
Page 1 of 13

Target-Sensitive Construction of Diagnostic Programs for

Procedure Calling Sequence Generators

Mark W. Bailey Jack W. Davidson
mark@virginia.edu jwd@virginia.edu

Department of Computer Science
University of Virginia

Charlottesville, VA 22903
USA

Abstract

Building compilers that generate correct code is difficult. In this paper we present a compiler testing technique
that closes the gap between actual compiler implementations and correct compilers. Using formal specifica-
tions of procedure calling conventions, we have built a target-sensitive test suite generator that builds test
cases for a specific aspect of compiler code generators: the procedure calling sequence generator. By exercis-
ing compilers with these target-specific test suites, our automated testing tool has been able to expose and iso-
late 8 bugs in heavily used production-quality compilers. These bugs cause more than 700 test cases to fail.

1 Introduction
Building compilers that generate correct code is difficult. To achieve this goal, compiler writers rely on automated

compiler building tools and thorough testing. Automated tools, such as parser generators, take a specification of a

task and generate implementations that are more robust than hand-coded implementations. Conversely, testing tries to

make hand-coded implementations more robust by detecting errors. One aspect of a compiler that has traditionally

been hand-coded is the portion that generates calling sequences that implement procedure calls. We have developed a

language, called CCL, for specifying procedure calling conventions. We have used CCL specifications to automati-

cally generate calling sequences for a retargetable optimizing compiler [BD95]. In doing so, we realized that CCL

descriptions could be used to make other compilers more robust without requiring that the compiler implementation

use CCL. In this paper, we describe how CCL specifications can be used to generate tests for hand-coded calling

sequence generators in other compilers. This technique has exposed a number of calling convention errors in produc-

tion-quality compilers that have been heavily used for years.

One feature of high-level programming languages that compilers must implement is the procedure call. The

interface between procedures facilitates separate compilation of program modules and interoperability of program-

ming language. This is accomplished by defining a procedure calling convention that dictates the way that program

values are communicated, and how machine resources are shared, between a procedure making a call (the caller) and

the procedure being called (the callee). The calling convention is machine-dependent because the rules for passing

values from one procedure to another depend on machine-specific features such as memory alignment restrictions

and register usage conventions. The code that implements the calling convention, known as the calling sequence

[Joh], must be generated by the code generator. This aspect of the code generator, which we refer to as the calling

sequence generator, is a source of great difficulty for the compiler writer because it not only suffers from being hand-

coded, it also changes each time the compiler is retargeted.

Target-Sensitive Construction of Diagnostic Programs for Procedure Calling Sequence Generators

Page 2 of 13

As part of research whose objective is to develop more retargetable optimizing compilers, we have devel-

oped a formal specification language for describing procedure calling conventions. This language, called CCL, has

been used to automatically generate the calling sequence generator for a compiler [BD95]. The compiler, called vpcc/

vpo, is a retargetable optimizing compiler for the C language that has been targeted to over 10 different architectures

[BD88, BD94].

The procedure calling convention for a target machine is described using CCL. The resulting specification is

processed by a CCL interpreter. The interpreter can generate tables that can be used in the calling-convention-specific

portion of vpcc/vpo, or in a test suite generator. This process is pictured in Figure 1. The test suite generator uses

information from the table to tailor the test suite to the specific calling convention. The test suite can either be used to

confirm that the vpcc/vpo implementation properly uses the convention tables, or that another, independent compiler

conforms to the convention described in the CCL specification.

Figure 1: How CCL specifications are used.

Figure 2: Using test suites to determine convention conformance of a compiler.

CCL Interpreter
Calling

Convention
Specification

vpcc/vpo compiler

Test
Suite

Calling
Convention

Tables

Test Suite
Generator

compiler under
test

Callee
Test
Case

Reference
Compiler

Caller
Test
Case

Test Conductor
Test

Results
Analysis

Calling
Convention

Specification

Test Suite
Generator

Conformance
Verifier

Target-Sensitive Construction of Diagnostic Programs for Procedure Calling Sequence Generators

Page 3 of 13

As shown in Figure 2, a calling convention description can be used to automatically generate test cases that

exercise a compiler’s calling sequence generator. A test case is composed of two procedures, each in its own file. One

file is compiled by the compiler under test, while the other is compiled by the reference compiler. The reference com-

piler operationally defines the procedure calling convention (its implementation is defined to be correct). The result-

ing objects files are linked together and run. Results of the test are checked by the conformance verifier and given to

the test conductor. The test conductor tallies the results of all tests for a test suite and generates a conformance report.

