaxis system would not be feasible without computer controls.
The process of transforming a desired seed movement into a required magnetic gradient,
and then testing various field configurations until a suitable approximation is found, is a
computation intensive task. In addition, the process of determining the seed’s location and

providing the operator with appropriate feedback necessitates a computer interface.
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The prototype magnetic stereotaxis system has successfully demonstrated the
feasibility of magnetic stereotaxis. As a feasibility study, it was designed with functionality
as the primary goal, and safety a secondary concern. In constructing the physical
components, proper manufacturing safety practices were followed, which minimizes the
possibility of a component failing in a catastrophic manner. However, patient safety issues

have not yet been fully considered.

The prototype software was built without a proper system safety analysis having
been performed. As a result, the software was built without a correct understanding of all
of its safety consequences. Although the software engineers involved were very
conscientious in making the software as correct as they knew how, this is not equivalent to
making the software safe. Even software that is perfectly correct can contribute to a
system hazard, if the software interacts with the system in a manner not anticipated by the
software engineer, or if a component failure leads to an unanticipated operating

environment.

Although systems engineers would not even consider the possibility of pressing a
physical prototype model into active service without an extensive redesign stressing the
safety requirements, the same cannot be said of software. Software safety is simply not
well enough understood. The remainder of this report demonstrates means for
determining the system safety consequences of the software and suggests how such

software can be constructed with safety as a primary concern.

4.3 Magnetic Stereotaxis System Operation

The magnetic stereotaxis system can be divided into the following subsystems: the

magnetic manipulation subsystem, the X-ray imaging subsystem, the RF heating subsystem,
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and the computing subsystem. In addition, although not strictly subsystems, the seed and
the operator are also integral system components. The operation of the system basically

conforms to the simple closed loop depicted in Figure 4.1.

The imaging subsystem captures an image of the seed and three skull markers. The
computing subsystem locates the seed and markers on the image, and superimposes the
seed on a display of the preoperative MR images. The operator then acts on the
information displayed, commanding either a movement of the seed or heating of the seed.
In response to this, the computing subsystem directs either the manipulation or heating
subsystem in carrying out the command. After the command is completed, the imaging
subsystem captures an updated image and the entire process repeats until the operation is
completed. The only deviation from the simple closed loop is that, during seed movement,

additional images are taken to permit the operator to track the progress of the seed.

In some aspects, the system can be considered to be a real-time system. Some of
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Figure 4.1 - Basic Operation of the MSS
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the computer operations, especially those involving control of the other subsystems must be
completed within hard deadlines. Fortunately, the more complex aspects of image
formulation and current calculations are not restricted by hard deadlines. Although
responsiveness in these actions is needed, it is not safety critical. This alleviates some of
the more difficult challenges of safety-critical real-time software by not requiring that
complex calculations be proven to be bounded in execution time. Nonetheless, enough
real-time considerations are present to make the processes discussed applicable to more

demanding real-time systems.

It is worthwhile to consider the purpose and design of the various subsystems in
more detail. It is particularly important to understand the failure modes of each
subsystem. The failure modes of a subsystem constitute all of the manners in which the
subsystem can fail. Although there might be many different causes for a particular failure
mode, only the effects of the failure need be considered. These failures often either cause
or contribute to a system hazard. Thus, before further system safety analyses can be
performed, the failure modes for each subsystem must be accounted for. Many of the
software safety requirements will be derived from the failure modes of the various

subsystems as part of the software’s recovery functionality specifications.
Yy p ry p

The X-ray Imaging Subsystem

The imaging subsystem consists of the X-ray source, the biplanar fluoroscope, and
the image capture system in the computer. This subsystem is responsible for generating
two images of the seed and skull markers, one from each imaging plane. These images are
received by the image capture system, where they become available to the computing
subsystem. The two imaging parameters provided to the subsystem are the x-ray beam

intensity and duration. A signal from the computing subsystem activates the x-ray which is
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responsible for maintaining a beam of the desired intensity for the period specified, and
then shutting the beam off. During this time, the computing subsystem must also signal the

image capture hardware to capture the images received.

The imaging subsystem’s failure modes can be divided into those caused by failure
of the x-ray source and those affecting the image reception. The X-ray has three failure

modes that need to be considered:
o Turning on without having been commanded.
» Remaining on for a duration other than that requested.
+ Operating at an intensity other than that requested.

Although the subsystem is designed to minimize the possibility of these occurrences, they
need to be considered as the modes in which the device might fail. The impact of the
component failure modes on the safety of the entire system is the subject of the system-

wide hazard analysis.

The image reception function is determined to have failed whenever the images
provided to the computing subsystem do not accurately reflect the relative positions of the

seed and markers. The failure modes can be categorized as follows:
 Images containing an object that is not physically present.
+ Images not containing an object that is physically present.
¢ Images containing objects that are misplaced or distorted.
» Images whose signal is masked by noise.

As the software specifications must state the properties of an incorrect image, they

must also contain definitions for recognizing the objects on the images. An important
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division of component failure modes is into groups of those failures that can be detected
and those that can’t. Failures that can be detected should be precisely dealt with in the
specification, Failures that cannot be detected can sometimes be protected against by
other means, but often must be considered as an accepted risk. In either case, it is the
systems engineer, not the software engineer, who is responsible for such a decision.

The RF Heating Subsystem

The heating subsystem is responsible for radiating the seed with radio-frequency
energy, for the purpose of heating the seed. The heating subsystem is commanded on and
off by signals from the computing subsystem. The RF frequency is fixed, but the intensity
is contained in the command to switch the device on. The failure modes of the heating

subsystem are:
¢ Switching on without having been commanded.,
¢ Switching off without having been commanded.
+ Failing to switch off after having been commanded.
+ Failing to switch on after having been commanded.
+ Generating RF waves of an intensity other than that requested.
» Generating RF waves of a frequency other than that requested.
This final failure mode has been determined to be sufficiently improbable so as to have no
impact on the safety of the system, and thus will not be considered further.
The Manipulation Subsystem

The manipulation subsystem consists of six superconductive coils arranged as if on

the faces of a cube. The coils are embedded in a supporting structure, misleadingly
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referred to as the “helmet”, in which the patient’s head is placed [24]. The manipulation
subsystem encompasses the power supplies needed to charge and discharge the coils, and

the liquid helium cooling needed to maintain the superconductivity of the coils.

The failure modes of the manipulation subsystem fall into two groups: those which
pose direct hazards, and those which affect system operation. The failure modes that pose
direct hazards involve the release of large amounts of either electrical energy, thermal
energy, cryogenic fluids, or toxins. These are analyzed as part of a component hazard
analysis, and play no further part in this experiment. These hazards will eventually impose
software safety requirements in terms of monitoring for and responding to hazardous
situations. At pfesent, these analyses have not been performed, and thus the software

safety requirements have not been determined or included here.

The failure modes that effect system operation consist of any arbitrary combination
of one or more coil failures in a manner that alters the magnetic forces on the seed. The

coil failures are:
¢ Charging more rapidly or more slowly than anticipated.
» Charging to a level other than that commanded.
» Charging without having been commanded.
» Discharging without having been commanded.
* Discharging more rapidly or more slowly than anticipated.

These failure modes have the net effect of causing a magnetic field on the seed that is
inconsistent with that required. In further analyses, this composite effect will be treated as

the single failure mode of this subsystem.
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The Computing Subsystem

The computing subsystem is responsible for managing the operator interface and
controlling the other subsystems. The internal causes of failure of the computing
subsystem are extremely complicated, but can only manifest themselves in terms of their
effects on other subsystems. As such, the failure modes of the computing subsystem can be

grouped into:
+ Presenting the operator with incorrect data.
» Commanding the other subsystems incorrectly.
¢ Complete loss of service.

All of these failures can appear as the failure of another subsystem. If one or more devices
faithfully execute errant commands from the computing subsystem, the fault lies with the
computing subsystem, even though it might initially appear as a device failure. Similarly,
an operator judgment error that is caused by the operator being presented with incorrect

data is actually a computing subsystem failure.

The computing subsystem failure modes consist of all possible combinations of
other subsystem failure modes that could be effected by the computing subsystem. Thus it
is possible to enumerate all of the computing subsystem’s failure modes. Rather than
enumerating them, only those which have safety ramifications will be considered here.
These will be determined from the system safety analysis procedures. The result will be a
software safety specification that addresses all of the software failure modes that must be

eliminated in the interest of system safety.
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The Operator Subsystem

The final “subsystem” to consider is the human operator. It is important to
examine the failure modes of the operator, as these, just as those of any other component,
could impact the safety of the system. Such an approach offers insight as to how other
components can be made to prevent operator failures from propagating through the
system. It is conceivable that at some point in the future, the operator could be replaced by
an expert system, thus strengthening the argument of viewing the operator as a subsystem,

even though such a system might have different failure modes than a human.

The operator is responsible for assessing the situation as described by the
computing subsystem’s display of the MR images, the seed position, and other status
information. Based on this assessment, the operator must choose a course of action that
best accomplishes the purposes of the operation without exposing the patient to needless
risk. This course of action is communicated to the computing subsystem in terms of

heating and movement commands.

Because the probability-of human judgment errors defy analysis, and because there
is no way to formally determine the probability that such an error could be detected by the
computing subsystem, assigning failure probabilities to the operator must be performed
carefully. Conventional systems engineering wisdom requires that very high failure
probabilities be assigned to the operator, particularly when required to notice something
out of the ordinary or to respond correctly under duress [25]. Furthermore, it is
reasonable to assume that presenting the operator with incorrect data will increase
drastically the probability of an operator error. Therefore, ensuring that all data presented
to the operator is correct is extremely important in minimizing the possibility of operator

eIrror.
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Determining the failure modes of the operator is not a straightforward task. It
might seem reasonable to assume that the operator is infallible, and that the device, as a
medical tool, should simply carry out the operator’s instructions. Such an assumption
would be a mistake. A human operator is never infallible, and the computing subsystem
provides an excellent means of screening operator commands. Questionable commands
can either be rejected or require explicit confirmation of intent. There will necessarily
remain cases in which the expertise of the operator will have to be relied on, but to not
attempt to minimize these would be negligent. The question of what constitutes
inadvisable input must be put to domain experts - in this case neurosurgeons. The
applicability of this technique will be governed by the system engineer’s ability to capture

this domain expertise in a software-manipulable form.

4.4 Safety Implications of the MSS

The safety implications of the magnetic stereotaxis system are numerous. The MSS
poses obvious hazards to the patients, and other less obvious hazards to the environment
and any people in the vicinity (including the patient). For ease of discussion, those hazards
that affect only the patient will be termed patient-specific, and those that can affect others
will be labeled general hazards. The patient-specific hazards are all treatment-specific.
These involve either being overexposed to magnetism, X-rays, or RF waves, or being
harmed by unsafe seed movement or heating. Several of these involve the computing

subsystem, and it is these that are addressed by the balance of this experiment.

The general hazards involve the release of radiation, dangerous chemicals, or large
amounts of energy into the immediate vicinity [25]. The MSS has a number of such high-

energy threats. The forces between each pair of coils can exceed twenty thousand pounds.
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The cryogenic fluids used to maintain superconductivity pose a leakage threat. The
controllers used to charge and discharge the coils are extremely high-energy devices. If
discharged improperly these could cause injury, damage equipment, or even cause a fire.
As mentioned previously, while these hazards cannot be caused by the computing
subsystem, they can be detected and have their effects mitigated by software means.
Although important parts of the software safety specification, these requirements are not

covered in this study due to lack of sufficient information.

It is critical to remember that the device in question is a medical tool. Its safety is
somewhat a function of the expertise and judgment of its operator. Asking the question “is
it safe?” of the MSS is similar to asking the same question of a well-understood medical
device such as a scalpel. The safety of a scalpel depends entirely on the skill and judgment
of the operator. Furthermore, to make the scalpel safe by blunting it would render it
useless. Similarly, there will always be an element of risk in the MSS. This is a direct
consequence of the relative importances of ensuring safety and accomplishing the purpose

of the device.

4.5 The Food and Drug Administration

One major concern in determining the safety of any medical device is FDA
approval. Initially, FDA approval for tests on terminally-ill patients is a relatively simple
matter. However, before the device can be put in widespread use it must receive FDA
approval for general use, which is always a very difficult process. This is further
complicated by the fact that the FDA has recently become aware of the difficulties in
assessing the safety of software controlled devices, and has revised its requirements for
certification of such devices. The Therac 25 incidents demonstrated the potential for harm

that can result from unsafe software and directed a great deal of scrutiny at the FDA’s
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approval processes [26]. The FDA was placed in an untenable situation, where they were
being asked to ensure the safety of computer-controlled medical devices, but were unable
to exercise the safe option of disallowing the use of such devices. They did what any

rational agency facing such a decision ought to do: they deferred.

The new FDA requirements are intentionally vague. They require adherence to
good engineering practices, leaving the research community to define what these are.
There is no FDA approved methodology for ensuring software safety. They simply require
that a great deal of effort in the area of software safety be demonstrated, banking on this
effort to reveal any possible safety problems. The attitude at the FDA is that any
procedure can be used as long as convincing arguments for device safety can be made [27].
This is perhaps not a bad idea as a rigorous argument for safety should be able to convince

an arbitrarily skeptical audience.
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Chapter 5 - Experimental Process

5.1 Overview

This chapter outlines the bulk of the processes performed in order to derive the
formal software safety specifications for the MSS. In order, the steps performed in this

experiment were:
+ Determination of Subsystem Failure Modes.
» System Hazard Analysis.
e System Fault Tr¢e Construction.
o Derivation of the Software Safety Requirements.
e Creation of the Formal Software Safety Specification.

The complete list of subsystem failure modes were presented in Chapter 2. The completed
system fault trees along with the associated software safety requirements are included in
entirety in Appendix A. Appendix C consists of the formal software safety specifications

for the MSS.

