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Hardware Support For Aggressive Parallel
Discrete Event Simulation

Every Parallel Discrete Event Simulation (PDES) protocol can benefit significantly from the
availability of global information: non-aggressive protocols require deadlock detection and
recovery; aggressive protocols require Global Virtual Time (GVT), and global and local status
information is critical to adaptive protocols. To rapidly compute and disseminate global
information, Reynolds proposed a framework for all PDES’s. As proposed, the framework
could clearly operate with a non-aggressive protocol. To demonstrate its utility to aggressive
protocols, we describe an algorithm to compute GVT using the framework in a Time Warp
system, and we establish its correctness. Aggressiveness, used in moderation, (i.e. adaptive
behavior) will most likely lead to the most efficient protocols. The algorithms described in this
paper can be used as a foundation for designing adaptive protocols which utilize the
framework to obtain status information. Finally, our approach to computing GVT is novel.
Simulation studies show that very accurate GVT can be made available at no cost to the
simulation itself.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent
Programming - parallel programming; D.4.1 [Operating Systems]: Process Management -
deadlocks; D.4.1 [Operating Systems]: Process Management - synchronization; D.4.4
[Operating Systems]: Communications Management - message sending; D.4.7 [Operating
Systems] Organization and Design - distributed systems; D.4.8 [Operating Systems]
Performance - simulation; I.6.8 [Simulation and Modeling] Types of Simulation - parallel
and discrete event

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Aggressive protocols, GVT computation, reduction
network, synchronization algorithm, Time Warp
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1 Introduction

1.1 Overview

Parallelizing Discrete Event Simulation (DES) is a challenging problem in parallel
computing. Since simulated events have causal relations among them, they must be simulated in
the order defined by these causal relations. A dependence graph can be constructed using these
causal relations, which defines a partial order on all of the simulated events. Events which are not
related under this partial order can be executed concurrently. It appears that typical DES’s exhibit
substantial concurrency in their dependence graphs [9, 15, 19] which makes DES a candidate for
parallelization. Ironically though, this concurrency is difficult to extract in practice. The well-
investigated approach of extracting concurrency from sequential programs fails with DES due
primarily to two reasons: (i) There is a single (main) data structure, the events list, which is
modified very frequently (ii) The DES algorithm is basically a single loop in which there are
several inter-iteration dependencies (because execution of events may schedule more events in the
logical future). Consequently, a different method for parallelizing DES has been adopted [4, 19].
The essence of this method is to divide the DES into several logical processes (LP’s), each responsible
for simulating a part of the physical system. These LP’s are sequential DES’s by themselves and
they synchronize with each other when required using timestamped messages, in order to
guarantee accurate simulation (i.e, freedom from causality violations). The method used to
synchronize the LP’s of a Parallel Discrete Event Simulation (PDES) is generally referred to as a
protocol. We present a modified version of a previously proposed synchronization algorithm [22],
modified to operate with a class of protocols which we call aggressive protocols. This class includes
the so-called optimistic protocols as well as an interesting and as yet relatively unexplored
subclass: adaptive protocols in which the aggressiveness of the LP’s is controlled. Also, we prove
the correctness of our algorithm. The algorithm of [22] as well as our algorithm operate on special-
purpose hardware designed to desseminate global information rapidly. Thus, the primary
contribution of this work is the establishment of a correct method for rapidly disseminating
critical synchronization information in support of aggressive (and therefore adaptive) protocols at
essentially no cost to the PDES itself. Our algorithm will serve as a foundation for the design of
adaptive protocols which use the hardware to gather status information at very low cost.

1.2 Background

In the past, researchers have proposed several protocols [9], most of which belong to one
of two categories: non-aggressive, accurate and without risk (commonly known as conservative) and
aggressive, accurate and with risk (commonly optimistic) with some exceptions. In a non-aggressive
protocol, an LP generally executes its next scheduled event only after it confirms that no causality
constraints can be violated in the future due to this execution. Such protocols tend not to exploit
much of the concurrency in the simulation. In an aggressive protocol, an LP executes events
without the guarantee of freedom from causality errors. As a result, causality errors may occur.
One of the ways of dealing with causality errors is to ignore them, but we do not consider this
further here. For the simulation to be accurate, some error recovery must be performed;
commonly, rolling back to an earlier, correct, saved state is the method of choice. Consequently,
aggressive protocols suffer the penalty of saving state periodically and rolling back on errors. The



Hardware Support for Aggressive Parallel Discrete Event Simulation 2

costs of these actions can become prohibitively high in implementations. Another problem
aggressive protocols face is that LP’s periodically require a global value called global virtual time
(GVT) [10]. Computing GVT has thus far been an expensive operation. Note that the general class
of aggressive protocols includes optimistic protocols.

Researchers have reported success with both non-aggressive and aggressive protocols [9].
Studies have shown that there are applications for which aggressive protocols will outperform
non-aggressive ones [12, 14] and vice-versa [16]. As a result, there is no optimal protocol. In [21],
Reynolds points out that there are several other categories of protocols, based on a set of design
variables used to characterize protocols. An interesting category of protocols that has not received
much attention is the class of adaptive protocols in which the LP’s dynamically adapt some aspect
or aspects of their processing. An interesting and promising subclass of adaptive protocols are
those in which the LP’s dynamically control their aggressiveness. Recent research [1, 6, 7, 16, 17]
suggests that controlled aggressiveness will most likely be a feature of a universally efficient
protocol. In the rest of this paper, we will use the term adaptive to refer to this subclass of adaptive
protocols which is characterized by controlled aggressiveness.

Most PDES protocols require global information of some sort [24]. For example, Time
Warp LP’s require the value of GVT for several reasons. Correspondingly, non-aggressive (or
blocking) protocols, which have the potential to deadlock, need to be able to identify the LP with
the event that must be executed next, to break a deadlock. Iterative protocols which restrict
executable events to those inside a computation window require the LP’s to collectively determine
the lower and upper bounds of the window. In adaptive protocols as well, there is need for global
information, since the amount of aggressiveness of any LP will be controlled by its state relative to
the state of others in the system.

The need for global synchronization information motivated a universal framework for all
parallel simulations, proposed by Reynolds [22]. This framework has the capability of rapidly
providing the global information required in any PDES. For instance, it can be used to compute
GVT, the minimum lookahead in the system, the floor and ceiling of a computation window or to
break deadlocks. We believe that adaptive protocols will benefit most from this framework
because global information required to make adaptive decisions dynamically, which has been very
expensive (in time) to compute thus far, can be made available very rapidly using the framework.
The framework consists of three parts: (i) A small set of global values required by any PDES
protocol (ii) High speed special purpose hardware to rapidly compute and disseminate these
global values and (iii) A synchronization algorithm executed by each LP to correctly maintain the
global values. (i) and (iii) are described in [23] while (ii) is described in [25]. It must be noted that
the synchronization algorithm is not a protocol, but a foundation for PDES protocols. It is
intuitively clear that the synchronization algorithm can operate with non-aggressive protocols, in
which the logical clocks of the LP’s never move backwards. We present an aggressive version of
the synchronization algorithm and prove its correctness, thus demonstrating that the framework
can be used to support a protocol which allows aggressive processing. In the future, we intend to
use our algorithm as a basis for designing efficient adaptive protocols which use the framework
hardware to collect global information. In the rest of the paper we refer to the hardware desgined
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for the framework as the framework hardware and to the synchronization algorithm as the framework
algorithm.

In the next section, we briefly describe the hardware and synchronization algorithm of the
framework to set the context for our work. We present our algorithm in Section 3 and in Section 4,
we show its correctness. Sections 5 and 6 present and establish the correctness of a modified
version of our algorithm, which is required due to the organization of the hardware described in
Section 2. Section 7 describes three properties of the value of GVT computed by our algorithm. In
Section 8, we present the findings of preliminary studies of our algorithm and compare this with
previous work in this area. Section 9 concludes the paper.

2 A Framework for PDES

We begin with a brief review of the Reynolds framework. Details can be found in [23]. We
first describe the framework algorithm and then the hardware support for the algorithm.

2.1 Framework algorithm

The main purpose of the algorithm is to correctly maintain a set of global values required
by the protocol being used in the PDES. At each LP, the algorithm maintains the local counterpart
of each global value. For instance, the algorithm could maintain the event processing rate at each
LP so that the corresponding global value could identify the fastest LP’s. In [22], Reynolds
identified two such global values:  , the smallest of the timestamps in the future events list of all
the LP’s and  , the smallest of the timestamps of messages that are outstanding (as yet
unreceived). Since these values are logical timestamps, we call them T-values. As we shall see,
these T-values are functions of real time. The upper-case “T” in “T-values” signifies logical time,
which is the range of these functions, as against real time, which is their domain. To compute these
two global T-values, each LP maintains two local T-values, one corresponding to each global T-
value. We define  and  as follows:

where  is the timestamp of the first event in LPi’s events list (which is assumed to be sorted in
non-descending order) and  is the smallest of the timestamps of all the messages that LPi has
sent out which have not yet been received by their intended receivers. We call  the next event
time and accordingly,  the minimum next event time. Similarly,  is the smallest unreceived
message time and  is the minimum unreceived message time. We emphasize here that the
responsibility of the algorithm is only to correctly maintain  and  (or other such global T-
values). The values are actually used by the PDES protocol working in conjunction with the
framework. For completeness, the algorithm presented here uses the two global T-values to
identify the next safe event (or events) in the system, where an event is safe if its execution is
guaranteed not to violate any causality constraints in the future.
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In order to maintain , when an LP receives a message and incorporates it into its events
list, the LP that sent the message must be informed that the message has been received. To achieve
this, the algorithm acknowledges each message received by an LP using the two-phase protocol
described in [18]. The acknowledgment protocol uses two more T-values,  and . Each of
these T-values is actually a triple comprised of the timestamp of the message being acknowledged,
a globally unique message identifier (this is required since there may be multiple messages with
the same timestamp) and a size field used for batched acknowledgments described later. One way
of generating these globally unique message identifiers in a distributed manner with no overhead
is by having the identifier consist of three fields: the LP number of the sender, the LP number of
the receiver and a sequence number. Each LP maintains one sequence counter for each LP that it
sends messages to. When an LP sends a message to another LP, it increments the counter for that
receiver and uses its value in the message identifier. Thus, the message identifiers form a
contiguous sequence for each ordered pair of communicating LP’s. Each LPi also maintains two
lists: a list of sent but not yet received messages called the outstanding message list and a list of
messages which have been received by LPi but which it has not yet acknowledged called the
unacknowledged message list.