This paper makes several contributions. First, a method for automatically testing implementations of proce-

dure calling conventions is presented. Using this technique we have found bugs in mature C compilers. This tech-

nique, which uses a formal specification of procedure calling conventions, methodically generates tests that offer

complete coverage of the problem domain. Second, an algorithm for intelligently selecting important tests from the

complete coverage suite is introduced. These tests include boundary cases that are more likely to reveal bugs than

exhaustive or randomly generated tests. Third, because the tests focus only on the calling convention, they can isolate

errors more effectively than tests from a general test suite. Finally, a method for quickly determining the conformance

of multiple compilers at once is described.

2 Procedure Calling Conventions
A calling convention is the set of rules to which a caller and callee must conform. Figure 3 contains the calling con-

vention rules for a hypothetical machine. Consider the following ANSI C prototype for a function foo:

int foo(char p1, int p2, int p3, double p4);

For the purpose of transmitting procedure arguments for our simple convention, we are only interested in the signa-

ture of the procedure. We define a procedure’s signature to be the procedure’s name, the order and types of its argu-

ments, and its return type. This is analogous to ANSI C’s abstract declarator, which for the above function prototype

is:

int foo(char, int, int, double);

which defines a function that takes four arguments (a char, two int’s, and a double), and returns an int.

With foo’s signature, we can apply the calling convention in Figure 3 to determine how to call foo. foo’s

arguments would be placed in the following locations:

• p1 in register a1

• p2 in register a2

1. Registers a1, a2, a3, and a4 are 32-bit argument-transmitting registers.

2. Arguments are also passed on the stack in increasing memory locations starting at the stack pointer (M[sp]).

3. An argument may have type char (1 byte), int (4 bytes), or double (8 bytes).

4. An argument is passed in registers (if enough are available to hold the entire argument), and then on the stack.

5. Arguments of type int are 4-byte aligned on the stack.

6. Arguments of type double are 8-byte aligned on the stack.

7. Stack elements that are skipped over cannot be allocated later.

8. Return values are passed in registers a1 and a2.

9. Values of registers a6, a7, a8, and a9 must be preserved across a procedure call.

Figure 3: Rules for a simple calling convention.

Target-Sensitive Construction of Diagnostic Programs for Procedure Calling Sequence Generators

Page 4 of 13

• p3 in register a3

• p4 on the stack in M[sp:sp + 7] (M denotes memory)

Notice that although register a4 is available, p4 is placed on the stack since it cannot be placed completely in the

remaining register (rule 4). Such restrictions are common in actual calling conventions.

Now that we have seen how arguments are transmitted for a simple example, we can describe the objects in

our model. The primary objects of interest are machine resources. A machine resource is simply any location that can

store a value. Examples include registers and memory locations, such as the stack. Defining where required values are

located is accomplished by specifying a mapping from one resource to another. We call such a mapping a placement.

CCL descriptions define placement functions for both procedure arguments and return values. They also

describe other aspects of calling conventions such as frame layout and stack allocation. However, these features of

CCL are not considered in this paper since the focus of our test suite generator is verifying the implementation of

placement functions.

3 The Formal Model
We use finite state automata to model each placement in a calling convention. A placement FSA (P-FSA) takes a pro-

cedure’s signature as input and produces locations for the procedure’s arguments as output. The automaton works by

moving from state to state as the location of each value is determined. When a transition is used to move from one

state to the next, information about the current parameter is read from the input, and the resulting placement is written

to the output.