This chapter provides annotation for those documents, giving an explanation of the
methods used, the rationale behind the decisions made, and indicating areas worthy of
special attention. Note that the system safety analysis described here has been restricted to
only those aspects that have ramifications on the software safety requirements. In
addition, the results of the component failure modes analysis and the hazard analysis are
given without detailing the procedures used, descriptions of which can be found elsewhere

3, 28].
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5.2 The System Safety Analysis Process

Hazard Analysis

Systems engineering has formalized the notion of system safety by restricting safety
assessments to only those hazards that have been identified. The Hazard analysis
procedure attempts to uncover all of the potentially harmful systems hazards. For the
MSS, this process was performed with the aid of the MSS systems engineers. Numerous
component-level hazards and several important system-level hazards were uncovered. The

system-level hazards from which the software safety requirements were derived are:
» Patient Injured by Exposure to X-ray.
¢ Patient Injured by RF Heating.
» Patient Injured by Seed Movement.

All of these hazards are operational hazards, being specific to patient treatment. The more
general hazards involving the release of large amounts of energy into the environment are

not pursued here.

Note that this list constitutes the systems engineers’ perceptions of the system
hazards but not necessarily the actual hazards. Because the formal definition of system
safety is based on this assessment, a mistake here could undermine the usefulness of all
further safety analyses. However, this is the accepted systems practice, and it is the
intention of this project to demonstrate how software engineers can contribute towards
systems safety, not redefine it. Nevertheless, this is an important process that must be

performed by qualified systems engineers, not software engineers.
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Computing Hardware Failures

A computing subsystem failure can consist of either a hardware or software failure.
In order to keep the complexity of the system safety analysis at a manageable level, it was
decided to operate under the assumption that the computing hardware is arbitrarily
reliable. Furthermore, it is assumed that the computing hardware is free from design
defects. These assumptions are not completely unrealistic. Building arbitrarily reliable
computing hardware can be accomplished through the application of redundancy schemes
[29], and computing hardware built using formal methods has been proven to be free from
design defects [30]. Although building such hardware is not necessarily cost-effective, it
permits the software safety analysis to be unimpeded by computing-hardware reliability

concerns.

Were this approach not taken, the safety analysis would be extremely complicated.
The number of possible computing hardware failures is astronomical, and many of these
are difficult or impossible to detect. As would be expected, the failure modes of computing
hardware are identical to those of the software. Because of this, a single hardware failure
could conceivably invalidate all of the safety measures built into the software. For a system
containing a computing hardware component to be judged safe, its safety-critical failure
modes must be determined, and made sufficiently improbable. Increased reliability
provides blanket coverage of all possible safety concerns and is far easier than attempting

to isolate the safety implications on the computing hardware.

System Fault Trees

Fault trees are a systems engineering technique for determining combinations of

component failures and system events that could lead to system level hazards. A fault tree
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provides a stochastic model for assessing system risks based on the component failure
probabilities. If the risk associated with the hazard is unacceptably high, a solution to the
problem can usually be derived from the fault tree. System safety analyses are typically
iterative in nature. Each analysis suggests system amendments which, if implemented,
invalidate the analysis. The fault tree analysis of the MSS required numerous iterations:

only the final results are presented in Appendix A.

Fault trees are usually represented using the familiar notation of AND and OR
gates. An example of this representation appears in Figure 5.1. This particular example
states that the only way for the patient to be injured by RF heating is if either the seed is
heated incorrectly, or the brain tissue is damaged by direct RF heating. Each of these
possibilities is in turn explored in further detail. This process of refinement continues until
meaningful probabilities can be assigned to each node. As this graphical representation
quickly becomes unwieldy, the complete fault trees in Appendix A are provided in an

equivalent textual notation.

By its very nature, the development of system fault trees is an informal process.

- ~Ditect Tissue Heating

Patient Infured 1— Emergency Shutdown System Fails
atient Injure i . .
by RF Heéting ( Bad Brain Heating Model

— incorrect Coil Positioning
RF Subsystem Failure -

Heating at wrong frequency

Heating For Too Long
Heating Too Intense

Heating At Wrong Time

~Seed-Heated incorrectly

Figure 5.1 - A Sample System Fault Tree
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Rigor can be introduced by adhering to well-understood constructs and by carefully
considering all possible device interactions. Nevertheless, a fault tree analysis of safety
cannot be proven to be either complete or correct. Systems engineers understand that they
are responsible for ensuring that the fault trees are as accurate as possible. The fault trees
presented here were created with the aid of the systems engineers. Although they cannot

be proven correct, nobody involved in the process could find fault with them.

Note that these are systems engineering fault trees, and are in no way related to
software fault trees, A system fault tree is stochastic in nature, utilizing the probabilities of
component failures and other events to determine the risks associated with a system level
hazard. Software fault tree analysis is an informal software verification technique loosely

related to determining weakest preconditions {31].

Failure Probabilities

Although fault tree analysis is primarily concerned with failure probabilities, the
fault trees presented in Appendix A contain no such information. This is due largely to the
fact that the device failure probabilities are not currently available for the production
version of the system. This does not pose a problem if handled carefully. The following
assumptions were determined to permit fault tree analysis to be performed without

probabilities;
¢ Any single device failure is too probable to be ignored.
* Concurrent failure of independent devices is sufficiently improbable to be ignored,
* Software failures are assigned arbitrarily high failure probabilities.
* Software failures that are part of the safety specification are arbitrarily improbable.

+ Computing hardware failures are arbitrarily improbable.
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As long as the production model design of the MSS enforces these assumptions, the safety
analysis performed here will hold. If the software implementation can be proven to
disallow all software safety failures, the system will be considered safe in the formal

systems safety sense,

Faultf Tree Node Categories

In a completed system fault tree the leaf nodes represent atomic events and failures
that can be assigned probabilities. Because the purpose of this experiment is not to assess
safety, but to derive software safety requirements, this restriction must be relaxed. Instead,

leaf nodes will be restricted to certain well-defined categories. These categories are:
¢ The root node of another subtree.
* An individual device failure.
* A specific software failure.
* An accepted risk.

Allowing leaf nodes to represent the root of another tree merely permits fault tree
decomposition into more manageable subtrees. Individual device failures form the basis
for standard systems fault trees. These nodes must detail the particular failure mode and

the probability assigned to that failure.

The leaf nodes detailing software failure modes are used to determine the software
safety specifications. If the software failure can be assigned a probability of 1 without
causing the hazard in question to exceed the acceptable level of risk, it need not be

included in the software safety specifications. Conversely, it can be included in the safety
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specification, and be assigned an arbitrarily small probability of failure. In this manner,

these nodes form the basis of the software safety specification.

Finally, leaf nodes can represent a risk that is accepted by the systems engineer.
These consist of risks that cannot be eliminated without severely impairing the usefulness
of the device, and for which the systems engineer has assumed responsibility. Examples

from the MSS include:
¢ Mathematical approximations of the magnetic fields.
+ Reliance on operator judgment.
* Experimental results concerning direct brain tissue heating,

» The model of seed movement through brain tissue.

5.3 Understanding the MSS Fault Trees

MSS Emergency Stop Subsystem

As originally devised, the MSS posed a number of different hazards, but contained
no measures for ensuring system safety either by preventing these hazards, or mitigating
their effect. As a result, Figure 5.2 represents a typical part of the original system fauit

tree, highlighting the safety problems of that system. Any single failure could lead directly

Heating Subsystem Fails
Heating Too Intense Computing Subsystem Fails

Incorrect Operator Command

Figure 5.2 - Typical Section of the Original System Fault Tree
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to a device hazard. Although the physical device and even the controlling software could
be made arbitrarily reliable, there is no way to make the opérator more reliable.

Safeguards had to be added to make the system safer.

The simplest form of safeguard is an emergency stop subsystem. Such a system
monitors device actions and halts the system in a safe manner if unsafe operation is
detected. By physically separating the emergency stop subsystem from the rest of the
system, independence of failures can be assured. This allows the failure probabilities of the
system to be bounded by that of the emergency stop subsystem. This is precisely the
approach used in commercial nuclear reactors [13]. The inclusion of an extremely reliable
shutdown system permits the controlling system to be built with considerably less stringent
safety requirements. The addition of such a subsystem results in the subtree shown in

Figure 5.3.

In principle, a correctly implemented emergency stop subsystem must be able to
detect safety violations and take preventative action, and it must be independent of the
causes of these violations. Any emergency stop subsystem added to the MSS cannot fully
satisfy these criteria, as it must depend partly on the expertise of the operator to detect a
hazardous situation. In particular, the operator cannot be relied upon to detect his own

mistakes. Furthermore, if a hazard is caused by a failure in the imaging subsystem, there is

Heating Too Fee—— Emiergency Stop Subsystem Falls
Intense
- Heating Subsystem Falls

Computing Subsystem Fails

incorrect Operator Command

Figure 5.3 - Fault Tree After the Addition of an Emergency Stop System
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no means of detecting the seed position independent of the imaging subsystem. Though
the emergency stop subsystem cannot be relied upon to catch all safety violations, it is
nevertheless an important precaution, and must be made as reliable as possible.
Furthermore, the emergency stop system serves as a basis for additional safety measures,

which can be relied upon to detect most subsystem failures.

Additional Safety Measures

The MSS safety analysis indicates the need for other safety measures. After
considering numerous alternatives, it was decided that additional hardware and software
functionality was necessary. The hardware took the form of sensors able to monitor the
operation of each subsystem, and the software consisted of command checks to filter out
operator commands that are obviously incorrect. Sensors are particularly important, as
without them a single device failure could lead directly to a system hazard. By providing
the computing subsystem with feedback regarding each device’s actions, software can

detect subsystem failures and invoke the emergency stop system as required.

The addition of sensors leads to additional software functionality requirements.
The software is responsible for monitoring the sensors and responding as necessary to any
detected problems. After several incorrect attempts, a subtree that reflected all of the
updated failure scenarios was found. This subtree is presented in Figure 54. As this figure
demonstrates, there are two basic classes of failure, either of which can lead to a system
hazard. These are input errors, in which a hazardous command is entered by the operator
and accepted by the computing subsystem, and execution errors in which the primary

service and the secondary monitoring service fail coincidentally.

When the operator commands a hazardous action, the cause can be either an

operator judgment error, or a correct conclusion drawn from invalid data provided by the
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computing subsystem. The hazardous command is accepted by the computing subsystem
when either no means of detecting the invalid input is available, or such checks exist but

are implemented incorrectly.

The primary device service is considered to have failed if either the device itself
fails or the computing subsystem errantly commands equivalent device behavior. A
secondary monitoring service failure requires that either the sensor fail, or the computing
subsystem fail to monitor the sensor or respond correctly to a hazardous condition. If, for
example, the hazard involved the heater heating too intensely, the monitoring software
need only halt the system if the sensor value exceeds that commanded. However, it is
impossible for the software to distinguish a device failure from a sensor failure. Thus, if
the sensor reports a value lower than that requested, either the device or the sensor must
have failed. If the device failed, it must be shut down. If the sensor failed, the device could
actually be operating at any level. In either case, the only safe course of action is to halt

the system.

Bad Sensor Failure
Exsoution JG:“
C Software Safety Check Failure
—I_G:ioﬂware Funectionality Failure
G Device Failure
f@ Operator Judgement Error
Operator Given Bad Data
C@ Undetectable Bad Command
Bad Internal Command Check Fails

Input

Figure 5.4 - Generic Device Failure Template
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Figure 5.4 represents a generic template that was applied to each device failure
mode in creating the completed fault trees. Where a branch of the subtree was not
applicable to a particular device failure mode, that branch was omitted or had a probability
of zero assigned to it. Examples of this are the deletion of the bad input subtree for
failures that do not rely on user input, and omission of the software functionality failure
branch for fajlure modes that cannot be software-initiated. Finally, in cases where a failure
mode involves a device failing to switch off, an alternative means of turning the device off

is made available to the monitoring software, generally by cutting power to the device.

Operator Presented Bad Data Subtree

The Operator Presented Bad Data subtree is of particular interest to the software
engineer. As this subtree forms part of a number of fault trees, a failure of this kind could
contribute to any number of hazards. The actions that the operator will take when
presented with incorrect information cannot be predicted.  Thus there is no way to
determine which types of failures will cause the operator to initiate an action hazardous to
the patient. The systems engineer has no choice but to require that all data presented to

the operator be deemed safety-critical.

It is impossible to ensure that the software-managed displays convey the actual
state of the system accurately. The displays can only be correct to the extent that the
software is able to determine the state of the system. The software can be provided
incorrect data by the devices responsible for reporting the system state. Although the
software will often be able to detect such problems, there are cases that cannot be detected.
In these cases, the possibility of incorrect data being presented to the operator must be

considered an accepted risk.
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In developing this subtree, it was deemed necessary to distinguish between the
causes and effects of software failures. The systems safety analysis was concerned only
with the effects of software failures and their ramifications on system safety. The factors
that could cause a particular software failure mode were excluded from this analysis. In
truth, they were included in the analysis until a late date, when it was discovered that this
was entirely unnecessary. The systems engineer is only concerned with determining the
software safety requirements. The software engineer must perform his own analyses to
ensure that all possible causes of each safety-critical software failure are identified and

prevented.

Thus the Operator Presented Bad Data subtree attempts to highlight the subsysiem
failures that could lead to incorrect data being presented. When a device or operator error
can be detected, a means of detection is presented. Those failures that cannot be detected
are classified as risks accepted by the systems engineers. When the device information is
correct, exact requirements for presenting this information to the operator must be
provided. It was found to be far easier to define what constitutes correct data presentation,

than attempt to define all of the types of bad data that had to be avoided.

