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Abstract
ARTS is a distributed real-time operating system designed to provide the
user with a predictable, analyzable, and reliable service. The Xpress
Transfer Protocol is a next-generation, high performance, high functionality
transport layer protocol. We examine the role of the communication
subsystem in providing a real-time system communication support. We use
the ARTS system and XTP as a case study for understanding the needs of a
distributed real-time system and how a transport layer protocol may be able
to help meet those needs. Finally, we offer suggestions about how ARTS
may be able to take advantage of features in XTP, and how XTP may be
augmented to better serve a distributed real-time system such as ARTS.

1. Introduction

The ARTS operating system ([TOKU89], [TOKU90]) is a distributed real-time

operating system designed for the Advanced Real-Time Technology (ART) testbed at

Carnegie-Mellon University. The goal of the ARTS system is to provide users with a

predictable, analyzable, and reliable distributed real-time computing environment. Since

the system is distributed, particular emphasis is placed on the communication subsystem,

*This work is supported in part by the U.S. Office of Naval Research under contract number CS-
DOD/ONR-5030-91. The views and conclusions contained in this document are those of the author
and should not be interpreted as representing official policies, either expressed or implied, of the
Office of Naval Research, Naval Ocean Systems Center, Protocol Engines, Inc., Carnegie-Mellon
University, or the U.S. Government.
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especially the needs of the real-time systems and what is required of the communication

subsystem to meet these needs.

The Xpress Transfer Protocol (XTP) ([PEI89]) is a transfer† layer protocol designed

to meet the communications needs for next generation distributed systems. XTP offers

protocol algorithms and procedures which were specifically designed applications

requiring high-speed, low-latency communication services while not sacrificing the robust

functionality characteristics of a transport layer-based communication subsystem. As such,

XTP has generated a great deal of interest in such application areas as avionics systems

([COHN88a]), naval systems ([COHN88b], [MARL89]), and space systems ([WEAV89]).

Since a specific design goal of XTP is for its algorithms to be implementable in VLSI, the

chip-based XTP is expected to provide nearly MAC-layer performance at a transport layer

interface ([CHES88]). XTP is not designed as a “real-time protocol”per se; rather, it is

recognized that the functionality and performance inherent within XTP, augmented by

other services specifically designed for real-time systems, are useful in providing support

for communications in real-time environments.

This paper addresses the role of a communication subsystem from two perspectives:

what a distributed real-time system requires of a communication subsystem, and what

services a communication subsystem can and should provide in order to support a real-time

application. The ARTS real-time operating system and XTP are chosen as case studies.

Since ARTS is currently implemented over IEEE 802.5 Token Ring using a communication

manager to implement some transport layer functionality, part of this study will be to

conjecture about how XTP can be used in place of the current communication subsystem.

Finally, several observations will be drawn as to how the ARTS communications primitives

†Transfer refers to the coalescence of the functionality of both the transport and network layers of
the ISO OSI Reference Model ([ISO7498]).
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may be modified to take advantage of the functionality of XTP, and how XTP would have

to be modified to more fully provide support to a real-time operating system.

2. Distributed Real-Time Systems

The concept of a “computer” is being redefined as processing becomes more

distributed. Resources, including the computation server, no longer reside in a single

machine or even a single room, but rather, they are being distributed geographically as

dictated by physical and economic reasons. The advent of communication technologies,

specificallynetworking, is allowing this to happen. As real-time systems also become less

constrained by geography, more emphasis must be placed on the underlying subsystem

which provides the interconnection and communication.

Distributed systems rely on the services of the communication subsystem to relieve

the application of the concerns of data delivery. The encapsulation of the communication

services into a communication subsystem makes transparent to the application such issues

as message length, internetwork topology, and reliable, in-order message delivery. From

the ISO OSI Reference Model ([ISO7498]) point of view, such functionally robust

communication subsystems include at least the transport and supporting layers.

However, providing communication services to distributed real-time systems

requires a reevaluation of the services currently available, including the algorithms within

and interfaces to these services. Real-time applications are necessarily constrained by time,

and thus predictability is a requirement. Service guarantees must accompany service

requests. Yet, the encapsulation of communication functionality is no less a concern or

requirement in real-time systems as it is in general purpose systems.
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2.1. Communications in Distributed Real-Time Systems

Distributed real-time systems most often provide predictability by starting with

availability. Dedicated resources, especially the physical interconnection, can provide

predictable performance since use of the resources is tightly controlled. Point-to-point

wiring provides guaranteed availability of bandwidth and a priori knowledge of the

communication characteristics, such as latency. Unfortunately, this solution does not scale

gracefully since the wire plant increases combinatorially with the number of interconnected

nodes.

