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Abstract

This paper provides new insights on how to integrate power-saving techniques by using queue
occupancies to dynamically match the power-saving modes of various pipeline stages with the
current instruction throughput. (This paper focuses on fetch, decode, integer execution, and
data cache.) Architects have proposed many runtime power-saving techniques, most of which
reduce power dissipation in a single microarchitectural unit. But very little work has been done
to integrate these disparate techniques to ensure that they cooperate rather than interfering
with each other.

We use both queuing theory and experimental results to justify the use of superscalar de-
coupling queues to guide dynamic control of power settings. This permits integrated power
control for multiple units across the pipeline, with minimal negative interaction, by matching
the throughput of each stage and the application’s current instruction-level parallelism. Our
findings verify but also improve upon those in previous work by Semerraro et al. In particular,
our approach is robust in jumping out of the bad power modes configuration incurring radical
performance degradation, and our approach allows the fetch stage (a significant source of power
dissipation) to realize power savings, something that prior integrated, queue-based techniques
have not been able to accomplish.

1 Introduction

In recent years, techniques for runtime power savings have been an active area of research. A great
deal of work has focused on developing power-saving mechanisms for specific functional units or
execution domains. For example, [1, 2, 11, 14] introduced several power saving mechanisms for
cache, [4] and [10] introduced power saving mechanisms for queue structures in microprocessor, and
so forth. While all these work make important contributions to power saving, it is also important to
integrate techniques across the pipeline so that each operates at a level that is globally rather than
locally optimal.

To realize power savings typically requires sacrificing latency and/or throughput. However,
high-performance processors are typically designed for peak throughput, so for more typical levels of
instruction-level parallelism (ILP), significant power savings can be achieved with minimal perfor-
mance loss. This in turn entails having different units in the pipeline operate at different speeds or
power-saving levels. But if each unit adapts autonomously, without considering the consequences of
its behavior on other units’ adaptation, a radical degradation in performance can occur. Slowdowns
caused by one unit can make other units believe they can reduce their latency/throughput, resulting
in a disastrous positive-feedback loop.
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Semeraro et al. [12] recently described an algorithm for integrated adaption across multiple
execution domains in a multiple-clock domain processor. Their algorithm uses feedback control
of occupancy in decoupling queues to identify differences in the required operating speed of each
execution domain, and to guide each execution domain’s frequency and voltage to the minimum
that still maintains satisfactory performance.

This paper expands on that work in several ways. First, we use queuing theory to briefly clarify
why an approach based on queue occupancy is effective. Second, we show that this approach does
suffer substantially from noisy program behavior, but can still attain attractive energy savings and
energy-delay improvements. Third, we show that the attack-decay algorithm in [12] can’t quickly
jump out of the power modes configuration which will lead to very low global performance and show
how our version of this algorithm avoids that problem. Finally, we show how to achieve energy
savings in the processor’s front end, something that [12] was not able to achieve.

2 Related Work

Some other work has explored how to simultaneously control power modes for more than one unit
in the processor. Iyer [7] introduced a mechanism to optimize processor energy-delay product at
runtime by sampling the performance and energy data for each possible combination of the processor
resources configurations and identifying the best configuration. While this mechanism will work
when the number of possible configurations is small, it is impractical to traverse all combinations
when this number is large. And this number can easily be very large, because it is the product of
the number of the power modes of each unit. Dynamic search algorithms like ours and [12], on the
other hand, avoid this problem.

Ponomarev et al. [10] propose a way to tune the size of the queue structures in the processor for
energy savings. They believe that queue occupancy provides an accurate measure of the queue size
required for the pipeline to maintain full speed for the running program. Based on this observation,
they propose to sample the queue occupancy and average the sampled values, then resize the queue
occupancy to this average value in the next interval. Because queues in the processor are responsible
for a considerable portion of the whole power consumption, this yields good energy saving but with
some performance loss. In our experiment, we find that this queue resizing mechanism, combined
with the power modes control for the front-end, can increase the energy savings beyond that attained
by our version of the feedback control of per-domain voltage and frequency scaling.