The algorithm uses the global computation model shown in Figure 1. For simplicity, we
assume here that each LP executes on a separate processor. The four local T-values define astate
vector for each LP. State vectors are the smallest unit of transaction between the LP’s and the
reduction network. They provide atomic snapshots and guarantee that the hardware satisfies
certain correctness criteria defined in [25]. Whenever an LP changes aT-value, it constructs a state
vector with that change and presents it to the reduction network. The reduction network produces
a globally reduced state vector by reducing corresponding elements of each state vector and

υi

ρi τi

LP

State Vector

Reduction Network

LP

State Vector

LP

State Vector

Host Communication Network

Figure 1 - Global Computation Model

State Vector
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distributes this to all the LP’s. In the case of T-values which have more than one component, the
reduction is performed on the time component; all other components simply accompany the time
component. Accordingly, we define the global counterparts of  and  as:

 where

 where

where  and  refer to the time components of the respective triples.

We note that the LP’s and the reduction network operate completely asynchronously with
each other. As a result, it is likely that state vectors will not be presented at the same time by all the
LP’s. The reduction network operates in reduction cycles. In each cycle, it reduces a complete set of
input state vectors to a single output state vector. The algorithm assumes that once a state vector
has been presented to the reduction network, it is used repeatedly in successive reduction cycles
until a new state vector overwrites it. Also, it assumes that overwriting of state vectors is
performed only between reduction cycles. Finally, it assumes that each LP periodically reads the
output of the reduction network, i.e., no LP ignores the output for an arbitrary amount of time.
These assumptions are satisfied by the particular hardware design we describe in Section 2.2.

The algorithm is shown in Figure 2*. An instance of this algorithm executes for each LPi. It
consists of three concurrent procedures, TEST, RCVMSG and CHKACK. SENDMSG is a subroutine
used by TEST to send messages to other LP’s. At each LPi,  is initialized to the timestamp of the
first event to be executed,  to  and  and  to  where Φ denotes a null value

2.1.1 TEST

TEST is the procedure which uses the two global T-values  and . At each LP, TEST
determines whether the next event scheduled for that LP is safe. For an event to be safe, its
timestamp must be the minimum of all next event times and there must be no unreceived message
with a smaller timestamp (if there is such a message, it may ultimately cause an event with a
timestamp smaller than the LP’s current next event to be scheduled). If the event is indeed safe, it
is executed. As a result, an LP may send out messages to other LP’s. Since every message that is
sent is initially outstanding, the SENDMSG subroutine ensures that the smallest unreceived
message time reflects this fact.

2.1.2 RCVMSG

The RCVMSG procedure is executed whenever an LP receives a message from another LP.
message_time is the timestamp of the message. Every message causes an event to be scheduled
at the receiving LP, with message_time as its timestamp. In the case where the newly created
event precedes the scheduled next event, the new event becomes the scheduled next event of the
LP. The newly received message is inserted into the unacknowledged message list and remains

* In all of the algorithms presented in this paper, [...] represents actions that must be performed atomically and
textual nesting is used to indicate the scope of compound statements such as IF statements.

ρi τi

ρ′ ρj= timestamp ρj( ) MINLPi
timestamp ρi( )( )=

τ′ τj= timestamp τj( ) MINLPi
timestamp τi( )( )=

timestamp ρi( ) timestamp τi( )
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there until it is acknowledged. If the LP is not acknowledging any previous messages, RCVMSG
immediately initiates the acknowledgment of the newly received message.

2.1.3 CHKACK

CHKACK is responsible for performing acknowledgments of messages through the
reduction network. It is executed periodically, as often as possible. Since acknowledgments are
performed through the reduction network, they do not interfere with the simulation message
traffic in the host communication network. We first briefly present the two enhancements
described in [18] which have been incorporated into the CHKACK procedure, viz., the two-phase
protocol for acknowledging messages and batched acknowledgments.

Two-phase acknowledgment protocol

In the framework, messages are acknowledged through the reduction network. Since LP’s
may not observe all of the state vectors emerging from the reduction network, an LP sending an
acknowledgment to another cannot assume that the LP to which the acknowledgment is being
sent observes the acknowledgment when it emerges from the reduction network. To overcome

Figure 2 - Framework Algorithm

TEST: IF [  AND ] -- Identify next event in system

THEN  := ; -- Advance local clock

Execute event; Perform SENDMSG if required; -- May send zero or more messages

Compute new ;

SENDMSG: [IF message_time < -- Update smallest unreceived

 THEN  := message_time]; -- message time if necessary

Send the message;

Add {message_time, message_id} to outstanding message list;

RCVMSG: [IF message_time < -- Message creates new next event

 THEN  := message_time]; -- update next event time

Add {message_time, message_id} to unacknowledged message list;

[IF  = -- No acknowledgment in progress

 THEN  := {message_time, message_id}]; -- acknowledge the new message

CHKACK: IF [  AND ] -- Sender has seen acknowledgment

THEN Set  to acknowledge next batch of messages; -- Possibly

Remove acknowledged batch from unacknowledged message list;

[IF  has been sent to this LP -- sender sees the acknowledgment

THEN  := ;

IF  is in outstanding message list]

THEN Remove the acknowledged batch -- seeing ack for the first time

from outstanding message list;

IF timestamp of acknowledged batch =

THEN  := smallest timestamp in outstanding message list;

ELSE  := ;

ηi η′= ηi υ′≤
LCi ηi

ηi

υi
υi
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ρi
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ρ′

υi
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this, the protocol uses two phases: in the first phase, the sender of the message being
acknowledged determines that the receiver of the message is acknowledging the message and in
the second phase, the receiver determines that its acknowledgment has been observed by the
sender.

To acknowledge a message sent to it by LPs, LPr initiates the first phase by setting its
to the timestamp and message identifier of the received message. We refer to some  having a
value other than  as a primary acknowledgment (or simply acknowledgment) and the act of
setting  as submitting a primary acknowledgment. The timestamp of a primary acknowledgment is
the same as that of the message which it is acknowledging. For now, assume that the timestamp of

 is the smallest among all other acknowldegments submitted simultaneously. Thus,  will
equal . When this is observed by LPs (and it is guaranteed to ultimately do so, since LPr does
not change ), it knows that its message to LPr is being acknowledged and the first phase is
complete. LPs initiates the second phase by setting its  to . As with , we refer to some
having a value other than  as a secondary acknowledgment and the act of setting  as
submitting a secondary acknowledgment. Since an LP submits a secondary acknowledgment only
after observing a primary acknowledgment, every secondary acknowledgment corresponds to a
primary acknowledgment and the timestamp of a secondary acknowledgment is equal to that of
its primary acknowledgment. After some time,  will equal  and therefore . This is
ultimately observed by LPr (because LPs does not change ) which then knows that LPs has seen
its acknowledgment. LPr then removes its acknowledgment by changing . After some delay,
this change is reflected in the output of the reduction network as a change in . When LPs
observes this change, it knows that LPr has removed its acknowledgment and so it relinquishes the
secondary acknowledgment by setting  to  and the second phase is complete.

At any time during the two phases described above, a new acknowledgment with a
timestamp smaller than  may be submitted. As a result,  will equal this new
acknowledgment. This change in  may occur either before or after LPs observes the old . In
the first case, the first phase of the protocol is preempted; this situation is the same as having
several acknowledgments with the new acknowledgment having the smallest timestamp. When
the new acknowledgment completes,  again becomes the acknowledgment with the smallest
timestamp and the first phase is restarted. In the second case, LPs has observed the primary
acknowledgment but the second phase is preempted. LPs observes that its message is no longer
being acknowledged and consequently relinquishes the second acknowledgment by setting  to

. After the new acknowledgment completes,  reverts to . When LPs observes this,
it resumes the second phase by resubmitting its secondary acknowledgment and the second phase
ultimately completes. Thus, the algorithm effectively nests acknowledgments.

Batched acknowledgments

From the description above, it is clear that when multiple acknowledgments are
submitted at the same time, only the one with the smallest timestamp completes. This serialization
of acknowledgments is alleviated by the second enhancement in which a batch of messages is
acknowledged using a single physical acknowledgment. This is done by adding a third
component to each of , ,  and . These T-values now consist of a message timestamp, a
message identifier and a size field. An acknowledging LP searches its unacknowledged message

ρr
ρi
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ρr ρ′
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list for a batch of received messages with contiguous sequence numbers and sets its  to {the
smallest timestamp in the batch, the message identifier of the starting message in the batch, the
number of messages in the batch}. This enhancement is expected to make the system more robust
under heavy loads, as corroborated by simulation studies [28].

The CHKACK procedure consists of two parts. The firstIF statement implements the part
of the two-phase protocol executed by an LP which receives a message while the second IF

statement implements the part executed by an LP which sends a message.

2.2 Framework hardware

We briefly describe an implementation of the reduction model shown in Figure 1. A
detailed description can be found in [25]. The hardware configuration is shown in Figure 3. The
main components of this hardware are the parallel reduction network (PRN) and the auxiliary
processors (AP). For each host processor (HP), there is an AP which is a general purpose processor
such as the HP itself. The HP’s perform all simulation specific tasks (executing events, sending

ρi

Host Processor Host Processor Host Processor

IN Buffer OUT Buffer

Auxiliary
Processor

IN Buffer OUT Buffer

Auxiliary
Processor

IN Buffer OUT Buffer

Auxiliary
Processor

IN Regs OUT Regs IN Regs OUT Regs IN Regs OUT Regs

Parallel Reduction Network

Host Communication Network

Figure 3 - Hardware Configuration
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and receiving messages, saving state, etc.) while the AP’s perform all of the synchronization tasks
(i.e., they are responsible for submitting state vectors to the PRN, reading the output of the PRN
and executing synchronization algorithms). When an HP causes its state to change (by executing
an event, receiving a message, etc.) it communicates this change to its AP. The AP incorporates
such changes into state vectors which it submits to the PRN for reduction. The AP also reads the
globally reduced output state vector produced by the PRN and makes selected subsets of this
available to the HP.