Local Area Networks (LANs), such as the IEEE 802 suite ([IEEE85a-c],), the ANSI

Fiber Distributed Data Interface ([ANSI86]), and the SAE High Speed Ring Bus ([SAE87])

provide a high-speed shared physical interconnection. The Media Access Control (MAC)

protocols which are part of the LANs provide various solutions for resolving contention,

some including prioritized access. Contention resolution characteristics, along with the fact

that messages must fit within a fixed-size data frame, allow some of these protocols to be

classified as deterministic. Le Lann ([LELA85a]) claims that this determinism is only

applicable under error-free conditions, and thus does not apply when network

reconfiguration procedures must take place. Furthermore, MAC layer services fail to

provide adequate solutions to communications within real-time systems since the

functionality provided at this layer requires applications to emulate reliability, routing,

reliability, and message length independence.

The Transport Layer of the ISO OSI Reference Model does provide for reliable,

end-to-end delivery of arbitrarily long messages over an arbitrary internetworking

topology, but no extant standard transport protocol also provides a means of including

timing information. The ISO Transport Protocol class 4 (TP4) ([ISO8073]) and the DARPA

Transmission Control Protocol (TCP) ([DARPA81]) both have only two levels of priority,
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and neither have a notion of time. Furthermore, both TP4 and TCP are based on a

connection-oriented paradigm of information transfer; real-time systems generally require

a flexible array of paradigms offered through the services of the communication subsystem,

including datagrams and transactions. Of the experimental transport protocols, the Versatile

Message Transaction Protocol (VMTP, [CHER88]) and the Xpress Transfer Protocol (XTP)

both are designed for support of real-time systems, although neither explicitly provides

performance guarantees.

2.2. Real-Time Communication Requirements

In general, distributed systems must maintain two properties:safeness (nothing

wrong can happen) andliveness (something good will eventually happen). Distributed real-

time systems add a third property:timeliness (things will happen in time) ([LELA85b]). If

we have bounded services and well known process profiles, we can statically examine any

system to determine if it will maintain the timeliness property. Unfortunately, systems are

usually too complex and the services too difficult to accurately bound to provide a good

basis for static analysis. Particularly difficult are communication services. Communication

services providing support to real-time applications, therefore, must provide these

applications with the ability to specify their performance requirements and to obtain

guarantees about the satisfaction of these requirements ([FERR90]).

The communication subsystem must be able to provide a degree of performance

appropriate for the application. Contrary to common interpretation, “real-time” does not

necessarily implyfast; rather, predictable levels of performance, and their availability, are

more pressing issues. Certainly high speed, high throughput, and low latency are important

metrics to any application. In real-time systems, however, it is more important to guarantee

a level of service.
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Traditional interfaces to communication services do not allow performance

requirements to be conveyed, nor the guarantees returned. TP4 allows quality of service

parameters to be negotiated during connection setup, although there are no mechanisms

within TP4 itself to guarantee that these parameters will always be met. Indeed, if

conditions arise such that the quality of service offered falls below that requested, the action

required of the protocol is to notify the protocol user and abort the connection.

3. ARTS

The ARTS distributed real-time operating system is designed to provide users with

a predictable, analyzable, and reliable distributed real-time computing environment. This

environment is based on an object-oriented paradigm — every computational entity within

ARTS is represented as an object. ARTS employs an Integrated Time-Driven Scheduling

model to allow the system designer to analyze given task sets for schedulability. Since

ARTS is a distributed operating system, a communication subsystem provides information

exchange services. This section briefly describes the computational and scheduling models

within ARTS, and, in more detail, examines the communication subsystem.

3.1. Computational Model

Each computational entity within ARTS is represented by anartobject. One or more

threads, or lightweight processes, may be declared within the artobject. Also, there are

operations which may also be declared within the artobject;public operations may be

invoked by other threads wishing to use them, whereasprivate operations are only for the

use of the threads within that artobject.

Artobjects differ from common objects in that the artobject provides atime

encapsulation. Worst case computation times are associated with eachoperation within an

object, providing a “time-fence” for isolatingand handling timing exceptions. Threads may
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have timing attributes associated with them as well. Threads with timing attributes are

termedreal-time; those without arenonreal-time. These timing attributes include worst

case execution time, period, phase, and delay parameters. In practice this requires the

specification of deadlines for periodic and aperiodic hard real-time threads.