Dropsho et al. [5] integrate power modes control for caches and queue structures. They use local
information for effective control of multiple independent adaptive caches and adaptive scheduling
queues. They did not explore how to integrate control for units other than queues and caches.
Because they only use information local to each unit for controlling, their mechanism pays no
attention to the speed differences among units in the running time. based on the occupancy of the
decoupling queues, Our control framework utilizes such speed differences information to get better
performance power consumption tradeoff.

Karkhanis et al. [8] use just-in-time instruction delivery to save energy for the fetch engine, the
decoding part and the issue queue by dynamically limiting the number of in-flight instructions. The
optimal number of in-flight instructions is determined by profiling at the beginning of each interval
according to the the global IPC.

In [13], Seng et al. use the output of a dynamic critical path predictor to assign non-critical
instructions to lower-power functional units and issue mechanisms.

Huang et al. in [6] proposed a dynamic processor power modes adaption algorithms based on
program code position. Their ideas exploit the fact that one segment of program code is quite
possible to be used multiple times in the running time. If you can try out the best configuration
for the first run of the this piece of code, it’s very reasonable to apply this configuration for the
following runs of this code segment.

Finally, in the paper that is most directly related to our work here, Semeraro et al. [12] control the
voltage and frequency of each domain in a globally-asynchronous/locally-synchronous or multiple-
clock-domain processor by tracking occupancy of the issue queue before each domain. However, it
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only touches the back-end units power modes regulation problem and pay no attention to the front
end power saving possibility, which recent work [9] has shown to be a significant portion of overall
power consumption in the processor. In more recent work [4], Buyuktosunoglu et al. explored
the front end units power saving regulation based on the issue queue occupancy and application
parallelism characteristics. They also found that coupled with queue resizing techniques proposed
in [4], their techniques will lead to more power savings and better power-delay results.

3 Framework for Power Modes Control

3.1 Terminology, Definition and Basic Assumption

In this paper, we assume that domain-independent frequency and voltage scaling, similar to that
used by [12], is available so that we can change the frequency of each domain independently to get
different power modes, and attain the cubic power savings that result from scaling frequency and
voltage jointly. We assume there are five such domains, they are fetching engine domain, load/store
domain, decoding domain, integer execution domain and floating execution domain as shown in
Figure 1. We call the fetching engine domain and decoding domain as front end, the integer execution
domain, the floating execution domain and the load/store domain as back end. From Figure 1, we
can see there are four decoupling queues in the architecture we simulated. They are the instruction
window which is used to buffer the instruction from the instruction cache. This is a FIFO queue.
Another three queues are integer issue queue, floating point issue queue and load/store queue. In
this order these three queues are each before the integer ALU, floating point ALU and data cache.
The decoded integer instructions, floating point instructions and memory access instructions will
be put in these three queues separately and wait to be selected for execution. Our control for each
unit is based on the occupancy of the queue sitting before or behind the unit. From the arrow in
the Figure 1, we can see the control for fetching engine domain is based on the queue occupancy
of the instruction window, other such dependency relations can be found in the figure easily. For
each domain, we assume there are thirty two frequency scaling steps available. We believe that
our algorithm can be generalized to a variety of power-saving modes beyond multiple-clock-domain
DVS, but that is beyond the scope of this paper.

In this paper we will investigate the property of two kinds of curves. This first kind of curve is the
global performance versus the working speed of a specific unit curve with the frequency of all other
units fixed, in the following paper we will call it as performance curve for that specific unit. The
second kind of curve is the queue occupancy versus the working speed of a specific unit curve with
the frequency of all other units fixed, from now on, we will call it as occupancy curve for that queue
and unit. For these two kinds of curves, when we say a curve saturates with value x, we mean when
the variable value is larger than x the absolute value of the derivative of that curve will be near zero.
The minimal value of such x is called the saturation point for this curve. We will also investigate
the property of the function P(v1,v2,v3,v4,v5) while v1-5 represent the working frequency of each
unit in the processor and the function value is the global performance. We will call this function as
P function in this paper.