It is unfortunate that there is no small subset of the data presentation activity that
can be labeled as safety-critical. Nevertheless, the relatively high probability of operator
failure requires that a great deal of attention be paid to this process. This subtree clarifies
the responsibilities of the software engineer. By isolating the subsystem failures that can
cause incorrect data, the specifications for the software can be made more explicit in terms

of what the software must do to tolerate the failure of other subsystems.
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5.4 Deriving Software Safety Requirements

The system fault trees were created for the purpose of deriving software safety
requirements. Although they cannot be extracted formally, a rigorous manner for
determining the software safety requirements directly from the system fault trees was
discovered. Using this method permitted a point-by-point correspondence to be
demonstrated between the nodes of the fault trees and the software safety specifications.
This correspondence lends a great deal of strength to the argument that the requirements

listed are in fact those that are needed.

Bach leaf node of the fault tree that represents a device failure was used to derive —

an entry in the software’s recovery functionality specification. These contain a means of
detecting whether the device has failed, and instructions for dealing safely with a detected
device failure. Alternately, where the device failure cannot be detected, restrictions are
placed on normal operation in order to preclude the undetectable device failure from

causing a hazard.

Each leaf node representing a software failure actually represents a software failure
that contains an unacceptable level of risk. As a result, each of these software failures had
be disallowed as part of the software failure interface specification. Each such node in the
tree required the creation an entry in the failure interface specification. These entries in
the specification either take the form of a software property that must be preserved or,

equivalently, a means of detecting and safely tolerating the software failure.

Figure 5.5 presents an example of precisely such a derivation. This corresponds to
a single subtree contributing to the Seed Heated Incorrectly hazard. Note that the

specifications are given in English rather than a formal specification language. This
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stresses that the fault trees can be used to derive specifications in any particular notation,
and that the introduction of formality constitutes an entirely separate step. The complete
software safety requirements for the MSS are provided in Appendix A, embedded in the

fault trees from which they were derived.

5.5 Creating the Formal Specifications

The Use of Formal Specifications

Although the requirements embedded in the fault trees constitute a valid safety

RF Heating Too Intense

Sensor Failure
if the value read from the sensor differs from that written to the RF source, one of the devices
has presumably failed. Turn the RF source off. As the source itself may have failed, it cannot
be relied upon to switch itself off - remove power from the RF source.

Software Safety Check Failure
If at any time the value read from the sensor is greater than the maximum permissible value,
turn the RF source off.

Software Functionality Failure
At no time may the value written to the heater exceed that commanded by the user.

Device Failure
indistinguishable from Sensor Failure - use the same specification.

Operator Judgment Error
An accepted risk, that cannot be further analyzed.

Operator Given Bad Data
The root node of a subtree presented elsewhere.

Undetectable Bad Command
An accepted risk, that cannot be further analyzed.

Internal Command Check Fails
If the value input by the user exceeds the maximum permissible, reject the input. If the value
exceeds the reasonable level, require user confirmation of this intent. Properly implement any
other rules provided by the domain experts.

Figure 5.5 - Derived Software Safety Requirements
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specification, certain properties desirable of such a specification are noticeably absent. As
mentioned eatlier, the purpose of having a software safety specification is to precisely
define the requirements that the software must adhere to in order to contribute

meaningfully towards system safety. The specification that is present in the fault trees does

not satisfy this requirement as it is both incomplete and ambiguous.

The specification is incomplete in the sense that it is too “high-level” a
specification, using terms that are not defined, and relying on the reader’s intuition to
provide the necessary details. It is ambiguous in that, being written in a natural language, it
relies on the reader’s interpretation agreeing with the intentions of the specifier. The fact
that English lacks formally defined semantics makes it unsuitable for the communication of
formal properties. Although the English that is used in the fault trees was carefully chosen
to minimize ambiguity, that cannot be guaranteed. Thus the format of this specification is

completely inappropriate.

The solution to this problem that was opted for was to provide the software safety
requirements in a formal specification language. These languages rely on precise
mathematical notations to preclude ambiguity, and require that all “high-level” constructs
be entirely defined from the language primitives, ensuring at least partial completeness.
Although such languages cannot guarantee that a specification will be correct in any

meaningful sense, they serve to eliminate the two greatest sources of errors [32].

Formal specifications offer other benefits, some of which are particularly applicable
to software safety concerns. Formal specifications provide the exactness required for
assessing the correctness of the implemented software. Formal specifications also
eliminate the possibility of miscommunication between the systems engineers and the

software engineers. The potential for assignment of legal responsibility should cause
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software engineers to be particularly concerned that the tasks they are assigned are

precisely defined.

A formal specification of software safety requirements also provides the systems
engineer with the capability to model the safety properties of the software, without having
to wait until the software is constructed, and without resorting to the “run it and find out”

school of software engineering. The latter approach is particularly unsuitable to software

safety issues, where the discovery of a software failure could involve causing the hazards

that it is supposed to be avoiding.

The traditional software lifecycle, in which validation is used to determine the
correctness of the specification is not appropriate for applications in which there is no
margin for error. Finally, formal specification languages have proven themselves to be
extremely cost-effective, as they do not permit specification decisions to be deferred until
the implementation or verification phase. This is a common and expensive practice that is

precluded by the use of formal specification languages.

The Formal Software Safety Specifications of the MSS

The formal software safety specifications for the MSS that were created as part of
this experiment are presented in Appendix C. These are written in the formal specification
language, Z {33, 34, 35, 36]. Appendix B contains a brief introduction to the features of the

Z language that are present in the specifications.

The specifications presented here are not perfect. The low-level device interfaces
are not included. The model of user-interface activities has been drastically over-
simplified. Key concepts such as time granularity and screen colors have yet to be fully

explored. The command checks on user-input have not been specified. The models of
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seed movement through brain tissue and tissue heating over time have been omitted. In
reality, these specifications are a very rough first draft. Because the actual system

specifications are in a state of change, these cannot be finalized at this time.

Nevertheless, the specifications provided here precisely demonstrate the problems
facing the software specifier. Precise specification of software safety properties is a
complex procedure. Yet without such a specification, the systems engineer must rely on
vague notions of what the software should do, and the software engineer must guess the
intentions of the systems engineer in creating the software. A formal specification such as
that presented here provides a precise basis for communication between the two parties.
Furthermore, the formal specification performs the valuable task of ensuring that all

specification issues are dealt with in a precise manner during the specification phase.

The remainder of this section will serve as a commentary for Appendix C,

highlighting the areas of particular interest, and explaining some of the decisions made.

Coemmand Queunes and Timing Functions

In order to permit specification of timing constraints, the concept of time must be
formalized. It was decided that modeling time as a natural number was fairly simple, yet
offered the flexibility required. A time value represents the number of milliseconds
elapsed since the start of the surgical operation. It was determined that this was a precise

enough time granularity for all safety purposes.

Tt was determined that functions over time were the correct way in which to model
device operation, thus the X-ray intensity, heating intensity, and coil currents could be
modeled as functions over time. It was quickly found that the actual device state is a

meaningless concept, as it cannot be known to the software. Instead, two separate
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functions were provided for each device: one representing the required device activity and
the other representing the sensor feedback. It was thus trivial to specify that when these

functions disagree a shutdown must be initiated.

User commands do not lend themselves to being modeled as functions over time.
Tnstead, it was determined that a sequence containing user commands, including a time
stamp indicating when the command was issued, was the best model possible. This is
referred to in the specification as the user command queue. The user command queue
contains‘ user commands that affect each of the devices. It was decided that the abstraction
of separate user command queues for each device was a more flexible choice. Thus
separate user command queues are provided for each device, and a correspondence

between these and the single user command queue is specified.

Each entry in the user command queues for each device translate to one or more
commands to the actual device. For example, a timed heating command must actually be
implemented as a start command followed by a separate stop command to the heating
subsystem. Thus another level of device queues, containing the actual device commands
was required. Each entry in the user command queue requires one or more entries in the
device command queue. Furthermore, all commands that initiate a device action must
correspond to user commands. However, device commands to terminate an action can
either correspond to a user command, or to a detected safety violation requiring device
shutdown. Thus the functions that model the devices required behavior are derived from
the device command queue, but the command queue can I?e affected by the contents of the

device behavior function.
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The Display of Safety-Critical Information

The software safety requirements contain entries such as “the position of the seed
on the screen must coincide with the position of the seed as reported by the imaging
subsystem”. Although this is intuitively clear, it must be precisely formulated. Thus a
model of the screen, including models of the various windows, must be specified. The
screen is represented as a table of pixels, where each pixel must assume some color. The

dimensions of the screen must be given as the dimensions of the table.

The image on the screen is determined from the contents and positions of an
ordered sequence of windows. Each window consists of a table containing its image, its
location and size, and its status on the screen. The screen image is specified at each point
as the contents of the uppermost window containing that point, appropriately shifted
according to the origin of the window. The three windows containing the image of the seed
are specified as functions over time, in order to permit seed movement to be visually
tracked. At each time, the contents of the image window must correctly display the
position of the seed as determined at that time relative to an image of the patient’s skull.
Furthermore, the appropriate cross-sectional image to display is determined by the depth

of the seed relative to the view selected.

In addition to the position of the seed, it is a safety requirement that the software
provide the correct feedback to operator commands. Thus as the operator selects a
movement command, an arrow must be drawn on the seed presenting the direction of
movement. When a timed heat command is selected a ring is used to present the
estimated extent of the projected heating. As a heating command progresses, a circle

representing the estimated extent of the actual heating is maintained. All of these visual
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displays are superimposed by a single function which also scales the images to fit the

current window size.

Specification of Seed Movement

The specification of seed movement uses the estimations for magnetic fields and
seed movement through brain tissue provided by the systems engineers [37]. In keeping
with the spirit of specifications, rather than providing an algorithm for determining the coil
currents based on desired seed movement, the specification states the criteria that such an
algorithm must meet. These take the form of a mathematical acceptance test, projecting
the seed movement caused by the provided coil currents and determining whether the
projected seed movement is approximately the same as that commanded. This permits the
implementor to use any implementation method from iterated estimations to table

lookups.

Because the forces required for seed movement are dependent on the location of
the seed, the seed movement specification must include all of the image detection
specification. Like the coil current determination, the specification for the image detection
elements does not state how the objects are to be extracted from the images, but merely
what the characteristics of a correct solution are. Thus instead of providing blob-finding
routines, the specification contains the precise definition of a “blob” and asserts that a

correct algorithm will detect all blobs present in the image.

This specification also relies on three separate coordinate systems provided by the
systems engineers [24]. These are the image coordinate system, the absolute coordinate
system, and the relative coordinate system. The image coordinate system is used to

measure object locations within the images. Because the images can be distorted, fixed
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“helmet markers” are included in the images. By observing the effects of the distortion on

these markers, the absolute locations of the seed and skull markers can be determined.

The absolute coordinate system is actually relative to the coils. Thus the coils and
imaging hardware all have fixed absolute locations. For ease of calculations, the axes of
this coordinate system are defined by the centers of each coil. The relative coordinate
system is used to locate the seed relative to the cranium. Thus the skull markers have fixed
relative coordinates, and can be used in a manner similar to the helmet markers to derive a
mapping from absolute to relative coordinates. Finally, one additional coordinate system,
the unified coordinate system (UCS), is used in displaying the preoperative MR images.
This coordinate system is defined by the resolution of these images, and can be determined

by having the operator identify the skull markers on the displayed MR images.

5.6 Summary

The purpose of this experiment was to demonstrate the feasibility of defining
software safety in terms of a specification of safety requirements and an implementation
faithful to that specification. To make these definitions useful, they had to be shown to
integrate smoothly with existing systems engineering techniques. This experiment resulted
in the discovery of amendments to well-understood systems engineering techniques which
allowed the software safety requirements to be determined in a rigorous manner. These
requirements were then presented in a concise and unambiguous format that can be used
to model the software safety properties, provide a basis for formal implementation and
verification techniques, and can even serve as a legal contract between the systems and
software engineer. Stressing a rigorous approach to software safety enabled potential
safety problems to be uncovered during system specification rather than during software

verification, or worse still, system operation.
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Chapter 6 - Conclusions & Prospectus

6.1 Testing the Theoretical Definitions

Software safety can never be fully separated from systems safety. Systems safety
defines the meaning of software safety for any particular system. However the process of
creating safe software can be separated from systems safety concerns. The study of
software safety has two separate components: the systems engineering component,
concerned with determining the software safety specifications from the system safety
analysis, and the software engineering component, concerned with creating and verifying
the software as safe. The latter component is isolated from system safety concerns. The
software safety specification enables this isolation by defining the system safety concerns in
software engineering terms. The software engineer can use any available software

engineering means to make the software safe.

Because the software safety specifications are driven by the system safety
requirements, they are not necessarily arbitrary. Classes of physical systems wili have
similar software safety requirements. Because of this, the study of software safety
implementation issues should not be performed in isolation, but should be driven by the
safety requirements of actual systems. Specific software architectures can be tailored
towards the safety requirements of particular classes of systems. The MSS, being a fail-
safe system, suggests certain software architectures as particularly effective. These will be

explored in future experiments on the MSS.

Specifying Software Safety

The process of specifying the MSS software safety requirements demonstrated that

all of the system safety ramifications that were uncovered could be captured in the
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specification. From a theoretical standpoint, any property that can be implemented can
also be specified. Thus, any safety related property that is desired of the software can be
specified as part of the software safety specification. If a property cannot be specified, it

cannot possibly be implemented.

It has been suggested that software safety, like software robustness, cannot possibly
be specified. Software robustness is the property that software should do something
reasonable when it encounters an unanticipated situation. This is only possible when
“reasonable” can be exactly specified. Similarly, software safety has been suggested to be
that the software do something safe when it encounters an unanticipated situation [9].
Clearly, for this to have meaning, an exact definition of “safe” is required. To accept that
software safety cannot be specified would constitute an admission that safe software cannot

be built.