3.2. Scheduling Model

The scheduling model within ARTS is the Integrated Time-Driven Scheduling

(ITDS) model which can schedule both periodic and aperiodic tasks in an integrated

fashion. For hard real-time tasks (periodic tasks and aperiodic tasks with hard deadlines)

the ITDS model allows the system designer to predict the schedulability of the given tasks.

For soft real-time tasks, the system designer can predict if the worst case response time will

satisfy the task’s response time requirements. During overload situations, the ITDS model

provides control over which tasks should complete their computation.

The processor utilization is first determined for the hard real-time tasks, and the rate

monotonic scheduling theory results are applied to determine schedulability to this task set.

Since tasks may share resources, and thus be subjected to indefinite priority inversion, the

ITDS model includes a priority ceiling protocol for bounding the blocking time; this

extension to the rate monotonic theory allows utilization to be computed for more general

task sets. Once the hard real-time tasks are guaranteed, the processor capacity remaining is

applied to the soft real-time tasks. For example, the Deferrable Server ([LEHO87]), which

is a special periodic task, may be used to provide the aperiodic tasks with low response

time. Rather than waiting for “left-over” cycles, the Deferrable Server “gives” its processor

time to the highest priority task.

The integrated time-driven scheduler is constructed such that the scheduling

policies and the mechanisms for implementing them are separate; thus scheduling policies
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other than the rate monotonic algorithm can be used. Among the policy objects are rate

monotonic, earliest deadline first, least slack time, as well as FIFO, round robin, and fixed

priority. Any scheduling algorithm can be implemented in a policy object and tested within

ARTS; however, for predictability purposes it is important that the schedulable bound be

determined.

3.3. Communications in ARTS

A thread may wish to invoke an operation that is within a remote object. The

communication necessary for this remote operation invocation is provided by primitives

within ARTS (these primitives are themselves operations) which induce a Request-Accept-

Reply communication paradigm. The local thread requests that an operation be invoked at

a remote object. A thread at the remote object, having previously executed an accept

operation, receives this request and invokes the operation. When the operation completes,

the remote thread replies with the result.

Message traffic is analyzed for schedulability in a similar manner as are the tasks

themselves. Information about the communication patterns among the objects is available

a priori, including the specification of periodic traffic and the rates for aperiodic traffic.

First there is an attempt to guarantee all hard real-time periodic message traffic at the

system design stage. Then the aperiodic messages are included such that their response

times are minimized. Since messages carry a time fence value, timing faults can be isolated

in the same way as with local operation invocation.

Currently, the communication subsystem within ARTS supports several

communication primitives by employing a Communications Manager to schedule and

dispatch messages. The testbed over which ARTS is implemented uses both an Ethernet
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and IEEE 802.5 Token Ring for the physical and media access control layers of the

network.

3.3.1. Requirements

The requirements for real-time communication subsystem, as derived from

[TOKU90], are the following:

• The subsystem should provide a mechanism for handling the timing
requirement of the message traffic.

• Since real-time systems rely on fine priority granularity to make guarantees
about system performance, this priority granularity should be extended to the
communication subsystem.

• The message format must include a priority field.
• The communication subsystem should deliver the priority and timing

information along with the message to the remote thread to help in scheduling.

The ARTS communication subsystem attempts to meet these requirements in the

following ways. Timing information in the form of the “time fence” is passed to the

communication subsystem as a parameter to the communication primitives. This informs

the communication subsystem of the timing requirements of the requesting thread. The

communication subsystem must make the mapping from task priority to message priority.

If, as is often the case, the message priority is not as fine as the task priority, the

communication manager must be able to make an appropriate mapping. As for a message

priority field, most media access control protocols (except Ethernet) and most transport

layer protocols have some form of prioritization carried as part of the message format. It is

up to the implementation of the protocols and the communication subsystem as to whether

this priority is available to the receiving thread.

3.3.2. Communication Primitives

Since every communication in ARTS is caused by an operation invocation to a

target object’s operation, the communication primitives reflect the Request-Accept-Reply
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paradigm. ARTS currently supports four primitives: Request, Accept, Reply, and

CheckRequest. These primitives provide a synchronous service, where the caller must

block until the reply is received. Asynchronous extension to these primitives include

AsyncRequest, AsyncRequestAll, GetReply, and CheckReply. For purposes of this

discussion both the synchronous and asynchronous primitives will be included.

