
A Formal Model and Specification Language for
Procedure Calling Conventions

Mark W. Bailey
Jack W. Davidson

Computer Science Report No. CS-94-39
October 21, 1994

1

Abstract
Procedure calling conventions are used to provide uniform proce-
dure-call interfaces. Applications, such as compilers and debug-
gers, which generate, or process procedures at the machine-
language abstraction level require knowledge of the calling con-
vention. In this paper, we develop a formal model for procedure
calling conventions called P-FSA’s. Using this model, we are able
to ensure several completeness and consistency properties of call-
ing conventions. Currently, applications that manipulate proce-
dures implement conventions in an ad-hoc manner. The resulting
code is complicated with details, difficult to maintain, and often
riddled with errors. To alleviate the situation, we introduce a call-
ing convention specification language, called CCL. The combina-
tion of CCL and P-FSA’s facilitates the accurate specification of
conventions that can be shown to be both consistent and complete.

1 Introduction
Procedures, or functions, in programming languages work in con-
cert to implement the intended function of programs. To facilitate
this cooperation between procedures, we must accurately specify
the procedure-call interface. This interface must define how to
pass actual parameters and describe function return values, and
which machine resources, such as registers, the called procedure
must preserve. This understanding between the caller2 and callee3

is known as the procedure calling convention. Because of the
machine-specific nature of the calling convention, calling conven-
tions vary widely from machine-to-machine, programming-lan-
guage-to-programming-language, and, language-implementation-
to-language-implementation.

1.1 Why a Calling Convention Specification?
Currently, information about a particular calling convention can be
found by: looking in the programmer’s reference manual for the
given machine, or reverse-engineering the code generated by the
compiler. Reverse-engineering the compiler has many obvious
shortcomings. Using the programmer’s reference manual may be

1. This work was supported in part by National Science Foundation grant
CCR-9214904.
2. The calling procedure is known as the caller.
3. The called procedure is known as the callee.

equally problematical. As with much of the information in the pro-
grammer’s manual, the description is likely to be written in
English and is liable to be ambiguous, or inaccurate. For example,
in the MIPS programmer’s manual [KANE92] the English descrip-
tion is so difficult to understand that the authors provide fifteen
examples, several of which are contradictory[FRAS93]—and this is
the second edition. Furthermore, the convention, once understood,
is difficult to implement. For example, the GNU ANSI C compiler
fails on an example listed in the manual. Digital, in recognizing the
problem, has published a calling standard document for their new
Alpha series processors [DEC93] that exceeds 100 pages4. Thus, it
should be clear that there is a need for an accurate, concise descrip-
tion of procedure calling conventions.

1.2 Applications
Any application that must process or generate procedures at the
machine-language abstraction level is likely to need to know about
a procedure calling convention. Examples of such uses include
compilers, debuggers, evaluation tools such as profilers, and docu-
mentation. The code that implements the calling convention in
these applications lends itself to automatic generation. In many
cases, the convention itself is not difficult to understand, or imple-
ment for a given instance of a procedure. However, the implemen-
tation of the general case is complicated with details that are
difficult to implement correctly for all cases.

Compilers, perhaps would benefit most from specification of
the calling convention. The calling convention is exhibited in the
calling sequence the compiler uses when generating code. A call-
ing sequence is a sequence of instructions that implements the call-
ing convention. Thus, a calling sequence is an instantiation of the
more general calling convention. Frequently, a compiler will use a
calling convention that differs from the one used by the native
compiler for the machine. In such cases, it is desirable to be able to
call procedures that were generated using the native compiler. Sys-
tem library functions, which would be compiled using the native
compiler, are such an example. It therefore would be convenient
for a compiler to cope with more than one calling convention. In
many compilers, the portion of code that implements the calling
convention is lengthy, detailed, and therefore difficult to modify or
parameterize by the calling convention.

The existence of a method for accurately specifying calling
conventions also makes it possible to experiment with different
conventions. Johnson and Richie have identified the issues in pro-

4. Although this document also includes information on exception handling
and information pertinent to multithreaded execution environments, more
than 42 pages are devoted to documenting the calling convention.

A Formal Model and Specification Language for
Procedure Calling Conventions1

Mark W. Bailey Jack W. Davidson
mark@virginia.edu jwd@virginia.edu

Department of Computer Science
University of Virginia

Charlottesville, VA 22903, U.S.A.

1This is a fake footnote

To appear in The 22nd Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’95, San
Francisco, CA, January 1995.

2

viding an efficient calling sequence after one has already defined a
calling convention [JOHNSON]. However, the convention makes
many choices that directly affect the efficiency of calling proce-
dures. We therefore feel that it is important to experiment with dif-
ferent conventions on each to tune the convention to the machine.
Davidson and Whalley have performed a limited experiment in
investigating different calling conventions [DAVI91]. However,
due to the enormous amount of work required to change their com-
piler from one calling convention to another, their experiment was
limited to several different methods of saving and restoring regis-
ters.

1.3 Contributions
This paper makes several contributions. It provides a formal model
for procedure calling conventions that can be used in a variety of
system software. The paper presents a specification language that,
when used in conjunction with the formalism, can provide accurate
convention information to an application. Further, it shows that by
modeling a convention in this manner, several desirable properties
about calling conventions can be established. It also shows how
conventions that are not complete, or are inconsistent can be auto-
matically identified. Finally, the paper shows how this formalism
can be used by an optimizing compiler to automatically generate
procedure calling sequences.

2 The Language Concepts
This section describes the underlying model for the convention
descriptions. Many features of the description language have their
foundation in the underlying model.

2.1 Convention vs. Sequence
When one first tries to model the procedure call interface, one
would likely consider—as we did—simply modeling the calling
sequence. This is natural since compiler writers are most familiar
with calling sequences. Traditionally, the terms calling sequence
and calling convention have been used interchangeably in the liter-
ature to refer to the calling sequence. However, after some thought,
the subtle differences between the convention and the sequence
become apparent.

The calling convention defines how two procedures, on either
side of a procedure call interface, interact. It is an agreement
between the caller and the callee about where information is found
and how to manage machine resources. Choosing which registers
retain their values across a procedure call, or the order and location
of procedure arguments, or where the return address is found, are
all decisions that one makes when defining a procedure calling
convention. One can think of the calling convention as a definition
of what is done by whom.

The calling sequence, on the other hand, is an implementation
of the calling convention. There may be many calling sequences
for given calling convention. In particular, since the calling
sequence implements the calling convention, it is impossible for
the caller to determine if the callee is using the same sequence, and
vice versa. Thus, while it is imperative that a caller and a callee use
the same calling convention, it is not necessary that they use the
same calling sequence.

2.2 Interfaces and Agents
So far, we have referred to the procedure call interface. In fact,
there are two interfaces: the procedure call interface and the proce-
dure return interface. On each side of these interfaces, there is an
agent. An agent ensures that that side of the interface satisfies the
requirements of the calling convention. These agents are the whom
in the definition of the calling convention. For the procedure call

interface, there are the caller prologue and callee prologue agents
that are responsible for correctly passing the procedure arguments
and constructing an environment that the callee can execute in. For
the procedure return interface, there are the callee epilogue and
caller epilogue that are responsible for correctly passing the proce-
dure return values and restoring the environment of the caller. The
responsibilities of each of the four agents are closely related. The
caller prologue and callee prologue agents must agree on how to
pass information, as do the caller epilogue and callee epilogue.
Additionally, actions of the epilogue agents must be symmetric to
the actions of the prologue agents to properly restore the environ-
ment (e.g., if the call decrements the stack pointer, the return must
increment it). It is precisely these restrictions that make it difficult
correctly construct a calling sequence.