Software Complexity

In this particular experiment, the software component was not too complex to be
dealt with as a component in the system safety analysis. In the general case, this should
continue to hold true. Because the systems engineer is only concerned with individual
software properties, these are usually far less complex than the functional properties of the
software component. Thus, the software safety specifications are already decomposed by

properties.

Two means of software decomposition are immediately apparent. One is to
decompose the software into layers of services, much as complex software projects are
structured. This should not be a systems engineer’s concern. Decomposing the software
specification in this manner needlessly introduces software implementation details. The

other means of software decomposition is to break the software into modules, each
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concerned with some particular aspect. Although this is certainly possible, it offers no

benefits over the existing method of decomposing the software by properties.

The formal specification of the MSS illustrates that even the specification of a
single property can be quite involved. In these instances, it is useful to decompose the
specification in layers, so as to permit complexity to be controlled and common sections of
the specifications to be reused. This does not impose restrictions on the decomposition of
the implementation, although reuse of specifications and related code promises to make

implementation and verification much easier [38].

Categorizing Safety Requirements

The theoretical categorizations of failure interface specifications and recovery
functionailty specifications proved to be very useful during the MSS safety analysis. 1t was
observed that quite often a software failure could emulate a device failure, or a device
failure could emulate a software failure. As a result, there is a great deal of overlap
between the events addressed by the failure interface specification and the recovery
functionality specification. During the MSS safety analysis, these categorizations provided
a useful checklist for determining whether all possible causes of a failure had been

considered.

The MSS safety analysis process revealed several other possible categorizations of
safety requirements. One such categorization is the division of safety requirements into
active failures and passive failures. Under this scheme, active failures are those that are
caused by the software initiating an incorrect action. Passive failures are those that are due
to the software’s inactivity. These categorizations are of particular interest to the
implementor, as they determine if a simple guard on an output will suffice, or whether

more elaborate software measures are required.
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Another useful categorization is the separation of software services into sporadic
and periodic events. This is very useful for the purpose of modeling or prototyping timing
constraints. In addition, processor load requirements, availability, and scheduling
algorithms can be analyzed. Neither of these additional categorizations require that the
theoretical framework be changed. From a theoretical standpoint, the original
categorizations are still the most elegant. This does not make the additional
categorizations any less useful, nor does it rule out the possibility that other useful

categorizations exist. It will be a primary goal of future experiments to seek these out.

Summary

The process of creating the MSS safety specifications demonstrated the usefulness
of the theoretical definitions. The theoretical categorizations proved useful in revealing
the powerful technique of software failure modes. It was determined that software safety
can, in practice, be decomposed into the problems of creating a safe specification, and
properly implementing the specification. Most importantly, the software safety
specifications are software properties expressed in software engineering terms and can be
attacked using general-purpose software implementation and verification techniques.
Nevertheless, software safety requirements are not arbitrary, and future software safety

research should be driven by the safety needs of actual systems.

6.2 Software Failure Modes

The MSS safety analysis corroborates the assertion that software failure modes are
a viable concept. They are determined in a straightforward manner and easily
manipulated. However, because other approaches to software safety are informal, there is

no way to determine formally whether the use of software failure modes is any more orless
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safe than alternative approaches. During the MSS safety analysis, no software failures
were found that could not be determined by enumerating the software failure modes.
Future experiments in software safety specification will further test the viability of this

approach.

In creating the MSS software safety specification, software engineering expertise
was not a prerequisite for determining the software failure modes. A knowledge of how
the software can effect other devices and a basic understanding of the special properties of
software are all that were required. From this basis, the software failure modes are easily
enumerated - they are simply all possible combinations of software effects on other devices.
The one difficult area is with determining beforehand the effects of providing the operator
with incorrect data. In this area, expertise in the psychology of user interfaces would be

more beneficial than software engineering knowledge.

6.3 Maintaining a High Degree of Rigor

System safety analyses are used to determine whether a given system satisfies a
specific definition of system safety. If the system is deemed unsafe, a solution to the
offending problem can often be derived from the safety analyses. These same analyses can
be performed on systems containing a software component. In order to determine the
safety-critical software properties and the associated levels of assurance required, all
software failures are initially assigned arbitrarily high failure probabilities. Those
properties that must be reduced in probability in order to assure system safety then
become part of the software safety requirements. From these individual requirements, a
formal specification of software safety specifications can be derived. The process of

translating the informally-stated software safety requirements into a formal specification is
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necessarily informal. At present, finding rigorous techniques for deriving formal

specifications is an area of active research.

The Suitability of Formal Specifications

The MSS specification experiment did not answer the question of whether formal
specification - languages are a suitable means of communicating software safety
specifications to the degree desired. This was primarily due to a lack of formal
specifications expertise. The systems engineers did not write the formal software safety
specifications as was originally hoped. The systems engineers were able to read and
understand the formal specifications, but whether they would be able to write them
effectively was not tested. The process of creating the formal specifications illuminated a
number of potential safety problems, that went uncovered during previous steps. In
particular, the formal specification of the image detection processes raised a number of

potential problems that were not addressed in the existing prototype software.

Z, the formal specification language that was chosen, turned out to have several
undesirable properties. Although excellent for expressing functional properties, Z has no
built-in provisions for non-functional properties, in particular timing properties. Although
constructs were created for the purpose of specifying timing constraints, they were very
clumsy when compared to the timing constructs present in other, less general-purpose,
languages [12, 39, 40]. Z also has no simple means for defining low-level device interfaces,
although these could also be constructed. Future work will experiment with the use of

multiple specification languages to specify different properties.
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Natural Language Accompaniment

A natural language accompaniment to the formal software safety specification of
the MSS was determined to be necessary. Because a Z specification can only specify
relationships between abstract entities, a separate explanation of how to relate these to
physical entities was needed. The Z specifications of device interfaces, the user input and

output, and the notion of time had to be related to their real world counterparts.

Additional natural language accompaniment was used in a manner very similar to
comments in an implementation language. Comments can be very useful for explaining
structural decisions, describing potential pitfalls, and pointing out non-intuitive aspects of
the specification. The comments should not replace understanding the body of the
specification, as the comments cannot possibly capture the precision of the specification.
Natural language accompaniments play an important role, in terms of both documenting
the specification and describing its relation to real-world entities. However, the use of
natural language accompaniment to a formal specification has to be very strictly controlled.
They cannot replace reading and fully understanding the specification, or provide a
translation of the specification, as that would defeat the purpose of having a formal

specification.

Summary

Safety-critical applications require a degree of rigor beyond that typically
encountered in software engineering. System safety analysis, although inherently informal,
requires an extremely rigorous approach. This experiment has demonstrated that it is
possible to rigorously derive a formal software safety specification from the system safety

analysis. In this manner, the software engineer can be sure that his efforts in achieving
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high assurance will contribute meaningfully towards system safety, and the systems
engineer is able to precisely control how the software interacts with the remainder of the
system. The applicability of this approach is directly dependent on the ability of the
systems engineer to formally communicate the software safety requirements. Thus, future
work will involve determining the properties of a formal specification language that are

necessary for specifying safety properties.

6.4 Determining the Correct Process

Just as no single systems safety technique is applicable to all physical systems, no
single technique can be used to analyze all systems with a software component.
Nevertheless, the basic process outlined above is universally applicable. By amending
systems techniques to deal with the special properties of software, software safety
requirements can be rigorously derived. Systems engineering presently uses safety analysis
techniques in order to determine whether a system, as specified, is safe. If this proves not
to be the case, component requirements are altered or amended as necessary. This is a
process that is accepted by systems engineering as the best available. The MSS experiment
has demonstrated that this same basic process is applicable to systems with a software

component, as long as caution is exercised.

Special Software Properties

This experiment demonstrates conclusively that existing systems safety techniques
can be applied to systems containing software, in order to obtain the software safety
requirements. In doing so, it is critical to understand the properties of software that are

different from other system components:

» Software failures are design, not degradation failures.
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. Soft\;vare failures can appear as other device failures.
e Software failures are distinguished by their effects on other components.
+ Different software failures are not necessarily independent.
» Multiple software components do not necessarily fail independently.

» Meaningful software failure probabilities are extremely difficult to assign.

Comparisons to Other Approaches

Because systems safety analyses are informal processes, one process cannot be
formally demonstrated to be superior to another. A rigorous argument is presented as to
why the process described here is superior to those that existed previously. Other
processes attempt to demonstrate informally that the software cannot cause a system
hazard, where systems hazards are a vague notion. The process introduced here attempts
to formally demonstrate that software cannot cause a system hazard, where the systems

hazards that can be effected by software are precisely detailed.

The only manner in which the other processes could uncover a problem that this
process misses is if a software engineer were to find a system hazard that the systems
engineer missed. However, the software engineer has only a vague concept of what a
systems hazard is, and is working from the perspective of the implementation details. The
systems engineer has a precise knowledge of what constitutes a systems hazard, and is
working at the level of component requirements. It is not unreasonable to postulate that it
is unlikely that the software engineer, handicapped as he is, will detect mistakes that the

systems engineer has missed.
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Summary

The process described here demonstrates how systems engineering techniques can
be applied to systems containing a software element. With a basic understanding of the
characteristics of software that differentiate it from all other components, existing systems
engineering techniques can be amended to handle these differences. From a system safety
analysis, software safety requirements can be derived directly. In this manner, the manners
in which software can contribute to systems hazards can be determined by the systems
engineer and communicated to the software engineer. This approach is clearly superior to
those in which the software engineer attempts to determine the software’s safety

ramifications from the perspective of the implementation, after the code has been written.

6.5 Other Issues Raised

Measuring Software Safety

Because the software safety requirements encapsulate the safety ramifications on
the software, assessing software safety is simply a special case of assessing reliability.
Whereas reliability is concerned with the correct implementation of the specification,
safety is concerned with a critical subset of the specification. Measuring software
reliability, and thus software safety, is an open problem that this experiment cannot hope

10 answer.

Physical systems reliability is measured in terms of failure probabilities. Because
the analysis of physical devices is concerned with degradation faults, the probability of
failure is a meaningful concept. Software engineering has borrowed this measure, but

because software failures are design faults, the notion of probability of failure is far less
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meaningful. Nevertheless, in order to provide the systems engineers with a basis for
systems safety analyses, software engineering must provide meaningful failure probabilities

for safety-critical software properties.

This experiment was limited to software properties that are either verified or
unverified. The safety critical properties must be verified, whereas other properties can be
left unverified. The methods used for verification are left undefined, but it is assumed that
methods exist for achieving arbitrarily high levels of assurance. This assumption is not
necessarily valid. Given the complexity of the hardware-software platform and the
complexity of the control software, formally proving any non-trivial property could be
impossible. Nevertheless, this is a goal that must be targeted in order to make software

safety a useful contributor to systems safety.

Cost of Software Safety

The cost of developing safe software will depend most heavily on the degree of
assurance required by the systems safety analysis. The cost of safety can be defined as the
difference between the cost of building software that is demonstrably safe, and the cost of
unproved software. Because the degree of rigor used in the unproved software is subject to

wide variation, this can be very difficult to measure.

The cost of developing safe software will also depend on the nature of the software
properties to be proven. As a simple example, the software controlling a fail-safe system
might be orders of magnitude cheaper to verify than software that must always deliver the
correct answer. Similarly, a property with a simple acceptance test can be ensured by the
inclusion of a run-time check, whereas a property for which no such test exists could
require a more complete proof. Because the MSS is a fail-safe system, the results of this

experiment can only be applied to determining properties of such systems.



The experiments performed on the MSS to this point have been concerned only
with specification. Because the system safety analysis is not particular to software safety, it
cannot really be considered as a cost of software safety. The creation of formal safety
specifications is an additional cost. The creation of this specification averted a number of
potential problems that might only have been discovered during verification or execution,
where they could prove very costly. Thus, as in other cases where formal specifications are
used, the cost of this phase is more than offset by the possible gains. The other phases of
software safety - analysis, implementation, verification, and maintenance - will be examined

in future experiments, and their costs will be determined at that point.

Implementation Concerns

Idealistically, one would like to imagine that implementation concerns should not
effect the specification. Realistically speaking, this is impossible. Systems engineering is
concerned not only with the ability to create a system, but with the ability to create a
system at a reasonable cost. Thus, the systems engineers must be aware of the costs
associated with software safety. This is not unique to software; systems engineer must have
a grasp on the costs associated with every component in the system in order to design a
safe and reliable system that can be built within a reasonable cost. Thus, the costs and
difficulties of creating different classes of safe software must be understood by systems

engineering. This increases the need for software safety cost metrics.

Comparisons to the Naive Approach

In assessing whether the processes presented here result in software that is any
safer.than that created under the “naive” approach, any answer must be speculative. The

old implementation was created without a safety spez:ification. Thus by the definition of
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software safety presented here, the software cannot be judged unsafe, in that it does not
violate its software safety requirements. In a systems safety sense, a system controlled by
this software would be very unsafe, as a single device or software failure could lead to a
system hazard, The new software safety specification exists without an implementation. It
is fair to say that any reasonably good implementation of this specification will result in
software that makes the system orders of magnitude safer. Thus, although extremely high
assurance is a desirable property in safety-critical software, it would appear that the largest
“payoff” comes from the safety analysis itself. Even if no further software safety measures
are taken, the software implemented from a “safe” specification will be far safer than that
derived from an “unsafe” specification. Thus, the safety of the implementation seems to
depend more on the safety of the specification than on the safety of the implementation,

although an errant implementation could nullify the benefits of a safe specification.