Our dynamic control algorithm is based on our static analysis results. Static analysis is done as
following. We divide program simulation into intervals, each interval is 10K instructions long. We
run the simulation thirty two passes with the working frequency of one unit varying from one to thirty
two and the other units’ frequency fixed at their maximum. By recording the global performance
and queue occupancy data for each running pass and each interval in the file, we can have the
performance and queue occupancy curves for each unit and for each 10k instructions interval by
reading the data in these files.
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Figure 1: Domains in the superscalar processor
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3.2 Performance and Occupancy Saturation as a Function of Unit Oper-
ating Speed

In this subsection, we will introduce our findings from static analysis which will be the basis of our
dynamic control algorithm. Basically there are two findings. First, our static analysis indicates both
the performance and the queue curve has saturation phenomenon in many cases. For any specific
unit, the saturation point for its queue curve and performance curve normally coincide very well.
Second we find the P function doesn’t have local maximum point which is not globally maximal.

We can easily see from Figure 2 that the performance and queue curves for instruction cache and
alu all have saturation phenomenon. Actually our experiments show it’s common for all the units
across the pipeline. We can also find from this figure that the saturation points of the performance
and queue curve almost coincide for both alu and instruction cache.

Sheet1 Chart 1
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Figure 2: Performance and Queue Occupancy Saturation

It’s not hard to understand why this saturation phenomenon exists. Let’s consider a simple finite
size queue with capacity N. It’s easy to calculate out that the committing rate of this queuing system
will be (1− 1∑N

j=0
Lj

N

)∗ if we assume the incoming rate and service rate , both with poisson pattern.

Therefore, when we fix the service rate and change the incoming rate, finally this committing rate
function saturate. Intuitively, this is due to the finite queue size. When the incoming rate is too
high, the queue will hit the top of the queue too often so that the increase of the incoming rate will
not convert to the final committing rate gain. On the other hand, when we fix the incoming rate
and change the service rate, if the service rate is so large that the queue is empty quite often, then
increasing the service rate will also not lead to quite a lot final committing rate gain.

However, the pipeline of the real processor is much more complex than this simple queue. First
of all, in the real situation, the ILP(instruction level parallelism) can play an important role in the
saturation. We can imagine in the situation when the ILP is very low, even if the fetching engine
is working efficiently, the performance curve for the instruction cache will still reach its saturation
region quite early. ILP is determined by many different factors, from the inherent program properties
to the specific processor design choices like the issue logic (Normally the three issue queues as
indicated in 1 are not simple FIFO queues).

More comprehensively, we did the following experiment to verify that the saturation point of
performance curve and occupancy curve almost coincide. Based on our static analysis data in the
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Figure 3: The control point difference of performance based static analysis and queue occupancy
based static analysis

files, we can compare the difference between the saturation points of performance curve and queue
curve for each interval. Averaging the results for all intervals of each benchmark, we get the results
in Figure 3. We can see the absolute value of speed configuration difference is less than three for
all ALU, Icache and Dcache for half of all the benchmarks. Other differences are normally less than
six. With these two sets of configuration, the absolute value of global IPC differences as indicated
by Figure 4 are all less than 0.06, normally around 0.02, which is negligible.

In addition to this queue saturation observation, we also make the following interesting finding
on the P function which guarantees our final integration of the controls on the single unit will not
lead to radical performance degradation due to positive feedback. This will be clear in the next
section. We find the P function doesn’t have any local maximum point that’s not global maximal.
Actually if there’s no such points, when we set the initial working speed of each unit to the minimal,
the following algorithm will terminate with the frequency configuration of the units under which
the global performance is near the maximum of the P function value and each unit is working at
its saturation point for its performance curve or at its maximal working speed. Why can’t the
performance with the termination configuration be far from global maximal? Because if we are in
such a configuration and because there’s no local maximal point that is not global maximal, at least
one of the derivatives of the P function will not be near zero, which means this algorithm can’t
terminate with such a configuration. Otherwise, if there’s local maximal point that’s not global
maximal, this algorithm may terminate with such a configuration.

