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Abstract

A model for integrating perception and action systems
operating in dynamic environments is presented, in which the
information gathered by a sensor is maintained over time to
expand the sensor’s effective field of view. The information in
the effective fields of view of the sensors is used to determine
appropriate actions to achieve the agent’s goals. An imple-
mentation of the approach in dynamic virtual and physical
environments achieves improved performance over purely
reactive strategies. The virtual environment is instrumented to
quantify the performance improvement. We show improved
performance for agents using very limited memory structures,
and further, that use of additional memory may not improve
performance, especially in dynamic environments.

1. Introduction

In dynamic environments, use of representation can be a
risky proposition. In the context of mobile robotics, a repre-
sentation is an internal model of the state of the world, which
the agent examines and/or manipulates to determine an
appropriate action. The difficulty with maintaining an internal
model of a dynamic world is that a model which was an accu-
rate representation of the world at a given point in time may
no longer be accurate at a later time, since a dynamic environ-
ment, by definition, changes over time regardless of the
action (or inaction) of the agent.

Consider an agent which obtains an accurate representa-
tion of a environment at time #;, spends some time cogitating
over this representation to decide upon an action, and then
takes the action at time #,. In a dynamic environment, the
world may change between time #; and #,. Even if we (unreal-
istically) assume that the agent’s representation is a complete
and accurate reflection of the environment at #;, and that the
agent can determine a “correct” action, this only means that
the action the agent takes is appropriate at #;. But since the
action is taken at #,, it may not longer be appropriate.

Taking inappropriate actions in this way can lead to
disastrous results. Consider the case in which a robot is to
pick up a piece of trash and put it in the garbage can. The
robot has a completely accurate model of the environment,
including the location of the trash and garbage can at time ¢;.
While the robot is planning a path to the trash and then on to
the garbage can based on its #; representation, a baby comes
along and picks up the piece of trash, puts it in its mouth, and
sits down in the trash’s previous location. At time #,, the robot
executes its plan and throws out the baby.

If the robot accounts for this possibility by sensing more
often, the robot may spend all of its time sensing, and none act-
ing, especially if the robot’s perception system uses a recon-
structive approach to compute the baby’s shape, pose, etc. The
traditional completely-reconstructive vision approach is
unworkable in dynamic environments. The computational com-
plexity of determining the state of the entire environment is
overwhelming, and the environment will change before the
computation is complete. Designers of perception/action sys-
tems in dynamic environments must limit the computation done
by the perceptual system so that the computations can be
accomplished before the information they compute becomes
stale. By limiting the perceptual systems to extracting only the
information needed to accomplish a given task, the problem
may become tractable.

In the example above, we assumed that the #; representa-
tion was complete and accurate—however, agents in realistic
environments must obtain their representations via their sensors,
which are not capable of providing such perfect information,
due to noise, occlusion, and a limited field of view. In order to
achieve competence in realistic environments, an agent must
directly address the problems of acquiring a representation via
limited sensing, and maintaining that representation given a
dynamic world. Some researchers have suggested eliminating
the use of representation altogether [5] which ensures that the
agent operates on the basis of its immediate sensor inputs, rather
than on a (potentially stale) representation. However, this
approach severely limits the capabilities of the agent (results
presented in this paper will quantify this claim).

In this paper, we describe an approach in which the agent
acquires and maintains exactly those representations which
facilitate a given task, thereby reducing the maintenance over-
head and potential for error to only that which is necessary for
the given task. In an implementation of this approach, we will
show that a very limited set of memory structures can improve
the competence of an agent, and show furthermore that addi-
tional representation beyond the minimum needed may not
help. The centerpiece of our approach is the concept of an effec-
tive field of view, which is described further in section 3. The
importance of an effective field of view is that it provides a
framework through which the designer of an autonomous agent
can strike the appropriate balance between the extremes of
purely reactive control and complete-knowledge control for
given tasks in dynamic environments.