2.3 Defining the Interface
The procedure call interfaces are defined in terms of two concepts:
data placement and view change. These abstractions are all that
one needs to accurately specify procedure calling conventions.

2.3.1 Data Placement
Data placement specifies where information should be placed/
found as well as who is to place it there. This mechanism is used
primarily for defining where information is to be placed to pass
across an interface (procedure arguments and return values) and
where to save information to restore later (contents of registers). In
the former, this is an agreement between two agents on opposite
sides of an interface. For the latter, this is an agreement between
agents in the caller or agents in the callee.

Abstractly, data placement definitions are functions that map
values onto machine resources. The functions take a value and cor-
responding attributes (such as data type) and decide where the
value belongs. More precisely, placement definitions are finite
state machines, since the mapping is order-dependent. Figure 2
illustrates an application of a placement definition to place proce-
dure arguments. In this example, floating-point values are placed
in even/odd register pairs, structures are placed on the stack, and
integers are placed in the next available register. When argument
registers are exhausted, the stack is used. The placement is compli-
cated by restrictions. An example restriction is registers are that
are passed over (i.e., an odd numbered register when placing a
floating-point value) cannot be subsequently used. Such restric-
tions are common in real calling conventions, and must therefore
be captured in the data placement definition.

Figure 1: The Role of Agents in Procedure Call and
Return Interfaces.

Caller

Caller Epilogue
Agent

Callee Epilogue
Agent

Callee Prologue
Agent

Caller Prologue
Agent

Callee

Procedure Return Interface

Procedure Call Interface

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

3

2.3.2 View Change
View change indicates something has happened that caused loca-
tions to appear to move. The register window mechanism on the
SPARC microprocessor is an example. When the register window
slides, the contents of the registers appear to move because the
names of the registers have changed. We wish to indicate this
change without causing the move to actually occur. The change of
view indicates how the names of locations have changed. View
change is used more commonly when describing that a frame must
be pushed on the stack. When a push occurs, all locations refer-
enced by the stack pointer appear to shift.

3 The Language
In this section, we present CCL (Calling Convention Language),
the language that we use to capture the concepts described in the
previous section.

3.1 A Simple Calling Convention
The calling convention is the set of rules to which the caller and
callee must conform. Figure 3 contains the calling convention
rules for a hypothetical machine. Consider the following ANSI C
prototype for a function foo:

int foo(char p1, int p2, int p3, double p4);

For the purpose of transmitting procedure arguments for our sim-
ple convention, we are only interested in the signature of the pro-
cedure. We define a procedure’s signature to be the procedure’s
name, the order and types of its arguments, and its return type.
This is analogous to ANSI C’ s abstract declarator, which for the
above function prototype would be:

int foo(char, int, int, double);

which defines a function that takes four arguments (a char, two
int’ s, and a double), and returns an int.

With foo’ s signature, we can apply the calling convention in
Figure 3 to determine how to call foo. foo’ s arguments would be
placed in the following locations:

• p1 in register a1

• p2 in register a2

• p3 in register a3

• p4 on the stack in M[sp:sp + 7] (M denotes memory)

Figure 2: Mapping from arguments to machine
resources.

R2

Integer Registers

Argument 1 (Int)

Argument 2 (Float)

Argument 3 (Structure)

Argument 4 (Int)

Procedure Foo

Process Stack
SP

SP+32

R3 R4 R5 R6 R7 R8 R9

Notice that although register a4 is available, p4 is placed on the
stack since it cannot be placed completely in the remaining register
(rule 4). Such restrictions are common in actual calling conven-
tions.

Now that we have seen how arguments are transmitted for a
simple example, we can describe the objects in our model. The pri-
mary objects of interest are machine resources. A machine
resource is simply any location that can store a value. Examples
include registers and memory locations, such as the stack. Defin-
ing where required values are located is accomplished by specify-
ing a mapping from one resource to another. We call such a
mapping a placement. Although a procedure’ s arguments and its
return value are technically not machine resources by the above
definition, we consider them as special resources in our model.

We partition a machine’s resources into two categories: finite
and infinite. Resources such as register sets that can easily be enu-
merated are considered finite. Resources that are conceptually
“unbounded” such as the stack are considered infinite. Although
the stack is finite for any particular implementation of a machine,
we model it as infinite since the programmer considers it, for all
intents and purposes, to be infinite. This distinction is important
since we must treat infinite resources in a special way.

3.2 Typographical Extensions
Figure 4 contains the complete CCL specification for the simple
calling convention. The first thing to notice about CCL descrip-
tions is prevalent use of typographical extensions. We extend the
standard ASCII character set used in most machine-readable lan-
guages to include multiple fonts, super/subscript’s, and variations
in font angle (italic) and weight (bold). This approach helps
accomplish two of our goals in the language design: conciseness
and naturalness. Since information can be encoded in the fonts, we
can reduce the size of the descriptions. Second, in contrast to sim-
ple ASCII text, it provides a more natural way to describe many
data types used in CCL. The following is a list of many expres-
sions used in CCL:

• Sets: {2:9} ≡ {2,3,4,5,6,7,8,9}
• Ordered sets: <2,8,3,9,4,10>, <0:∞>
• Labeled sets: {char: 1, short: 2, longword: 4, float: 4, dou-

ble: 8}
• Arrays: M[14] ≡ M14, <M[r14:r14+31]> ≡ <M[r14(32)]>
• Operators: mod, ∑, ∧, ∈, ⊥
• Keywords: external, alias, call prologue, resources, map,

set
• Comments: This is a comment

1. Registers a1, a2, a3, and a4 are 32-bit argument-transmit-
ting registers.

2. Arguments may be passed on the stack in increasing mem-
ory locations starting at the stack pointer (M[sp]).

3. An argument may have type char (1 byte), int (4 bytes),
or double (8 bytes).

4. An argument is passed in registers (if enough are available
to hold the entire argument), and then on the stack.

5. Arguments of type int are 4-byte aligned on the stack.
6. Arguments of type double are 8-byte aligned on the

stack.
7. Stack elements that are skipped over cannot be allocated

later.
8. Return values are passed in registers a1 and a2.
9. Values of registers a6, a7, a8, and a9 must be preserved

across a procedure call.

Figure 3: Rules for a simple calling convention.

4

An advantage of using typographical extensions is that a sim-
ple, concise convention indicates the portions of descriptions that
are literals, meta-symbols, and predefined elements. Comments
are clearly offset from the remaining description because they are
both italic and set in a different font. Sets are used heavily in the
language and adhere to their natural syntax in mathematics. Key-
words are in bold making them easy to identify.

There are two minor disadvantages of typographical exten-
sions. One is that descriptions cannot be edited with existing text
editors (e.g., emacs, vi, etc.), rather it requires the use of tools such
as a specialized editor and postscript viewer. However, such tools
are widely available as are postscript printers for printing descrip-
tions. Indeed, such a tool was used to develop the CCL descrip-
tions in this paper. A second disadvantage is the tools that process
CCL are slightly more complicated as they must deal with an inter-
mediate representation that has typographical information
included. Our initial experiments show that this is not be a major
obstacle. Consequently, the benefits of this approach far outweigh
the minor disadvantages.