Placement functions are described in terms of finite resources, infinite resources, and selection criteria. A set

of finite resources R = {r1,r2, …, rn} are used to represent machine registers, while an infinite resource I = {i1, i2, …}

is used represented the stack. The selection criteria C = {c1, c2, …, cm} correspond to characteristics about arguments

(such as their type and size) that the calling convention uses to select the appropriate location for an value. We encode

the signature of a procedure with a tuple w ∈ (C*, C*). Each state q in the automaton is labeled according to the allo-

cation state that it represents. The label includes a bit vector v of size n that encodes the allocation of each of the finite

resources in R. Additionally, to express the state of allocation for the stack, we include d, the distinguishing bits that

indicate the state of stack alignment. So, a state label is a string vd that indicates the resource allocation state. In our

example convention, n = 4, and = 3. So, each state is labeled by a string from the language {0, 1}4{0, 1}3. The

output of M is a string s ∈ P, where , which contains the placement information.

Since the P-FSA produces output on transitions, we have a Mealy machine [Mea55]. We define a P-FSA, M,

as a six-tuple M = (Q, Σ, ∆, δ, λ, q0), where:

• Q is the set of states with labels representing the allocation state of machine resources,

• the input alphabet Σ = C, is the set of selection criteria,

• the output alphabet ∆ = P, is the set of placement strings,

• the transition function δ:Q × Σ → Q,

• the output function λ:Q × Σ → ∆+,

• q0 is the state labeled by 0nw where = , and w is the initial state of d.

The P-FSA that corresponds to our hypothetical calling convention is shown in Figure 4. Its output function

λ is shown in Table I. The states of the automaton represent that state of allocation for the machine resources. For

example, the state labeled q2 (1100 000) represents the fact that register a1 and a2 have been allocated, but that a3, a4

and stack locations have not been allocated. The transitions between states represent the placement of a single argu-

d

P R 0 1{ , } d∪=

0 1{ , } n 0 1{ , } d

w d

Target-Sensitive Construction of Diagnostic Programs for Procedure Calling Sequence Generators

Page 5 of 13

ment. Since arguments of different types and sizes impose different demands on the machine’s resources, we may

find more than one transition leaving a particular state. In our example, q8 has three transitions even though two of

them (int and double) have the same target state (q4). This duplication is required since the output from mapping an

int is different from the output from mapping a double.

The signature:

int phred(double, double, char, int);

will take the P-FSA in Figure 4 from state q0 to q4 producing the string (a1 a2) (a3 a4) (000) (100 101 110 111) along

the way. From the string, we can derive the placement of the phred’ s arguments. The first double is placed in regis-

ters a1 and a2, the second in registers a3 and a4, the char at the first stack location and the int starting in the fifth stack

location. From the string, we can derive the placement of the phred’ s arguments.

4 Test Vector Selection
In order to test a compiler’s implementation of a calling convention, we must select a set of programs to compile. To

exercise the calling convention, each test program must contain a caller and a callee procedure. For the purpose of

testing the proper transmission of program values between procedures, the signature of the callee uniquely identifies

a. mem1 = 000 001 010 011
b. mem2 = 100 101 110 111
c. mem3 = 000 001 010 011 100 101 110 111

Figure 4: A simple placement finite-state automaton.

λ q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

char a1 a2 a3 a4 000 001 010 011 100 101 110 111

int a1 a2 a3 a4 mem1
a mem2

b mem2 mem2 mem2 mem1 mem1 mem1

double a1a2 a2a3 a3a4 mem3
c mem3 mem3 mem3 mem3 mem3 mem3 mem3 mem3

Table I: Definition of λ for example P-FSA.

q1 =
1000
000

q2 =
1100
000

q3 =
1110
000

q4 =
1111
000

q5 =
1111
001

q6 =
1111
010 q7 =

1111
011

q8 =
1111
100

q9 =
1111
101q10 =

1111
110

q11 =
1111
111

q0 =
0000
000

c

c,i

i

c,i c,ic,i

d d d

d

d
d

d

d

d

d

d

c c

c

c

cc

i i i

i

i

i
i

d

c

Target-Sensitive Construction of Diagnostic Programs for Procedure Calling Sequence Generators

Page 6 of 13

a test case. Thus, two different programs, whose callees signatures match, perform the same test. Thus, the problem

of generating test cases reduces to the problem of selecting signatures to test.