The primitives and their arguments are given below.

val = Request(invocation_dsc, msg_dsc, reply_msg_dsc)
val = AsyncRequest(invocation_dsc, msg_dsc, reply_msg_dsc)
val = AsyncRequestAll(invocation_dsc, msg_dsc, reply_msg_dsc)
val = GetReply(invocation_dsc)
val = Accept(invocation_dsc, msg_dsc)
val = Reply(invocation_dsc, reply_msg_dsc)
val = CheckRequest(operation_result, operation_selector, any, timeout)
val = CheckReply(reply_result, reply_selector, any, timeout)

The argument invocation_dsc is the argument which holds the invocation

descriptor. This descriptor is a structure which contains a transaction identifier, object

identifier, thread identifier, operation identifier, the current time fence value, and fields for

the network protocol information. The transaction identifier is a unique value set by the

communication subsystem upon a request or accept primitive, and used to identify that

particular transaction on any subsequent calls to the communication subsystem. The

msg_dsc and reply_msg_dsc are arguments which hold a message descriptor. A message

descriptor contains the address of the message, the message size, and the message priority

information. The argument operation_result indicates the list of requested operations, and

the argument operation_selector represents a bit map which indicates a list of

corresponding operations. Similarly, the argument reply_result is a returned bit map of

available transaction identifiers, and reply_selector is a bit map used to specify a list of

transaction identifiers. The argument any indicates that the condition depends on any or all
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of the specified selector bits. Thetimeout argument specifies how long to wait until the

condition is true.

3.3.3. Time Fence

A “time fence” is a value associated with each real-time operation reflecting the

worst case execution time allowable for that operation. The time fence provides a run-time

check on the timing requirements of an object. The time fence uses information about the

worst case time for a computation to set a timer on the actual computation. This value is

checked before each object invocation to verify that the slack time exceeds the worst case

execution time of the invoked operation. Thus timing faults are quickly discovered and

isolated.

For communications, the request message carries the requesting thread’s current

time and worst case remaining time values. After the request message is received at the

remote site, a check is made to determine if the operation can be invoked within the worst-

case remaining time of the requesting thread. If this check fails, a Fence Error occurs. If the

reply message fails to arrive in time at the requesting thread, the system will timeout and

transfer control to an exception handler.

3.3.4. Communication Manager

The Communication Manager (CM) is an object which handles all of the network

messages for the local ARTS kernel. The CM is a single point through which all incoming

and outgoing communication for the local site must pass, and is therefore both a point of

contention and a possible point of priority inversion. The CM encapsulates the underlying

implementations and other details of the network service, including which protocols are

used and how the task priority and timing information are mapped to the network or

message priority.
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The CM is implemented as a single thread which accepts the messages and places

them in a prioritized queue. A prioritized queue is used instead of a FIFO queue to avoid

priority inversion at this single access point. The CM also has several prioritized worker

threads, each with a FIFO queue, as shown in Figure 1. There are as many worker threads

as there are network priorities, and these threads are prioritized in a fashion which

corresponds to the message priority. Since these are threads, they may be preempted at any

time during the processing of a message, which further reduces the priority inversion. From

these processing queues the messages are given to the network device driver (the interface

to the MAC layer) for delivery.

The processing which occurs within the prioritized workers is roughly equivalent to

that which is done within a transport protocol. Therefore, the CM is sometimes referred to

as the Real-Time Transport Protocol, or RTP. When a Transport Layer protocol is included

within the communication subsystem, the CM looses much of its responsibility.

. .
 . 

. .

Figure 1 — Communication Manager Organization
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4. The Xpress Transfer Protocol

In 1987 Greg Chesson undertook the creation of a transport layer protocol with

several properties: that it include the best ideas of existing standard and experimental

protocols, that it include network layer routing capabilities, that the algorithms were

designed for VLSI implementation, and that it provide clean, regular mechanisms for

service without mandating a use or paradigm for that service ([CHES87]). The Xpress

Transfer Protocol is the result of this effort. This project has garnered the interest and

support of many industry and research institutions, as well as becoming the protocol of

choice for the lightweight protocol stack in the Navy SAFENET project ([NOSC91]).