1 external NVSIZE, SPILL_SIZE, LOCALS_SIZE
2 non-volatile {a6, a7, a8, a9}
3 alias sp ≡ a5

4 caller prologue
5 view change
6 ∀ offset ∈ {−∞:∞}
7 M[sp + offset] becomes M[sp + offset + ARG_SIZE]
8 end view change
9 data transfer (asymmetric)

10 alias mindex ≡ <sp:∞>
11 alias argregs ≡ <a1:4>
12 resources {argregs, <Mmindex>}
13 internal ARG_SIZE ← ∑(<M[addr].size | addr ∈ mindex ∧ M[addr].assigned>)
14 class regs ← <<register> | register ∈ argregs>
15 class imem ← <<M[addr]> | addr ∈ mindex ∧ addr mod 4 = 0>
16 class dmem ← <<M[addr]> | addr ∈ mindex ∧ addr mod 8 = 0 >
17 ∀ argument ∈ <ARG1:ARG_TOTAL>
18 map argument → argument.type ⊥ {
19 char: <regs, Mmindex>,
20 int: <regs, imem>,
21 double: <regs, dmem>,
22 }
23 end data transfer
24 end caller prologue
25 callee prologue
26 view change
27 ∀ offset ∈ {-∞:∞}
28 M[sp + offset] becomes M[sp + offset + SPILL_SIZE + LOCALS_SIZE + NVSIZE]
29 end view change
30 end callee prologue
31 callee epilogue
32 data transfer (asymmetric)
33 resources {a1:2}
34 map RVAL1 → <<<a1>>>
35 end data transfer
36 end callee epilogue
37 caller epilogue
38 end caller epilogue

Figure 4: A Complete Simple Example.

3.3 Outer Environment
CCL is a part of a larger description system we are developing at
the University of Virginia. CCL is part of the compiler-specific
description. Although CCL is used to capture all information about
a calling convention, a CCL description does not contain all neces-
sary information to produce a calling sequence. Indeed, CCL
descriptions are not complete by themselves. CCL descriptions
require information from the outer environment to complete the
descriptions. Information about the machine and language, such as
the size of registers, the base data types and local procedure infor-
mation, such as the amount of space needed for temporary vari-
ables, and which registers are used, must be provided by the outer
environment. Four variables that are always defined by the outer
environment are the special resources ARG, RVAL, and the corre-
sponding special resource sizes ARG_TOTAL and
RVAL_TOTAL. Since these values are always defined, they are
implicitly declared as external values. All other variables whose
values are provided by the outer environment are declared using
the external statement.

A CCL description is typically language dependent as well.
This is, in part, because the language definition influences the call-
ing convention. For example, the C language [KERN78] defines a
slightly different calling convention than its successor ANSI C

5

[KERN88]. One difference is that C always promotes arguments of
type float to type double, while ANSI C does not. These differ-
ences are part of the calling convention, and are, therefore, present
in the resulting CCL descriptions. Although ANSI C is now the
standard, all of the examples in this paper assume the traditional C
language calling convention since it presents more interesting
examples.

3.4 Placement of Procedure Arguments
First, we examine the placement of procedure arguments. We use
the simple calling convention specification shown in Figure 4. For
placement of arguments, we focus on the data transfer statement
within the caller prologue section of the description (lines 9-23).
We use the alias statement to introduce the name ‘argregs’ as a
name for the parameter passing registers and ‘mindex’ as a set of
stack addresses (a5 is the stack pointer). Line 12 defines the set of
possible destinations for data placement, which we call the
resources. Lines 14-16 specify classes that each defines a subset of
these resources where placements may start. Since the convention
has two different alignment restrictions for memory, which are
based on argument type, there is a corresponding class for each
restriction as well as a class for the argument registers. The lan-
guage requires classes to be ordered sets of ordered sets. Classes
simply partition the resources into sets of valid locations to place
values. The outer set indicates the order in which to consider plac-
ing the arguments. In this example, when passing arguments in
memory, we consider memory locations in low-to-high address
order. The inner set typically contains a single element (the starting
location). More complicated conventions make more use of the
inner set as we will see later.

The remaining lines (17-22) of the data transfer contain the
argument placement description. The universal quantifier (∀)
operator iterates over the set, each time binding the variable argu-
ment to an element of the set. Here, the set is ordered, ensuring that
argument will take values in the set in order. The resource ARG is
a special resource that is provided by the outer environment. It
contains information such as the type and size of the arguments for
the call.

The two operators on line 18 complete the placement descrip-
tion. The placement operator (→) is invoked for each value argu-
ment is assigned. The placement operator takes a value (here an
argument) and a list of classes. The classes are searched, in order,
for an available resource to place the given value. When a resource
is found, the location is marked as used, by setting the ‘assigned’
attribute, to ensure unique locations for each placed value. The
selection operator (⊥) is used on labeled sets. This is simply a case
expression. Based on the value of argument’ s type attribute, one
expression from the labeled set is selected.

3.4.1 Placement of Procedure Return Values
Specifying the locations of procedure return values is similar to
procedure arguments. To determine the return value placement, we
examine the data transfer statement within the callee epilogue
section for Figure 4. Here, we see RVAL, the other special
resource defined by the outer environment, which refers to the list
of return values (in most languages, there is only one). The
resources used for returning values are the registers a1 and a2.
These registers are used for returning values of all types. Recall
that the registers have size 4 bytes, integers are 4-byte quantities
and doubles are 8-byte quantities. So, this specification indicates
only a1 will be used for chars and ints, but a1 and a2 will be used
for double values. This level of conciseness is achieved by indicat-
ing only the starting location rather than indicating the size, which
can be attained from the type.

3.4.2 Non-Volatile Registers
Non-volatile registers are registers that contain values that the
caller expects to be preserved during a procedure call. This expec-
tation is part of the calling convention. If the callee wishes to use a
non-volatile register, the register’s value must be preserved by the
callee, and restored to its original value prior to returning to the
caller. Registers whose values are non-volatile are listed in line 2
of Figure 4.

Two important details about non-volatile registers are missing
from this specification. These are where the registers values are
saved, and how they saved. The former is defined by the frame lay-
out, while the latter is defined by the calling sequence. Although
these details are important for the callee’ s implementation, they are
of no concern of the caller. Since they are of no concern of the
caller, they are not part of the calling convention. Thus, while we
could easily include this information in our CCL descriptions, we
have chosen not to include it to avoid unnecessary restrictions in
our calling convention specifications.

3.4.3 Putting it All Together
So far, we have examined the specification of each aspect of our
simple convention in isolation. We now broaden our view to the
entire description shown in Figure 4. A description is divided into
five sections: one section for each agent in our model, and a global
declaration section. We place data transfer and view change
statements within agent sections. Finally, we place the two data
placement schemes discussed above in their corresponding loca-
tions in the description.

First, let’ s examine the caller prologue section. This section
specifies the responsibilities of the caller prologue agent. Most
data transfer statements have been described previously. Line 13,
however, has not. It computes the amount of space that was
assigned by the placement operator. Although this computation has
been placed before the placement operation, its value will not actu-
ally be computed until after, since the computation is dependent on
the results of the placement. The result of this computation is then
used in the above view change statement.1 The view change indi-
cates that the value in location M[sp] will now be found in location
M[sp + ARG_SIZE]. Such a change of view corresponds to a dec-
rement of the stack pointer (a push) of precisely the amount needed
to pass the arguments.

Although the location of the procedure arguments must be
known for both the caller prologue and the callee prologue, the
placement description only resides in the caller prologue section.
This is because the callee prologue can determine the locations of
the arguments by applying the appropriate view change to the
description located in the caller prologue section. Hence, describ-
ing the change of view makes it unnecessary to restate where the
procedure arguments are located when the view changes.

A final note about this description. The two data transfer
statements (for passing arguments and return values) are tagged
with the keyword (asymmetric). This indicates that the transfer is
done by the agent, but not undone (values transferred back) by the
symmetric agent (callee epilogue for callee prologue, caller epi-
logue for caller prologue). However, for all of the view changes,
the lack of the (asymmetric) keyword indicates that a symmetric
action takes place in the symmetric agent. For example, in this
specification, the caller epilogue is empty. However, the caller epi-
logue performs the symmetric view change shown in the callee

1. There is no set ordering for view change and data transfer statements.
However, since the view change occurs before the data transfer, all refer-
ences to resource M are in terms of the new view. Had the view change
been after the data transfer, this would not be the case.