Let’s suppose the Initial frequency
of each unit is stored in an
array c[N]={c1,c2,...,cN}

do
c_old = c
for (i=1;i<=N;i++){
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Figure 4: The performance difference of performance based static analysis and queue occupancy
based static analysis

Find the saturation point
for unit i under current
configuration, let’s suppose
the new configuration point for
i is ci’

c[i]=ci’
}

until(c_old == c)

We can try to apply this algorithm on the two scenarios in Figure 3.2 3.2 and Figure 3.2 3.2.
Let’s suppose we are trapped in (2,2) configuration combination from the beginning. The first 2
represents the speed for instruction cache while the second 2 represents the speed for ALU. So in
the first scenario, following the above algorithm, we will experience the following control path to
reach a steady control point: (2, 2)− > (2, 2)− > (2, 4)− > (4, 4)− > (4, 8)− > (8, 8)− > (8, 16)− >
(16, 16)− > (16, 26)− > (22, 26)− > (22, 32)− > (22, 32) For the second scenario, we will experience
the following control path to reach a steady control point: (2, 2)− > (4, 2)− > (4, 12)− > (4, 12)

In the first case, at the steady optimal control point, the ALU is working at its full speed and
the instruction cache is running at less than its full speed. Even when the instruction cache is not
running at its maximum speed, it’s working at its saturation point while the ALU is not at its
saturation working point although it’s already working at its full speed. In the second case, both
are working at less than their full speed and both are working in the their saturation regions. This
means there’s another factor that’s the bottleneck of the processor other than these two units. In
this case, the bottleneck is the memory speed because in this scenario, processor is experiencing
high cache miss ratio. In other cases, the inherent program ILP can also be a performance limiting
factor that will make the second scenario appear.
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The observation in this subsection is the basis for our dynamic control framework. First, if we only
want to dynamically tune the speed of a single unit and keep other units at their full frequency, we
should let this unit working at the saturation point of its performance curve. If the speed of this unit
is slower than the saturation point speed, the processor performance will be hurt too much; on the
other hand, we waste energy unnecessarily. Second, in stead of deciding the saturation point based
on IPC, we prefer the queue occupancy as the criteria. Its validity is guaranteed by the coincidence
of the saturation points of the performance curve and queue occupancy curve. We will introduce
the necessity of this choice in the next subsection. Finally, we point out all local maximal points in
the P function are all global maximal points. This conclusion is crucial to guarantee there will be
no unwanted positive feedback happening in the dynamic scheme.

3.3 The Framework

In this subsection, we will first introduce our dynamical control algorithm on the power modes
control of a single unit and then we will introduce the integration scheme which will integrate these
separate controls without negative interferences among these controls.

Our mechanism is based on monitoring the absolute value of the queue occupancy changing rate
when we dynamically scale the frequency of the unit. If the changing rate is too large, it means
this unit is working outside the saturation region and the whole processor is suffering dramatic
performance degradation, on the other side, if the rate is very small, we are in the saturation region,
this means we can reduce the speed of that unit to reach the saturation point.

The following is a typical algorithm for the control over the power modes of a single back end
unit. This algorithm will be applied at the beginning of each interval. The Direction variable is
used to track the control action of this algorithm taken at beginning of the previous control interval.
HOLD means there’s no action in the previous activation of this control algorithm because the unit is
working at it’s full frequency, DOWN means last time the action is decreasing the unit frequency by
one step, UP means last time the action is increasing the unit frequency by one step. Combined with
this information, we can decide what kind of action we’d like to carry out for this interval based on
the difference between the average queue occupancy of the past interval and the interval before the
past interval(CurrentQoccupancy and PrevQoccupancy). The threshold we actually used is: integer
issue queue: 0.08,load/store queue: 0.25,floating point issue queue: 0.04, instruction window: 0.03.