Defense-in-Depth

Although defense-in-depth can be used to make software safer, it must be applied
with a great deal of caution. Independence of software failures cannot be assumed, and
thus it would appear to have very little benefit. Where this experiment has found it to be
useful is in the application of a series of software guards, each being progressively less
stringent, but easier to verify. For example, it is difficult to verify that no heating command
exceeds the user commanded duration, but relatively simple to verify that no heating
command exceeds some specified maximum duration. Although the latter case is not
stringent enough to eliminate the hazard entirely, it serves to reduce the effects of another
software error. These two failures are not entirely independent; they both depend on the
availability of a monitoring function. There are classes of failures for which they are

independent, however, and thus this approach is not without some merit.
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Summary

This experiment was not able to discover metrics for either software safety or the
cost of software safety. However, the formal software safety specification does provide a
basis for assessment, and permits general purpose assessment techniques to be applied to
the software safety properties. Although no metrics for cost could be found, the tradeoffs
involved in assigning safety-critical functionality to software are highlighted. This
experiment has also revealed that the systems engineer must have some understanding of
the difficulties of software implementation, though no more so than any other system
component. Finally, this experiment suggests that the largest “payoff” is not in the creation
of ultra-high reliability software, but in rigorously determining the software safety

requirements at the system level,

6.6 Summary

There are many computer applications in which safety and not reliability is the
overriding concern. Reduced, altered, or no functionality of such systems is acceptable as
long as no harm is done. This report concerns the role of software in such systems and the
definition of what it will mean for software to be viewed as safe. A precise definition of
what software safety means is essential before any attempt can be made to achieve it.
Without this definition, it is not possible to determine whether a specific software entity is
safe. Informal, intuitive notions of safety must be rejected as they have been from the
realm of system safety if for no other reason that to protect the legal interests of the

software engineer.

It is claimed that software must be viewed as merely one of many components that

make up a system. In the overall system context, software is no different from any of the
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other components of which the system is composed. Viewing software as a system
component, we present a definition of software safety based on the establishment of
precise specifications for the software’s response to its own failure and to the failure of
other components. A consequence of the definition is that the software engineer is freed
from responsibilities other than the correct implementation of certain parts of the software
specifications. This facilitates placement of responsibility in the event that an accident

does occur.

The experiment on the Magnetic Stereotaxis System documented here
demonstrates that this approach to software safety is practically viable. An exact process
for determining software safety requirements from the system safety analysis is outlined.
From these requirements, a formal software safety specification is derived. This
specification permits a precise and meaningful measure of software safety to be taken. The
specification will also serve as a basis for future experiments in software safety regarding

the construction, verification, and maintenance of safety critical software.

Software engineering is very limited in its ability to manufacture components
known to be free from defects. But perhaps the biggest difference between software and
other components, is that systems engineers do not fully realize the limitations of software.
Software engineering is capable of building almost any software entity, but it finds great
difficulty in building something that is verifiable. Unfortunately, software engineering has

failed to make this point clear to the rest of the engineering world.

Past assessments of software safety have often relied on the assurance technology
at hand, rather than on the required level of assurance. Software is labeled as safe when
no detectable errors are found by suspect assurance techniques. By doing so, the software

engineering community has misled itself into believing that its software is safe. Rather
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than label the software safe under such circumstances, the software engineer must make
clear to the systems engineer that the safety requirements on the software must be

restricted for it to be considered safe in a meaningful way.

The approach to software safety taken here is based on the specifications and not
existing implementation techniques. If it proves to be technically infeasible to build a
specific softwaré system and assure that it is safe according to the specifications, the
systems engineer will have to narrow the safety requirements on the software or knowingly
build systems with components for which there is no adequate assurance of safe operation.
If he chooses the former, he has understood that software safety is not the panacea that
some have made it out to be. If he chooses the latter, he is accepting the risks involved. In
either case, the definition of software safety must be compatible with rather than confused
with systems safety. This will ensure that future research into software safety assurance
methods will not be complicated unnecessarily by systems safety concerns but will

contribute to system safety assurance.
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Appendix A - System Fault Trees for the MSS

This appendix contains the completed system safety fault trees for the Magnetic
Stereotaxis System. The fault trees are presented in a textual notation, where indentation
and change of fonts is used to denote hierarchical progression. The default combination of
entries at each level is “OR”. When an “AND” combination between two levels at the
same entry is required, it is denoted through the use of an explicit “and” at the end of the
first line.

The root of each fault tree corresponds fo a single hazard. The sole exception is
the Operator Presented With Bad Data tree which actually forms a subtree of the other
trees. At the lowest level, these fault trees contain the derived software safety
requirements. Each node corresponds to an individual requirement, which is listed with

the node.
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Patient Injured by Exposure to X-ray
X-radiation too intense
Emergency Shutdown System Fails and
Bad Execution
Primary Failure and
Software Functionality Failure
The software must not command the x-ray to be more
intense than the user directed.
Device Failure
The software must observe the sensor values whenever the
device should be on, and stop the device if the sensed
intensity is greater than the commanded intensity,
Safety Net Failure
Sensor Fatlure
The software must observe the sensor values whenever the
device should be on, and stop the device if the sensed
intensity is lower than the commanded intensity.
Software Safety Check Failure
The software must observe the sensor values at all times,
and if ever the sensed intensity exceed the maximum
allowed, stop the x-ray device.

Bad Input
Operator Provides Bad Input and
Operator Judgement Error
Accepted risk
Operator Given Bad Data
See separate subtree
Computer Accepts Bad Input
Undetectable Bad Command
Accepted Risk
Command Check Fails
H the user commanded x-ray intensity {or product of
intensity and duration) exceeds the nominal limit, force user
confirmation of the command.
If the user commanded x-ray intensity (or product of
intensity and duration) exceeds the maximum limit, reject
the input,
If any other user provided rules are violated, question or
reject the input as required.
X-radiation too long
Too many x-ray pulses
It should be noted here, that bad execution is not considered here. This is
because any spurious x-ray pulses will already be considered failures under
"x-radiation at wrong time" and need not be duplicated here.
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Bad Input
Operator Provides Bad Input and

Operator Jydgement Brror

Accepted Risk
Operator Given Bad Data
See separate subtree
Computer Accepts Bad Input
n le B T
Accepted risk
nm k Fail
If the operator requests x-ray usage that would
exceed an advisable threshold, force user
confirmation of the command.
If the operator requests x-ray usage that would
exceed the allowable threshold, reject the input.
If any other user provided rules are violated,
question or reject the input as required.

X-ray pulse too long

Emergency Shutdown System Fails and

Bad Execution
Primary Failure and
fl nctionality Fai
The software must not command the x-ray to be on
for longer than the user directed.
Device Failurg
'The software must observe the sensor values when
the device is turned on, and stop the device if the
sensed intensity is greater zero after the period
expires.
Safety Net Failure
Sensor Failure

The software must observe the sensor values when
the device is turned on, and stop the device is the
sensed intensity is zero during that period.

i { h il
The software must observe the x-ray sensor at all
times, and stop the device if the sensor ever
indicates that it has been continuously on for longer
than the maximum allowed duration.

Bad Input
Operator Provides Bad Input and
Operator Judgement Error
Accepted risk.

Operator, Given Bad Data

See separate subtree
Computer Accepts Bad Input
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Undetectable Bad Command
Accepted risk.
mm Fail
If the operator commands an x-ray pulse that is
longer than the advisable period, request
confirmation of the command
If the operator commands an x-ray pulse that is
longer than the maximum duration, reject the
input.
If any other user provided rules are violated,
question or reject the input as required.
X-radiation at wrong time
Emergency Shutdown System Fails and
Bad Execution
Primary Failure and
Software Functionality Failure
The software may only command the x-ray to start when the
user has requested such a pulse.
Device Failure
The software must observe the sensor at all times, and if
ever the intensity is non-zero when the user has not
commanded an x-ray, shut the x-ray off.
Safety Net Failure
Sensor Failure
The software must observe the sensor at all times, and if
ever the intensity is not equal to the commanded intensity,
or zero if no command is pending, shut the x-ray off.
Software Safety Check Failure
The software must never permit the x-ray to be on at the
same time as either the coils are charged, or the heater is
on.
The software must never permit the x-ray to be on
immediately after another x-ray, without some operator
command in between the pulses.

Bad Input
Operator Provides Bad Input and
Operator Judgement Error
Accepted risk.
Operator Given Bad Data
See separate subtree
Computer Accepts Bad Input
Undetectable Bad Command
Accepted risk.
Command Check Fails
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I the operator requests an x-ray while the seed is heating or

moving, deny the request.
If any other user provided rules are violated, question or

reject the input as required.

Patient Injured by RF Heating
Direct Tissue Heating
Emergency Shutdown System Fails and
Bad Brain Heating Model
Accepted risk.

Incorrect Coil Positioning
The software must remind the user to ensure correct coil positioning before

the first heating command is accepted.
Yet to be fully addressed.
RF Subsystem Failure - Wrong Frequency
Negligible probability.
Seed Heated Incorrectly
Heating Too Long

Emergency Shutdown System Fails and

Bad Execution

Primary Failure and
Software Functionality Failare

The software must always turn the heating off

within the user-supplied duration of turning it on.
Device Fai

After turning the device off, the software must

monitor the sensor to ensure that it has gone off,

otherwise the plug must be pulled on the device.

Safety Net Failure
Sensor Failure

During the heating period, if the sensor is not equal
to the commanded intensity, shut the device off and

pull the plug,

] heck Fail

If at any time, the sensor has been continually
positive for a period exceeding the maximum
allowed heating time, shut the heating off, and pull

the plug,
Bad Input
Operator Provides Bad Input and
rator ni Brror
Accepted risk.
Operator Given Bad Data

See separate subtree

Computer Accepts Bad Input
ndh le B 13411}
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Accepted risk.

Command Check Fails
If the operator inputs a command whose duration
(or product of duration and intensity) exceed the
advisable limit, request confirmation,
If the operator inputs a command whose duration
(or product of duration and intensity) exceed the
maximum limit, reject the input.
If any other user provided rales are violated,
question or reject the input as required.

Heating Too Intense

Emergency Shutdown System Fails and
Bad Execution
Primary Fallure and
H Functi i il

The software must not command the heating to be
more intense than the user directed.

Device Failure
The software must observe the sensor values
whenever the device should be on, and stop the
device if the sensed intensity is greater than the
commanded intensity.

Safety Net Failure

Sensor Failure
The software must observe the sensor values
whenever the device should be on, and stop the
device if the sensed intensity is lower than the
commanded intensity.

Software Safety Check Failure
The software must observe the sensor values at all
times, and if ever the sensed intensity exceed the
maximum allowed, stop the heating device.

Bad Input
Operator Provides Bad Input and

Operator Judgement Frror
Accepted risk,
rator Given D.
See separate subtree
Computer Accepts Bad Input
Undetectable Bad Command
Accepted risk.
Mk hy il
If the user commanded heating intensity (or
product of intensity and duration) exceeds the
nominal limit, force user confirmation of the
command.



If the user commanded heating intensity (or
product of intensity and duration) exceeds the
maximum limit, reject the input.

If any other user provided rules are violated,
question or reject the input as required.

Heating at Wrong Time

Emergency Shutdown System Fails and
Bad Execution

Primary Failure and
f Functionality Fail

The software may only command the heating to
start when the user has requested heating.

Device Failure
The software must observe the sensor at all times,
and if ever the intensity is non-zero when the user
has not commanded heating, shut the device off,
and pull the plug.

Safety Net Failure
Sensor Failure

The software must observe the sensor at all times,
and if ever the intensity is not equal to the
commanded intensity, or zero if no command is
pending, shut the heating off.

fi h ilur
The software must never permit the heating fo be
on at the same time as either the coils are charged,
or the x-ray is on.
The software must never permit the heating to be
on immediately after another heating event,
without some operator command in between the
events.

Bad Input
Operator Provides Bad Input and

Operator Judgement Error

Accepted risk.
Operator Given Bad Data
See separale subtree
Computer Accepts Bad Input

Undetectable Bad Command
Accepted risk.
J11013] heck Fail
If the operator requests heating while the seed is
moving or the x-ray is on, deny the request.
If a heating command is entered immediately after
a previous heating command, question the user.
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If any other user provided rules are violated,
question or reject the input as required.

Patient Injured by Seed Movement
Seed Moves at Wrong Time
Emergency Shutdown System Fails and
Bad Execution
Primary Failure and
Software Functionality Failure
The software may only command a change in coil curreats
after the operator has commanded seed movement.
Device Failure
The software must monitor the coil sensors at all times that
a movemnent has not been requested.
If a single coil quenches, quench them all immediately.
If a single coil begins discharging, attempt to stop the
discharge. If this fails, pull the plug on all the coils.
If a single coil begins to charge, attempt to stop it. I this
fails, pull the plug on the coils.
Safety Net Failure
Sensor Failure
The software must monitor the coil sensors at all times that
movement has been requested. If at any time, a sensor does
not match the current requested, pull the plug on the coils,
or quench if the discrepancy is too great.
Software Safety Check Failure
If at any time, f(coil currents) = discharge, attempt to
discharge, and failing that, pull the plug on the device.
If at any time, f(coil currents) = quench, quench the coils

Bad Input
Operator Provides Bad Input and
Operator Judgement Error
Accepted risk.
Qperator Given Bad Data
See separate subtree
Computer Accepts Bad Input
Undetectable Bad Command
Accepted risk,
Command Check Fails
If the operator enters a movement command while the seed
is heating, or the x-ray is on, reject the command.
If any other user provided rules are violated, question or
reject the input as required.

Incorrect Movement
Emergency Shutdown System Fails and



Bad Brain Model
Accepted risk.
Bad Magnetic Model
Accepted risk.
Bad Input
Operator Provides Bad Input and
Operator Judgement Error
Accepted risk.
Operator Given Bad Data
See separate subtree
Computer Accepts Bad Input
Undetectable Bad Command
Accepted risk.
Command Check Fails
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H the operator enters a command to move the seed more
than the advisable distance, request confirmation.

H the operator enters a command to move the seed more
than the permitted distance, reject the command.