6

prologue and has access to the procedure return value data trans-
fer statement in the callee epilogue. Without this concept of sym-
metry, the description in Figure 4 would be considerably more
involved.

Our simple calling convention illustrates how many common
features in calling conventions are described. However, real-world
examples tend to have additional constraints that complicate the
descriptions. Appendix A contains a complete specification for the
MIPS R3000 calling convention and a brief English description.

4 The Formal Model
This section presents the formal model that we use as a foundation
for implementing procedure calling conventions.

4.1 P-FSA Representation
We use finite state automata to model each placement in the calling
convention. One such FSA is shown in Figure 5. This FSA models
the placement of procedure arguments for the simple calling con-
vention. The placement FSA (P-FSA) takes a procedure’s signa-
ture as input and produces locations for the procedure’s arguments
as output. The automaton works by moving from state to state as
the location of each argument is determined. During transition,
information about the current parameter is read from the input, and
the resulting placement is written to the output.

The states of the machine represent that state of allocation for
the machine resources. For example, the state labeled q2 represents
the fact that register a1 and a2 have been allocated, but that a3, a4

and stack locations have not been allocated. The transitions
between states represent the placement of a single argument. Since
arguments of different types and sizes impose different demands
on the machine’s resources, we may find more than one transition
leaving a particular state. In our example, q8 has three transitions

Figure 5: P-FSA for transmission of parameters for a simple calling convention.

q3 =
1110
000

q8 =
1111
100

q6 =
1111
010

q10=
1111
110

q4 =
1111
000

q5 =
1111
001

q7 =
1111
011

q11=
1111
111

q9 =
1111
101

q0 =
0000
000

q1 =
1000
000

q2 =
1100
000

d d d d d

d

d
d

d

d

d

d

c,i c,i c,i
c,i

c c

c

c

c
c

c

c

i
i i

i

i

i

i
i

even though two of them (int and double) have the same target
state (q4). This duplication is required since the output from map-
ping an int is different from the output from mapping a double.

Modeling the allocation of an infinite resource, such as the
stack, using an FSA poses a problem, however. As stated above,
the state indicates which resources have been allocated. For finite
resources, this is easily accomplished by maintaining a bit vector.
When a resource no longer may be used, the associated bit is set to
indicate this. For an infinite resource this scheme cannot work if
we hope to use an FSA, since this would require a bit vector of
infinite length. To simplify the problem, we impose a restriction on
infinite resources: their allocation must be contiguous. Thus, for an
infinite resource I = {i1, i2, …}, we can store the allocation state by
maintaining an index p whose value corresponds to the index of
the first available resource in I. Because the allocation of I must be
contiguous, p partitions the resources, since a resource ij is
unavailable if j < p or available if j ≥ p. For instance, if the stack is
the infinite resource, p can be considered the stack pointer.

Nevertheless, we still have a problem. Although for a particu-
lar machine, the value of p must be finite, the resulting FSA could
have as many as 232 stack allocation states for a 32-bit machine.
However, we can significantly reduce this number by observing
that the decision of where to place a parameter in memory is not
based on p, but rather on alignment restrictions. For our example,
we care only if the next available memory location is one-, four-,
or eight-byte aligned. Consequently, we can capture the allocation
state of the machine with three bits that distinguish the memory
allocation states. We call these the distinguishing bits for infinite
resource allocation.

Handling passing structures by value creates a complimentary
problem. Since only the “alignment state” of the stack is of inter-
est, structures that affect the state of the P-FSA differently must
use different transitions. So for a convention that requires struc-

7

tures to be passed in 8-byte aligned memory locations, all struc-
tures of size n where n mod 8=1 share the same transition out of a
given state. Therefore, number of transitions leaving a state is lim-
ited by the alignment restrictions of the machine.

4.2 P-FSA Definition
To generalize our approach, we have the set of finite machine
resources R = {r1,r2, …, rn}, infinite resource I = {i1, i2, …}1, and
selection criteria C = {c1, c2, …, cm}. The selection criteria corre-
spond to characteristics about arguments (such as their type and
size) that the calling convention uses to select the appropriate
placement for an argument. We encode the signature of a proce-
dure with a string w ∈C*. Each state q in the automaton is labeled
according to the allocation state that it represents. The label
includes a bit vector v of size n that encodes the allocation of each
of the finite resources in R. Additionally, to express the state of
allocation for an infinite resource, we include d, the distinguishing
bits of index p. So, a state label is a string vd that indicates the
resource allocation state. In our example, n = 4, and ||d|| = 3. So,
each state is labeled by a string from the language {0, 1}4{0, 1}3.
The output of M is a string s ∈ P, where P = R ∪ {0, 1}||d||, which
contains the placement information. So, from our example in
Figure 5, state q8 is labeled 1111 100 to indicate that each of the
argument registers has been used, and that the first available stack
location is four-byte aligned.

From the above discussion, we have the following values that
are pertinent to defining a finite state machine:

• a set of finite resources R = {r1, r2, …, rn}.
• an infinite resource I = {i1, i2, …}.
• d, the distinguishing bits of p.
• selection criteria C = {c1, c2, …, cm}.
• bit vector v = {b1, b2, … bn}, where bi is set if resource ri is

used.
• the set of placement strings P = R ∪ {0, 1}||d||.
We now formalize our definition of a P-FSA for modeling

placement. Since the P-FSA produces output on transitions, we
have a Mealy machine [MEAL55]. We define the P-FSA as a six-
tuple2 M = (Q, Σ, ∆, δ, λ, q0), where:

• Q is the set of states with labels {0, 1}n{0, 1}||d|| represent-
ing the allocation state of machine resources,

• the input alphabet Σ = C, is the set of selection criteria,
• the output alphabet ∆ = P, is the set of placement strings,
• the transition function δ:Q × Σ → Q,
• the output function λ:Q × Σ → ∆+,

1. This can easily be extended to model more than one infinite resource.
2. In this paper, we use the notation of Hopcroft and Ullman for finite state
automata and regular expressions [HOPC79]. We use letters early in the
alphabet (a, b, c) to denote single symbols. Letters late in the alphabet (w,
x, y, z) will denote strings of symbols.

a. mem1 = 000 001 010 011
b. mem2 = 100 101 110 111
c. mem3 = 000 001 010 011 100 101 110 111

λ q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

char a1 a2 a3 a4 000 001 010 011 100 101 110 111

int a1 a2 a3 a4 mem1
a mem2

b mem2 mem2 mem2 mem1 mem1 mem1

double a1a2 a2a3 a3a4 mem3
c mem3 mem3 mem3 mem3 mem3 mem3 mem3 mem3

Table I: Definition of λ for example P-FSA.

• q0 is the state labeled by 0nw where ||w|| = ||d|| is the initial
state of d.

We also define :Q × Σ∗ → Q and :Q × Σ∗ → ∆* which are just
string versions (defined by Hopcroft and Ullman [HOPC79]) of δ
and λ, respectively. So, for our example, we have M = (Q, {char,
int, double}, {a1, a2, a3, a4}∪{0, 1}3, δ, λ, q0), where Q and δ
are pictured in Figure 5 and λ is defined in Table I. Note that we
have modified the traditional definition of λ to allow multiple sym-
bols to be output on a single transition. This reflects the fact that
arguments can be located in more than one resource. For example,
in state q5 on an int, Table I indicates that M produces the string
of four symbols 100 101 110 111 that indicates four bytes that are
four-byte aligned, but are not eight-byte aligned.