4.1. XTP Design

XTP provides a powerful mechanism, called anassociation, upon which can be

built many communication paradigms. An association is simply the maintenance of state

information for a communication between two or more endpoints. When one endpoint

decides to begin an association with one or more other endpoints, it initializes some state

variables, called acontext, for use in maintaining the state of the association. The initiating

endpoint issues a single packet to the other endpoints; this single packet exchange is all that

is required for each receiving endpoint to set up a corresponding context, and the

association is established. Furthermore, the association start-up packet is also a data-

bearing packet, so a full packet’s worth of data may be delivered at the same time as the

association is being established. Note that acknowledging the association establishment is

an orthogonal issue.

A fundamental premise of XTP is to separate policy from mechanism, especially

with respect to communication paradigms. The user of the communication subsystem

knows the paradigm most appropriate for its application. While TCP, TP4, and even VMTP
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impose a paradigm upon their users, XTP provides the flexibility necessary to allow the

application to choose its paradigm. A datagram may be sent by filling the first packet with

data and setting the End Of Message and End Of Association bit flags. A reliable datagram

is achieved by setting the End Of Message and Status Request flags; this instructs the

receiver to issue a packet containing data delivery status information. Since an association

is full duplex, data may be sent in both directions without additional setup. Therefore,

transactions can be handled in an association which uses as few as two packets.

Another premise of XTP is that the transmitter drives the receiver insofar as

controlling the association. The transmitter requests data delivery status information from

the receiver since the transmitter is the entity with the knowledge of what degree of

reliability and acknowledgement scheme is appropriate. At association setup, the

transmitter sets certain “mode” flags to inform the receiver of some basic properties of the

association, including “no error mode”, where delivery errors are ignored, and “reservation

mode”, where flow control is based on conservative buffer availability.

A fundamental design goal of XTP wasflow-through packet processing. The fields

of the packets are placed in the header and trailer of the packet according to how and when

the information within these fields is to be processed. Packet parsing information, such as

what kind of packet this is, its context identifier, and the various modes, flags, and

processing options are placed in the header for immediate access upon packet arrival. The

data integrity check field is placed in the trailer since the value for this field depends on the

packet’s contents. Software implementations of transport layer protocols are able to

manipulate the packet in memory segments, and therefore field placement is not as crucial

(witness the placement of the checksum field in ISO Transport packet headers). Protocols

destined for VLSI implementations, where the packet processing may be done as the packet
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“moves” through the hardware circuits, have the opportunity to place fields so as not to

hinder this flow.

XTP is also designed so that packets can be processed “in real-time”. This is to say

that VLSI implementations of XTP will be able to parse and process an incoming packet in

the time it takes for a packet to arrive. As XTP receives a packet, the addressing information

is parsed and the appropriate data structure, called acontext, is located. Then state

information for that association which is maintained in the context is loaded into the XTP

logic circuits. As this is occurring, the data within the packet is buffered and the integrity

of the data and header fields is validated. If the packet passes validation, the protocol

commits to accepting this packet. A new packet may arrive immediately following this

packet, and, due to concurrency planned within the protocol’s VLSI implementation,

parsing of this new packet may begin as the processing of the old packet is completing.

Certainly if an XTP chipset is placed in conjuction with, say, an FDDI chipset, the

performance possibilities at the XTP interface could approach those currently attainable

only at the FDDI MAC interface. This promise of performance is a major selling point of

XTP, and one that makes it appealing to performance-constrained and time-constrained

applications. It is certainly advantageous to use high-performance solutions for real-time

applications, but, as has been cautioned, performance alone can not guarantee that the

requirements of real-time systems are met.

4.2. Functionality

XTP provides full transport layer functionality — a reliable, end-to-end delivery of

arbitrarily long messages over an arbitrary internetwork topology. Yet, XTP provides

functionality in addition to the classic ISO transport layer. In particular, the ability to

separate paradigm from mechanism allows XTP to offer datagrams and transactions
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without requiring either a separate protocol (as is the case with TP4 and TCP), or

unnecessary packet exchanges. Since XTP is a transfer layer protocol, routing services are

included. Multicast, the simultaneous delivery of data to multiple receivers, is a natural

extension to the one-to-one unicast association. Finally, XTP provides an extraordinarily

wide (32 bits) priority field, called thesort field, to convey the message’s importance during

message processing.