Selecting which procedure signatures to test is a difficult problem. Obviously, one cannot simply test all sig-

natures since the set of signatures, S = {(C*, C*)}, is infinite. However, since we can model the function that com-

putes the placement of arguments as an FSA, there must be a finite number of states in an implementation to be

tested. This is the case for any implementation, including those that do not explicitly use FSA’s to model the place-

ment function.

The problem of confirming that an implementation properly places procedure arguments is equivalent to

experimentally determining if the implementation behaves as described by the P-FSA state table. This problem is

known as the checking experiment problem from finite-automata theory [Hen64, Koh78]. There are numerous

approaches to this problem, most of them are based on transition testing. Transition testing forces the implementation

to undergo all the transitions that are specified in the specification FSA.

An obvious first approach to generating test vectors using the P-FSA specification is to generate all vectors

whose paths through the FSA are acyclic, or whose path ends in a cycle1. This solution insures that each state q is vis-

ited, and each transition δ(q,a) is traversed. For an FSA with a small number of states, and a small input alphabet, this

may be acceptable. However, the number of such paths for an FSA is . Table II contains profiles for five P-

FSA’s that we have built from CCL descriptions. For complex conventions, like the MIPS and SPARC, the number of

transitions, and more importantly, the number of states can be large. For the MIPS, this results in an upper bound of

 test vectors. In practice, the number of test vectors is closer to 108 vectors. However, this is still

too many to feasibly run.

Another, simpler, approach is to guarantee that each transition is exercised at least once. Since there are no

more than transitions, the number of test vectors that this generates is not unreasonable. However, this

method results in poor coverage that does not inspire confidence in the test suite. For example, for the P-FSA in

Figure 4, the two signatures:

void f(double, double);

void f(int, int, int, int);

cover all int and double transitions leaving states q0-3. This leaves the signature:

void f(double, int);

1. We define a path that ends in a cycle to be a cyclic path wa where the path w is acyclic.

Machine
Allocation
Vector Bits

Memory
Partition

Bits

Longest
Acyclic

Path

DEC VAX 0 0 1 3 3 0

M68020 (Sun) 0 2 4 24 6 3

SPARC (Sun) 6 3 9 90 10 8

M88100 (Motorola) 8 3 72 720 10 15

MIPS R3000 (DEC) 6 3 12 156 25 11

Table II: P-FSA profiles for several calling conventions.

O Σ Q()

2512 2.3x1022=

Q δ Σ

Q Σ

Target-Sensitive Construction of Diagnostic Programs for Procedure Calling Sequence Generators

Page 7 of 13

untested. Clearly such a test should be included in the suite. To further illustrate the problem, consider the FSA spec-

ification in shown in Figure 5a. An erroneous implementation, shown in Figure 5b, contains an extra state q1’ that is

reached on initial input b. The two strings, aaa and bbb completely cover the transitions. Unfortunately, these test

vectors will not detect that the implementation has an additional (fault) state. Thus, it is not sufficient to only include

test vectors that cover the transition set.

An alternative which falls between the simple transition approach and the acyclic path approach we call the

transition-pairing. In transition pairing, we examine each state in the specification FSA. As shown in Figure 6, a state

has entering and exiting transitions. For each state, we include a test vector that covers each pair of entering and exit-

ing transitions. This eliminates the faulty state detection problem illustrated in Figure 5. Furthermore, it provides tests

that have a similar characteristic to the acyclic method: transitions are tested in “all” the contexts that they can be

applied. Although there are many combinations that are not tested, they are similar to ones included in the set. For

example, in the simple FSA pictured in Figure 4, we could have a set of test vectors that includes the vector double

double double to exercise the state q4 with the transition pair ((q3, double), (q4, double)). Such a set would not need

to include int int double double to cover the same transition pair.

This method of test vector generation provides a complete coverage of transitions in the specification FSA.

Further, the tests reflect the context sensitivity that transitions have. This allows for some erroneous state and transi-

tion detection, while significantly reducing the number of test vectors. The test vector sizes are significantly smaller

than the acyclic method, while still providing a significant confidence level.