The signature:

int phred(double, double, char, int);

will take the P-FSA in Figure 5 from state q0 to q4 producing the
string (a1 a2) (a3 a4) (000) (100 101 110 111) along the way. The
parentheses in the output string are required to determine where
the placement of one argument ends and the next argument’s place-
ment begins. Although these are necessary, we have omitted them
from our automaton definition to simplify its presentation. From
the string, we can derive the placement of the phred’ s arguments.
The first double is placed in registers a1 and a2, the second in
registers a3 and a4, the char at the first stack location and the
int starting in the fifth stack location. The padding on the stack
between the char and the int is indicated by the omission of
locations 001, 010 and 011 that correspond to the pad locations.

4.3 Automatic P-FSA Construction
In this section, we present an algorithm for automatically con-
structing automata to model placement computations. For the
moment, we assume the existence of a function f:Σ* → ∆∗. f com-
putes the same value as M. Since f and M are equivalent, why con-
struct M at all? The answer is that f may have undesirable
properties. For instance, M may be used in a context, such as a
compiler, where performance is an issue. If f is implemented as an
interpreter, the time it takes to compute a placement may not sat-
isfy the performance constraints. Additionally, by using a P-FSA,
there are several properties (such as an upper bound on M’ s execu-
tion time) we can prove about the P-FSA that we cannot prove
about f. We present such properties in Section 5.

We construct the P-FSA by performing a depth-first-traversal
of the states in Q to determine the set of reachable states from q0.
At each state q, the states that are reachable from q in one step are
determined by using each element of {wc | c ∈ C} as input to f.
Each newly reachable state q’ is added to Q and is subsequently
visited by BUILD-P-FSA (The algorithms are included in Appendix
A). Finally, the appropriate additions to δ and λ are made for q’.

δ̂ λ̂

8

BUILD-P-FSA also uses an auxiliary function STATE-LABEL:P →
Q. STATE-LABEL takes an output string from M and computes the
label for the state that M was in when the input was exhausted.

Our construction is now complete, except the definition of the
function f. We supply f ’ s definition using an interpreter. We have
designed and implemented a language for specifying procedure
calling conventions. The language has an interpreter that takes as
input a calling convention specification, information about a pro-
cedure’s signature and some additional information about the tar-
get machine, and produces the necessary mapping information to
properly call the given procedure. Thus, this interpreter can be
used to implement f in our algorithm above. In Section 6, we
present the interpreter’s use in an implementation.

5 Completeness and Consistency in P-FSA’s
In this section, we consider a number of different properties of pro-
cedure calling conventions. But first we identify several imple-
mentation difficulties that one might encounter when dealing with
a calling convention.

5.1 Common Difficulties
Applications, such as compilers and debuggers, which generate, or
process procedures at the machine-language level require knowl-
edge of the calling convention. Until now, the portion of such an
application’s implementation that concerned itself with the proce-
dure call interface was constructed in an ad-hoc manner. The
resulting code is complicated with details, difficult to maintain,
and often incorrect. In our experience, we have encountered many
recurring difficulties in the calling convention portion of a retar-
getable compiler. There are three sources for these problems: the
convention specification, the convention implementation, and the
implementation process. We address each of these in the following
paragraphs.

Many problems arise from the method of convention specifi-
cation. Often, no specification exists at all. Instead the native com-
piler uses a convention that must be extracted by reverse-
engineering it. In the cases where a specification exists, it typically
takes the form of written prose, or a few general rules (e.g., our
example description in Figure 3). Such methods of specification
have obvious deficiencies. Furthermore, even if we have an accu-
rate method for specifying a convention, it still may be possible to
describe conventions that are internally inconsistent, or incom-
plete. For example, the convention may require that more than one
procedure argument be placed in a particular resource. Another
possibility is that the specification may omit rules for a particular
data type, or combination of data types.

Those problems that do not stem from the specification result
from incorrect implementation of the convention. Many of the
same problems in the specification process also plague the imple-
mentation. Many conventions have numerous rules, and excep-
tions that must be reflected in the implementation. Another
difficulty is that the implementation may require the use of the
convention in several different locations. Maintaining a correspon-
dence between the various implementations can itself be a great
source of errors. Finally, this problem is exacerbated by the fact
that the implementation frequently undergoes incremental devel-
opment. Rather than taking on the chore of implementing the
entire convention at once, a single aspect of the convention, such
as providing support for a single data type, is tackled. After suc-
cessfully implementing this subset, the next increment is tackled.
In doing so, some aspect of the first stage may break due to the
interactions between the two pieces.

The result of these observations is that there are several prop-
erties that we would like to ensure about a specification and imple-
mentation. The above discussion motivates the following
categories of questions:

1. Completeness:
a. Does the specified convention handle any number of

arguments?
b. Does the convention handle any combination of argu-

ment types?
2. Consistency:

a. Does the convention map more than one argument to a
single machine resource?

b. Do the caller and callee’s implementations agree on the
convention?

Many questions like these can be answered using P-FSA’s. The fol-
lowing sections show how we can prove certain properties about
conventions that ensure desirable responses to the above questions.

5.2 Completeness
The completeness properties address how well the convention cov-
ers the possible input cases. A convention must handle any proce-
dure signature. If we could guarantee that the convention was
complete, or covered the input set, then we could answer the com-
pleteness questions posed in the previous section. We can deter-
mine if a convention is complete by looking at the resulting P-
FSA. For example, will the convention work for any combination
of argument types? The answer lies in the P-FSA transitions. For
the convention to be complete, each state q ∈ Q must have δ(q, c)
defined for all c ∈C.

Using P-FSA’s, we can guarantee that no incomplete conven-
tion will go undetected. For an incomplete convention K to not be
detected, it would first have to be constructed using our algorithm.
Assume such a P-FSA M exists for K. Then there must be some
state qk that is reachable from q0 but does not have δ(qk, a) defined
for some a ∈ C. Let Wk denote the set of all strings x such that

(q0, x) = qk. That is, Wk is the set of strings that take M from state
q0 to qk. Thus, for all strings x such that x e Wk, xa represents a sig-
nature that K does not cover. However, during construction,
BUILD-P-FSA visited state qk with some string w such that (q0,
w) = qk. Thus, w must be in Wk and must not be covered by K.
Since BUILD-P-FSA calls f(wc) for all c ∈ C, f will be called using
f(wa). Since wa is not covered by K, f(wa) will be undefined. At
this point the construction process will signal that K is incomplete.

5.3 Consistency
The consistency properties address whether the convention is
internally and externally consistent. A convention is internally
consistent if there is no machine resource that can be assigned to
more than one argument. A convention is externally consistent if
the caller and callee agree on the locations of transmitted values. In
our model, we detect internal inconsistency, and prevent external
inconsistency.

To detect internal inconsistencies, we again turn to the P-
FSA. If the convention only used finite resources, detecting a cycle
in the P-FSA would be sufficient to detect the error. However,
when infinite resources are introduced, so are cycles. We cannot
have an internal inconsistency for an infinite resource since p is
defined to be monotonically increasing. We detect finite resource
inconsistencies in the following manner. An inconsistency can
occur when there is a transition from some state qj to qk where bit i
in the finite bit vector is 1 in qj, but 0 in qk. At this point, M has lost
the information that resource ri was already allocated. We can
detect this change by comparing all pairs of bit vectors v1, v2 such
that v1 labels qj, v2 labels qk and δ(qj, c) = qk for some c ∈C. To do

δ̂

δ̂

9

the comparison, we compute v3 = (v1 ⊕ v2) ∧ v1. v1 ⊕ v2 selects all
bits that differ between v1 and v2. We logically and (∧) this with v1
to determine if any set bits change value. Thus, if v3 has any bit set,
we have an inconsistency.