The interface between the HP and the AP consists of two unidirectional channels
(implemented as buffers). For information flowing from the HP to the AP, it is required that none
of it be lost and that the AP process the information in the order sent out by the HP. For these two
reasons, the IN Buffer is a FIFO. In the other direction, the only requirement is that the most recent
version of the AP’s output be available to the HP. Accordingly, the OUT Buffer consists of a single
cell buffer, which is repeatedly overwritten by the AP each time it presents new data to the HP. We
note here that this configuration is one of many possible implementations of the global
computation model of Figure 1. In particular, the choice of having dedicated processors for
simulation and synchronization tasks and their asynchronous operation with respect to each other
introduces latencies in the data path which are absent in the model of Figure 1. This requires
minor adjustment of synchronization algorithms which are based on the model of Figure 1, as will
be seen in Section 5.

As mentioned earlier, the PRN and the AP’s operate asynchronously. Occasionally, the
AP’s present state vectors (not necessarily all at the same time) to the PRN for reduction. The PRN
operates in reduction cycles, reducing a set of state vectors, one from each processor, to a single
output state vector in each cycle. Subsequent reduction cycles re-use state vectors for those AP’s
which do not present new state vectors. To satisfy these requirements, the design includes a
custom interface between the AP’s and the PRN. The AP’s write new state vectors to the IN
registers and read globally reduced state vectors from the OUT registers. Likewise, the PRN reads
state vectors from the IN registers, reduces them and writes the global output to the OUT
registers. The IN and OUT registers are comprised of three sets of registers each which provide the
isolation between the AP and the PRN. The detailed operation of these register interfaces is
described in [25].

The PRN is a binary tree of height log2n, where n is the number of processors. Figure 4
shows a PRN for eight processors. Each node of the tree contains a general purpose ALU which
performs reduction operations on its two operands. The reductions are performed in parallel
across all the ALU’s. The PRN interfaces with each processor through the IN and OUT registers.
At each LP, the IN registers present a state vector (which may be the same as the one used in the
previous cycle) to the PRN. The PRN starts the reduction by reading the first elements of each state
vector and reducing them pair-wise at the top row of ALU’s. These ALU’s then pass the reduced
values down to the second row of ALU’s. While the second row of ALU’s reduces these values, the
top row reduces the second elements of each state vector. Thus, the PRN operates in a pipelined
fashion. The time required for a set of values to pass through a single PRN stage is called the minor
cycle time, while the time required for the top row ALU’s to read all the elements of the state
vectors is called the input cycle time. Note that an input cycle consists of m minor cycles, where m is
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the size of the state vectors. Because of the pipelined nature of the PRN, it takes log2n minor cycles
for the global reduction of the first element of a set of state vectors and thereafter, reductions of the
remaining m-1 elements emerge from the PRN one minor cycle apart. Thus, a reduction cycle,
which is the total time required to produce a globally reduced output state vector from a set of n
input state vectors of size m each, is (log2n + (m-1))*c, where c is the minor cycle time. We note that
in this implementation, a new reduction cycle is initiated at the end of every input cycle (or m
minor cycles). For n > 2, this means that a new reduction cycle is started before the current one
completes. Since speed of reduction is the primary design goal of this hardware, it is important
that c be small. In the prototype hardware described in [24], c is expected to be around 150
nanoseconds giving a reduction cycle time of 1.2 microseconds for 32 processors with 4-element
state vectors.

Besides the ALU, each PRN node has some additional logic to accommodate T-values
which have multiple components (such as  and ). Each value submitted to the PRN for
reduction is accompanied by a tag which is expected to carry the other components of a T-value.
At each ALU, the tags of the two operands are brought to a selector switch. The choice of which
tag is propagated down to the next stage is made by a control signal from the ALU. For example, if
the ALU performs a selective operation such as a minimum on the values, the tag of the smaller of
the two values will proceed downward. In non-selective operations, the choice can be arbitrary
but should be deterministic.

3 Making the framework aggressive

It has been established in [22] that the framework algorithm will operate correctly with
non-aggressive protocols. Aggressive protocols have two attributes which are not seen in non-
aggressive protocols: (i) the logical clocks of the LP’s may move backward and (ii) LP’s use

ALU1,1 ALU1,2 ALU1,3 ALU1,4

ALU2,1 ALU2,2

ALU3,1

Figure 4 - A Parallel Reduction Network

ρi τi
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antimessages (when they propagate the results of aggressive processing to other LP’s). In this
section, we present our algorithm which is a modified version of the algorithm of Figure 2,
modified to incorporate the considerations for the two attributes just mentioned. For exposition,
our choice of aggressive protocol is Time Warp [10].

The most important synchronization value required by the LP’s in Time Warp is GVT.
GVT is required by the LP’s during a simulation for several reasons: fossil collection in systems
with limited state saving space, performing I/O, collecting statistics and detecting termination
conditions. To date, GVT computation has been an expensive (time consuming) operation. This is
an area in which the framework can significantly benefit aggressive protocols, by rapidly
computing and providing the value of GVT. In order to correctly compute GVT using the
framework hardware, we have modified the synchronization algorithm of Figure 2 to correctly
maintain two local T-values at each LP, the global reduction of which provides GVT.

3.1 Aggressive Framework Algorithm

The Aggressive Framework Algorithm (AFA) listed in Figure 5 is designed to
asynchronously compute GVT in a Time Warp system. It assumes the computation model of
Figure 1. As mentioned in Section 2.2, the framework hardware differs slightly from this model.
We will present AFA adapted for the framework hardware in Section 5 and prove its correctness in
Section 6.

We assume familiarity with the Time Warp protocol and associated terminology. By
definition, GVT is the minimum of twoT-values: the smallest of the logical clocks of all the LP’s
and the smallest unreceived message time among all the LP’s. The original framework algorithm
maintains the minimum unreceived message time, , but does not maintain the smallest logical
clock value. Instead, it maintains the smallest next event time, . In a non-aggressive system, we
can distinguish between two local T-values: , which is the timestamp of the event being
executed (or just executed) by LPi (i.e., the logical clock value of LPi) and , which is the
timestamp of the next event that LPi intends to execute. In such a system, LPi will not execute its
next event unless it can ascertain its safety. Each LPi submits its  for reduction rather than its

, so that the LP’s can identify the next safe event(s). In an aggressive system, since LP’s do not
wait to ascertain the safety of an event before executing it, we consider only , the logical clock
value of LPi. Thus, the algorithm of Figure 5 maintains the following two T-values:

: the minimum of all the logical clocks

: the minimum unreceived message time

and GVT is defined as .

AFA has two concurrent procedures, PROCESS and DO_ACK. The PROCESS procedure
invokes three subroutines, SEND_MSG, RCV_MSG and ROLLBACK as required. One change in AFA
from the framework algorithm of Figure 2 is that RCV_MSG is now called as a subroutine by
PROCESS instead of being a concurrent procedure invoked when a message is received. This is

υ′
η′

σi
ηi

ηi
σi

σi

σ′ MINLPi
σi( )=

υ′ MINLPi
υi( )=

GVT MIN σ′ υ′,( )=
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because we assume that messages do not preempt event execution. We show later how to
incorporate event preemption into this algorithm.

The PROCESS procedure implements all Time Warp specific operations. It unconditionally
executes events on the events list. The state of the LP is saved periodically. After the execution of
each event, the procedure checks for the arrival of new messages during this execution. If any new

Figure 5 - Aggressive Framework Algorithm

PROCESS: IF there are events in the events list

THEN  := timestamp of next event;

Execute event; Perform SEND_MSG if required;

Optionally save state;

WHILE there are newly received messages with timestamps <

Perform ROLLBACK;

FOR each new message

Perform RCV_MSG;

Optionally collect fossils;

SEND_MSG: [IF message_time <

THEN  := message_time]

Add message to outstanding list;

Send the message;

IF message_sign > 0

Add antimessage to output list;

RCV_MSG: IF message_sign > 0

THEN Insert event into events list;

ELSE Delete the positive event;

[IF

THEN  := (message_time, message_id, 1)

ELSE Add message to unacknowledged message list];

ROLLBACK:  := rollback time;

Roll back the execution of all events with time > rollback time;

Restore state from the last time it was saved before rollback time;

Rebuild the state up to rollback time if required;

FOR each antimessage with timestamp > rollback time

Perform SEND_MSG;

Delete it from the output list;

DO_ACK: IF [  AND ] -- sender has seen ack

THEN Remove next batch to be acknowledged

from unacknowledged message list; -- if one exists

Set  to acknowledge this batch;

[IF  has been sent to this LP

THEN  := ;

IF  messages are in outstanding message list]

THEN Remove the acknowledged batch from outstanding message list;

IF timestamp of acknowledged batch =

THEN  := smallest timestamp in outstanding message list

ELSE  := ;

σi

σi

υi
υi

ρi ∞ Φ 0, ,{ }=
ρi

σi

τ′ ρi= ρi ∞ Φ 0, ,{ }≠
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messages have arrived in the LP’s logical past (i.e. they have to be inserted in the events list before
the event just executed - such messages are called stragglers), then PROCESS calls ROLLBACK, to
perform the rollback. On a rollback, the logical clock of the LP is rolled back to the timestamp of
the straggler. In the ROLLBACK subroutine, we have chosen to employ aggressive cancellation [26].
We show later that lazy cancellation is easily accommodated in this algorithm. At the end of a
rollback, the PROCESS procedure checks to see if any new stragglers have arrived during the
rollback process which will cause the LP to roll back further. If so, ROLLBACK is called again. Thus,
ROLLBACK is invoked repeatedly until all of the newly received messages are in the LP’s logical
future (i.e., the LP has rolled back far enough). These messages are now incorporated into the
events list of the LP in the RCV_MSG subroutine. The DO_ACK procedure is the same as the CHKACK
procedure in Figure 2; it performs acknowledgments of messages using the PRN.

In order to maintain  correctly, the timestamps of antimessages must also be part of the
GVT computation. To see why, consider a system of two LP’s with LP0 having  at 1000, LP1
having  at 1500 and no messages in transit. Therefore, GVT has a value of 1000. Now, LP0 sends
LP1 an antimessage with timestamp 1000 and then proceeds to execute its next event with
timestamp 2000. While the antimessage is in transit, if antimessages are not acknowledged, we
have  at 2000,  at 1500 and both  and  at , giving a GVT of 1500. When the
antimessage is finally received by LP1,  falls to 1000, bringing GVT down to 1000. This is an
error since GVT must be strictly non-decreasing. The error occurs because the smallest timestamp
in the system, which is the timestamp of the antimessage, is momentarily absent from the GVT
computation algorithm. The problem is solved by requiring antimessages also to be
acknowledged. To do this, the ROLLBACK procedure calls SEND_MSG to send the antimessages.
This guarantees that the timestamps of antimessages are accounted for in the value of . In
addition, we see that the received message is marked for acknowledgment independent of its sign
in RCV_MSG (i.e. antimessages are also acknowledged).