An algorithm for generating transition-pair paths is shown in Figure 8 (in the appendix). The algorithm per-

forms a depth-first search of the FSA state graph. Each time a transition (q, a) is encountered, it is marked. This mark

indicates that all paths that go beyond (q, a) are have been visited. When the algorithm reaches a state qn on transition

Figure 5a: Specification FSA. Figure 5b: Implementation FSA.

Figure 5: Example FSA where a fault will not be detected

Figure 6: Entering and exiting transitions for a state.

q0 q1 q2

a/0
a/0

b/1

a/1

b/0

b/1 q0 q1 q2

q1'

a/0 a/1
a/0

b/1

b/1

b/0
b/0a/1

qn

Target-Sensitive Construction of Diagnostic Programs for Procedure Calling Sequence Generators

Page 8 of 13

(qm, a), each transition (qn, b) where b ∈ Σ, is visited whether or not it is marked. This causes all pairs of transitions

((qm, a), (qn, b)) to be included. These pairs represent all combinations of one entering transition with all exiting tran-

sitions. Because the algorithm is depth-first, each entering transition is guaranteed to be visited. This results in all

combinations of entering and exiting transitions being included.

5 Test Case Generation
After selecting the appropriate test vectors, or procedure signatures, the corresponding test cases must be realized. In

our approach, we generate a separate test program for each test vector so that we can easily match any reported errors

to the specific test vector.

A procedure call is broken into two pieces: the procedure call within the caller (the call-site) and the body of

the callee. Because they are implemented differently, these two pieces of code are typically generated in separate

locations in a compiler. This natural separation is reflected in the way that we construct our test cases. Each test case

is composed of two files, one contains the caller, the other contains the callee. The two files are compiled and linked

together. The programs are self-checking, so that if a procedure call fails, this event is reported by the test itself.

Figure 9 (in the appendix) shows an example test case for the C signature void (int, double, struct(2)2). The

caller (Figure 9a) loads each of the arguments with randomly selected bytes. However, the values of these bytes have

an important property: each contiguous set of two bytes is unique. Thus, for a string B of m bytes, for all indexes

, there exists no index and such that for all . We can easily

guarantee this property for all strings B whose length is no more than 65536 (216) bytes. Since the likelihood of using

an argument list of size greater than 64 Kbytes is small, this is sufficient to guarantee that any two bytes passed

between procedures are unique. This makes it possible to easily identify if an argument has been shifted or misplaced

since each argument’s value is guaranteed to be unique. The callee (Figure 9b) receives the values, and checks them

against the expected values. If the values do not match, an error condition is signalled.

The generation of good test cases from selected signatures is language dependent. One convention used in

the C programming language is varargs. varargs is a standard for writing procedures that accept variable length argu-

ment lists. The proper implementation of varargs in a C compiler can be tricky. For each test case that we generate we

also generate a varargs version to verify that this standard convention is implemented correctly. However, we do not

include an example here.

2. We denote a structure whose size is n bytes as struct(n).

Machine
Transition

Paths
Transition-
pair paths Acyclic paths

DEC VAX 3 12 3

M68020 (Sun) 24 324 96

SPARC (Sun) 224 7434 > 108

M88100 (Motorola) 720 22,412 > 108

MIPS R3000 (DEC) 156 5838 8x108

Table III: Sizes of test suites for various selection methods.

0 i m≤< 0 j m≤< j i≠ B j k+[] B i k+[]= 0 k 2<≤

Target-Sensitive Construction of Diagnostic Programs for Procedure Calling Sequence Generators

Page 9 of 13

6 Results
We used our technique for selecting test vectors to test a number of compilers on several target machines. Several

errors were found in C compilers on the MIPS. In this section, we present these results.

We selected several C compilers that generate code for the MIPS architecture (a DECStation Model 5000/

125). These included the native compiler supplied by DEC, a version of Fraser and Hanson’s lcc [FH91] compiler,

several versions of GNU’s gcc [Sta92], and a previous version of our own C compiler that used a hand-coded calling

sequence generator. Although we feel that this technique is extremely valuable throughout the compiler development

cycle, we believe that it would be fairest to evaluate its effectiveness in finding errors in young implementations of

compilers. Where possible, we have used early versions of these compilers. These versions, called legacy compilers,

represent younger implementations that more accurately exhibit bugs found in initial releases of compilers. However,

each of these compilers is production-quality compiler that has been widely used for years. Finding any in bugs in

their implementations is still a significant challenge.