3.3.1 Control Algorithm for One Unit

if (Direction == HOLD &&
CurrentQoccupancy - PrevQoccupancy
> Threshold)

UnitSpeed -= SpeedStep;
Direction = DOWN;

else if ((PrevQoccupancy -
CurrentQoccupancy > Threshold &&
Direction == UP) ||
(CurrentQoccupancy -
PrevQoccuancy < Threshold &&
Direction == DOWN))

if (UnitSpeed < MAXIMUMSPEED)
UnitSpeed += SpeedStep;
Direction = UP;

else
Direction = HOLD;

else
if (UnitSpeed > MINIMUMSPEED)

10



UnitSpeed -= SpeedStep;
Direction = down;

else
UnitSpeed += SpeedStep;
Direction = UP;

PrevQocupancy = CurrentQoccupancy;

Actually, the way we used in this section to find out the saturation point for a unit is somewhat
different from the way we used in static analysis. In the previous section, we are comparing the queue
occupancy difference or performance difference for the same interval of instructions. For dynamic
control ,we can never do that. We can only compare the difference for two adjacent intervals.
However, as indicated by [8], the architectural property like IPC, queue occupancy will not change
much from interval to interval when they are in the same program phase. That’s why our dynamic
control can find out the saturation point for any specific unit in one program phase.

On the other hand, even when we don’t apply any control and for the same program phase, the
queue occupancy and IPC will change slightly from interval to interval, we call such fluctuation noise.
And we noticed the fluctuation is minimized when the interval duration is around 100k instructions.
Because of this inherent noise problem, we should carefully select our control granularity(the unit
frequency changing step) and the threshold. If the control granularity is too big, the deviation
from the optimal point will be too large because our control always force the unit speed oscillating
around the saturation point instead of being fixed at the saturation point. On the other hand, due
to the existing of noise, we can’t use too fine control granularity in our framework, or the noise will
dominate the control. We will see in the next section, in the cache-decay mechanism put forward in
[12], the granularity for decay is too small to be effective.

Now we introduce how to integrate the separate controls. When we are trying to integrate
the controls, we must overcome the negative interferences among these controls. For example,
the control for the instruction cache unit will rely on the occupancy information of the instruction
window. However, changing the speed of ALU will also change the queue occupancy of the instruction
window too.

To decoupling these kinds of interactions, we apply the control for only one of the instruction
cache, decoding unit and the execution core(integer ALU, floating point ALU and data cache)
each period. So each period only one part is under control and the other two parts remain their
frequencies. This is done as the following algorithm indicates. The ControlPeriod variable is the
cycle number in one interval and the MAINTAINTIMES variable is the interval numbers that are
needed to apply control for a specific unit before the algorithm switch to control another unit. So
each period has ControlPeriod * MAINTAINTIMES cycles. There are also unwanted interactions
among the controls for data cache, integer ALU and floating point ALU, but as [12] indicated,
this kind of interaction is not very strong, so we can turn on the controls for these three units
simultaneously. We can see this integration actually works in the same way as the algorithm does
in the previous subsection, so radical performance degradation will not happen, this is guaranteed
by the property of P function we introduced in the previous subsection.

if (cycles < ControlPeriod * MAINTAINTIMES)
Apply control for icache

else if (cycles <
ControlPeroid * MAINTAINTIMES * 2)
Apply control for decode

else if (cycles <
ControlPeriod * MAINTAINTIMES * 3)
Apply controls for ALU and Data Cache

Now it’s clear why we base our control mechanism on queue occupancy in stead of IPC, if we
want to rely the control on IPC, we must also apply the controls for these three units one by one
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in stead of simultaneously because the control for one back end unit is coupled with the control for
another back end unit by IPC tightly. We don’t want the time between the two control phase for
the same unit too long, otherwise the system will not be reacting quickly enough, especially when
the program has short phase. However, because there are three queues before the back end, the
queue occupancy based controls only have interaction through different issue queues before them,
this kind of interaction is much weaker. Another reason to use queue information as a guide for
control is that the queue information is a kind of local information compared with the global IPC.