2. Related work

Agre and Chapman introduced deictic, or “pointing” rep-
resentations to the reactive planning literature [1, 2]. They
implemented an agent that used deictic representations to
play a video game called Pengi. Rather than identify and label
all the objects in the game, as would be the case in the classi-
cal planning paradigm, markers were placed on only the near-
est (or otherwise most task-relevant) items. The markers
served as input to reactive-style planning circuitry. Agre and
Chapman addressed the problem at the level of intermediate
vision, and did not attempt to address problems such as occlu-
sion and the underconstrained nature of early vision. Also,
markers were placed only on currently visible objects; no
state was retained concerning off screen items [7].

Maja Mataric developed the use of maps in a reactive
planning context [11]. Sonar sensors and a low-resolution
digital compass were used to identify landmarks and con-
struct a topological map of the environment. The map enables
the robot to navigate to locations in the environment as
directed by a human. These maps are useful in navigating
large-scale space, but are fundamentally different from the
local-space representations of our research. The local-space
markers are metric, in that they identify the locations of
objects relative to the agent in a low-resolution coordinate
system, whereas the Mataric maps are primarily topological.
Topological maps are useful for navigating the large-scale
space, while local representations are used for coping with
the immediate surroundings. In this way, the two representa-
tions are complimentary.

Andrew McCallum conducted experiments with deictic
representations in a virtual environment [12]. He constructed
a “go-cart” simulator, for virtual driving to investigate the
role of deictic visual behaviors. His work is primarily con-
cerned with the use of the fovea as a marker, and the learning
of the visual behaviors. Spatial memory is limited to simple
left-right distinctions, whereas we are concerned with the
maintenance of multiple markers indicating locations with
higher spatial resolution.

3. Effective field of view

Sensor data is useful if it can be used to determine an
appropriate action. The usefulness of sensor data must there-
fore be determined in the context of a goal and a set of possi-

ble actions. The implication of this is that the effective field of '

view of a sensor is not completely intrinsic to the sensor,
rather, the effective field of view must be defined in terms of
the usefulness of the data it provides, which is in turn defined
in terms of the environment and the agent’s goals and abili-
ties. We therefore define the effective field of view of a sensor
to be that region of space and time in which the sensor data is
useful to a specific task.

All sensors have a limited region of space over which
they operate. Specifically, a sensor can be thought of as
extracting predicates concerning the environment from some
limited region of space. For example, a visual sensor can only

be extract information in the region of space in which the
camera is pointing; not the area behind the camera, and fur-
thermore not in the area which is in front of the camera but is
so far away that the resolution is insufficient to extract infor-
mation. We will refer to the region in which a given sensor
can extract predicates as its “field of view,” and apply this
term to sensors which are not usually referred to as having a
“view,” such as sonars and contact sensors. These sensors
have a field of view in the sense that there is a limited region
of space over which they can detect properties and thus
extract predicates. Note that given this definition, occlusion is
a special case of a limited field of view—occluded regions are
regions of space about which we cannot directly extract pred-
icates.

Furthermore, predicates extracted from real sensors have
“certainties” associated with them. Outside of the sensor’s
field of view, these certainties are at a minimum (i.e., com-
plete uncertainty). We define the absolute field of view of a
sensor at a given instant of time to be the region of space in
which the sensor can extract predicates with some nonzero
degree of certainty at that time.

Limiting consideration to only the instantaneous proper-
ties in the absolute field of view is overly restrictive, since a
predicate determined to be true at a given time will rarely
become false immediately after that time. Once again, cer-
tainty is an appropriate concept, with certainty decreasing
with increased time since extraction.

The absolute field of view of a sensor is a purely spatial
object; it has no temporal dimension, since one can determine
the current absolute field of view based purely on where the
sensor is pointing now. The effective field of view however,
has a temporal extent. This is because the effective field of
view is defined not on where the sensor is pointing now, but
rather on the usefulness of the predicates extracted from the
sensor data. When we say a predicate has temporal extent, we
mean that the predicate remains useful for some interval of
time beyond the point in time at which the predicate was
extracted. Note that for the agent to be able to utilize the tem-
poral extent of a predicate, the agent must represent the pred-
icate in some persistent storage.l

The idea of a temporal extent includes the idea of useful-
ness. A predicate extracted some time ago (milliseconds, sec-
onds, minutes, hours, or more) may still be useful information
that can be used to accomplish a given task, even if the abso-
lute field of view does not currently contain the relevant
object. This is because although the world is dynamic, the
degree of change is limited. Most things that were true a sec-
ond (minute, hour, etc.) ago are still true now. Therefore,
remembering the predicates extracted by a sensor expands the
effective field of view of the sensor. Upon closer examination,
the concept of usefulness turns out to be remarkably com-
plex—see [4] for further discussion.