In testing the compilers, we checked for two types of conformance: internal and external. Compiler A inter-

nally conforms if code that it generates for a caller can properly call code for a callee that it generated. We denote this

using . Compiler A externally conforms if its caller code can call another compiler B’ s callee code, and vice

versa (and). Thus, the callees and callers are compiled using each of the compilers under test. This

results in n object versions for n compilers. Each caller version is then linked with the callee that was generated by the

same compiler. This results in the n tests necessary to verify internal conformance for this test case. To establish

external conformance, we could naively link each caller to each callee, which would yield 2n2 tests. However, we can

do better. Recognizing that procedure call () is symmetric we can easily reduce this to n2 (since if , then

). Furthermore, procedure call is also transitive, so if and , then . This reduces the num-

ber to 2n-1 as pictured in Figure 7. If a reference compiler (an operational definition of the calling convention), Cref,

is used, Figure 7 would look different. Each compiler’ s caller/callee would be linked to the reference compiler’ s

callee/caller. This facilitates the isolation of which compiler does not conform when an error is detected.

The results of running both internal and external tests on the compiler set for the MIPS are shown in

Table IV. We found both internal and external conformance errors in several compilers. Table IV reports internal and

external errors separately. Within each class, the number of actual tests that failed and the number faults that caused

test failure are indicated. Numbers reported in the faults columns indicate the approximate number of actual coding

Figure 7: Determining conformance of n compilers.

A Ac→
A Bc→ B Ac→

c→ A Bc→

B Ac→ A Bc→ B Cc→ A Cc→

cc1
caller

cc2
caller

cc3
caller

ccn
caller

cc1
callee

cc3
callee

cc2
callee

ccn
callee

Target-Sensitive Construction of Diagnostic Programs for Procedure Calling Sequence Generators

Page 10 of 13

errors resulting in test failures. These are numbers are only approximate. We tried, as best we could, to glean this

information from the results of tests. More accurate numbers can only be obtained by examining the compiler’ s

source.

Internal conformance errors were found in two versions of gcc. gcc 1.38 failed 24 tests that focus on passing

structures in registers. Structures whose size is between 9 and 12 bytes (3 words) are not properly passed starting in

the second argument register. Procedure signatures that correspond to these tests include:

void(int, struct(9-12));

gcc 2.4.5 fails a single test. The fault occurs with procedures with the signature:

void (struct(1), struct(1), struct(1));

gcc 2.4.5 fails to even compile a procedure with this signature3. The fact that gcc 2.1 does not have this error indi-

cates that the error was introduced after version 2.1. This supports our conjecture that such method of automatic test-

ing is extremely useful throughout the development and maintenance life-cycle of a compiler.

External conformance errors were more prevalent. gcc 1.38 does not properly pass 1-byte structures in regis-

ters. This results in 208 test case failures. gcc 1.38 and 2.4.5 cannot pass a structure in the third argument register

when that structure is followed by another. The fault occurs with signatures matching:

void(int, int, struct(1-4), struct(any));

This results in another 13 test failures. Finally, vpcc/vpo has a single fault that causes 486 tests to fail. Two faults are

responsible 1) structures are not passed properly in registers, and 2) 1 to 4-byte structures are not passed in memory

correctly if they are immediately followed by another structure. These match signatures:

void(int, int, int, int, struct(1-4), struct);

From these results, it is clear that the state-of-the-art in compiler testing is inadequate. Because these are

production-quality compilers, each of them has undoubtedly undergone rigorous testing. However, hand development

of test suites is an arduous and itself error-prone task. Furthermore, because these tests are target specific, they must

be revisited with each retargeting of the compiler. In contrast, by using automatic test generators that are target sensi-

tive, compilers can be quickly be validated before each release.