Our convention specification language prevents external
inconsistencies in the calling convention. A convention specifica-
tion only defines the argument transmission locations once.
Although both the caller and the callee must make use of this infor-
mation, the specification does not duplicate the information. Since
we only have a single definition of argument locations, we only
construct a single P-FSA to model the placement mapping. This
single P-FSA is used in both the caller and callee. By doing so, we
prevent external inconsistencies by requiring the caller and callee
use the same implementation for the placement mapping.

6 The Implementation

6.1 The Interpreter
We have implemented an interpreter for the CCL specification lan-
guage. The interpreter’s source is approximately 2500 lines of Icon
code [GRIS90]. The interpreter takes as input the CCL description
of a procedure calling convention, a procedure’s signature, and
some additional information about the target architecture, and pro-
duces locations of the values to be transmitted, in terms of both the
callee and the caller’s frame of reference.

We have developed CCL specifications for the following
machines: MIPS R2000, SPARC, DEC VAX-11, Motorola
M68020, and Motorola M88100. Each of these CCL specifications
is approximately one page in length. Using the specification for the
MIPS, and the CCL interpreter, we constructed a P-FSA that
implements the MIPS calling convention. The MIPS P-FSA uses
only 16 out of a possible 512 states (the state label has 9 bits), but
requires nine transitions for each state to implement the selection
criteria for the C programming language. Since the MIPS conven-
tion has more machine resource classes and alignment require-
ments than any of the other machines, it represents the most
complicated convention we have. Therefore, we would expect P-
FSA’s for the other architectures to be significantly smaller. For
machines that pass procedure arguments on the stack with no
alignment restrictions, such as the VAX-11, would only be a few
states.

For comparison purposes, we have examined the calling con-
vention specific code for a retargetable compiler. The MIPS imple-
mentation requires 781 lines of C code, while the SPARC
implementation has 618 lines. This code is one of the most com-
plex sections of the machine-dependent code. This code is
replaced by the P-FSA tables and a simple automaton interpreter.

6.2 Realizing the Calling Sequence
In this section, we present how the information from our CCL
descriptions can be used to generate calling sequences for the vpcc/
vpo optimizing compiler[BENI88][BENI94].

In our compiler, the code for the procedure bodies is gener-
ated without knowledge of the calling convention. For a callee, the
optimizer treats formal parameters as local variables. It assigns
each parameter either a register or a memory location, based on the
parameter’s predicted reference frequency. Thus, although an
established convention for where values cross the procedure call
interface exists, the code generated by our compiler for a proce-
dure’s body may not conform to the convention.

To correct this problem, instructions are placed before and
after the callee’s body, and before and after the call site in the
caller. We call these instructions the caller/callee prologue/epi-
logue sequences. It is these sequences of instructions that are col-

lectively called the calling sequence. The sequences introduce four
new interfaces shown as in Figure 6. In each sequence, the
instructions transform a convention interface to a code body inter-
face or vice versa. Since these sequences of instructions are used to
“glue” the procedure bodies to the convention interfaces, they cor-
respond to the agents, shown in Figure 1, of our high-level model.

An agent’s responsibilities fall into one of three categories:
allocation or deallocation of storage space, movement of values
from their locations in the first interface to locations in the second
interface, and the construction/restoration of procedure execution
environments. Hence, to generate an agent’s actions, we must have
information about where the calling convention expects values,
what space to allocate or free, and the procedure’s environment
structure. We can automatically generate the first two.

To illustrate our technique, we show how to generate the
instruction sequence for one agent. The instruction sequences that
correspond to the other three agents are generated exactly the same
way. For our example, we focus on the prologue callee agent for
the procedure foo introduced earlier.

Recall that for our hypothetical machine, foo’ s arguments
are placed by the caller in locations a1, a2, a3, M[sp:sp+7]. The
frame layout on the stack just before control passes to foo is
shown in Figure 7a. Assume that in generating the foo’ s body, the
optimizer uses two non-volatile registers, allocates 12 bytes of
memory for local variables (including foo’ s arguments) and uses
8 bytes of spill space. One possible frame layout for foo is shown
in Figure 7b. The relative locations of the temporary spill space,
local variable space and non-volatile register save space are deter-
mined by the optimizer. The optimizer provides the locations
where the callee body expects values. These are listed in the sec-
ond column of Table II. These locations represent an agreement
between the callee body and the callee prologue agent.

The optimizer calls the P-FSA interpreter with the foo’ s sig-
nature and values of the external variables:

Figure 6: Calling Sequence Locations

�������
�������
�������

���
���
���

Callee Prologue
Sequence

Caller
Body

�������
�������

�������
�������

�������
�������

�����
�����

�������
�������
�������

���
���
���

Convention Interface

Sequence/Body Interface

Caller Prologue
Sequence

�������
�������

�������
�������

�������
�������

�����
�����

�������
�������

�������
�������

�������
�������

�����
�����

Callee Epilogue
Sequence Callee Epilogue

Sequence
�������
�������
�������

�������
�������
�������

�������
�������
�������

�����
�����
�����

Caller
Body

Callee
Body

�������
�������
�������

���
���
���

�������
�������
�������

���
���
���

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	

	�	
	�	
	�	
	�	

10

[SPILL_SIZE=8, LOCALS_SIZE=12, NVSIZE=8,
(ARG1, type:char, size:1),
(ARG2, type:int, size:4),
(ARG3, type:int, size:4),
(ARG4, type:double, size:8)]

The P-FSA returns view changes, a list of argument locations that
correspond to the calling convention, and a list of non-volatile reg-
isters:

[(∀ offset ∈ {-∞:∞}, M[sp + offset] : M[sp + offset + 28]),
[(ARG1, a1),
(ARG2, a2),
(ARG3, a3),
(ARG4, M[sp+28:sp+35]),
[non-volatile: a6, a7, a8, a9]]

In this example, the view change occurred before the list of loca-
tions. Therefore, the locations reflect this fact.

View change information corresponds to the allocation or
deallocation of storage space. This view change indicates that any
memory location’s address, that contains a valid value for offset,
shifts down by 28 bytes. Since offset can take on any positive or
negative value (-∞:∞), this corresponds to all addresses relative to
the stack pointer. Thus, a decrement of the stack pointer by 28
bytes is needed. This allocation of stack space will appear as a
view change since it changes the names of all locations referenced
by the stack pointer. A table is consulted for each view change in
the CCL description. The table maps all view changes to valid
machine instructions.

After the view change has been performed, the necessary
moves must be made to transform the agreement between the
caller prologue agent and callee prologue agent to the agreement
between the callee prologue agent and the callee body. Table II
summarizes the location information. Column 1 shows the loca-
tions returned by the P-FSA. Column 2 shows the locations that
the optimizer supplies. Column 3, which can be trivially derived
from columns 1 and 2, indicates the necessary actions. Each of
these moves is a register/memory to register/memory move. A
table of available move instructions is consulted to determine the
necessary instructions to be inserted into the callee prologue’s
sequence.

After the agent’ s actions are determined, the list of sources
and destinations must be examined to determine if there are any
dependencies. If a source is also a destination, the move containing
the source must be performed before the move containing the des-

Figure 7a: Frame before call. Figure 7b: foo’ s frame layout.

Figure 7: Frame layouts at different stages of procedure
call.

Caller
Frame

p4

Temporary

Spill Space

Caller
Frame

foo’s
locals

f
o
o

’s
 fr

am
e

Non-Volatile
Save Space

p4

tination, otherwise the source value will be lost. It is not uncom-
mon for a circularity to exist. For example, if a1→a2 and a2→a1,
we must introduce a third location to break the circularity:
a1→temp, a2→a1, temp→a2. Either an available register or a
memory location must be used to temporary hold one of the val-
ues. In our optimizer, we usually have a register available.