4 Simulation Setup

Our work is based on an enhanced Wattch [3] simulator. Wattch is a cycle by cycle power estimator
based on simplescalar performance simulator. As we know, original simplescalar simulator adopted
a unified buffer to simulate all the function of issue queue, load/store queue and reorder buffer
in modern superscalar processor. However, this is far from the real situation. We changed the
simplescalar out-of-order simulator so that the enhanced simulator has separate integer issue queue,
floating point issue queue, reorder buffer and load/store queue. The power model is also changed
accordingly. Such change is necessary both for reflecting the real modern superscalar processor
implementation and for our power modes control mechanism because our mechanism is based on
those queues related information. We use the configuration in table 1 throughout our experiments,
the benchmarks we used are from spec2000cpu benchmarks.

Table 1: Configuration

Parameter Configuration
Fetch width 8

Decode Width 8
Integer instruction issue width 8

Floating point instruction issue width 4
load/store instruction issue width 4

ROB Size 128
Load/Store Queue Size 32
Integer Issue Queue Size 40

Floating point Issue Queue Size 32
Instruction Window Size 32

L1 I-Cache 32K, 2-way associativity
L1 D-Cache 32K, 2-way associativity

L1 Cache Latency 1 cycle
L2 Unified Cache 1M, 1-way associativity
L2 Cache Latency 12 cycles
Memory Latency 200 cycles

Inter-chunk Memory Latency 2 cycles
Integer-ALU 8+2MULT/DIV

FP-ALU 4+2MULT/DIV
BTB/Predictor Hybrid

Global component 8K entries, 12-bit history
Bimodal predictor size 8K entries
Comb predictor size 8K entries

BTB 4K entries, 2-way associativity
Branch Misprediction Penalty 6 cycles
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5 Results and Discussion

We measure the performance, energy and energy-delay data in five situations. The results are in
Figure 11 12 13. In these figures, for each benchmark there are five groups of data. As shown in the
figures, ”Static” means we get the optimal working frequency for each unit from static analysis and
then apply this frequency configuration to get the results. ”Dynamic” is for our control mechanism.
”Naive” is for the simple control integration mechanism, in such integration, we simply turn on the
control for all units simultaneously, ”attack-decay” is for the mechanism put forward in [12]. ”all”
indicates we are applying the control for all the units. ”front end” means we only apply the control
for the units in the front end. ”back end” means we only apply the control for the units in the back
end.

From these experiment data, we can conclude that our integrated dynamic control is getting
greater than 15% energy delay product improvement for most benchmarks. For some benchmarks
like applu, because the inherent IPC is low in this benchmark, we can reduce both the back end and
front end running speed radically to get great energy savings while losing very little performance.
In such cases, the energy delay improvement can be as high as 70%. In most cases, the integrated
way get better energy-delay product improvement than just turning control for the front end or for
the back end and no radical performance degradation is observed in integration. As expected, the
energy-delay improvement of the naive scheme can’t parallel our dynamic scheme because sometimes
the front end and back end interact radically so that the control points of this scheme deviate from
the optimal point further.

Compare the static results with dynamic results in Figures 11 12 13, we find with similar energy
savings, the dynamic way does suffer more performance loss than static results. Besides the noise,
one major factor that’s leading to this result is that we are always trying to oscillate around the
optimal control point instead of just staying at that point. With relatively large control granularity,
this kind of oscillating will lead to worse performance with the same energy savings compared with
the static way.

Semeraro in [12] put forward a dynamic control mechanism for power modes regulation for the
ALU and data cache. We implement their algorithm in our simulator. We find this algorithm suffers
from noise problem in our simulation environment. They use a very fine unit frequency changing
granularity, as we argued, this granularity should not be too small so that the control is overwhelmed
by the noise. From the figure 10, we can see the attack times/decay times ratio is very high, normally
around 10, so actually the attack is dominating the control. This means the decay is not working
in most cases.