Datagrams and Transactions

A datagram is a single message sent from one endpoint to another. Classically, this

service is called “connectionless” since the overhead of maintaining a reliable connection

is not present; thus a datagram is associated with a “best-effort” delivery. In XTP, an

association can be established by the exchange of a single packet. All of the structures

necessary to maintain the state of the association are constructed as a result of this single

packet, called the FIRST packet. Since this packet may also carry data, this single packet

can be treated as a datagram by setting the End Of Message (EOM) and End Of Association

(END) flags. No other packets need be exchanged. Since all of the state structures are built

as a consequence of this first packet, however, XTP can also offer a reliable datagram. The

datagram becomes reliable when the transmitter sets the Request for Status (SREQ) flag,

causing the receiver to reply with a status packet, called the CNTL packet. Figure 2 shows

both an unreliable and a reliable datagram.

A transaction is a two way communication of information in a request/response

fashion. One endpoint, often called a client, sends a request message which initiates a

transaction. The receiving endpoint, often called the server, processes the request and sends

a response. XTP supports transactions as a natural sequence of packet exchanges within an

association since associations are by default full duplex. Data sent in the FIRST packet is

processed at the server. The server compiles its response into a return packet, called a
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DATA packet. Note that both the FIRST and DATA packets are data-bearing, and that the

receipt of the DATA packet “acknowledges” the receipt of the FIRST packet. If the

transaction is unreliable, this return data packet may have the END flag set; if it is reliable,

then a SREQ flag is set and the association ends with the status packet. Figure 3 shows both

of these exchanges.

Routing

XTP is designed to be both a router and an endpoint for an association. Given an

arbitrary topology of network segments, apath is defined as the series of XTP nodes a

packet must pass through from one endpoint to the other. When a FIRST packet is sent, it

is given a unique path identifier. The FIRST packet cuts a path through the intermediate

nodes, leave a trail of such path identifiers, so that any subsequent packet in either direction

may trace the path between the two endpoints. Note that this eliminates the need for a full

address in each packet; after the FIRST packet cuts the path, the subsequent packets need

only use the path identifier to use the path.

Figure 2  — Datagram Packet Exchange

Sender Receiver

[FIRST, data, EOM, END]

Unreliable Datagram

[FIRST, data, EOM, SREQ]

Reliable Datagram

[CNTL, END]
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Multicast

Multicast is the simultaneous delivery of messages from a transmitter to more than

a single receiver. The transmitter along with the receiver set is called themulticast group.

Multicast eliminates the need to set up a separate unicast communication with each

receiver, and allows the transmitter to communicate with multiple peers without an

extension to the communication paradigm. Several issue pervade multicast, especially a

transport layer multicast, including group membership, reliable delivery, and the

maintenance of a full duplex channel. If reliable delivery of the data were not essential, the

membership of the multicast group could be dynamic without affecting the transmission.

However, if the delivery must be reliable, the transmitter must be aware of the states of all

of the members of the multicast group, and dynamic group membership impedes this. The

Client Server

[FIRST, data, EOM]

Unreliable Transaction

[FIRST, data, EOM]

Reliable Transaction

[DATA, data, EOM, SREQ]

[DATA, data, EOM, END]

[CNTL, END]

Figure 3 — Transaction Packet Exchange
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problem of full duplex communication, or concentration, includes the issue of whether a

return data stream actually makes sense (consider, for example, a file being concentrated to

one endpoint).

XTP provides a multicast service. In fact, it is a semi-reliable multicast service in

the sense that, as long as receivers are active members of the multicast group, the receivers

may request retransmission of lost data. The service is semi-reliable since the transmitter

can not monitor if the full receiver set is active. Since the transmitter is relieved of this

responsibility, it makes sense to allow receivers to dynamically join and depart the

multicast group as long as, upon joining the group, the receiver does not ask for a

retransmission of data prior to the first data it receives.

XTP treats multicast communication as a natural extension to the association. There

is a flag bit, however, which indicates to the receivers that they are part of a multicast

communication and therefore should employ acknowledgement schemes which are

appropriate for this situation.

Selective Retransmission

Since the transmitter is responsible for supplying the receiver with any data that is

known or suspected to be lost, the XTP receiver can provide the XTP transmitter with very

specific data delivery information. The receiver keeps track of data contiguity, and as gaps

in the data arise, the receiver builds a list of data spans. When asked for delivery status by

the transmitter, the receiver places this gap information into the CNTL packet. Thus, the

information is available to the transmitter that will allow it to selectively retransmit only

that data which is missing. Since selective retransmission is not always a benefit, the

transmitter may ignore this gap information and simply “go-back-n”, retransmitting data

from the last contiguously received byte of data.
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Out-Of-Band Data Delivery

XTP provides a facility for out-of-band data delivery. When an appropriate flag

indicates thus, a field of 8 bytes is inserted prior to the normal data field. This field is called

the btag field, for beginning tag, since the field precedes other data and the contents are

“tagged” with special meaning. XTP does not examine or use the contents; this field is for

end-to-end delivery of data other than the normal data stream. Such out-of-band data is

useful for circumstances where the normal data stream has attributes or control information

associated with segments of it, e.g., a file name associated with the file data.