3.2 Event preemption and lazy cancellation

We indicate how two optional features of Time Warp (event preemption and lazy
cancellation) can be incorporated into AFA. In AFA as presented in Figure 5, the event processing
procedure (PROCESS) checks to see if new messages have arrived after the execution of each
event. When one or more of the messages received during the execution of an event have a smaller
timestamp than that of the event, an efficient implementation will preempt the execution of the
event (since it will be rolled back anyway) rather than wait for the execution to complete. To
incorporate this into AFA, the RCV_MSG subroutine is activated as a concurrent procedure with
PROCESS and DO_ACK whenever the LP receives a message. In addition, at the start of the
RCV_MSG procedure, a check is made to see if the received message is in the LP’s logical past and if
so, the ROLLBACK procedure is called. In effect, each iteration of the WHILE and FOR loops in
PROCESS is transformed into a concurrent invocation of RCV_MSG.

With lazy cancellation, upon rolling back, an LP sends out antimessages only as required.
In Figure 5, the ROLLBACK subroutine implements aggressive cancellation, wherein antimessages
are sent out during a rollback regardless of whether they are needed or not. To implement lazy
cancellation, the FOR loop is removed from the ROLLBACK subroutine. Instead, the PROCESS
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σ0 σ1 υ0 υ1 ∞
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procedure must now perform a check after every event execution, to see if any antimessages need
to be sent out. If so, the SEND_MSG subroutine is called to actually send the antimessage.

4 Correctness

In this section, we establish the correctness of AFA shown in Figure 5. Throughout this
paper we are concerned only with temporal correctness. We assume that the simulators under
discussion are functionally accurate. By temporal correctness we mean that none of the committed
events violate causality constraints. The following criteria define (temporal) correctness of a
parallel simulation:

i) each LP must ultimately execute events in strictly non-decreasing timestamp
order [9]

ii) the simulator must make progress if the application being simulated makes
progress

The second criterion incorporates the concepts of freedom from deadlock as well as termination.

4.1 Correctness of a Time Warp system

For a Time Warp system, it can be proven that the value of GVT never decreases, by
considering all of the possible ways in which GVT may change [10]. Hence, GVT defines a
commitment horizon, i.e. events with timestamps lower than GVT can be committed. Other uses
of GVT are fossil collection, gathering statistical data and detecting the occurrence of termination
conditions. It is therefore reasonable to assume that every Time Warp LP needs to know the value
of GVT periodically. In a typical Time Warp implementation, this is done by actually computing it
during the simulation.

An ideal time warp system is one in which the LP’s obtain all the information they need
instantaneously. For instance, in an ideal system, when an LP receives a message sent to it by
another, the sending LP becomes aware of the fact that the message has been received at the same
instant the receiving LP receives the message. Obviously, no implementation can be ideal but
every implementation has a corresponding ideal system. Timestamps often remain in an
implementation for some time after they have disappeared from the ideal system. Returning to
our previous example, typically, the sending LP is notified of the receipt of the message by some
form of acknowledgment. Since this acknowledgment takes time to accomplish, the message
remains outstanding for a longer period of time in the implementation than in the ideal system.
This lag is especially true of implementations in which the GVT computation proceeds
asynchronously with the simulation, i.e., the simulation is not suspended when GVT is computed.
As a result, the GVT computed by an implementation is usually an approximation of the value of
GVT in the corresponding ideal system. At any instant of real time t, we distinguish between the
actual value of GVT, GVTa(t), which is the value of GVT in the ideal system at time t (i.e. the
smallest timestamp in the ideal system at time t), and the computed value of GVT, GVTc(t), which
is the value of GVT made available by the Time Warp implementation at time t.
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Time Warp has the property that all of the LP’s are guaranteed to have correctly simulated
the system until simulated time equal to GVT. All of the simulation beyond GVT is speculative. In
terms of our notation, at real time t, all events with timestamps less than GVTa (t) have been
correctly simluated at each LP. Since GVTc (t) is used to approximate GVTa (t) (and therefore to
commit events), its value must not exceed that of GVTa (t) for all times t. The correctness criteria
for a Time Warp implementation (actually any GVT computation algorithm) can now be stated as
below:

Criterion 1: GVTc (t) ≤ GVTa (t) for all times t.
Criterion 2: As t increases, GVTc (t) increases if GVTa (t) increases.

4.2 Useful properties

Before proving the correctness of AFA, we present some properties of the framework
hardware and AFA. These will be used in the proofs that follow. A short name is associated with
each property and will be used along with the property number to refer to the property.

4.2.1 Properties of the framework hardware

P1 no loss
No communication from the HP to the AP is lost.

P2 reduction operation
Let V1, V2, ... Vn be the state vectors submitted by the n LP’s such that Vi
= <Vi

1, Vi
2, ..., Vi

m> where m is the size of each LP’s state vector. Let θi
 be binary associative operators. Then in one reduction cycle the

PRN computes G = <G1, G2, ..., Gm> where Gi := θi<V1
i, V2

i, ..., Vn
i>,

 and G is the output state vector of the PRN. For the algorithms
in this paper, m = 4 and .

P3 input cycle time
A reduction cycle (i.e. a fresh computation of GVT) is started every δ time
units.

P4 reduction cycle time
Each reduction cycle takes ∆ time units to complete and *.

* Strictly speaking, due to the asynchronous design of the PRN, a reduction cycle is started once every approxi-
mately δ time units. Similarly, each reduction cycle takes approximately ∆ time units. However, this variation does
not affect the proofs.

1 i m≤ ≤

1 i m≤ ≤
θ1 θ2 θ3 θ4 MIN= = = =

∆ δ≥
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4.2.2 Properties of AP software

The software executing on the AP’s should have the following properties:

P5 periodic read
Each AP (and therefore each LP) reads the output of the PRN periodically,
i.e. no LP will ignore the output of the PRN for an arbitrary amount of
time.

P6 finite delay
No communication in a FIFO remains unprocessed by the AP for an
arbitrary amount of time. This assumes that the communications are
enqueued at an average rate which is lower than the average rate at
which the communications are processed.

4.2.3 Properties of AFA

P7 set clock on event
An LP sets its  to the timestamp of an event before it executes that
event.

P8 set unreceived message time
When an LP sends a message, if its  is greater than the timestamp of
the message, its  will be set to the timestamp of the message;
otherwise, there is no change in its .

P9 update unreceived message time
When LPi receives the primary acknowledgment for a message which has
timestamp , that message is removed from its outstanding message list
and its  is set to the smallest among the timestamps of the remaining
messages in its outstanding message list.

P10 unreceived is minimum
At any LPi,  is equal to the smallest of the timestamps of the messages
in its outstanding message list. This follows directly from P8 (set
unreceived message time)  and P9 (update unreceived message time).

P11 maintain unreceived message time
When an LP sends a message M, its  is less than or equal to the
timestamp of M (from P8 (set unreceived message time)). In addition, it
will remain so until the LP observes the primary acknowledgment for M.

P12 set clock on message
When an LP receives a message, its  is made less than or equal to the
timestamp of the message before the acknowledgment of the message is
initiated.
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4.2.4 Properties of the DO_ACK procedure of AFA

P13 unique selection
Given a set of primary acknowledgments submitted to the PRN, there is
one among them (which also has the smallest timestamp among them, by
P2 (reduction operation)) that is selected by the PRN.

P14 secondary acknowledgment
If an LP observes a primary acknowledgment being sent to it, it submits
the corresponding secondary acknowledgment within a finite, bounded
amount of time. Otherwise, its  is set to .

P15 persistent primary acknowledgment
Once an LP submits a primary acknowledgment to the PRN, that
acknowledgment is removed only when the acknowledging LP observes
the corresponding secondary acknowledgment.

4.3 Correctness of AFA

AFA basically maintains two T-values at each LPi, corresponding to the two component
values of GVT: , the logical clock and , the smallest unreceived message time. In addition,
AFA also performs acknowledgments of messages using two more T-values:  and . These
four T-values define astate vector for each LP. The model of GVT computation employed by the
algorithm is shown in Figure 6. Each LP presents a new state vector to the GVT Calculator
whenever an event occurs which causes a change in GVTa (t) (for example, executed event,
received message, sent message, etc.). The GVT Calculator (which is the PRN described in Section
2.2) takes these state vectors and computes GVTc (t+∆). We show next that AFA satisfies the two
correctness criteria of Section 4.1. Note that properties P2 through P4 are true for the model of
Figure 6. In addition, recall that this model assumes that each LP periodically reads the output of
the reduction network (i.e., the GVT Calculator). Consequently, P5 is true as well.

ρi ∞ Φ 0, ,{ }

σi υi
ρi τi

GVT Calculator (PRN)

State Vector State Vector

GVTc (t)

∆

Figure 6 - GVT Computation Model for AFA
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GVTp (t)
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δ
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4.3.1 Criterion 1

Define GVTp (t) to be the value of GVT that can be potentially calculated at the input side
of the GVT Calculator (Figure 6), i.e., given the set of state vectors presented to the GVT Calculator
at time t, GVTp (t) takes on the value of GVT defined by these state vectors. To show that AFA
satisfies criterion 1, we prove three lemmas below.

LEMMA 1 If a reduction cycle is started at time s, and if , then
.

PROOF If a reduction cycle is started at time s, its result becomes available at the output of
the GVT Calculator at time s+∆ (P4 (reduction cycle time)). By P3 (input cycle time), the next
reduction cycle is started at time s+δ. Since this cycle also takes ∆ time units to complete, a fresh
result becomes available at time s+δ+∆. Continuing thus, we see that a fresh (not necessarily
different) value of GVTc (t) is computed every δ units of time. Thus, GVTc (t) is a step function with
the separation in time between steps being an integral multiple of δ. Consider the two (arbitrarily
chosen) consecutive steps above which form the time interval [s+∆, s+δ+∆). GVTa (t) cannot
decrease in this interval (because of its non-decreasing nature, by assumption of the functional
correctness of AFA). It follows that  if  for those
times s+∆ at which a fresh result is computed at the output of the GVT Calculator. By design of the
GVT Calculator,  and by assumption, . Thus,

. By the non-decreasing property of GVTa (t), .
Hence the claim. ■

We digress briefly to introduce some notation. All of the T-values considered here (i.e., ,
, etc.), as well as ,  and  are functions of real time which is continuous.