If any other user provided rules are violated, question or

reject the input as required.
Bad Execution

Incorrect Magnetic Impulse Applied
Incorrect Field Applied

Primary Failure and
Software Functionality Failure
Device Failure
Safety Net Faiture
Sensor Failure
Software Safety Check Failure
Field Applied for Incorrect Duration
Primary Failure gnd

Software Functionality Failure
Device Failure
Safety Net Failure
Sensor Failure
Software Safety Check Failure
Distorted Or Unstable Field
Primary Failure and
fi nctionality Failure
Device Failure
Safety Net Failure
Sensor Failure
Software Safety Check Failure
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Operator Presented With Bad Data
Bad Status Information
Seed Heating Status Incorrect
At any time that the screen reports that the seed is cold, it must actually be
cold.
Seed Momentum Incorrect
At any time that the screen reports that the seed is not moving, it must
actually be still.
More than One Seed on the Screen
Software draws two seeds
At no time should there be more than one seed image on each cranium view
window.
More than one seed on image returned by fluoroscope
If the cranium image returned by the imaging subsystem contains two seeds,
inform the operator of the error.
Image capture board fails to clear previous image
If the cranium image returned by the imaging subsystem contains two seeds,
inform the operator of the error.
No Seed on the Screen
Software fails to draw seed
At all times in which the system is in operator input mode, there must be at
Icast one seed image on each cranium view window.
No seed on image presented by imaging subsystem
If no seed can be located on the cranium image returned by the imaging
subsystem, inform the operator of this fact.
Seed hidden behind a marker
1f no seed can be located on the cranium image returned by the imaging
subsystem, and the projected seed location coincides with a marker location,
inform the operator of this fact and request instructions.
Seed’s Relative Position to Cranium Incorrect
Operator identifies marker incorrectly
After the operator identifies the markers, if the results are inconsistent, reject
them. H, after any transposition of images, the results appear inconsistent,
inform the operator and specifically bring up the possibility that the markers
might have been identified incorrectly.
Operator places marker incorrectly
After the operator identifies the markers, if the results are inconsistent, reject
them. If after any transposition of images, the results appear inconsistent,
inform the operator and specifically bring up the possibility that the markers
might have been placed incorrectly.
Seed location incorrect on imaging subsystem image
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If the seed location appears to be inconsisten with projections, inform the
operator. If a great deal of noise is detectable on the image, inform the
operator that the image is suspect.
Software draws seed in wrong location

Whenever the seed is drawn on a cranium image, its location must coincide
with the location of the seed on the image returned by the imaging
subsystem, within the specified degree of accuracy.

MR Image of Cranium Incorrect

Operator provides incorrect image to computing subsystem
At the start of the operation, check that all of the images contain the proper
check information. Present the images to operator to verify that they appear
to be correct.

Image distorted or damaged since being taken
At the start of the operation, perform checksums on cach of the images to
ensure that they have not been corrupted since being recorded. Use row
checksums and column checksums to minimize the possibility of damaged
files going unnoticed. Present each of the files to the operator for
verification that they are not damaged.

Software draws image incorrectly

The cranium images displayed on the screen must match the images verified

by the operator. In addition, each must contain the proper checksums and

check information.

In addition, the cross-sectional images displayed must agree with the seed

position as determined from the image returned by the imaging subsystem.
Feedback to Command Incorrect

When the operator is providing a command, all feedback must accurately reflect the
command being entered.






Appendix B

Brief Introduction to Z

B.1 Overview

The formal specification language used to specify the MSS software safety
requirements is Z, pronounced “zed”. Z was chosen primarily because of its
growing popularity, and thus its acceptance in the software engineering com-
munity. 7 is also very well suited for the specification of limited properties,
permitting the specification of safety requirements without necessitating a
complete functionality specification. In addition, Z is free of implementation
concerns, permitting it to be used by non-computer scientists to specify what
the software is to do without being mired in implementation-specific details
of how it is to be achieved.

Although Z specifications appear cryptic at first, the Z language con-
sists of a few simple extensions to the basic mathematics of computer science.
At the heart of Z are the propositional and predicate calculi and very basic
set theory. The extensions to these can be grouped into those which add
to the expressive power of the language, and those which are merely part
of the mathematic toolkit, which is somewhat akin to a standard library.
The toolkit consists of numerous useful predefined symbols which, although
extensions to the basic language, are common enough to warrant a standard
symbology.
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B.2 Basics

From propositional calculus, Z borrows the operators: A,V,=>, <, = and
primitive symbolic constants, all of which behave as expected. Predicate
calculus contributes the existential and universal quantifiers (3,V) as well as
the general notion of a predicate.

From set theory 7 inherits the concepts of set enumeration, set con-
struction, membership, power sets, and cartesian products. From these prim-
itives, other operations such as union, intersection, and difference are con-
structed. Again, there are no suprises here. In addition, the predefined sets
N and Z, as well as their individual elements are included. The basic arith-
metic and relational operations on the integers are also predefined. Z differs
from basic set theory in the concept of types. In Z, all primitive elements
are assigned types, and all sets must be of homogeneous types. Although
not critical, this permits type-checking to be automated, thereby making the
language more robust by removing many potential mistakes.

Sets of ordered pairs are classified as relations between the pairs’ el-
ement types, which must be the same for each pair. Relations are further
divided into functions and subsets thereof: injective, surjective, bijective,
partial, and total. The notion of relation application and the predefined
function ran (for range) and dom (for domain) are also defined in the lan-
guage. Additionally relation composition and inversion and included. Note
that all of the classification of sets into relations and functions adds noth-
ing to the inherent expressiveness of the language, however the additional
notation contributes significantly to clarity.

Every item in 7 has an associated type. Z contains a single predefined
type (Z) and two derivative types (N and Np), but permits new primitive
types to be defined and more complex types to be constructed. Primitive
types are defined by enumeration. Z provides the power set and cartesian
product comstructors to permit arbitrarily complex types to be built from
the primitive types. Other type constructors, such as functions or sequences,
can be built from the basic constructors, although again these add no ex-
pressiveness. For example, a function of type X — Y is identical to the
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type P{(X x Y). These both represent a set of 2-tuples, in which the first
component is of {ype X, and the second of type Y. The simplicity of the first
definition, as well as the additional rules governing the allowed contents of
the set, make the first definition superior.

B.3 Decomposition

7. specifications require a notation to facilitate decomposition in order to
minimize complexity. Towards this end, 7 provides axiomatic definitions,
generic definitions and schemas. Axiomatic definitions represent global in-
variants, generic definitions permit parameterized types in specifications, and
schemas are used to define a group of interrelated symbols, and the relations
among them. In addition, schemas can be used to represent activities, by
the defining the relations on the variables before and after the activity (pre-
and post- conditions).

Axiomatic Definitions

Axiomatic definitions are used to define global variables, functions and con-
stants, and to restrict the legal values of the variables. For example, a global
variable definition might appear as:

Lmit : N
limit < 65535

and a definition of a square function might be written as:

square : N — N
dn:Nesquare(n) =nx*n

Note that all specifications in Z take the form of a declaration section con-
taining one or more definitions followed by an optional constraints section
consisting of a list of predicates that constrain the defined elements.
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Generic Definitions

Generic definitions are used to define a set of specifications that are type-
independent. Generic definitions accept one or more type parameters, and
produce a different resulting specification for each different set of arguments.
Generic definitions are particularly useful for defining collections of any given
type, such as a simple collection or the ubiquitous stack example. A generic
definition is included in a specification by instantiation with specific type
parameters. When such an instantiation is present in a specification, it can
be likened to a macro inclusion. As a result, once instantiated, the generic
definition is no different from any other schemas.

An example generic schema follows, in which a sequence of some type,
S, has a function applied to each element, resulting in a sequence of the new
type, T:

=[S, T]
apply : seq[S] X (§ — T} — seq| T

apply(z,f) = y &
#a = #y A
Vi:N|iel.. #zey[i]=f(eli]

Schemas

A schema permits a collection of definitions to be given an associated name,
and allows rules to be imposed on the items. A schema is defined as:

X = q:typel; b type2; .. | P(a) A Q) A ...

although it is semantically equivalent to, and more commonly written as:
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X
a : typel
b : type2

Where any variables of any types can be defined, and P and Q are arbitrary
predicates which can be replaced by any legal Z expression. Schema inclusion
takes the form:

Y
X
¢ : typed

R(a,¢)

and is semantically equivalent to:

— Y
a : typel
b : type2

¢ : typed

P(a)

Q(b)
R{a.c)

Another form of schema inclusion can be used to simplify complicated
type definitions. For example, a complex number might be defined by one
schema, and then used as a type definition in other schemas.
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. Complex
Real 1 N
Im N

_. ComplexAdd
—+ .1 complex x complex — complex

Va,y,2: complex »
t+y=z< z.Real + y.Real = 2. Real A
z.Jdm + y.Im = z.Im

Note that the “dot” notation allows one to distinguish the named
components of variables given by a schema type. Note also that any relations
specified to hold between the components of a complex number must be
obeyed by x,y, and z, as they are implicitly appended to the complex-addition
schema’s predicates. Note also that the underscores in .. + . permits inline
operators to be defined.

7 does require rules for variable scope, and naming conflict resolution.
Any variable name which is used in both the current schema and an included
schema defaults to the current schema. If two variables in included schemas
are given the same name, a conlict arises which must be resolved by ex-
plicit overriding, which is enacted through the “dot” notation demonstrated
previously.

This concludes the description of basic Z functionality. The remainder

of this chapter will introduce the predefined operators that are part of the
mathematical toolkit and used in the formal safety specification of the MSS.
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B.4 The Mathematical Toolkit

Functions

7 contains an extensive collection of predefined function classes. All of these
have well-understood mathematical definitions. Although none of these add
any expressive power to the language, they are valuable in terms of the
conciseness they offer. Those which appear in the MSS safety specification
are:

= relation
—+ partial function
— total function

Z permits function or relation application to be expressed in a number
of ways. Binary and unary operators can be defined using the inline notation,
and are applied as are any other such operator. The MSS safety specifications
consistently use paranthesized comma-delimited lists for other functions. In
addition, the maplet operator (i—) is used to denote a relational pairing.

Set Operations

The set operations that Z provides include some very familiar notations, such
as union, intersection, subset, and set difference, and some very unfamiliar
notation. The unfamiliar notation involves strange-looking symbols standing
for very simple concepts. The domain restriction S < R of a relation R to a
set S relates x to'y if and only if R relates x to y and x is a member of S.
Similarly, the range restriction R > T of R to a set T relates x to y if and
only if R relates x to y and y is a member of T. As the names imply, these
functions restrict a relation to only the set of elements in either the range or
domain that one is concerned about [33].

The domain anti-restriction (<) and range anti-restriction (&) are the
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logical complements of the restriction operators. Instead of restricting the
relation to the elements explicitly included, these operators exclude all of the
elements listed. These are easily defined as:

S<eR=(X\S)<R
ReT=Rp(Y\T)

where X and Y represent the universe of consideration for the domain of S
and range of T.

The # operator is applied to a set (or sequence) to specify its cardi-
nality (or length).

Non-Standard Practices

The use of tuples in the MSS safety specification is non-standard, yet con-
sistent. A tuple is defined as a parenthesized, comma-delimited list of typed
elements. Such a construct is assumed to have the same type as a schema
with elements of the same types. Furthermore, tuples can appear in the
range of functions. Thus if a function is defined as:

Commands : time — (value, interval)

the following notation is acceptable:

Commands(t) = (intensity, duration)

Another non-standard practice that is used consistently in the MSS
safety specification is the use of a shorthand notation to reference schema
types that have only one element. In these cases, the name of the sin-
gle element is often identical to the name of the schema type. For ex-
ample, given the following definition of NormalizedVector, and an element,
F : NormalizedVector , F is actually shorthand for F.v, and F.z is shorthand
for F.v.z.

__Normalized Vector
v : Vector

square(v.z) + square(v.y) + square(v.z) = 1
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This might present a problem when mechanical type checking means
become available, and will thus be eliminated from the next draft of the MSS
safety specifications.

One final deviation from standard Z present in the specifications pro-
vided here is the use of R to designate real numbers. Z has no predefined
notion of real numbers, nor of real-number arithmetic, or trigonometric func-
tions. These functions were used without being specified, the rationalization
being that this was an exercise in software safety, not the specification of a
real number system. Nevertheless, this is a deficiency which will have to be
addressed in the future. '

Sequences

The most important predefined complex type definition is the sequence. A
sequence is defined as:

seq[X]= f: N+ X |domf = 1.#f

Thus a sequence consists of a mapping between a finite initial subset of the
natural numbers and elements of some other base type. This is most easily
understood as equivalent to an array in an implementation language. An
important distinction, however, is the fact that specifications can reference
sequence elements by their range, and thus could be best thought of an as
associative array. However, the sequence is a mathematical entity, and how
it is implemented is strictly an implementation issue.

Although the syntax for defining a sequences is {1 — ¢,2 +— %,3 —
v}, Z provides the alternative (¢, u, v) for this purpose. Because sequences are
actually functions, referencing takes the form of a function application. How-
ever, in order to make the specifications more understandable, the square-
bracket notation is used to differentiate sequence references from function
applications. To reference an element by its contents requires the use of the
universal qualifiers, and also requires that the possibility of duplicate values
be explicitly dealt with. Z provides several useful functions for dealing with
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sequences. These are: catenation, head, last, tail, front, reversal, and filter.
Catenation (™) is used to combine sequences; head and last provide the first
or last element; tail and front are used to obtain sequences sans either the
first or last element; reversal reverses the order of the sequence elements;
and filter () is used in a manner similar to range restriction, to extract only
the desired sequence elements. All of these fuctions differ from the similar
set operations in the fact that they are often required to renumber their el-
ements so as to not leave any gaps in the sequence. In the event that gaps
are created in a sequence, squash can be invoked to remove them.