1. Systems usually considered to be purely reactive may implement such
storage by a delay circuit between transducer and decision logic.



By explicitly managing the certainty associated with rep-
resentations of the environment, and addressing the fact that
certainty may decrease over time in a dynamic environment,
an agent can ensure that it does not take actions that are inap-
propriate because they are based on information that is stale
by the time the actions are taken. Moreover, when a given
task is analyzed, much of the information intrinsic to the envi-
ronment is simply not relevant to the task. An agent can “deal
with” the uncertainty of such information by simply not rep-
resenting or even extracting this information, and still act
effectively. An agent can perform a task by extracting only
that information that is relevant to the given task, maintaining
that information as it evolves over time, and taking actions
based on this limited, yet usefully accurate information. Such
information, when extracted via a sensor, forms the sensor’s
effective field of view.

3.1. The “effective field flashlight”

We can clarify the concept of an effective field of view
via the use of the analogy of a flashlight, in which the flash-
light represents a sensor, and the cone of light projected by
the flashlight represents the sensor’s field of view. In a dark
room, we can turn on the flashlight, and immediately see the
absolute field of view of the flashlight, since it corresponds
exactly to those things that are “lit up” right now. Those
things that remain “in the dark” are outside of the absolute
field of view. As the flashlight is moved around the room, the
absolute field of view changes as the light falls on different
locations. To determine the absolute field of view, we simply
observe what is lit up at any given moment.

If we remember previous views, however, the effective
field of view depends on both where the light falls now, and
where the light has fallen recently. Imagine that after the
flashlight has been in a given region, that region continues to
“glow,” even after the flashlight has moved somewhere else.
The glow corresponds to our memory for recently seen items.
The effective field of view is the union of the locations that
are currently lit by the flashlight and those locations that con-
tinue to glow. Furthermore, we can encode brightness as cer-
tainty, such that the current absolute field of view is brighter
(more certain) than the glowing regions outside of the abso-
lute field of view. As the flashlight is moved around the room,
it leaves a glowing trail that fades with time. The agent can
then use the information inside the glowing trail, as well as
that in the current absolute field of view, in order to make
decisions about what to do next. In this way, the use of mem-
ory expands the effective field of view.

Now we need to complicate this analogy somewhat,
because in the simple version given above, brightness was
encoded as certainty, whereas the effective field of view is
defined in terms of the related but distinctly different concept
of “usefulness.”” When brightness encodes certainty, the flash-
light sweeps out a broad swath of glowing points. However,
not all of these points are useful in the context of a given task.
Since usefulness is the more important concept, we should

instead have brightness encode usefulness, in which case the
flashlight leaves a trail of glowing isolated points. For exam-
ple, consider the situation in which our goal is navigation
with obstacle avoidance, and the flashlight (sensor) points at a
box sitting on the floor in our path. Further assume that we
can segment box pixels from non-box pixels. After the seg-
mentation, we have a set of predicates, one for each pixel,
concerning whether there is box at that pixel. If brightness
encodes certainty as in Figure 1b, then the region in the inte-
rior of the image projection of box is quite bright, since we
are very certain of those pixels being “box” pixels. The
regions at the boundary between box and non-box pixels are
dimmer, since we are less certain about the “boxness” of
those pixels. Points exterior to the box are bright because we
are certain of the “non-boxness” of those points. However, in
terms of usefulness, the border and corner points of the box
are the most important for navigating around the box, so if
brightness encodes usefulness, as in Figure 1c, the corners of
the box are the brightest points. Instead of leaving broad
swaths of glowing areas, the flashlight leaves a few glowing
hot spots on important items, edges, and corners. Certainty
contributes to the usefulness of these points, since if our esti-
mate of the location of the corner of the box became suffi-
ciently uncertain, the points would no longer be useful.
However, usefulness is driven primarily by the task to be
accomplished.