However, these entities do not change continuously with time, but rather at discrete points in
time. If an entity, f, changes its value at time instant t, we use f (t) to refer to the new value of f after
the change at time t and  to refer to the old value of f before the change at time t. Also, we use
the time parameter throughout the paper only for ,  and . For the other
entities (especially  and ), we use the time parameter when it is required for clarity and omit
it otherwise.

AFA is designed such that any action by an LP which may cause GVTa (t) to change is
preceded by a change in the T-values being presented to the GVT Calculator which reflects that
change. For instance, before sending a message, the timestamp of the message is incorporated in
the  of the sending LP. Similarly, when an LP receives a message, the timestamp of the message
is incorporated into its  before the message is acknowledged. Such being the case, the following
invariant is maintained by the algorithm:

LEMMA 2 At any instant t, there is at least one LPk with  or  less than or equal to
GVTa (t).

PROOF We use an induction proof here. At the start of the simulation (time t0), assuming
the state vectors are initialized correctly, the LP (LPk) which has the event with the smallest
timestamp (G0) scheduled as its first event will have its  equal to G0 = GVTa (t0) and the basis is

GVTp s( ) GVTa s( )≤
GVTc t( ) GVTa t( ) t∀≤

GVTc t( ) GVTa t( )≤ t∀ GVTc s ∆+( ) GVTa s ∆+( )≤

GVTc s ∆+( ) GVTp s( )= GVTp s( ) GVTa s( )≤
GVTc s ∆+( ) GVTa s( )≤ GVTa s( ) GVTa s ∆+( )≤

σi
υi GVTa t( ) GVTp t( ) GVTc t( )

f t−( )
GVTa t( ) GVTp t( ) GVTc t( )

σi υi

υi
σi

σk t( ) υk t( )
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true. For the inductive step, consider the different ways in which GVTa (t) changes from Gi to Gi+1
at time ti+1 i.e.,  and .

i) LPl executes the event with timestamp Gi at time ti+1 and now Gi+1 is the
timestamp of an event at LPk (note k may equal l). By P7 (set clock on event),

.

ii) LPk executes the event with timestamp Gi at time ti+1 and sends a message
with this timestamp so that Gi+1 is the timestamp of a message in transit (i.e.,
the message has not yet been scheduled as a future event at the intended
receiver). By P11 (maintain unreceived message time),

iii) A message from LPl is received by LPk and becomes the event whose
timestamp is Gi+1. At ti+1, the two-phase acknowledgment of the message
completes so that  may be greater than Gi+1. By P12 (set clock on
message) and the fact that Gi+1 is the smallest timestamp in the ideal system
at ti+1,  becomes equal to Gi+1 before the message is acknowledged. Thus

.

iv) The message with timestamp Gi is received by some LP and at ti+1, some
other message in transit has timestamp Gi+1. This case is similar to case (ii)
above. ■

LEMMA 3 GVTp (t) ≤ GVTa (t)

PROOF GVTp (t) is defined as the GVT computed from the state vectors presented to the

GVT Calculator at time t, i.e.:

which implies that GVTp (t) ≤  and GVTp (t) ≤  for all LPi. The lemma follows

immediately from the truth of the invariant of Lemma 2 and these inequalities. ■

THEOREM 1 GVTc (t) ≤ GVTa (t)

PROOF From Lemma 1, Theorem 1 is true if GVTp (t) ≤ GVTa (t) for those times t, at which
the GVT Calculator starts a reduction cycle. From Lemma 3, GVTp (t) ≤ GVTa (t) . ■

Note the proof above covers the case when old state vectors are overwritten by new ones
before they are processed by the PRN. In this case, the set of values of GVTp (t) processed by the
PRN is a subset of the set of all the values taken on by GVTp (t). Since Lemma 2 is valid for all
values of GVTp (t), in the case of overwrites it will be valid for those values which are processed
by the PRN and Theorem 1 is true.

GVT ti 1+
−( ) Gi= GVT ti 1+( ) Gi 1+=

σk ti 1+( ) Gi 1+=

υk ti 1+( ) Gi 1+=

υl ti 1+( )

σk
σk ti 1+( ) Gi 1+=

t∀

GVTp t( ) MINLPi
σi t( ) υi t( ),( )=

σk t( ) υk t( )

t∀

t∀
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4.3.2 Criterion 2

Since acknowledgments are key to the progress of  and therefore GVTc (t), we first show
that the DO_ACK procedure acknowledges messages correctly.

LEMMA 4 The DO_ACK procedure acknowledges messages such that if GVTa (t) increases with
t, every message is eventually acknowledged.

PROOF We consider acknowledgments under two situations:

Case I: Fixed set of acknowledgments

Assume first that a non-empty set of acknowledgments (A) submitted to the GVT
Calculator does not change over the entire time taken to perform a single two-phase
acknowledgment (Section 2.1.3). By P13 (unique selection), one of these (call it PW, an
acknowledgment from LPR to LPS) will appear in the state vector output by the GVT Calculator. In
addition, PW will have the smallest timestamp in the set. By P15 (persistent primary
acknowledgment) and our assumption of an unchanging acknowledgment set, PW will continue
to appear in the GVT Calculator’s output. P5 (periodic read) guarantees that LPS will observe PW
and by P14 (secondary acknowledgment), will submit the corresponding secondary
acknowledgment (call it SW from LPS to LPR) in finite time. P14 (secondary acknowledgment), P15
(persistent primary acknowledgment), P5 (periodic read) and our assumption of an unchanging
acknowledgment set guarantee that after some finite time, the only secondary acknowledgment
being submitted to the GVT Calculator will be SW. After time ∆, SW will appear in the output of the
GVT Calculator and will continue to do so because PW also appears in the output. P5 (periodic
read) guarantees that LPR will observe SW and by P15 (persistent primary acknowledgment), will
remove its primary acknowledgment, PW. After time ∆, PW will no longer appear in the GVT
Calculator’s output. When this fact is observed by LPS, it will stop sending its secondary
acknowledgment, SW (P14 (secondary acknowledgment)). Thus, when a set of acknowledgments
is submitted to the GVT Calculator and this set does not change for the duration of one
acknowledgment, then a unique one of these (having the smallest timestamp) will complete in
finite time. In the rest of this proof and the paper, if PX is a primary acknowledgment, we refer to
the two-phase process initiated by the submission of PX as the PX acknowledgment.

Case II: Changing set of acknowledgments

Consider the case where the set of acknowledgments (A) changes when the two-phase
protocol is in progress. By P15 (persistent primary acknowledgment), the only change can be the
submission of a new acknowledgment (call it PN) by some LPN. Thus we have a new set of
acknowledgments, . This new arrival can have one of two effects: it either replaces
PW as the winning acknowledgment or it does not. The second case is uninteresting as it does not
affect the two-phase acknowledgment described earlier (i.e., we can apply the argument of Case I
to show that the PW acknowledgment will complete in finite time). When PN replaces PW in the
GVT Calculator’s output, we say the PW acknowledgment is preempted. PN may preempt either the
first phase or the second phase of the PW acknowledgment. We consider each separately.

υ′

A′ A PN∪=
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Case II(a): First phase preempted

The first phase of the PW acknowledgment completes when LPS observes PW. If the first
phase is preempted, then LPS has not observed PW. The effect of this is that the first phase has not
been started at all. Since PN is the winning akcnowledgment now, the PN acknowledgment goes
through to completion in some finite time. When LPN stops sending PN, the set of
acknowledgments reverts to A from A’. Now the situation is exactly that before the arrival of PN.
Thus, the PW ackowledgment will restart and complete in finite time.

Case II(b): Second phase preempted

If PN replaces PW after LPS has observed PW (and hence submitted SW), the second phase
of the PW acknowledgment is preempted. This may happen either after or before LPR has
observed SW in the output of the GVT Calculator. In the first case, all that remains of the second
phase is for LPS to stop sending SW. By P14 (secondary acknowledgment), this will indeed happen
in a bounded amount of time since PW has been replaced by PN. Since LPR has already seen SW, it
will no longer submit PW and the PW acknowledgment is complete. In the second case, after LPS
observes that PN has replaced PW (which it eventually will, by P5 (periodic read)) it will stop
sending SW (P14 (secondary acknowledgment)). The PN acknowledgment now goes to
completion. At the end of this, when LPN removes PN, PW again becomes the winning
acknowledgment (the set of acknowledgments is again A). After some finite time, LPS observes
this and resubmits its secondary acknowledgment, SW (by P14 (secondary acknowledgment)). The
PW acknowledgment now completes in finite time.

Note the arguments of Case II may be applied recursively (i.e., if a preempting
acknowledgment is itself preempted). Thus the two-phase acknowledgment protocol allows
acknowledgments to be preempted such that they are resumed later (i.e., the acknowledgments
are properly nested). A necessary condition for an acknowledgment to preempt another is that its
timestamp must be less than or equal to that of the one in progress. Consequently, for an
acknowledgment to be infinitely delayed, there must be an infinite number of messages with
timestamps less than or equal to that of the acknowledgment in progress. Since at any time t, the
logical clocks of LP’s (and therefore the timestamps of messages) can only go back as far as GVTa
(t), we conclude that a necessary condition for infinite nesting is that GVTa (t) does not advance
with t. We have thus proved that if GVTa (t) advances with t, every acknowledgment will
complete in a finite amount of time. ■

THEOREM 2 As t increases, GVTc (t) increases if GVTa (t) increases

PROOF We prove this theorem by contradiction. Assume that  for all
 while  for some . This must be due to a timestamp that persists

indefinitely in the implementation even after it no longer exists in the ideal system. Since the
timestamp of an event being executed by an LP is always reflected in GVTc (t) through its  prior
to the execution of the event (P7 (set clock on event)), it follows that this residual timestamp
cannot be that of an event and must consequently be the timestamp of an unreceived message.