3. The error returned by gcc 2.4.5 is: gcc: Internal compiler error: program cc1 got fatal signal 4

Internal External

Compiler Failed tests Faults Failed Tests Faults

cc (native) 0 0 0 0

gcc (1.38) 24 1 221 2

gcc (2.1) 0 0 0 0

gcc (2.4.5) 1 1 28 2

lcc (1.9) 0 0 0 0

vpcc/vpo 0 0 486 2

Total 25 2 735 6

Table IV: Results of running MIPS test suite on several compilers.

Target-Sensitive Construction of Diagnostic Programs for Procedure Calling Sequence Generators

Page 11 of 13

7 Related Work
The automatic generation of test suites has receive much attention recently in the area of conformance testing of net-

work protocols [SL89]. The purpose of the suite is to determine if the implementation of a communication protocol

adheres to the protocol’s specification. In many cases, the protocol specification is provided in the form of a finite-

state machine. This has resulted in many methods of test selection including the Transition tour, Partial W-method

[FBK+91], Distinguishing Sequence Method [Koh78], and Unique-Input-Output method [ADLU91]. These methods

are derivatives of the checking experiment problem where an implementation is checked against specification FSM

[YL95]. What distinguishes these methods from ours is that a bound on the number of states in the implementation

FSM is assumed. Because we have no practical bound on the number of states in the implementation, their work is

not applicable. Finally, a similarly related field is the automatic verification of digital circuits [Hen64, HYHD95].

8 Summary
Building compilers that generate correct code continues to be a difficult problem. Using automated compiler tools

and testing, one can significantly increase the robustness of a compiler. We have combined these two techniques, in a

new way, that further closes the gap between actual compiler implementations and the ever-sought-after correct com-

piler. By using formal specifications of procedure calling conventions, we have designed and implemented a tech-

nique that automatically identifies boundary test cases for calling sequence generators. We then applied this technique

to measure the conformance of a number of production-quality compilers for the MIPS. This system identified a total

of a least 8 faults in three different widely used compilers. These errors were significant enough to cause 760 different

test cases to fail. Clearly, this technique is effective at exposing and isolating bugs in calling sequence generators of

mature compilers. Surly it would be even more effective during the initial development of a compilation system.

References
[ADLU91] Alfred V. Aho, Anton T. Dahbura, David Lee, and M. Uyar. An optimization technique for protocol

conformance test generation based on uio sequences and rural chinese postman tours. IEEE Transac-
tions on Communications, 39(11):1604—1615, November, 1991.

[BD88] Manuel E. Benitez and Jack W. Davidson. A portable global optimizer and linker. In Proceedings of
the ACM SIGPLAN ' 88 Conference on Programming Language Design and Implementation, pages
329—338, July 1988.

[BD94] Manuel E. Benitez and Jack W. Davidson. The advantages of machine-dependent global optimization.
In Proceedings of the 1994 Conference on Programming Languages and Systems Architectures, pages
105—124, March 1994.

[BD95] Mark W. Bailey and Jack W. Davidson. A formal model and specification language for procedure call-
ing conventions. In Proceedings of the 22nd SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 298—310, January 1995.

[FBK+91] Susumu Fujiwara, Gregor v. Bochmann, Ferhat Khendek, Mokhtar Amalou, and Abderrazak
Ghedamsi. Test selection based on finite state models. IEEE Transactions on Software Engineering,
17(6):591—603, June 1991.

[FH91] Christopher W. Fraser and David R. Hanson. A code generation interface for ansi-c. Software—Prac-
tice and Experience, 21(9), 1991.

[Hen64] F. C. Hennie. Fault detecting experiments for sequential circuits. In Proceedings of the Fifth Annual
Symposium on Switching Theory and Logical Design, pages 95—110, November 1964.

[HYHD95] Richard C. Ho, C. Han Yang, Mark A. Horowitz, and David L. Dill. Architecture validation for pro-
cessors. In ISCA95, pages 404—413, 1995.

[Joh] S. C. Johnson. A tour through the portable c compiler.

Target-Sensitive Construction of Diagnostic Programs for Procedure Calling Sequence Generators

Page 12 of 13

[Koh78] Zvi Kohavi. Switching and Finite Automata Theory. McGraw-Hill, second edition, 1978.