The Semeraro algorithm without decay still differs from our algorithm in some scenario. In our
algorithm, if increasing unit speed leads to significant queue occupancy decrease, it means we are
still walking on the steep part of the queue occupancy curve which indicates we should continue
increasing the speed of that unit until the decreasing of queue occupancy is small. However, in this
situation, the semararo cache/decay algorithm will just stop increasing the speed of that unit when
that algorithm observes significant queue occupancy decrease. Actually if the algorithm is always
working around its optimal point, this is not a serious problem because only one step speed change
is enough to pull the unit back to its optimal working point. However, if the unit deviates from its
optimal working point a lot (due to sudden program phase change or noise), semararo cache/decay
algorithm lacks necessary robustness to go back optimal working point by continuing increasing the
unit’s speed. In Figure 5, we compare the control situation of our algorithm and the attack-decay
algorithm for a typical running segment in which the attack-decay is trapped in poor unit working
point. Due to static analysis, the optimal unit working speed for this segment should be fifteen,
we intentionally set the working speed of that unit at two for our algorithm, we can see finally
our algorithm successfully jump out of this non-optimal control region and get back to around the
optimal point. The attack/decay keeps working around speed eight and can’t get back to the optimal
working point. We tried different threshold setting and get the same result, actually the incapability
of continuous speed increasing is irrelevent of threshold setting. We can see from Figure 11 12 and
13 that the attack-decay does suffer great performance degradation which we believe is due to the
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Figure 9: The Problem in the Attack-Decay Control

incapability of continuous units frequency elevation.

6 Conclusions and Future Work

In this paper, we explore the possibility to use local queue information for integrated power modes
control across the whole pipeline. The static experiment shows the coincidence of the saturation
points of the queue occupancy curve and the performance curve for a specific unit. This observation
is the foundation of the dynamic control for the power modes of a single unit. The static experiment
also shows that there’s no local minimal point which is not global maximal on the P function curve
(global performance/units frequency), this observation guarantees our integration of power modes
control for single unit will not lead to radical performance degradation due to positive feedback.
Our final simulation for the dynamic control results show our mechanism has better robustness
than attack-decay mechanism when recovering from units frequencies configuration deviating from
optimal control point too much which will lead to severe performance loss. Normally our dynamic
mechanism can get greater than 15% energy-delay improvement. Integrating the control for the
front end and the back end normally get better or the same energy-delay saving than just turning
on the control for the front-end or the back end, which indicates our integration is effective.

Besides these positive results, we also get some negative results which don’t coincide with previous
research work very well. First, the inherent noise of the queue occupancy from one interval to another
forces us to select a relatively larger control granularity. And our experiment also shows that this
noise problem makes the attack-decay algorithm actually work with almost no decay action in the
real situation. However, larger control granularity makes dynamic control deviate from the optimal
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control point further. Researchers interested in queue occupancy based power modes control should
find an algorithm that can be immune from the noise affect and can keep as close to the optimal
control point as possible. Second, our static results can’t parallel the dynamic results from [12].
Especially for integer benchmarks, our static results show much less opportunity for getting energy
savings by exploiting the differences of units working speed and the difference between units working
speed and the available ILP. The static analysis method in [12] adopted ”shaker” algorithm which
took critical path information into consideration. Our static analysis is relatively simple.

Although we can’t explain why we get some different results. The following factor can be the
candidate of the origins of the differences. We had different simulation platform compared with
previous works, for example, the attack-decay work was done on a GALS architecture simulator
framework. We don’t know if this difference can explain the incoincidence in the results.

There are several possible future work. In our current work, the only power modes of each unit
we explored are frequency and voltage scaling. There are lots of other power saving techniques, like
the dynamic cache resizing. How to dynamically apply these possible power modes besides frequency
and voltage scaling is an open question.

Our work didn’t take critical path information into consideration. [13] did some work on it,
however, how to use critical information for power modes control across the whole processor is an
untouched research problem.
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