GVTc t( ) GVTc t0( )=
t t0> GVTa t1( ) GVTa t0( )> t1 t0>

σi
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The fact that GVTa (t) advances with t means that there are only a finite number of
unacknowledged messages at any LP with a given timestamp. Lemma 4 guarantees that all of
these messages are acknowledged in finite time. P9 (update unreceived message time) then
ensures that an LP’s  can remain at any one value for only a finite amount of time. The
assumption is thus contradicted. ■

In summary, we have proved that AFA satisfies the two correctness criteria for any GVT
computation algorithm:

i) The computed GVT is always less than or equal to the actual value of GVT

ii) The computed GVT advances if the simulation advances.

We have thus described a correct method of rapidly computing and disseminating critical
synchronization information using the framework hardware to support aggressive protocols.

5 AFA on the framework hardware

AFA as shown in Figure 5 assumes that all of the procedures (synchronization as well as
application-specific) for an LP are executed on a single processor (recall we assume that each LP
executes on its own processor) and the processors communicate directly with the PRN. The
framework hardware replaces a single processor with two processors: an HP to execute
application specific tasks and an AP to execute the synchronization tasks. In order to execute AFA
of Figure 5 on the framework hardware, the synchronization aspects have to be separated from the
application specific ones. Figure 7 shows AFA2P, which is basically AFA separated into two
algorithms, one to be executed on each HP and one on each AP. We make the assumption that each
LP is allocated its own HP-AP pair of processors in order to simplify the description of the
algorithm as well as the correctness proofs in the next section. The algorithm can easily be
extended to allow more than one LP per pair of processors. We use HPi and APi to refer to the HP-
AP pair on which LPi is executing. AFA2P is derived from AFA by off-loading all of the
synchronization tasks from the HP to the AP. In AFA2P, the HP performs only Time Warp specific
operations such as event execution, sending and receiving messages, state saving, rolling back,
etc., while the AP performs all of the operations required to maintain the T-values. Accordingly,
the HP maintains the logical clock, the events list and the output list (list of antimessages) while
the AP maintains the outstanding message list and the unacknowledged message list. As
mentioned in Section 2.1, each message in the system is given a globally unique identifier. These
identifiers are constructed such that the identifiers form contiguous sequences between each
ordered pair of communicating LP’s. The AP maintains its lists sorted in ascending order of these
sequence numbers in the message identifiers. The AP also maintains the four T-values: , ,

 and .

Recall that the communication channel between an HP and its AP is functionally a FIFO.
An HP communicates with its AP by inserting a tagged communication into the FIFO with the tag
indicating the nature of the communication. In the algorithm for the HP, this is indicated by the
statement Enqueue (tag, value1, value2, ...). The AP is responsible for three major
tasks:

υi

σi υi
ρi τi
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• it must read the global output of the PRN and pass on a portion of the global
state vector to the HP

• it must process as soon as possible the tagged communications that its HP
inserts into the FIFO (since speed of reduction is critical)

• it must perform acknowledgments of messages through the PRN

It is important that each of these tasks is performed frequently and none gets delayed arbitrarily.
To satisfy these requirements for the AP, we chose to organize the AP’s algorithm as a single loop.
The AP begins each iteration by reading the PRN output and forwarding a portion of the global
state vector to the HP if the global state has changed since the last time it was forwarded to the HP.
Having obtained the new global values, the AP checks for acknowledgments by executing the
DO_ACK procedure. Finally, it removes one tagged communication from the FIFO (if there are any)
and processes it. Note with this organization of the AP’s algorithm, properties P5 and P6 of
Section 4.2.2 are true.

Figure 7 - AFA2P: Host Processor Algorithm

HOST_PROC: IF there are events in the events list

THEN local_clock = timestamp of next event

Enqueue (NEW_CLOCK, local_clock);

Execute event; Perform SEND_MSG if required;

Optionally save state;

WHILE there are newly received messages with timestamps < local_clock

Perform ROLLBACK;

FOR each new message

Perform RCV_MSG;

Optionally collect fossils;

SEND_MSG: Enqueue (SENT_MSG, message_time, message_id);

Send the message;

IF message_sign > 0

Add antimessage to output list;

ROLLBACK: local_clock := rollback time;

Enqueue (NEW_CLOCK, local_clock);

Roll back the execution of all events with time > rollback time;

Restore state from the last time it was saved before rollback time;

Rebuild state up to rollback time if required;

FOR each antimessage in output list with time > rollback time

Perform SEND_MSG;

Delete it from the output list;

RCV_MSG: IF message_sign > 0

THEN Insert corresponding event into events list;

ELSE Delete the positive event;

Enqueue (RCVD_MSG, message_time, message_id);
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6 Correctness of AFA2P

Recall that AFA2P is derived from AFA by distributing the work between the HP and the
AP. Synchronization tasks have been off-loaded from the HP to the AP in AFA2P. This
organization introduces latency in the data path for synchronization data (Figure 8), i.e., when an
HP changes state so that GVTa (t) changes, this change is not reflected immediately in the state
vector presented to the GVT Calculator. Moreover, the HP and the AP are asynchronous. This
means that after an HP enqueues a communication in its FIFO, it continues processing without
waiting for the AP to process that communication. This is the main difference between the AFA2P
and AFA computational models. For instance, in AFA, the time of the next event is always
reflected in  (and therefore GVTp (t)) before the HP starts executing the event, while in AFA2P,

 may be set to the time of the event much after the event has been completely executed. In this
section, we show that except for a minor modification to theDO_ACK procedure, the algorithm
remains correct despite the latency. Note that properties P1 through P6 of Section 4.2 apply to the
computation model of Figure 8. As with AFA, the correctness of AFA2P is determined by the two
correctness criteria of Section 4. We show next that AFA2P satisfies these two criteria. To do so, we
define theminimum timestamp at time t,  of APi as:

Figure 7 (continued) - AFA2P: Auxiliary Processor Algorithm

AUX_PROC: Read the PRN output;

Write global state vector to HP interface if global state has changed;

Perform DO_ACK;

IF FIFO is not empty

THEN Get next entry from FIFO;

CASE (entry_type):

NEW_CLOCK:  := new_clock_value;

SENT_MSG: IF message_time <

THEN  := message_time;

Add message to outstanding message list;

RCVD_MSG: [IF

THEN  := (message_time, message_id)]

ELSE Add message to unacknowledged message list;

DO_ACK: IF [  AND ]

THEN Remove next batch to be acknowledged

from the unacknowledged message list;

Set  to acknowledge this batch;

[IF  has been sent to me

THEN IF messages in  batch are in outstanding message list

THEN  := ];

Mark them as acknowledged;

Remove any other batches marked as acknowledged

from outstanding message list;

IF timestamp of acknowledged batch =

THEN  := smallest timestamp in outstanding message list;

ELSE  := ; -- ignore primary ack

ELSE  := ;
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THEOREM 3 GVTc (t) ≤ GVTa (t)

PROOF Comparing Figure 8 with Figure 6, we see that the relation between GVTc (t) and
GVTp (t) is the same, i.e. Lemma 1 holds here as well: if a new reduction cycle is started at time s,
and if  then . We are thus required only to prove that

 for those times s at which a new reduction cycle is initiated. Once again, we do
this by showing that AFA2P maintains the invariant of Lemma 2, which is restated here using our
definition of  above:

I: At any instant t, there is at least one LPi such that .

For any t, GVTa (t) is the timestamp of one or both of the following: (i) an event being
executed (or just executed) at some HP (ii) a message in transit. We see in AFA2P that an HP
always enqueues a NEW_CLOCK communication with the timestamp of the next event before
executing that event. Similarly, an HP enqueues a SENT_MSG communication before sending a
message. As a result, at any time t, we see that the FIFO of at least one LP (LPi) will have a tagged
communication with timestamp GVTa (t). With regard to this communication, there are two
possibilities: either the AP of the corresponding HP has processed the tagged communication or it
has not. In the first case, we see from AFA2P (the NEW_CLOCK and SENT_MSG cases of the CASE
statement in the AP’s main procedure) that  and the invariant will hold. In the
remainder of this proof, we analyze the second case wherein the FIFO of some LP contains a
communication with timestamp GVTa (t) and this communication has not yet been processed by
the AP.

GVT Calculator

State Vector State Vector State Vector

∆

GVTc (t)

HP

AP

HPHP

APAP

Figure 8 - GVT Computation Model for AFA2P
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We use the pictorial notation of Figure 9 to show the timestamps present in an HP-AP pair
and the FIFO between them. In this notation, vertical bars are used to indicate the relative values
of the timestamps of the corresponding entities (HP, FIFO element or AP). The height of the bar is
proportional to the value of the timestamp, i.e. the larger the timestamp, the taller the bar. The bar
for the HP depicts the value of the HP’s logical clock (LC). For each element in the FIFO, the bar
depicts the timestamp of the communication enqueued (we consider only those elements which
have a value enqueued in them and use ij to symbolically denote the timestamp of the j’th
communication from the head of the FIFO of LPi). Finally, the bar for the AP depicts the AP’s
minimum timestamp, µi.  Figure 9a shows an LP which has been processing forward in logical
time in the recent past, while Figure 9b shows an LP which has recently suffered a rollback. We
refer to a dip in the timestamps in a FIFO (such as  to ) as a valley. The effect of a rollback is
to create a valley in the LP’s FIFO. With regard to an element in the FIFO, we say that all of the
elements closer to the AP are ahead of it. When a particular timestamp is irrelevant, it is simply not
depicted.

At some time t, consider the LP (LPx) with a communication with timestamp GVTa (t)
enqueued in its FIFO. The FIFO of LPx can have one of the two profiles shown in Figure 10, with

 = GVTa (t) (strictly speaking, the FIFO can have more than two profiles, depending on the
number of valleys in the profile; however, there are only two interesting types: those with valleys
ahead of the communication with timestamp GVTa (t) and those without). If LPx does not have
any valleys ahead of this communication, then we see from Figure 10a that  and
the invariant will hold. The interesting case arises when the communication with timestamp GVTa
(t) is present in LPx’s FIFO due to a recent rollback (Figure 10b). In this case, it may happen that

. For the invariant to be true, there must be some other LPr, such that
. We show now that this is the case.
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Figure 9 - Timestamp profile of LPi
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Consider the LP (LPy) that sent the straggler message which caused the rollback in LPx
corresponding to the valley in Figure 10b (in the case where LPx’s profile has more than one valley,
consider the valley closest to the communication with timestamp GVTa (t), but ahead of it in the
FIFO). HPy will have enqueued a SENT_MSG communication with timestamp GVTa (t) into its
FIFO before sending the straggler. If this communication has been processed by APy, then

 (since APx has not yet acknowledged the straggler message) and thus
 . If not, there are two possible situations: (i) LPy is not the root of the rollback chain

to LPx or (ii) it is the root of the rollback chain to LPx. We consider the two cases separately.