Tables

Although not part of the Z tool-kit, the table construct developed by Wood-
cock and Loomes [36] is critical to the MSS safety specification, and can be
considered a primitive. The table is defined as a multidimension sequence -
or a sequence of sequences of identical length:

[ X]
Table[X] : P(seq[seq[X]})
Table = {t : seq[seq[X]] | Vs1,52 : rant e #s1 = #s2}

—[X]
rows, cols : Table[X] — PN
Vi: Table[X] »

rows ¢ = dom ¢
cols t = dom({J(ran t))

All of the table functions will be used heavily by the MSS safety spec-
ification. Although tables could be extended to three or more dimensions,
this is not necessary for this particular specification.
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B.5 Omissions

The Z language and the Z mathematical toolkit contains a number of other
features, which are not critical to the understanding of the MSS safety spec-
ification. Where any of these are used they will be documented. Others,
which are never used, will not be mentioned here. In particular, the Z spec-
ifications usually use a before and after notation which permits processes
which alter schemas to be defined. Unfortunately, this basic Z capability
contains no provisions for time restrictions, and thus is unsuitable for the
MSS safety specification. The Z language also contains rigorous rules for
defining functions with X, and for specifying the binding of parameters to
arguments in a schema, although these are not used here. Other constructs,
such as the notion of transitive closure, are assumed to be well-understood,
and although the Z toolkit provides rigorous definitions, these will not be
provided here.
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Appendix C

Formal Software Safety Specifications for the MSS

__ Orthogonal Transformation

M : Point — Point
M : Vector — Vector

Va,y,z: Point e
Distance(z, y)/ Distance(z, z) =
Distance(M(z), M(y))/ Distance(M (), M(2))
Yov: Vector,p: Point |pz=v.s Apy=vyApz=uvze
M(v) = M(p) — M(origin)

... Distance

Distance : Point x Point — R

Distance(a,b) = r &
square(r) = square(a.z ~ b.z)+

square(a.y — b.y)+
square{a.z — b.z)

.. Online

Online : Segment — Point

Online(s, z) &
Normalize(s.begin — s.end) = Normalize(s.begin — z) V
Normalize(s.end — s.begin) = Normalize(s.begin — z)
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. Midpoint

Midpoint : Segment — Point

Midpoint(s) = a &
2% a.x = s.end.x + s.begin.z A
2xa.y = s.end.y-+ s.begin.y A
2% a.z = s.end.z -+ s.begin.z

Segment

begin : Point
end : Point
number | N

... FieldRing

FieldRing : R x Point X Current x R x R — Vector

Vz:R; seed : Point; I: Current; turns : R; radius : R o
FieldRing(z, seed, I, turns, radius) = F &
J segments : seq[Segment] o
F = Sum(segments,
FieldBar(z, seed, I, 2 * pi * radius, turns)) A
#segments = grain -+ 1 A
segments|1].begin = (radius,0,0) A
segments{grain + 1].end = (radius,0,0) A
Vi:N]i€l.. grain+1
e segments|i].number = i A
Vi:N|i€l..grain
o segments|i].end = segments{i - 1].begin A
Vi:N|i€2..grain+1e
segments|[i].begin.z = radius * cos(i * delta) A
segments[i].begin.y = radius * sin(i * delta) A
segments[i).begin.z = 0
A delta = 360/ grain
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___FieldBar
FieldBar : R % Point X Current x R X N ~»
(Segment — Vector)

¥z :R; seed : Point; I : Current; L:R;
turns : Nj s : Segment o
FieldBar(z,seed, I, L, turns)(s) = F &
AR, a,2,y,2,7,t,phi : R; F: Vector e
3, pt : Point | Online(s, pt) ®
V pt2 : Point | online(s, pt2) o
Distance(seed, pt2) > Distance(seed, pt) A
R = Distance(seed, pt) A
a = maz(Distance(s.begin, pt), Distance{s.end, pt)} A
z = (Mu* turns = I)/(4 % Pix R) A
square(y) = square(a)/(square(a) + square(R)) A
square(z) = square(a — L)/
(square(a — L) + square(R)) A
B=zx{y—2z)A
r = distance((seed.x, seed.y, 0), midpoint(s)) A
t = arctan(z/r) A
F.z = B * sin(t) * sin((2 + s.number — 1) % phi) A
F.y = B * sin(t) * cos({(2 * s.number — 1) * phi) A
F.z = B x cos(t) A
phi = 180/ grain

Pi:R
Mu:R

Pi = 3.1415926535890
Mu = 4 = Pi/10000000

—_field
field : Point — (coil — Vector)

field(seed)(¢) = B &
e.M(B) = FieldCoil(c.M(c.position).z, c.M (seed), c.I,
c.inner, c.outer, c.width, c.turns)
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__ FieldCoil

FieldCoil : B % Point X current x B xR x R x N — Veefor

FieldCoil(z, seed, I, inner, outer, width, turns) = F &
dye,d:Re
¢ * 2 = inner + outer A
d * 2 = ouler — inner A
F = FieldBand(z, seed, I, width, turns/3, ¢ — d)
+ FieldBand(z, seed, [, width, turns/3, ¢)
+ FieldBand(z, seed, I, width, turns /3, ¢ + d)

__ FieldBand

FieldBand : R x Point x current x R x R x K — Vector

FieldBand(z, seed, I, width, turns, radius) = F &
F = FieldRing(z — width /3, seed, I, turns (3, radius)+
FieldRing(z, seed, I, turn (3, radius)+
FieldRing(z + width/3, seed, I, turns /3, radius)

__coil

position : Point

M : OrthogonalTransformation
I : current

mner
outer :
width :
turns @

Z T B D
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__coils

coils : seqfcoil]

#eoils = 6

Vp: Point e
coils[1]. M (p) = (p.z, p.y, p-2) A
coils[2]. M (p) = (—p.z,—p.z, p-y) A
coils{3]. M (p) = (p.®, —p.2z, p.y) A
coils{d].M(p) = (p.z, p.z,p.y) A
coils[5].M (p) = (—p.z,p.2,p.y) A
coils[6]. M (p) = (—p-2,p.y, —p.2) A

Vi:N|i€l..6e
coils[i]. M ( cotls[i]. position).z = 0 A
coils[i]. M { coils[i].position).y = O A
coils[i]. M coils[i]. position).z < 0
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o JOTCE

force : Point x coils — Vector
delta : component — Vector

Jorce(seed, currents) = F &
I mu : Vector, partial : component x component — R o
mu = moment * normalize(field(seed){ currents)) A
F.z = mu.z * partial(z, )+
mu.y * partiel(z, y)-+
mu.z * partiel(z, z) A
F.y = mu.z * partial(y, z)+
mu.y * partiel(y, y)+
mu.z * partial(y, z) A
F.z = mu.z * partial(z, z)+
mu.y * partial(z, y)+
mu.z * partial(z, z) A
Ya,b: component e
partial(a, b) * 2 * delta(b) =
field(seed + delta(b)){ currents).a—
field(seed — delta(b))(currents).a
delta(a) =v &
Y b : component o
a="b=>vb= Delta A
aFb=vb=0

component = z,y,2

Vector

r:c,y,z 'R

Point

rm,y,z:ﬂ
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. ComputeMove
ComputeMove : Point x Point x (Point — Point) — Vector

ComputeMove(seed, target, rel2abs) = v &
v = rel2abs(target) — rel2abs(seed)

_ CoilCurrents
CoilCurrents : Point X Vector — cotls X interval

CoilCurrents(seed, move) = (currents, duration) &
ProjectMove(seed, currents, duration) approz seed + move

. ProjectMove
ProjectMove : Point x coils x interval — Point

ProjectMove(seed, ¢, t) = target <
t <1 A seed = target
Vix>1A
dp: point e
ProjectMove(seed, currents,t — 1) = p A
ProjectMove(p, currents, 1) = target
Vi=1A
A F, orientation : Veclor e
target — seed = ApplyForce(F) A
F = sum(currents, force(seed, orientation)) A
orientation = normalize(
sum(currents, field(sced)))

__ApplyForce
ApplyForce : Vector — Vector

ApplyForce(F) = move &
insert physics here
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__move
move : image X image X Point — coils x interval

move(left, right, target) = (currents, duration) &
I seed : Point; skull : seq[Points}; v : Vector,
trans : OrthogonalTransformation e
AnalyzeImage(left, right) = (seed, skull)
A apply( MarkersRelative, rel2abs) PermkEq skull
A v = CompuleMove(rel2abs(seed), target, rel2abs)
A CoilCurrents(seed, v) = (currents, duration)

__ Analyzelmage
Analyzelmage : image X image — Point x seq[Point]

Analyzelmage(left, right) = (SeedAbs, SkullAbs) &
A SeedImage : Point; trans : OrthogonalTransformation;
Skulllmage, HelmetImage : seq{ Point] ®
FindObjects(left, right) =
(Skulllmage, HelmetImage,, SeedImage)
A trans(Helmetimage) PermEBq HelmetFized
A apply(Skulllmage, trans) = SkullAbs
A trans(SeedImage) = SeedAbs

— [T}
PermEq : seq|T] & seq| T

Va,y:seqT]e
¢ PermEq y &
#Hrz=0A#y=0V
Ji:Nliel..F#ye
1] = ylif A
tail(z} PermEq squash(y < {i})

HelmetAbsolute : seq|Point]
MarkersRelative : seq| Point]

# MarkersRelative = 3
# HelmetAbsolute = 4
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_ VectorArith
_ —_: Point x Point — Vector
_ 41 Point x Vector — Point
—+ .1 Vector x Point — Point
—*_: Vector x R — Vector

Vp,q: Point,v,w: Vector,r :R e
ptv=qg&
prt+ve=qrApytvry=qyApztvz=qz
Ap—qg=v&optuv=(q
Avtp=g&ptv=gq
Avkr =1
VEXT = WITAVY*T=WYAVZRT = WZ

(S, T)

apply : seq(S] x (§ — T) — seq[T]

apply(e,f) =y &
#z = F#y A
Vi:Niiel. #zey[i]=f(z]i])

— FindQObjects

FindQObjects : image X image —
seq[Point] x seq[Point] x Point

FindObjects(left, right) = (skull, helmet, seed) <
d objects : seq[Point] e

apply(objects, ProjectLeft) PermEq
BlobFind(left) A

apply(objects, ProjectRight) PermEq
BlobFind(right) A

ReasonableSeed(seed) A

ReasonableHelm(helmet) A

ReasonableSkull(skull) A

objects PermFEq skull ™ helmet ™ (seed)
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o
sum :seq[S]x (§ > T) - T
sum(s,f) =z &
s=(Aa=0V
s # {) A z = f(head(s)) + sum(tadl(s), f)

__Normalized Vector

v : Veetor

square(v.z) + square(v.y) -+ square(v.z) = 1

__normalize

normalize : Vector — Normalized Vector

normalize(v) = n &
Ar:Re
square(r) = square(v.z) + square(v.y) + square(v.z)
Ancxr=vzAny*xr=v.yAnz*sr=uvz

__approx

—approz_: Point « Point

p approxr q <
square(p.z — q.z) + square(p.y — q.y)+
square(p.z — ¢q.z) < square( MacApproz)

__Blob
position : Point
radius : R

radius > 0
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. BlobFind

BlobFind : Image < seq|Blob]
IsDark : Image x Blob — N
Tally : Image — (Potnt — N)
IntDiv.. : N X N - N
—Encompasses_. : Blob < Point

BlobFind(screen) = blobs &
Vb : blob | b € ran blobs e
IsDark{screen, b) > 75 A
Va:blob| a.radius > 2 e
IsDark(screen,a) > 75 =
db: blob | b € ran blobs e
b encompasses a.position
IsDark(screen, b) = p &
95 : seq]Point] o
V pt : Point & b encompasses (pt) < pt € s A
sum(s, tally(screen)) * 100 IntDiv #s = p
alntDivb=cscxb>ancx(b—-1)<a
tally(screen)(pt) = b &
screen[pt.z,pt.yl=on Ab =1V
screen[pt.z,pt.yl=off Nb =0
b encompasses pt < distance(pt, b.position) < b.radius

CommandType = {StartHeat, StopHeat, TimedHeat, StariMove,
StopMove, Shutdown, Reset }
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_ Command

type : CommandType
stamp : time
HeatIntensity : N
HeatDuration : interval
MoweTarget : point

stamp > 0
type = TimedHeat =

HeatDuration > 0 A

HeatIntensity = FizedHeatingIntensity
type = StartHeal =

HeatIntensity = FizedHeatingFrequency
type = StartMove =

MoveTarget # origin

.. CommandQueue
q : seq|Command]

Vi,j € domge
qli].stamp = g[j].stamp => ¢ = j

_ CommandQueues

UserCommands : CommandQueue
HeatCommands : CommandQueue
MoveCommands : CommandQueue

UserCommands[l].type = reset
YV u : Command | v € ran UserCommands e
u.type € {StartHeat, StopHeat, TimedHeat, Reset} =
dh : Command | h € ran HeatCommands @ h = u A
u.type € {StartMove, StopMove, Reset} =
dm : Command | m € ran MoveCommands ¢ m = u
Vh: Command | h € ran HeatCommands
Ju: Command | v € ran UserCommands e h = u
Y m : Command | m € ran MoveCommands e
du : Command | v € ran UserCommands e m = u
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FluoroImagePair
stamp : time

left : FluoroImage
right : FluoroImage

__ FlouroImageQueue
fluore : seq[ FluoroImagePair]

fluoro[1].stamp = UserCommands{l1].stamp + Initiallmage
Vi:N|ie dom MoveCommands
A MoveCommands{i}.type = StartMove o
start = MoveCommands[i}.stamp A
target = MoveCommands|i].target A
insert(fluoro, start) A
move( fluoro]start].left, flouro[start].right, target) =
{ currents, duration) A
stop = min{MoveCommandsii + 1].time, start + duration) A
images = truncate({stop — start) * ImagesPerSec) A
Vi:N|je€l.. imagese
insert(fluoro, start + j/ImagesPerSec)
A insert(fluoro, stop)