(a) (b) ()
Figure 1: images of a box (a) in which
brightness encodes certainty (b) or
usefulness to obstacle avoidance (c)

Having brightness encode usefulness instead of certainty
affects the region inside the absolute field of view as well as
the glowing trail it leaves behind. As any researcher in com-
puter vision knows, just because you are pointing the camera
at something does not mean you can draw any useful infer-
ences about the object, or can even determine what the object
is. Our “effective field flashlight,” therefore, does not light up
everything in its absolute field of view, but rather only those
task relevant things about which the agent can draw useful
inferences.

As a side note, given the current state of the art in per-
ception technology, the absolute field of view of vision sen-
sors is much larger than that of sonar, since cameras can see
very far away with remarkable resolution—sonar by compari-
son is pathetic. However, the effective field of view of sonar is
bigger than that of vision, since nobody yet knows how to
extract much in the way of useful predicates from images,
whereas sonar has been quite successful in navigation tasks—
vision by comparison is pathetic. Sonar can extract useful



predicates such a “there is an obstacle three feet to the left of
me.” Try to do that reliably with a camera.

As we have discussed, the usefulness of a percept
depends on the end-to-end operation of the system, from the
properties of the environment, to the sensor technology, to the
sensor processing capabilities, to the actions the agent is
capable of, to the planner that sequences these actions, to the
ultimate goals of the agent that the planner seeks to achieve.
All of these components must be considered when determin-
ing what the effective field flashlight illuminates. Improve-
ments to any of these components of the autonomous agent
ultimately expands the effective field of view. In fact, the
entire field of autonomous agent design can be defined in
terms of expanding agents’ effective field of view, since it
embodies the idea that our goal, the goal of the research com-
munity, is to enable our agents to know more in order to do
more things—to accomplish more goals in the world.

4. Markers and the effective field of view

A marker is a predicate with temporal extent concerning
the location of an object in space. Markers are important
because they efficiently expand an agent’s effective field of
view via their temporal extent.

Recall the “effective field flashlight™: as it surveys a
room, useful predicates “light up” and stay lit up, as if by
magic, as the flashlight moves around the room. However, use
of magic is not an option; the autonomous agent must extract
and maintain these predicates. They only light up if the agent
extracts them, and they only stay lit up if the agent maintains
them. The effective field of view only contains those predi-
cates that are lit up by the agent’s efforts.

One overly simplistic way to maintain the information is
to save all the raw sensor readings ever taken. However, sav-
ing these readings is highly inefficient; consider the case if
the sensor is a camera. An agent would save every image the
camera ever produced, which is an extremely memory inten-
sive proposition. Moreover, the actual usefulness of these
predicates (i.e., the pixel values), is rather limited; it is the
information extracted from these pixels that is useful. We
might imagine that the pixels themselves have only a faint
“usefulness glow,” whereas the information extracted from
the pixels (say, corners) glows brighter. The extraction pro-
cess concentrates the useful information; a marker is a storage
mechanism that contains and maintains that concentrated
information.

There are any number of means of accomplishing the
goal of expanding the effective field of view; markers are just
one (particularly good) way. Another way to expand the
effective field of view is to expand the absolute field of view,
by simply getting more sensors, or sensors with a larger
intrinsic field of view. For example, one could get a wide
angle lens for a camera, or more cameras (or sonars, laser
range finders, etc.). More, bigger, better sensors come at a
cost, and they increase the effective field of view’s spatial
dimension only, meaning that the agent can know more about

the world now by increasing the absolute field of view, but
does not know more about parts of the world it has seen in the
past. For a given set of sensors and an associated absolute
field of view, the use of memory can potentially increase the
agent’s effective field of view beyond the absolute field of
view provided by the sensors—by moving that sensor around
in the environment [3] and remembering some of what was
seen. The use of markers increases the effective field of
view’s temporal dimension, and for movable sensors, marker
use increases the sensor’s spatial dimension as well.

Another important argument in favor of the use of mark-
ers is the ability to deal with occlusion, which as mentioned
previously is a special case of a limited field of view. The
problem of occlusion is intrinsic to the sensor modality; there
are simply some things that a sensor such as a camera or
sonar cannot see through, and no lens or amplifier can change
that fact. One solution is to change modalities (e.g., use x-
rays or something). However, by working through the tempo-
ral dimension, the use of markers or other memory mecha-
nisms can enable the agent to “see through” obstacles by
remembering what was seen when the agent was on the other
side of the obstacle.