For our implementation of the C language, the callee pro-
logue has no other responsibilities. However, in other implementa-
tions, or other languages, special environment initialization might
be required. For example, in PASCAL, the variable “display” that
is used for addressing outer-block variables might need to be setup.
Although this would probably be performed in the callee prologue
sequence, the initialization is not part of the calling convention and
is, therefore beyond the scope of this system.

At this point, the callee prologue instruction sequence is com-
plete. So far, we have not addressed instruction sequence effi-
ciency. Because of the frequency of procedure calls, generating
efficient instruction sequences is an important feature of optimiz-
ing compilers. In our compiler, the resulting instruction sequences
are processed by the optimizer. Thus, although the instruction
sequences that are initially generated by this process are naive,
they benefit from thorough optimization just as other code does.

6.3 Related Issues
Providing support for procedures that may receive a varying num-
ber of arguments is always difficult. In the C language, the mecha-
nism used is varargs which is more a convention than a language
feature. Johnson and Ritchie spend considerable time explaining
the ramifications that varargs has on the calling sequence
[JOHNSON]. In fact, providing support for C’ s varargs frequently
has profound influence on the calling convention. However, in C,
procedures that receive variable numbers of arguments still adhere
to the defined calling convention. While varargs must be consid-
ered when developing a particular calling sequence, information
about varargs is not present in the definition of the calling conven-
tion.

An important decision when designing a calling convention is
deciding which registers retain their value across a procedure call.
If some registers retain their value, it is the responsibility of the
callee to restore the original values of any such register that is

Convention
Callee Prologue

Agent/Callee
Agreement

Callee Prologue Agent
Actions

A
rg

um
en

ts

p1:a1 p1:a3 a1→a3

p2:a2 p2:M[sp+4:sp+7] a2→M[sp+4:sp+7]

p3:a3 p3:a4 a3→a4

p4:M[sp+28:sp+35] p4:a1,a2 M[sp+28:sp+35]→a1,a2

N
on

-V
ol

at
ile

a6 M[sp+20:sp+23] a6→M[sp+20:sp+23]

a7 M[sp+24:sp+27] a7→M[sp+24:sp+27]

a8 a8 —

a9 a9 —

Table II: Summary indicating how callee prologue
agent actions are determined from placement
information from both interfaces.

11

used. Rather than define the mechanism employed in the conven-
tion as caller or callee save, we simply define who is responsible
for the save. This is accomplished by indicating that registers are
non-volatile. Volatile register values must be saved by the caller,
while non-volatile register values must be saved by the callee if it
uses them.

The specifications in this paper, and the implementation that
we have presented are for the C language. We have not, as yet,
considered how CCL could be used for languages that are drasti-
cally different from C. However, we anticipate that CCL could
handle features such as heap-based parameter passing without
modification.

7 Related Work
What little work there has been in calling sequences has been ad-
hoc. For example, Johnson and Richie discuss some rules of thumb
for designing and implementing a calling sequence for the C pro-
gramming language [JOHNSON]. Davidson and Whalley experi-
mentally evaluated several different C calling conventions
[DAVI91]. No attempts have been made to formally analyze calling
conventions.

On the other hand, the use of FSA for modeling parts of a
compiler, and as an implementation tool has a long and successful
history. For example, Johnson et al. [JOHN68] describe the use of
FSA’s to implement lexical analyzers. More recently, Proebsting
and Fraser [PROE94], and Muller [MULL93] have used finite state
automata to model and detect structural hazards in pipelines for
instruction scheduling.

8 Summary
Current methods of procedure call specification are frequently
imprecise, incomplete, contradictory or inconsistent. This comes
from the lack of a formal model, or specification language that
guarantee these properties. We have presented a formal model,
called P-FSA’s, for procedure calling conventions that can ensure
these properties. Furthermore, we have developed a language and
interpreter for the specification of procedure calling conventions.
With the interpreter, a P-FSA that models a convention can be
automatically constructed from the convention’s specification.
During construction, the convention can be analyzed to determine
if it is complete and consistent. The resulting P-FSA can then be
directly used as an implementation of the convention in an applica-
tion.

9 Acknowledgments
We express our thanks to John Reppy and Sanjay Jinturkar for
their extensive comments on earlier drafts of this paper. We should
mention in particular Ricky Benitez who provided many insightful
conversations and the implementation of the optimizing compiler
used in this work. Finally, we would also like to thank the review-
ers for their helpful suggestions.

10 References

[BAIL93] Bailey, M.W. and Davidson, J.W. A Formal Specifica-
tion for Procedure Calling Conventions. Technical Re-
port CS-93-59. University of Virginia, 1993.

[BAIL94] Bailey, M.W. and Davidson, J.W. A Formal Model for
Procedure Calling Conventions. Technical Report CS-
94-57. University of Virginia, 1994.

[BENI88] Benitez, M.E. and Davidson, J.W. A Portable Global
Optimizer and Linker. In Proceedings of the SIGPLAN
‘88 Conference on Programming Language Design
and Implementation, Atlanta, Georgia, June, 1988,
329-338.

[BENI94] Benitez, M.E. and Davidson, J.W. The Advantages of
Machine-Dependent Global Optimization. In Proceed-
ings of the 1994 Conference on Programming Lan-
guages and Systems Architectures, Zurich,
Switzerland, March 1994, 105-124.

[DAVI91] Davidson, J.W. and Whalley, D.B. Methods for Saving
and Restoring Register Values across Function Calls.
Software—Practice and Experience 21(2):149–165
February 1991.

[DEC78] Digital Equipment Corporation. VAX Architecture
Handbook. Digital Equipment Corporation, 1978.

[DEC93] Digital Equipment Corporation. Calling Standard for
AXP Systems. Digital Equipment Corporation, July
1993.

[FRAS93] Fraser, C.W. Personal Communication, November,
1993.

[GRIS90] Griswold, R.E. and Griswold, M.T. The Icon Program-
ming Language, 2nd edition, Prentice-Hall, 1990.

[HOPC79] Hopcroft, J.E. and Ullman, J.D. Introduction to Autom-
ata Theory, Languages, and Computation. Addison-
Wesley, 1979.

[JOHNSON] Johnson, S.C. and Ritchie, D.M. The C Language Call-
ing Sequence. Bell Labs.

[JOHN68] Johnson, W.L., J.H. Porter, S.I. Ackley, and D.T. Ross.
Automatic generation of efficient lexical processors
using finite state techniques, Communications of the
ACM, 11:(12), 805–813.

[KANE92] Kane, G. and Heinrich, J. MIPS RISC Architecture.
Prentice Hall, 1992.

[KERN78] Kernighan, B.W. and Ritchie, D.M. The C Program-
ming Language. Prentice-Hall, 1978.

[KERN88] Kernighan, B.W. and Ritchie, D.M. The C Program-
ming Language, 2nd edition. Prentice-Hall, 1988.

[MEAL55] Mealy, G.H. A method for synthesizing sequential cir-
cuits, Bell System Technical Journal, 34(5):1045–
1079, 1955.

[MULL93] Muller, T. Employing Finite Automata for Resource
Scheduling. In Proceedings of the 26th Annual Inter-
national Symposium on Microarchitecture, 1993, 12–
20.

[PROE94] Proebsting, T.A. and Fraser, C.W. Detecting Pipeline
Structural Hazards Quickly. In Proceedings 21st ACM
SIGPLAN-SIGACT Symposium on the Principles of
Programming Languages, 1994, 280–286.