(7]

insert :-seq{ T] — time

insert(s,t) &
Jdo: T |z €rans e g.time =1t

__SeedPosition
SeedPosition : time - point

SeedPosition(t) = pt &
J,¢:N| ¢ € domimages o
images[t].stamp < t A
images|i + 1].stamp > ¢ A
pt = LocateSeed (images|i].left, images[i].right)
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___currents

current : N
_approz—.: current < current

current < UpperCurrentlimit
T approx y <
maz((z — y), (y — z)) < CurrentDelta

_ CoilCurrent Values

CoilCurrent : seq : [current]
—approz...: CoilCurrent « CoilCurrent

# CoilCurrent = 6
T approx Y &>
Vi:N|i€l..6e
z[i] approz yl¢]

CoilCurrent Values
idle : CoilCurrent
IdleCurrent : current

Ve current | ¢ € ranidie o
¢ = IdleCurrent
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_ CotlCurrents
CoilCurrent Values
CoilCurrents : time — CoilCurrent

CoilCurrents(t) = ¢ &
3, 1 : N | MoveCommand[i].time < ¢ A
MoveCommand[i + 1].time > { o
MoveCommand[i] # StartMove A ¢ = idle
V MoveCommandli] = StartMove A
start = MoveCommand[t].stamp A
im = fluoro[start] A
move(im.left, im.right, MoveCommand|i].target) =
(currents, duration) A
stop = min{ MoveCommand[i + 1].stamp,
start + duration) A
(t > stop A ¢ = idle V
t < stop A ¢ = currents)

 ShutdouwnQueue
shutdown : seq[time]

CoilMonitor : time — CoilClurrent
XrayMonitor : time — XrayValues
HeaterMonitor : time — HeatValues

Vi:time s
= ( CoilCurrents(t) approz CoilMonitor(t)) =
insert(shutdown, t)
Yi:timee
— { XraylIntensity(t) appror XrayMonitor(t)) =
insert(shutdown, t)
Yt:lime e
- (HeaterIntensity(t) approz HeaterMonitor(t)) =
insert(shutdown, t)
Vit : time | t € ran shutdown o
insert( MoveCommands, t, shutdown) A
insert( HeatCommands, ¢, shutdown) A
insert{ XrayCommands, t, shutdown)
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CoilCommand

stamp : time
value 1 CoilCurrent

_ CoillCommands

CoilCommands : seq|{Coil Command]

# CoilCommands = # MoveCommands
Vi:N|[i€l..#CoilCommands e
MoveCommands[i].stamp = CoilCommands{i].stamp A
MoveCommands|[i].type = StopMove =
CoilCommandsi}.value = idle A
MoveCommands[i].type € { Reset, Shutdown} =
CotlCommands|i].value = CoilsOff A
MoveCommands(i].type = StartMove =
CotlCommands|i].value =
CoilCurrents( MoveCommands|i}.stamp)

XrayCommand

type : XrayCommandTypes
stamp : time

duration : interval
intensily : XrayValues

. XrayCommands

XrayCommands : seq{ XrayCommand]

Ve XrayCommand | ¢ € ran XrayCommands e
c.type = Shutdown =
c.stamp & ran shutdown A
c.type = TimedXray &
c.stamp € ran images A
c.duration = FizedXrayDuralion A
c.intensity = FizedXraylntensity
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__window

origin : point

zsize : N

ysize 1 N

status : {show, hide}
image : table]color]

TOWS image = Ysize
cols image = xsize

__ SereenPoint

SereenPoint : point

ScreenPoint.z < Sereen Width A
ScreenPoint.y < ScreenHeight

__ Secreen

Screen Width : N
ScreenHeight : N
default : color
windows : seq[window]
image : table|color]

rows tmage = ScreenHeight
cols image = Screen Width
dbackground : window e
windows[#windows] = background A
rows background.image = ScreenHeight A
cols background.image = Screen Width A
V pt : ScreenPoint o background.image[pt] = default
V pt : ScreenPoint e
image[pt] = w.image[pt — w.origin] A
w = highest(windows, pt)
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__highest
highest : ScreenPoint X seq|window] — window

_eontains_. : window +«r ScreenPoint

Y stack : seqwindow); pt : point; w : window e
highest(stack, pt) = w &
dz:N|z e domstack »
stack[z] = & A
stack[z].status = show A
stack|z)containspt A
Vy:N|y € domstack e
(stack[y].status = show A
stack[y] contains pt) = y < 2
Yw : window; pt: point @ w conlains pt <
dr: point | r = pt — w.origin e
raa >0Are < wasize
Ary>0Ary < wysize

— UGS

GetSeed UCSPosition : time — point

GetSeedUCSPosition(t) = seed <>
4T : OrthogonalTransformation
apply( T, RelativeMarkers) PermEq
IdentifiedMarkers
A T{SeedPosition(t)) = seed

feedback

HeatActual : R
HeatProject : R
Target : vector
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_ (GetFeedback

HeatFeedback
MoveFeedback
GetFeedback : time —» feedback

Vit time; fb: feedback o

GetFeedback(t) = fb &
fo.HeatActual = HeatFeedbackActual(l) A
fb.HeatProject = HeatFeedbackProject(t) A
fo.Target = TargetFeedback(t)

__flatten

FlattenFunction : Image WindowView — (point — point)

FlattenFunction(view)(p) = ¢ &
g.z =0A ((view = Lateral A
g.x = —p.y A gy =p.z)
V (view = Frontal A
gz =p.s A qy=p.z)
V {(view = Coronal A

gz =p.x A ¢y = p.y))
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__Image Window

Image Window : Image WindowView x time — Window

Image Window(view, t) = w A
3 flatten : point — point |
flatten = FlattenFunction(view) o
dscale : R; fb: Feedback; 11,12,13,14 : image »
Jseed3D : point e
scale = w.zsize [ Image Width A
scale = w.ysize/ ImageHeight A
seed3D = GetSeed UCSPosition(time) A
seed = flatten(seed3D) A
11 = Getlmage(w.view, seed3D) A
12 = SeedOverlay(seed, scale, 1) A
fo = GetFeedback(t) A
((fb.HeatProject =0 A I3 =12) V
(fb.HeatProject > 0 A
13 = ProjectHeatOverlay(seed,
Jb.HeatProject, scale, 12))
A ((fb.HeatActual =0 A 14 =13) v
(fb.HeatAtual > 0 A
w = ActualHeatQuerlay(seed, fb. HeatActual,
scale, layer3))
A ((fb. Target = seed A w.image = l4) V
(fb. Target # seed A
w = MovementOverlay(seed,
flatten(fb.target), scale, layerd))
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__SeedCverlay
SeedOverlay : point x R x Window — Window

SeedOverlay(seed, scale, before) = after <
after.xsize = before.xsize A
after.ysize = before.ysize A
after.view = before.view A
Va,y:N; |z < before.asize A y < before.ysize o
(distance(seed * scale, pt) < SeedRadius * scale
A after.imagelz, y| = SeedColor)
V (distance(seed * scale, pt) > SeedRadius * scale
A after.imagelz, y} = before.image|z, y]

_ ProjectHeatOverlay
ProjectHeatOverlay : point x R x R x Window — Window

ProjectHeatOverlay(seed, radius, scale, before) = after <
after.axsize = before.xsize A
after.ysize = before.ysize A
after.view = before.view A
Vz,y: Ny |z < before.asize A y < before.ysize
(distance(seed * scale, pt) approx radius * scale
A after.imagelz, y} = HeatProjectColor)
V = ((distance(seed * scale, pt) approz radius * scale)
A after.imagelz, y] = before.image(z, y]
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— ActualHeatOverlay .
ActualHeatOverlay : point x R x R x Window — Window

ActualHeatOverlay(seed, radius, scale, before) = after &
after.xsize = before.xsize N
after.ysize = before.ysize A
after.view = before.view A
Va,y: Ny |z < before.zsize A y < before.ysize o
(distance(seed * scale, pt) < radius * scale
A after.image(z, y] = HeatActualColor)
V (distance(seed * scale, pt) > radius * scale
A after.image(z, y] = before.imagelz, y]

.. ProjectMoveQuerlay
ProjectMoveOverlay : point X point X R x Window — Window

ProjectMoveOverlay(seed, target, scale, before) = after &
after.asize = before.xsize A
after.ysize = before.ysize A
after . view = before.view A
Va,y: Ny |z < before.zsize A y < before.ysize »
(pt between(seed * scale, target * scale)
A after.image[z, y} = ProjectMovementColor)
V = ((pt between (seed * scale, targel * scale)
A after.image(z, y] = before.image(z, y)
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__ between

_between.. : point « (point X point)

a between (b, c) &
((az<bzAaz>cazA
aySbyNayzcyA
a.z< bz Aaz>ez)
Vi{az 2 bzAaz<eczA
a.y > byAay<cyA
a.z > bz A a.z < c.z))
Aa.z —b.z)/(a.y — b.y) = (a.z — c.x)/{e.y — c.y)
A{a.z —bz)/(a.z—bz)= (a2 —ca)f(az—cz)

Image WindowView = {Coronal, Lateral, Frontal}

. ImageFile

xsize : N

ysize : N

view : Image Window View
ortgin : point

patient : name

checksum 1 N

image : table[color]

TOWS image = ysize

oo de s — s
COLS A e—="512C

__MRIStack

MRIStack : seq ImagelF'ile
#MRIStack = slices
Vi,j 1N i,7 € dom MRIStack o
MRIStack[i).origin > MRIStack[j].origin < i > §
dv:plane o
Vi : ImageFile | i € MRIStack o i.view = v
Vi : ImageFile | i € ran MRIStack o
i1.xsize = Image Width A i.ysize = ImageHeight
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— Getlmage

GetImage : Image WindowView x point — Window

V view : Image WindowView; seed : point; w : Window e
Getlmages(view, seed) = v &
view = Lateral A
34 :N; I: ImageFile | (i v I) € LateralStack o
w.image = I.1mage
seed < lorigin Ai=1V
seed > I.origin A i = slices V
(b = Distance(seed, I.origin) A
Distance(seed, LateralStack[i — 1])
Distance(seed, LateralStack[i + 1]}
V view = Coronal A
31 :N; I : ImageFile | (i +— I) € CoronalStack »
w.image = [.image
seed < lorigin ANi=1V
seed > I.origin A 1 = slices V
(b = Distance(seed, I.origin) A

Distance(seed, CoronalStack[i — 1]} > b A
Distance(seed, CoronalStack|i + 1]} = b)
V view = Frontal A
3¢ :N; I : ImageFile | (i v I) € FrontalStack e
w.image = [.image
seed < Lorigin ANt =1V
seed > l.origin A ¢ = slices V
(b = Distance(seed, I.origin) A
Distance(seed, FrontalStack{i — 1]) > b A
Distance(seed, FrontalStack{i + 1]} > b)

140



[T]

. ® _: table]T"] x table[T'] — table[T]

Va,b,c: table[T] »

aBb=ce
a.sizex = b.sizex A b.sizex = c.sizex A
a.sizey = b.sizey A b.sizey = c.sizey A
Vz,y: Ny |z < a.sizex A y < a.sizey o
blz, y| # defauli A z[z,y] = bz, y] A
blz,y] = default A z[z,y] = alz, y]

HeatIntensity

HeaterIntensity : time — Heat Values

HeaterIntensity(t) = h &

3,1 i : N | HeatCommand|[i].stamp < ¢

A HeatCommand[i + 1].stamp >t o
HeatCommand([i] € {Reset, StopHeat} A h =0
V HeatCommand[i] = StartHeat

A h = HeatCommand[i].intensity
V HeatCommand[i] = TimedHeat

A HeatCommand[i].stamp+

HeatCommand|i].duration > ¢

A h = HeatCommand|i].intensity
V HeatCommand[i] = TimedHeat
A HeatCommand|i].stamp+

HeatCommand|i]. duration < ¢

Ah=0
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__HeatFeedback

HeatFeedbackActual : time - R
HeatFeedbackProject : time — R

HeatFeedbackActual(t) = r &
3, 1 1 : N | HeatCommand{i).stamp < t A
HeatCommand[i + 1].stamp > t »
HeatCommand[i] € {Reset, StopHeat} A h =0
V (HeatCommand[i] = StartHeat V
(HeatCommand(i] = TimedHeat A
HeatCommand|i].stamp+
HeatCommand[i]. duration > t)) A
h = heating( HeatCommand[i].intensily,
HeatCommand|i).stamp — t)
V HeatCommand[i] = TimedHeat A
HeatCommand[i].stamp+
HeatCommand|i].duration < t A
h=0
HeatFeedbackProject(t) = r &
3, : 4 : N | HeatCommand[i].stamp < t A
HeatCommand[i 4+ 1].stamp > t »
HeatCommand|[i] # TimedHeat A h =0
V (HeatCommand|[i] = TimedHeal A
HeatCommand[i].stamp--
HeatCommand|[i].duration > £)) A
h = heating{ HeatCommand|[i].intensity,
HeatCommand|[i].duration)
V HeatCommand{i] = TimedHeat A
HeatCommand|[i].stamp+
HeatCommand|i].duration < t A

h=0
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___MoveFeedback

TargetFeedback : time — point

target(t) = p &
3, ¢ : N | MoveCommand[i].stamp < t A
MoveCommand|i + 1].stamp > t e
MoveCommandli] # StartMove A
¢ = SeedPosition(t)
V MoveCommand[i] = StartMove A
start = MoveCommand[i].stamp A
im = fluoro[start] A
move(im.left, im.right) = (currents, dumtzon) A
stop = min(MoveCommand[i + 1].stamp,
start + duration) A
(t > stop A ¢ = SeedPosition(t} V
t < stop A ¢ = MoveCommand|[i].target)
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