5. Marker maintenance

Contrary to what been argued by strong proponents of
the reactive approach [6], representation is not intrinsically
bad—it’s only bad if it’s wrong. It is therefore critical that the
representation be maintained accurately, or discarded. When
the agent moves, updating the markers requires estimating the
coordinate transformation between the agent’s previous and
current locations. It is then a simple matter of applying the
transformation to all the marker coordinates.

5.1. Correspondence for visible markers

Objects that are relevant to the task are not featureless
points; they have perceptual properties that allow them to be
identified. Those same properties can be used to re-identify
them later. Clearly, to mark an object, (i.e., form a task spe-
cific representation of that object), the agent must retain some
of the perceptual information associated with the marker from
frame to frame, i.e., primary visual cues such as the color and
size of an object. The obvious place to keep this information
is in the marker. Markers must retain some information about
the perceptual aspects of the objects they mark. We might say
that markers must have the ability to “find themselves” in the
perceptual input, and will therefore retain any additional
information necessary to do so.

Given markers with this additional information, the gen-
eral marker maintenance procedure at each time frame has
two steps. First, all markers “find themselves” in the input.
Second, the agent may instantiate new markers for any
objects in the new input that aren’t already marked.

As we have discussed, memory of the location of objects
in a dynamic environment runs the risk of being stale and
therefore incorrect, and acting on incorrect information is
potentially hazardous. Information derived from current per-



ceptual input is more reliable than that stored in memory, and
therefore overrides the information in memory. As a first cut
implementation of this policy, whenever a marker cannot find
itself in the current input, the marker is dropped. But this pol-
icy would drop any marker outside of the current absolute
field of view, so we amend it to dropping any marker we
expect to find in the input but don’t. For visual input, the two
main cases in which we don’t expect to find the marked
object are when the object is outside the absolute field of
view, and when the object is occluded. The field of view case
can be detected by knowing the field of view of the sensor
and comparing it with the location stored in the marker. The
second case requires additional visual processing; one must
determine that there is some object along on the azimuth
towards the marker, but is nearer than the marked object. The
visual routine that performs this occlusion computation is
only executed when a marker indicates that an object should
be in the absolute field of view, but no visual cue for the
object is found.

6. Marker hierarchies

Complex tasks can be decomposed into a set of sub-
tasks, which may in turn be decomposed further, until the
lowest-level tasks can be carried out directly by the agent’s
effectors. This decomposition imposes a hierarchy among
tasks and their sub-tasks. Tasks may have markers associated
with them, e.g., the goal destination in a navigation task is
marked. The task hierarchy imposes a similar hierarchy on
any markers associated with particular tasks. For example, if
there is a marker on a goal destination, it may not be possible
to proceed directly to the goal, due the presence of an obsta-
cle. The agent can formulate a sub-task of circumnavigating
the obstacle, and then instantiate new markers (e.g., on the
obstacle, and on an intermediate destination) that are used to
accomplish the sub-task. In general, complex domains neces-
sitate establishing goals subsidiary to the primary goals.

The navigation system, rather than blindly moving
towards the destination, should launch perceptual machinery
to find any obstacles to its given destination. If an obstacle is
found, it is marked with an obstacle marker. We say that
obstacle markers are dependent on the associated primary
destination, so that if the destination is ever deleted or
changed, the obstacle marker is deleted as well.

If an obstacle marker is instantiated, the navigation sys-
tem looks for a path around the obstacle. When an appropri-
ate location is found, the navigation agency instantiates an
intermediate-destination marker which is dependent on the
obstacle marker. The navigation system guides the agent
towards the intermediate destination just as it would any other
destination. Reaching the intermediate destination triggers a
reevaluation of the “obstacleness” of the associated object
with respect to the primary destination.

As the domain becomes increasingly complex, this pat-
tern can be extended to hierarchies of markers. These task
and marker hierarchies bear resemblance to the classic con-

cept of a partially ordered plan [9], with the task hierarchies
equivalent to the increasing plan detail found in constraint-
posting nonlinear planners. Further research is needed to
determine the full relationship of marker hierarchies to par-
tially-ordered plans. Marker hierarchies may potentially
bridge the gap between reactive and classical planning, at
least for navigation tasks.