12

Appendix A
A.1 Construction Algorithms
We define the algorithm BUILD-P-FSA in Figure 8. The algorithm
starts with the initial state q0 as the only element of Q. Since there
are no transitions yet, λ and δ have no rules. A call to BUILD-P-
FSA takes three parameters, q, w, and x. q represents the state for
BUILD-P-FSA to visit, while w represents the input string such that
(q0, w) yields (q, ε), and x is output string upon reaching q. From
this definition, the initial call to BUILD-P-FSA must be BUILD-P-
FSA(q0, ε, ε).

The algorithm for STATE-LABEL is simple. We start with state
q0. As STATE-LABEL reads each symbol from the string, it encoun-
ters either the name of a finite resource, or a symbol representing
the distinguishing bits of p. In the finite case, the bit corresponding
to the resource is set in the finite resource vector. In the infinite
case, the distinguishing bits of the state are set to the input symbol
that was read. At the end of the input, all finite resources that have
been read have their bits set to indicate they are unavailable, and
the distinguishing bits indicate the last set of distinguishing bits
read. To complete the computation, we need to move the infinite
resource index to the next available resource (it currently points to
the last unavailable one)1. The result of this computation is pre-
cisely the label for the final state of M for output w since it indi-
cates which resources are available for allocation. The complete
algorithm is shown in Figure 9.
A.2 A Complex Example
We now present a significantly more complex example: the MIPS
R3000. The MIPS is a RISC machine with both integer and float-
ing-point registers. Unlike most machines, the MIPS convention
designates that not only some integer registers but also some float-
ing-point registers are to be used for passing arguments. Figure 10
contains the complete convention specification.

Although the MIPS convention is more complicated, the
description is quite similar to our previous example—wi th a few
additional restrictions. First, notice that the resource list (line 14)
now includes the floating-point registers. Each resource set is
ordered to indicate that the resources within them must be assigned
in sequence. This prevents the subsequent placement operator
from using element n after element n + 1 has been assigned. Sec-

1. An ordered list of values for p’ s distinguishing bits is known so that we
can perform this calculation, although this is usually just an increment.

function BUILD-P-FSA(q, w, x)
// q ∈ Q, w ∈ Σ*, x ∈ ∆* | (w) = x
for each criterion c ∈ C do

// compute placement for signature wc
y ← f(wc);
// compute state label from placement
q’ ← STATE-LABEL(y);
if q’ ∉ Q then

Q ← Q ∪ {q’};
BUILD-P-FSA(q’ , wc, y);

end if
// set a as the suffix of y not in x
a ← b | xb = y;
add λ(q, c) = q’ ;
add δ(q, c) = a;

end for
end function

Figure 8: Algorithm to build the P-FSA

λ̂

ond, we have added several new classes. These reflect the addition
of registers for passing arguments and alignment constraints
placed on the registers and stack. For example, the class ‘intfpregs’
is the set of starting points in the integer register set that have even
register numbers. The class ‘amem’ is the set of stack locations
that are 8-byte aligned. Finally, the class ‘smem’ contains a set of
starting-point pairs. The pair is used to indicate that if the first
resource exhausts, the placement continues using the second
resource starting point. This class is used in passing structure argu-
ments and indicates that a single structure argument may span the
argument registers and stack.

After properly defining the classes, the placement (lines 27-
34) is straightforward. For each type, a list of classes to use is spec-
ified. In each case, a register class is first, followed by the corre-
sponding stack class. This reflects the convention that registers are
used until exhausted, followed by stack use. The placement is
slightly complicated in the floating-point case since the register
class to use is dependent on the type of the first argument. When
the first argument is a floating-point value, the floating-point regis-
ters are used. When the first value is any other type, the integer
registers are used to pass floating-point values.

The MIPS convention has two other features we must convey.
The first requires that the initial 16 bytes of the frame, which cor-
respond to the argument registers, must be reserved so the callee
can save the register arguments if necessary. This is specified on
line 15 by setting the ‘assigned’ attribute for these resources. The
second constraint is that floating-point argument registers are asso-
ciated with the integer registers (f6 with r4 and r5, f7 with r6 and
r7). The association requires that if a register in one class is
assigned, the associated register in the other class cannot be
assigned. Each of the four associations is specified, on lines 23-26,
using the existential quantifier (∃) which is simply a conditional
expression. These restrictions complete the calling convention for
the MIPS. The remaining details are similar to the simple example
presented earlier.

function STATE-LABEL(w) // w ∈ ∆*

z ← 0n; // z is the finite resource vector
while w ≠ ε do

// extract the first symbol from w
define a and x such that ax = w;
w ← x; // set w to the rest of w
if a ∈R then // for finite resources:

// mark it as used
set a’ s corresponding bit in z;

else // for infinite resources:
d ← a; // keep the last one encountered

end if
end while
// set d to the next resource (first available)
d ← d + 1;
// return the state label made up of z and d
return zd;

end function

Figure 9: Definition of STATE-LABEL

13

1 external NVSIZE, SPILL_SIZE, LOCALS_SIZE
2 alias REG_ARGS ≡ 16
3 alias sp ≡ r29

4 non-volatile {r1:3, r8:11, r16:31}
5 caller prologue
6 view change
7 ∀ offset ∈ {−∞:∞}
8 M[sp + offset] becomes M[sp + offset + ARG_SIZE8]
9 end view change

10 data transfer (asymmetric)
11 alias rindex ≡ <4:7>
12 alias fpindex ≡ <6:7>
13 alias mindex ≡ <sp:∞>
14 resources {<rrindex>, <ffpindex>, <Mmindex>}
15 ∀ register ∈ {M[sp(REG_ARGS)]} set register.assigned ← true
16 internal ARG_SIZE ← ∑(<M[addr].size | addr ∈ mindex ∧ M[addr].assigned>)
17 class intregs ← <<rrindex>>
18 class intfpregs ← <<rx> | x ∈ rindex ∧ x mod 2 = 0>
19 class fpfpregs ← <<fx> | x ∈ fpindex ∧ x mod 2 = 0>
20 class mem ← <<M[addr]> | addr ∈ mindex ∧ addr mod 4 = 0>
21 class amem ← <<M[addr]> | addr ∈ mindex ∧ addr mod 8 = 0 >
22 class smem ← <<rrindex, M[addr]> | addr ∈ mindex ∧ addr mod 8 = 0>
23 ∃ reg ∈ {reg | reg ∈ {f6} ∧ reg.assigned} ⇒ set r4:5.assigned ← true
24 ∃ reg ∈ {reg | reg ∈ {f7} ∧ reg.assigned} ⇒ set r6:7.assigned ← true
25 ∃ reg ∈ {reg | reg ∈ {r4:5} ∧ reg.assigned} ⇒ set f6.assigned ← true
26 ∃ reg ∈ {reg | reg ∈ {r6:7} ∧ reg.assigned} ⇒ set f7.assigned ← true
27 ∀ argument ∈ <ARG1:ARG_TOTAL>
28 map argument → argument.type ⊥ {
29 byte, word, longword: <intregs, mem>,
30 struct: <smem, amem>,
31 float, double:ARG1.type ⊥ {
32 struct, byte, word, longword: <intfpregs, amem>,
33 float, double: <fpfpregs, amem>
34 }
35 }
36 end data transfer
37 end caller prologue
38 callee prologue
39 view change
40 ∀ offset ∈ {-∞:∞}
41 M[sp + offset] becomes M[sp + offset + SPILL_SIZE + LOCALS_SIZE + NVSIZE8]
42 end view change
43 end callee prologue
44 callee epilogue
45 data transfer (asymmetric)
46 resources {r2,f0}
47 map RVAL1 → RVAL1.type ⊥ {
48 byte, word, longword: <<<r2>>>,
49 float, double: <<<f0>>>,
50 struct: <↑(<<r2>>)>
51 }
52 end data transfer
53 end callee epilogue

Figure 10:The MIPS R3000 Specification