Case (i): Assume LPy is not the root of the rollback chain to LPx (i.e., LPy has rolled back recently)
and the SENT_MSG communication has not been processed by its AP so that its profile is similar to
that shown in Figure 10b. Then LPy’s situation is similar to that of LPx. Therefore, as we did for
LPx, we examine LPy’s predecessor in the rollback chain and continue up the rollback chain. This
procedure terminates in one of two ways: (a) we reach a pair of LP’s in the chain, LPi and LPj such
that LPi is before LPj in the chain and APi has seen the SENT_MSG communication from HPi or (b)
we reach the root of the rollback chain. In case (a), as explained earlier, since APj has not
acknowledged the straggler message, LPi will have . Case (b) is the same as case (ii)
above, which we consider next.

Case (ii): If the root of the rollback chain (LPr) has a FIFO profile as shown in Figure 11*, then the
invariant holds since . On the other hand, if its FIFO profile is as shown in Figure

* A dashed arrow is used to connect the tagged communication in a FIFO corresponding to a rollback-causing
straggler message, with the valley due to that rollback in the succeeding LP. For instance,  is the SENT_MSG
communication corresponding to the message sent by LPr which started the cascading rollback. A vertical dotted
line is used to indicate that intermediate LP’s have been omitted for compactness.
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12, then it has suffered a rollback recently, whose effects are still in its FIFO ( ) and consequently,
the invariant may not be satisfied by LPr. However, LPr is now in a situation very similar to that of
LPx and we apply our logic again, traversing backwards along the second rollback chain to LPr.
We show next that this process will terminate.

Consider the process again. We start with the LP that has the minimum timestamp in its
FIFO. As we proceed up the rollback chain, we mark each LP that we visit. Note that each time a
marked node is revisited, we move closer to the AP in the FIFO (because we are following a causal
chain and ‘A caused B’ implies ‘A occurred earlier than B’). Assume now that we reach the root of
this chain and the root has a valley ahead in its FIFO, due to another rollback chain. We proceed
up this new rollback chain, once again marking visited nodes. Here again, if we revisit previously
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Figure 11 - Profile of the root of the rollback chain

LPx

LPr

xn µx t( )<
...

µx t( )

µr t( )

...

FIFO

HP APFIFO

...

HP AP

...

...

x0
xn 1−xn

rp 1− r0

rk … rp≥ ≥

...

xn 1− … x0 µx t( )≥ ≥ ≥

xn xn 1−<

...

...

rk xn GVTa t( )= =

rprk... rp rp 1−<

rp 1− … r0 µr t( )≥ ≥ ≥

Figure 12 - Profile of the root of a rollback chain with a valley

rk µr t( )<
...

xn µx t( )<

LPr

LPx

...

µx t( )

µr t( )

...

FIFO

rp



Hardware Support for Aggressive Parallel Discrete Event Simulation 29

marked nodes, we will visit them at a point closer to the AP, each time. Since the number of
processors is finite (we cannot keep marking unmarked nodes indefinitely) and the number of
cells in any FIFO ahead of the first element visited is finite, this procedure must ultimately
terminate in one of the following ways:

i) We reach an LPi whose AP has seen the SENT_MSG communication from its
AP and therefore has .

ii) We reach the root of a rollback chain (LPi) whose FIFO profile has no valleys
(Figure 11) ahead of the communication corresponding to the rollback-
causing straggler, in which case LPi has .

Note that the entire argument for the truth of the invariant relies upon property P1 (no
loss) of Section 4.2. Given that the invariant is true, Lemma 3 holds for AFA2P as well and the
proof of Theorem 3 parallels that of Theorem 1. ■

As mentioned previously, the addition of the FIFO requires a modification to theDO_ACK
procedure as can be seen by comparing the corresponding procedures of Figure 5 and Figure 7. In
AFA, the timestamp and identifier of a message are always inserted into the outstanding message
list prior to sending the message. In AFA2P, the HP sends the messages while the AP maintains
the outstanding message list and the two processors are asynchronous. This leads to a race
condition in the following situation.

It is possible (though extremely unlikely given the speed of the framework hardware) that
HPi sends out a message to LPj and enqueues a SENT_MSG communication to APi such that the
message is received by LPj and the primary acknowledgment for the message is initiated by APj
before APi processes the SENT_MSG communication. As a result, it may happen that APi observes
APj’s primary acknowledgment emerging from the PRN, but does not have the corresponding
message identifier in its outstanding message list. With AFA, the DO_ACK procedure executing at
APi assumes that the message was in the outstanding message list earlier but has been removed
because its primary acknowledgment has been observed previously (i.e., it simply assumes that
the acknowledgment for that message had been preempted). Therefore it submits the
corresponding secondary acknowledgment. When APj observes this secondary acknowledgment,
it removes its primary acknowledgment and the two-phase acknowledgment is completed.
Finally, when APi processes the SENT_MSG communication, it inserts the message identifier into
its outstanding message list where it remains indefinitely, since APj will never acknowledge that
message again. In such a case,  (and hence GVTc (t)) will never advance beyond the timestamp
of that message.

To avoid this problem, in AFA2P a sending LP retains a message in its outstanding
message list until both the phases of the acknowledgment of that message are complete (whereas
in AFA, the message would be removed as soon as the first phase is completed). Thus, even if an
acknowledgment is preempted, upon resumption, the sending LP will still find the message in its
outstanding list. This allows us to distinguish between a preempted acknowledgment and the
situation described above where the sending LP has not processed the SENT_MSG communication
at all. Now, if a sending LP receives a primary acknowledgment for a message which it does not

µi t( ) GVTa t( )≤

µi t( ) GVTa t( )≤

υi
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find in its outstanding message list, it ignores the acknowledgment until such time when the
corresponding message is indeed inserted into the outstanding message list. Apart from this, the
two procedures are identical. Consequently, properties P13 and P15 of Section 4.2.4 apply to the
DO_ACK procedure of AFA2P as well. Also, we see that P14 applies when the message being
acknowledged is already in the sender’s outstanding message list. Once a message has been sent
by an HP, however, P1 (no loss) and P6 (finite delay) guarantee that this message will be inserted
into the corresponding AP’s outstanding message list within finite time. Thus, P14 applies to the
DO_ACK procedure of AFA2P as well. Since the proof of Lemma 4 uses properties P5 and P13
through P15, Lemma 4 holds for AFA2P as well.

THEOREM 4 As t increases, GVTc (t) increases if GVTa (t) increases

PROOF Assume that  for all  while  for some
. This can happen only if some timestamp (either that of an event or of a message) remains

indefinitely in the implementation even after it no longer exists in the ideal system.

We see in AFA2P that an HP always enqueues a communication in the FIFO with the
timestamp of an event before executing it. By P6 (finite delay), the  of the AP will be set to this
timestamp in finite time. Therefore, the constant GVTc (t) cannot be due to an unchanging .

The advance of GVTa (t) implies that there are only a finite number of messages with a
given timestamp. Lemma 4 and P6 (finite delay) guarantee that all of these messages are
acknowledged in finite time. Note that P9 (update unreceived message time) is a statement of the
way any LPi updates its  and is true for AFA2P also. This property ensures that an LP’s  will
remain at any one value for only a finite amount of time. Thus, the assumption that GVTc (t)
remains constant while GVTa (t) increases with t is contradicted. ■

7 Properties of GVTc (t)

In this section, we describe three interesting properties of the GVT computed by AFA
using the PRN. For brevity, we discuss these only for AFA, but each of these properties can be
shown to be true for AFA2P as well.

7.1 GVTc (t) is strictly non-decreasing

Criterion 1 for the correctness of a GVT computation algorithm requires only that
. Here, we show a stronger property about GVTc (t), namely that in addition

to being less than or equal to GVTa (t), GVTc (t) is strictly non-decreasing (i.e.,
). The GVT computation model for AFA is shown in Figure 6. We

see from the figure that GVTc (t) = GVTp (t-∆). It is clear that if the values of GVTp (t-∆) at those
times t-∆ when a reduction cycle is started are strictly non-decreasing, then GVTc (t) will be strictly
non-decreasing for all times t. We now show that this is the case.

Consider a change in GVTp (t) from one reduction cycle (GVTp (t0) = G) to the next
( ). For exposition, we refer to T-values contributing to  using the ^ symbol and
to those contributing to G without it (i.e., , ,  and
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). By definition,  is the minimum of the smallest  and the smallest . In each case,
we consider all possible ways in which these two T-values may be assigned.

Case (i):  =  for some i

• LPi finished processing an event and computed  from the events list.
must be at least as large as  since the events list is sorted in non-decreasing
order. We have .

• LPi received a straggler from LPj, causing a rollback. In this case,  < , but
since antimessages are also acknowledged, the straggler will be outstanding
at LPj. Thus .

Case (ii):  =  for some i

• LPi received an acknowledgment, and therefore set its  to the new smallest
timestamp in its outstanding list. By P10 (unreceived is minimum) (Section
4.2.3), we have ≤  and since G ≤ we have G ≤ .

• LPi sent a message and set  to the timestamp of the message. Here  <
. However, since a message is sent only after executing an event (i.e., after

setting ), we have  =  and G ≤ . Thus G ≤ .

7.2 GVTc (t) tracks GVTa (t)

A necessary condition for GVTc (t) to be correct is that it is never greater than GVTa (t). An
algorithm that estimates a lower bound on GVT satisfies this condition. The GVT computed by
AFA exhibits a much stronger property. From Figure 6 and the discussion on the operation of the
reduction network in Section 2.1, it is clear that if GVTa (t) (and hence GVTp (t)) takes on at most
one new value between successive reduction cycles, GVTc (t) will take on exactly the same values
as GVTa (t), albeit lagging behind it. If GVTa (t) takes on more than one new value between
successive reduction cycles, then only the last one will be seen in GVTc (t). In this case, GVTc (t)
takes on a subset of the values of GVTa (t), once again lagging behind it. In either case, the values
of GVTc (t) are numerically the same as those of GVTa (t) and not mere lower bounds.