7. Validating Implementations

We have implemented a marker based control system
that illustrates many of the concepts developed above. Using
virtual reality rapid prototyping software developed at UVa
[8], we created an environment with trees, rocks, berries, and
walls. An agent survives in this environment by eating berries
and avoiding obstacles. The environment also contains a
predator which actively pursues the agent. The agent has the
goals of finding food, avoiding obstacles, and avoiding the
predator. This section describes some details of this agent.

The simulation system is a separate process, running on
separate hardware from the agent control software. The only
information that passes from the simulation system to the
agent is a sequence of images of the environment taken from
the viewpoint of the agent. The image is 160x120 pixels, and
the color is quantized to 64 colors, resulting in a series of
images such as those shown in Figure 2 (except in color).

Figure 2: The virtual agent’s environment

The agent’s control process decides upon an action based
on the images, and sends velocity commands to the simula-
tion system, which updates the display based on the new loca-
tion of the viewpoint. The agent and simulation are
completely asynchronous, and run in real time at 10-15
frames per second. The world is dynamic, and the predator
pursues the agent regardless of the inaction of the agent. Also,
each time the agent consumes a berry, a new berry is gener-
ated at a random location, providing an additional source of
uncertainty.

Object locations are determined based on azimuth and
elevation in the visual field. The system attempts to created
and keep marker-based representations for the four closest
berries and any nearby predator at all times. The markers are
maintained by using dead-reckoning based on the most recent
velocity commands to estimate the expected new position of
the object. If the expected position is in the image, then the
correspondent is found in the image, if possible.

The strategy for the agent is to head for the nearest berry,
which may not be currently visible, due to occlusion or the
limited field of view. We have to carefully follow the “percep-



tion overrides memory” doctrine with this agent. Due to noise
in the image caused by severe color quantization1 some erro-
neous markers are created. Markers also occasionally drift
due to imperfections in the dead-reckoning procedure.

The problems with erroneous markers are overcome by
having the agent drop any markers that should be in the field
of view, but don’t have any perception corresponding to them.
So for example, if a berry marker is maintained to the left of
the agent, the agent turns to the left to look at it. If no berry is
seen to the left, the marker is dropped. This behavior serves to
allow the agent to use the markers that are accurate, without
being led too far astray by incorrect markers.

The strategy described above must be augmented to
notice the occlusion of marked objects and behave appropri-
ately. The technique we used is similar to Horswill’s obstacle
avoidance routine [10], in that it relies only on being able to
segment the ground from non-ground (i.e., obstacles). To
determine if a marked object is occluded, points on the
ground/non-ground boundary (which we refer to as the
ground line) are converted to egocentric 3D coordinates and
compared with coordinates of the marker. If the ground
boundary points in the direction of the marked object are
strictly nearer than the marked object, then the object is
assumed to be occluded. Markers on occluded objects are not
dropped, but now we need a strategy for navigating around
the obstacle. The original behavior, which was to go directly
towards the nearest marker, obviously will not work for
occluded markers. We have implemented the navigation algo-
rithm described in section 6 using the target berry’s location
as the destination marker.

To determine the location of the obstacle marker, the
ground/non-ground boundary in the region of the goal marker
is analyzed for sharp jumps that indicate the edges of the
obstacle. Simple geometric reasoning is used to determine the
shortest distance around the obstacle, and the obstacle’s edge
is marked. An intermediate-destination marker is then instan-
tiated, and the agent is directed to move towards the interme-
diate destination, thereby circumventing the obstacle.

7.1. Performance Measurement

The simulation system can easily be instrumented to
measure the performance of the agent. We have instrumented
the simulation to compute the average “inter-berry distance.”
As the agent is gathering berries, it must travel some distance
to its intended target berry. We can say that one agent is more
efficient than another if over the long run, the more efficient
agent travels less distance in gathering berries, and that the
average distance between consecutive pairs of berries would
be smaller for the more efficient agent.