4.2.1. Message Priority

The XTP protocol specifies that at any decision point, processing will be done to the

highest priority packet (or context with the highest priority packet) ready to receive

processing. The priority is conveyed by a 32-bit field called the sort field. The user specifies

the sort value of a message when the service call is made to the XTP implementation. The

context handling this message segments the message into packets and inserts the sort value

into the sort field of each packet. The active contexts are serviced in priority order, which

is from low sort value to high. At each processing point along the path, that is, at any routers

and at the destination, incoming packets are ordered for attention by using this sort value.

Finally, the assembled message, along with its sort value, is delivered to the destination

user (of course, messages are delivered in sort order as well). Messages with no sort value

are processed only after all other messages are processed.

The sort value is 32 bits wide to allow a variety of priority schemes to be used. XTP

does not impose a scheme; rather, XTP processes in ascending sort value order. The user,

on the other hand, may assign meanings to the sort values. For example, there are 4 billion

separate priority levels. Perhaps more useful is the interpretation of the sort value as a
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timestamp representing the deadline. Since processing is done in ascending sort order, the

nearest deadlines are processed first.

5. ARTS on XTP

Section 3. discussed the ARTS distributed operating system, with emphasis on the

scheduling model and the communication subsystem. Section 4. discussed the Xpress

Transfer Protocol, with emphasis on features and functionality that make it useful as a

component of a communication subsystem that supports real-time applications. This

section will conjecture about how XTP may be used within ARTS. First, we examine how

XTP meets the requirements set forth in Section 3.3.1. We look at the primitives, especially

the message descriptor argument, for how ARTS can interface with XTP. Next, since ARTS

uses the time fence mechanism extensively, we speculate on whether XTP will meet the

needs of this mechanism. Finally, XTP offers transport layer functionality while this

functionality is implemented as the Communication Manager in ARTS; we examine the

issues involved with replacing the Communication Manager with XTP.

Requirements

Recall the requirements of Section 3.3.1. In brief, a real-time communication

subsystem must (1) provide a mechanism for handling message timing requirements, (2)

provide a prioritization mechanism that is an extension of the system-wide priority scheme,

(3) include a priority field in the message format, and (4) deliver the priority and timing

information user along with the message to the destination. Below we discuss how XTP

meets these requirements.

XTP does not explicitly use the timing requirements of a message for scheduling

the processing of that message, as (1) requires. Rather, XTP offers simple, straight-forward

priority queued processing. XTP does not impose an interpretation of this priority; if the
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priority (as embodied in the sort field) is a deadline, then messages are handled in nearest

deadline order. It is recognized in [STRA89] that a single priority field does not adequately

convey all of the timing or other information about how important this message is. Of

course, the sort field can be divided into two parts, one for the deadline and one for the

criticalness, but this approach is user-defined.

Requirement (2) suggests that the message priority be an extension of the task

priority. Task declarations are augmented by priority, worst-case execution time, period,

phase, and delay parameters. It is not clear that all of these parameters are useful to the

communication subsystem; however, it is important that the task convey enough

information about the importance of the communication to the communication subsystem.

XTP uses the sort value to order all of the processing on messages at any processing point

during the transfer of the message; XTP does not consider worst-case execution time,

period, phase, or delay.

Since the sort value is also included in the format of every packet format, the third

requirement is satisfied. XTP also makes available to the remote user this sort value used

for this message. This satisfies requirement (4).

Primitives

Of the arguments to the communications primitives, the invocation descriptor and

the message descriptor provide the communication parameters pertinent to our discussion.

The invocation descriptor includes a transaction identifier, addressing information, and the

time fence field. The transaction identifier is filled in by the communication subsystem

when a request or accept primitive is issued; this corresponds to the key value which

uniquely identifies the context, and thus the association, for this communication. The

addressing information is to allow ARTS to direct this communication to the proper thread
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and invoke the proper operation; XTP has a rich addressing facility. The time fence value

is discussed below.