7.3 GVTc (t) approaches GVTa (t)

The progress criterion (Section 4.3.2) guarantees only that if GVTa (t) increases with t,
GVTc (t) also ultimately increases. Here, we make a stronger statement about GVTc (t). Assume
that after the simulation has run for some time, the LP’s stop their processing and retain the values
of their logical clocks. Assuming a reliable host communication network, all messages in transit
will eventually be received and incorporated into the events lists of the receiving LP’s. Now, since
there are only a finite number of messages to be acknowledged, after some bounded time, the
of each LP will become . At this point, GVTp (t) will equal the minimum of the  of all the LP’s
and after time ∆, GVTc (t) will equal GVTa (t).
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8 Performance of the aggressive framework

So far, we have described special purpose hardware to support parallel simulation and
presented a synchronization algorithm which uses this hardware for computing GVT in an
aggressive system. In this section, we provide some quantitative evidence of the benefits of the
aggressive framework for parallel simulations and compare our work with previous efforts.

8.1 Speed

The primary design goal of the framework hardware is speed of operation. It is critical
that synchronization values be computed and disseminated rapidly. Based on timing values
obtained from the prototype of the framework hardware described in [24], the PRN is expected to
compute a globally reduced state vector of four elements from 32 input state vectors in 1.2
microseconds. We note that in the design of the prototype, significant effort was directed towards
proof of concept in addition to speed of operation. Future designs of the hardware are expected to
operate at higher speeds. Since another important design goal is generality (i.e., the capability to
program the hardware for use in different kinds of applications), some speed must be traded for
this.

Sometimes, a global computation may require multiple reduction cycles (for instance, the
two-phase acknowledgment). In addition, the introduction of the interface between the HP and
the AP introduces delays in a global computation. It is difficult to analytically estimate the time
taken for such multi-cycle global computations. [28] describes two simulation experiments
conducted to estimate the performance of the framework hardware and AFA2P. The first of these
was directed at determining the loading limits of the framework hardware. The two significant
results of this experiment are:

• The PRN is very fast - a two-phase acknowledgment takes few tens of
microseconds to complete, with eight processors

• The framework hardware can support very fine grained simulations (event
execution times under 100 microseconds)

The second experiment simulated eight LP’s performing a busy-work application using AFA2P.
The model was designed to compute the average amount of logical time for which GVTc (t) lags
behind GVTa (t). Note that this takes into account the delay of the HP-AP interface as well. The
observation that the average lag was around ten microseconds (an order of magnitude smaller
than event execution times) clearly shows that the framework hardware (and AFA2P) can enhance
any aggressive protocol by providing almost current values of GVT (and other such
synchronization values) at very low costs. We note that the speed with which acknowledgments
can be performed using the framework (as shown by the simulations) compensates for the fact
that acknowledgments are serialized in the framework.
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8.2 Scalability

The main benefit of using a tree structure for the PRN is that it scales well with the
number of processors. As the number of processors, n, is increased, the time to compute a globally
reduced state vector increases as log2n. For instance, if the number of processors in the example of
the previous section is doubled to 64, the time to compute a global state vector increases from 1.2
microseconds to 1.35 microseconds. With more processors, the time to perform an
acknowledgment is expected to increase, since more messages will be submitted for
acknowledgment per unit time. However, this problem can be alleviated by using several pairs of
T-values to perform several acknowledgments concurrently.

8.3 Previous work

Since the introduction of the Time Warp protocol, several algorithms have been proposed
to compute GVT in a message passing system [2, 3, 5, 8, 11, 20, 27]. With the exception of [8], all of
these algorithms share the property that they use the host communication network of the message
passing computer to compute GVT. Since inter-processor communication is relatively expensive in
current computer systems, the main focus of research in this area has been to minimize the
number of messages used to compute a value of GVT while keeping the computed value of GVT
as close to the actual value of GVT as possible. Thus, computing GVT has been an expensive
operation. This has had two side effects: (i) simulations tend to have comparably large
computation granules (on the order of milliseconds, so that the cost of computing GVT becomes
less significant) and (ii) GVT is not computed as often as it should be, resulting in wastage of
memory. In this respect, our algorithm is most efficient, as it simply does not use the host
communication network to compute GVT. Even though acknowledgments are used to maintain

 at each LP, they are performed in the PRN. We noted in Section 8.1 that a message can be
acknowledged using the PRN in few tens of microseconds as compared to hundreds of
microseconds to milliseconds to do the same in a typical host network. GVT is computed by the
framework asynchronously with the simulation computation and this is done very rapidly using
the PRN. An LP may obtain the value of GVT by simply reading some memory locations and
performing a MIN operation. As mentioned earlier, simulations indicate that under normal load
conditions with eight processors, the value of GVT thus obtained will lag behind the actual value
of GVT by few tens of microseconds. Even with event granules of tens to hundreds of
microseconds, the GVT provided will be very accurate (possibly less than one event old). The
work of Filloque et. al. is similar to ours in that the host communication network is not used to
compute GVT. However, in their system, messages are acknowledged through the host network.
In that sense, the host network is indeed used in the GVT computation. Also, the actual GVT
computation algorithm proposed by them takes O(n) time where n is the number of processors,
while ours takes O(log n) time. Thus, we believe our system will provide more accurate values of
GVT and also scale better.

The first GVT computation algorithm was proposed by Samadi [27]. This algorithm uses
message acknowledgments in the host network and is quite straightforward. It has the added
disadvantage that one processor is designated the initiator of the GVT computation. It receives
messages from all other processors as well as broadcasts the computed value of GVT to all.
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Obviously, this processor becomes the bottleneck. A hierarchical scatter-gather scheme can be
used to alleviate this situation. However, whenever a processor needs the value of GVT, all other
processors are involved in the operation. Bellenot’s algorithm [3] also uses acknowledgments to
maintain the smallest unreceived message time. Here again, there is a designated initiator
processor. The optimization in this algorithm is the way in which GVT is computed, so that the
initiator does not become the bottleneck. Preiss [20] proposed a ring algorithm using a token
which is passed around to compute GVT. Here again, all processors are involved in every GVT
computation and the host communication network is used to compute GVT. A similar approach
was followed in [13] where GVT is computed in a networked environment using active messages in
the network. Active messages differ from passive messages in that the arrival of an active message
at a network interface causes an arithmetic or logical operation to be performed on the value being
carried by the message and a value stored at the interface. The result of this operation is carried
further by the message. Thus GVT computation involves O (n) messages. Moreover, [13] do not
address the issue of maintaining , which will require more messages through the host network.
Lin and Lazowska [11] proposed an algorithm in which they eliminated acknowledgments of
messages. This cuts the message traffic in the host network by half. However, Concepcion and
Kelly [5] pointed out that the network traffic in the worst case for this algorithm could be O (n2). In
effect, this algorithm suffers the penalties of acknowledging messages. Concepcion and Kelly
proposed the first asynchronous approach to GVT computation, called the Multiple Level Token
Passing algorithm (MLTP). MLTP uses dedicated processors responsible only for GVT
computation (and other Time Warp specific operations), one for each processor which does event
processing. This approach is very similar to our HP-AP combination. However, this organization
requires two messages for every message in a typical Time Warp system. MLTP also uses message
acknowledgments to maintain local minimum timestamps. Acknowledgments as well as the GVT
computation using a hierarchical token passing algorithm are done in the host network. In our
system, the AP’s use the high-speed PRN to do the above. An issue to be addressed when
computing GVT asynchronously (since simulation computation continues while GVT is being
computed) is how close the computed value of GVT is to the actual value. For MLTP, this lag is
computed to be less than or equal to  where the dominating factor is , which
includes the time for at least one message communication through the host network. This is
considerably larger than the few tens of microseconds projected for our algorithm. Bauer and
Sporrer [2] also proposed an asynchronous approach to GVT calculation. Their method uses a
dedicated processor for computing GVT (besides other functions). All other processors
communicate periodically with this GVT Calculator. Obviously, the GVT Calculator is a potential
bottleneck. Their algorithm also uses the host communication network to compute GVT. They
claim that the computed value of GVT is “very close” to the actual value but do not pr ovide
quantitative evidence to support this. We believe the need to send messages to compute GVT will
make this lag much larger than that in our system.

In summary, the main reasons why we believe our algorithm computes very accurate
GVT are:

• high-speed, scalable PRN used to compute GVT

• GVT computed asynchronously
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• messages acknowledged in the PRN

• dedicated processors manage GVT computation

9 Conclusion

All PDES protocols require some form of global information (for instance, breaking
deadlock in non-aggressive systems and GVT in aggressive systems). Gathering this information
through the host communication system is very costly as it usually requires several messages. To
solve this problem, Reynolds [22] proposed the use of special purpose hardware for rapidly
computing and disseminating critical synchronization information to all the LP’s in a PDES. This
hardware (the Parallel Reduction Network or PRN) basically provides a low-latency
communication medium with limited communication facilities (i.e., the type of information that
can be relayed is limited). To use the PRN, each LP must execute a synchronization algorithm. The
hardware, synchronization algorithms and the synchronization values are together called the
framework. The framework computes and distributes synchronization information to all the LP’s
and the PDES protocol uses these values. The problem of obtaining non-local information is
especially acute in adaptive systems, where LP’s dynamically control their aggressive processing,
because each LP requires information only from its set of predecessors. Computing this kind of
target-specific information [22] is generally more expensive than computing completely global
information. Simulations [28] have demonstrated the speed of the framework hardware. It is
expected that future versions of this hardware will have the capability to provide target-specific
information at such high speeds.

While it was fairly clear that the Reynolds framework could work with a non-aggressive
protocol, it was not so with protocols that display aggressive behavior. In this paper, we have
presented an aggressive version of the framework synchronization algorithm and established its
correctness. This algorithm will serve as a base to be used by aggressive and adaptive protocols.
Since we chose Time Warp as our aggressive protocol, the framework was used to compute GVT.
However, we note that this is just an example of the use of the framework in computing global
values and demonstrates the possibility of integrating the framework with aggressive protocols.
We have also presented a restructured version of the algorithm to suit the framework hardware
organization and argued that this restructuring does not alter its correctness. We have described
three properties of the GVT computed by our algorithm, which we believe will benefit adaptive
protocols. Finally, we have presented results of preliminary studies of the performance of the
algorithm and compared this with previous work in this area.
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