Below are comparisons of three different agents’ perfor-
mance on the berry gathering task is a field containing several
obstacles. The three agents compared are a completely reac-
1. This is not a deficiency of the virtual reality prototyping software, but

rather because of the separation of the simulation and the agent con-
trol system. We did not try to improve it because such problems are
representative of real low-level vision processes.

tive agent, an agent with four? markers to place on berries,
and an agent with four markers and a “neck.” The strategy for
reactive agent is to always move towards the nearest berry
that it “knows about,” and the reactive agent only knows
about berries in the absolute field of view. The strategy for the
“four marker” agent is identical—to move to the nearest berry
it knows about. However, the agent with markers may poten-
tially know about more berries than the reactive agent, since it
may have a larger effective field of view. The agent with a
“neck” is identical to the four marker agent, except that rather
than always looking directly forward in the direction of travel
as does the four marker agent, the “neck” agent may look in
any direction, independent of the direction of travel. In the
berry gathering task, the neck agent uses this ability to look
directly at the target berry, and also to glance around from
time to time to get a more complete picture of its surround-
ings. Redirecting the absolute field of view in this way, in
conjunction with memory, may dramatically increase the
effective field of view.

Each agent is allowed to collect 100 berries in the field.
The field initially contained 50 berries, and as each berry is
“eaten” a new one is added at a random location in the field.
Over a given run of 100 berries, the mean and standard devia-
tion of the inter-berry distance for that run is computed. The
mean and standard deviation are used to construct 95% and
99% confidence intervals for the actual mean inter-berry dis-
tance for the agent on that run, assuming that the inter-berry
distance is roughly normally distributed. Three different runs
with different initial berry and agent locations are made for
each agent.

No Markers !
26+

FourMarkers |
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Figure 3: Average inter-berry distance

The poorer performance of the memoryless agent is a
result of the agent not taking full advantage of areas in which
there is a cluster of several berries. As the agent approaches a
cluster, many of the other nearby berries go out of the abso-
lute field of view. This is illustrated in Figure 4, in which the
gray triangle indicates the agent with its absolute field of view
indicated by the conical shape. The memoryless agent may
miss these nearby berries completely, and instead move
towards a berry directly in front of it, but relatively much fur-
ther away. The agent with markers will remember the approx-

2. A discussion of the choice of four markers, as opposed to some other
number is postponed until later in this section.




imate locations of these nearby berries, and can turn towards
them appropriately. The difference in performance between
the “neck” and “no-neck” versions of the marker-using-
agents can also be explained by observing that the agent
which “looks around” more may potentially know more about
its surroundings, and in this specific case, know about more
nearby berry locations.
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Figure 4: Nearby berries passing out of field of view

Figure 5 shows a comparison of the performance of
seven different agents. The left-most cluster of data points is
from an agent with one marker, but this agent does not scan at
all, i.e., the head is fixed pointing forward relative to the body.
The performance of this agent is nearly identical to that of a
completely reactive agent. This is to be expected, since its
behavior is also nearly the same, in that it always moves
towards the nearest berry in the current field of view; it just
also happens to “mark” the berry.
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Figure 5: Increasing performance via marker use

The next five agents have functioning necks, and use 1,
2, 3, 4, or 5 markers in a behavior in which they “look
around” constantly. Adding the look-around behavior
increases the performance of the agent using a single marker,
since it can now compare currently seen items with items out-
side the field of view. Adding a second marker also increases
performance. This is because when the agent consumes the
berry marked by the first marker, the location of the next goal
berry is retained in the second marker, and can be pursued
immediately. The agent with only one marker must take time
to search for the next target once a berry is consumed.

Adding the 3rd, 4th, and 5th markers does not appear to
affect performance. Since the agent moves to the marked ber-
ries one at a time, the additional markers will not be used
until much further in the future. In a sufficiently dynamic and
uncertain environment, planning far into the future does not

help, since the environment may change or new information
will become available which will invalidate the plan.

The right-most agent shown is an “ideal” agent: an omni-
scient agent that always moves directly to the nearest berry
(through obstacles if necessary), and provides a lower bound
on the potential inter-berry distance.