The message descriptor includes information about the message. This structure is

shown as it is given in [TOKU90].

typedef struct MSGD {
MSG_TYPE m_type; /* message type */
u_short m_pri; /* message priority */
MSG_ADDR m_addr; /* message address */
u_long m_size; /* message size */
u_long m_errorno; /* invocation error code */

} MSGD;

Them_type field indicates whether the message isLONG orSHORT, whereLONG

messages require segmentation. This field is to direct the Communication Manager about

packetizing the message into more than one MAC frame; since transport protocols can

handle arbitrary message length, XTP does not need to know whether a message isLONG

orSHORT. Them_pri field supplies the message’s priority. Thesort field in XTP may use

this value, but the size ofm_pri (an unsigned short word) indicates that its value is

intended for the priority field of a MAC frame. There is a size mismatch; XTP’ssort can be

more expressive. Them_addr andm_size fields give the message’s buffer address and

size respectively; this information is necessary to XTP as well.

Time Fence

Each operation within a thread has associated with it a time fence, or an expected

time of completion. This time fence is given by a including awithin time except

construct following the declaration of the operation. Thistime is the deadline by which the

operation must be completed. Since communication primitives are operations, the time

fence is included in the invocation descriptor and delivered to the remote thread. This time
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fence value can be delivered with the message as out-of-band data (the btag field), since it

is an attribute of the message rather than part of it.

Communication Manager

XTP uses priority queues whenever contention for processing within a processing

node occurs. This approach is similar to the worker threads used by the Communication

Manager. While a worker thread can be preempted at any point in time so that a more

important worker thread may be processed, XTP does not preempt the processing of a

packet until a “clean point” in the processing is reached. Since packets are bounded in size,

the period of priority inversion is bounded. Furthermore, XTP’s design is highly

parallelizable, so the need to preempt processing is not as acute.

Since the Communication Manager provides similar message processing

functionality as a transport protocol, an XTP-based communication subsystem would

probably not need a full-scale Communication Manager as described in [TOKU89].

6. Conclusions

The ARTS distributed real-time operating system uses timing information,

especially period and worst-case execution time, to schedule its tasks. It attempts to

guarantee the hard real-time tasks first, then reduce the response time on the soft real-time

tasks. ARTS claims to take the same approach for communications; however, the period

and worst-case execution times are not provided to the communication subsystem. What is

provided are the priority and time fence values.

Communication within ARTS follows a Request-Accept-Reply paradigm common

to transaction and remote procedure call systems. Currently, MAC layer data delivery

services are used; segmentation of a message into packets, sequencing, and reassembling
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these packets into the original message are all done by a Communication Manager, which

serves as the preemptable message processor.

XTP provides transport layer functionality, combined with high performance

design goals and algorithms. XTP offers efficient single-packet association establishment,

and easily provides a transaction paradigm. Routing services are included within XTP since

XTP is a transfer layer protocol. XTP does not provide message latency guarantees, nor

does it schedule messages beyond the use of a priority based scheduling scheme. Still, XTP

provides functionality and performance that would benefit ARTS, and could represent an

improvement over the current MAC-based functionality.

Below we list the benefits and drawbacks to putting ARTS on XTP. First we discuss

XTP over ARTS, focusing on how XTP provides improved functionality and how XTP

could be improved to satisfy the real-time needs of ARTS. Then we discuss ARTS over

XTP, focusing on how ARTS could use the functionality of XTP.

XTP under ARTS

• XTP provides full duplex communication for arbitrarily long messages over an
arbitrary internetwork topology

• XTP provides user controlled degrees of reliability, especially useful when
providing full reliability may cause timing constraints to be violated.

• XTP provides out-of-band data delivery, perhaps useful for the time fence
value.

• XTP provides a 32-bit wide priority (sort) field. The value is used to order
processing of packets at every processing point, including delivery to the
destination user. The sort field is wide enough to be a timestamp, such as a
deadline.

• XTP can not bound latency.
• XTP provides only priority scheduling, while real-time systems require

scheduling based on timing and criticalness constraints. The sort field may not
be powerful enough to provide ordering based on these two properties.

ARTS over XTP

• ARTS requires a Request-Accept-Rely paradigm; XTP is well suited for this.
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• ARTS provides a message priority and a time fence value, which may be given
to XTP as the sort value and the contents of the btag field, respectively. XTP
delivers both to the destination user.

• ARTS does not currently use internetworking; XTP provides this capability.
• ARTS could make use of the multicast facility. Currently there are no primitives

which require multicast, though this could be more from lack of facility than
lack of need.

• An XTP based subsystem could replace much of the Communication Manager.
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