[Mea55] G. H. Mealy. A method for synthesizing sequential circuits. Bell System Technical Journal,
35(5):1045— 1079, 1955.

[SL89] Deepinder P. Sidhu and Ting-Kau Leung. Formal methods for protocol testing: A detailed study. IEEE
Transactions of Software Engineering, 15(4):413— 426, April 1989.

[Sta92] Richard M. Stallman. Using and Porting GNU CC (Version 2.0). Free Software Foundation, Inc., Feb-
ruary 1992.

[YL95] Mihalis Yannakakis and David Lee. Testing finite state machines: Fault detection. Journal of Computer
and System Sciences, 50:209— 227, 1995.

Appendix

Input. A finite-state machine M.
Output. The set of transition-pair paths in M that take M from q0 to qn with at most one cycle. The set
traverses all pairs of transitions ((qr, a), (qs, b)) such that δ(qr, a) = qs.
Initial call. TRANSITION-PAIRS(q0, ε, ∅, 0);
Algorithm:
function TRANSITION-PAIRS(q, w, V, cycle)

paths ← ∅;
for each a where a ∈ Σ ∧ δ(q, a) is defined do // For each transition from state q...

if cycle ≠ 1 ∧ (q, a) ∉ T then // No cycles and (q, a) is new
if q ∉ V then // If there is no cycle

T ← T ∪ {(q, a)}; // Mark transition as followed
cycle ← 0; // Indicate no cycle

else
cycle ← 1; // Indicate cycle

end if
P ← TRANSITION-PAIRS(δ(q, a), wa, V ∪ {q}, cycle); // Compute paths from here
paths ← paths ∪ P;

end if
paths ← paths ∪ {wa}; // Add this path to paths

end for
return paths; // Return paths from q

end function

Figure 8: Test vector generation algorithm.

Target-Sensitive Construction of Diagnostic Programs for Procedure Calling Sequence Generators

Page 13 of 13

typedef union { unsigned char bytes[8]; double dbl; } dblcvt;
typedef struct struct_2 { unsigned char field[2]; } struct_2;
void test_function_callee();

void test_function_caller()
{

dblcvt cvt;
static struct_2 struct_2_arg_3 = { { 0x34,0x8f,} };
double double_arg_2;

cvt.bytes[0] = 0xe2;
cvt.bytes[1] = 0xed;
cvt.bytes[2] = 0xab;
cvt.bytes[3] = 0xad;
cvt.bytes[4] = 0x67;
cvt.bytes[5] = 0x31;
cvt.bytes[6] = 0xee;
cvt.bytes[7] = 0x7;
double_arg_2 = cvt.dbl;
test_function_callee(0x44026097l, double_arg_2,

struct_2_arg_3);
}

typedef union { unsigned char bytes[8]; double dbl; } dblcvt;
typedef struct struct_2 { unsigned char field[2]; } struct_2;
void test_function_callee(long_arg_1, double_arg_2,
struct_2_arg_3)

long long_arg_1;
double double_arg_2;
struct_2 struct_2_arg_3;

{
dblcvt cvt;

if(long_arg_1 != 0x44026097l) {
fprintf(stderr, "Bad long_arg_1\n");
exit(1);

}
cvt.bytes[0] = 0xe2;
cvt.bytes[1] = 0xed;
cvt.bytes[2] = 0xab;
cvt.bytes[3] = 0xad;
cvt.bytes[4] = 0x67;
cvt.bytes[5] = 0x31;
cvt.bytes[6] = 0xee;
cvt.bytes[7] = 0x7;
if(double_arg_2 != cvt.dbl) {

fprintf(stderr, "Bad double_arg_2\n");
exit(1);

}
if(struct_2_arg_3.field[0] != 0x34) {

fprintf(stderr, "Element 0 is bad in
struct_2_arg_3.field\n");

exit(1);
}
if(struct_2_arg_3.field[1] != 0x8f) {

fprintf(stderr, "Element 1 is bad in
struct_2_arg_3.field\n");

exit(1);
}

}

Figure 9a: Code generated for caller. Figure 9b: Code generated for callee.

Figure 9: Example test case.