More complex evaluation criteria of agent performance
can be created by modelling the agent as having an “energy
budget” and increasing the agent’s energy for successful
behavior, while decreasing the energy for undesirable behav-
ior. For example, we might consider a shorter path to be more
efficient under an energy-expended metric. In this model, eat-
ing berries increases the agent’s energy, and moving around
decreases it. Under this model an agent is considered success-
ful if its behavior patterns enable it to maintain a positive
energy budget (i.e., an energy level of zero constitutes
“death”). We can also add a “resting” energy consumption
rate, so that the uninteresting strategy of sitting in one place is
unsuccessful. Furthermore, we can penalize the agent for col-
lisions by decreasing its energy when it collides with an
obstacle, by an amount proportional to the agent’s speed. In
this way, we can evaluate the agent’s simultaneous berry-
gathering and obstacle avoidance performance.
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Figure 6: Energy time-series of reactive
and marker-based agents

This experiment was carried out for agents using the
reactive and marker-based strategies. The parameters of the
environment (e.g., berry energy value, collision penalty, etc.)
were adjusted to make the environment be sufficiently diffi-
cult that all agents tested eventually “died.” The agents were
otherwise identical (perception processing, speed, energy
consumption, etc.), even in their berry-gathering strategy, i.e.,
to go to the nearest berry they “know about.” Again, the
marker-based agent knows about more berries, due to the
expanded field of view afforded to it via the markers—the
reactive agent only knows about the berries in the current
absolute field of view. Their obstacle avoidance strategies
were similar as well (don’t run into any obstacle you know
about) however, the marker-based agent marked the edges of
the obstacles and used the obstacle avoidance strategy
described in section 6. The reactive agent turned to avoid
imminent collisions with obstacles it could see, but often col-
lided with objects which were just outside the absolute field
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of view, even though the obstacle had been seen recently. The
results of this experiment are shown in Figure 6. Each line
represents the average performance over five runs with differ-
ence initial conditions. On average, the marker-based agents
survived more than five times longer than the reactive agents.

8. A physical robot

In addition to the virtual system, we have implemented
our approach on a physical robot. The robot, named Bruce, is
an MC68HCI11 based robot with a single grey-scale camera
35 its sensor (see Figure 7).

Figure 7: The physical robot

The robot’s task is to detect and navigate to a goal loca-
tion, circumventing obstacles as necessary. The environment
is our laboratory, a cluttered room in daily use, with some
cones on the floor—the goal location is a striped cone. Figure
8 shows two images acquired from the camera on the robot.

Figure 8: The physical robot’s environment

Using a marker system such as that used by the virtual
agent, the robot is capable of reaching the goal location, cir-
cumnavigating obstacles en route if necessary. The robot
searches for the goal and places a marker on it. If necessary,
the robot will also mark any obstacles in the direct path to the
goal location. If there is a clear path from the robot to the goal
(as in the image on the right in Figure 8), the robot can pro-
ceed directly to the goal. If the path is blocked (as in the
image on the left in Figure 8, where the robot is too wide to fit
between the cones), the robot must go around the obstacle.

If the robot must go around an obstacle, it will point its
camera at the goal to monitor whether the obstacle is still
interposed between itself and the goal (i.e., whether the object
is still an obstacle to the goal). As the robot moves around the
obstacle, the robot may reach a point where it can no longer
turn its camera enough to view the goal. At this point, the
robot must rely on its memory for the locations of the objects

(i.e., the robot’s expanded effective field of view as retained
by the markers) to decide when it has cleared the obstacle and
can pursue the goal directly.

The robot operates in a dynamic environment. In a tight
loop, the robot computes the current position of the markers,
and based on their location, decides what action to take.
Obstacles can be placed in the robot’s path or removed while
the robot is in operation, and the robot adjusts to the new situ-
ation. If an obstacle is suddenly placed between the robot and
its goal, the robot immediately marks the new obstacle and
begins moving around it. If the obstacle is removed while the
agent is looking towards the goal, the agent immediately
notices that the path to the goal clear, and all obstacle markers
are deleted.

9. Conclusions

The conventional wisdom is that memory intensive strat-
egies perform best in static, perfect-information environ-
ments, while reactive strategies perform best in dynamic,
uncertain environments. We have shown that a very small
amount of memory, properly managed, can vastly improve
the performance of an agent in dynamic and uncertain envi-
ronments. We have shown further that additional memory
beyond the minimum needed to accomplish a given task may
not help, especially in dynamic environments.
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