Uniprocessor SMC Performance on Vectors
with Non-Unit Strides

Sally A. McKee

Computer Science Report No. CS-93-67
January 31, 1994

Thiswork was supported in part by agrant from Intel Supercomputer Division and by NSF contract M1P-9114110.

Uniprocessor SM C Performance on Vectorswith Non-
Unit Strides

Sally A. McKee
Department of Computer Science
University of Virginia
Charlottesville, VA 22903
mckee@cs.virginia.edu

Abstract

Memory bandwidth is rapidly becoming the performance bottleneck in the application of
high performance microprocessors to veditar algorithms, including the “grand chal-

lenge” scientific problem#\ccess ordering is one technique that can help bridge the pro-
cessomemory performance gap. Our solution combines compile-time detection of
memory access patterns with a memory subsystem that decouples the order of requests
generated by the processor from that issued to the memory system. This decoupling per-
mits the requests to be issued in an order that optimizes use of the memory system. The
hardware part of this solution is tBegeam Memory Controller, or SMC. W have con-

ducted numerous simulation experiments to evaluate uniprocessor SMC performance for
unit-stride vectors; the results of these are presented elsewhere. Here we examine unipro-
cessor SMC performance for non-unit stride vectoms pvésent simulation results and
extend the analytic performance model proposed in an earlier report.

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

Uniprocessor SM C Performance on Vectorswith Non-
Unit Strides

1. Introduction

The growing disparity between processor speeds and memory speeds is well known
[Kat89, Hen90]. Memory bandwidth is becoming the limiting performance factor for many
applications — particularly scientific computatioAscess ordering is one technique that
can help bridge the processuemory performance gap. [Moy93] develops and analyzes
algorithms to perform access ordering statically at compile time. [McK93c] proposes a
combined hardware/software scheme for implementing access ordering dynamically at
run-time, and presents simulation results demonstratingéistieeness. The hardware

part of this solution is th&ream Memory Controller (SMC), the design and
implementation of which is described in more detail in [McK93kg. Mdve conducted
numerous simulation experiments to evaluate uniprocessor SMC performance for unit-

stride vectors; results of these can be found in [McK93a].

Here we examine uniprocessor SMC performance for non-unit stride vectors. This report
is oganized as follows. Section 2 provides a brief introduction to access ordering in
general, and Section 3 gives an overview of the design of the SMC. Section 4 and Section
5 describe the simulation environment and benchmark suite used to conduct the
experiments whose results are presented in Section 6 and in the Appendix. Section 7

presents the conclusions we draw from these results.

2. Access Ordering

Memory components are usually assumed to require about the same amount of time to
access any random location, but this assumption no longer applies to modern memory
devices: most components manufactured in the last decade provide special capabilities that

make it possible to perform some access sequences faster than others. For instance, nearly

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

all current DRAMs implement a form of page-mode operation [Qui91]. These devices
behave as if implemented with a single on-chip cache linggger(this should not be

confused with a virtual memory pag@)memory access falling outside the address range

of the current DRAM page forces a new page to be accessed. The overhead time required
to set up the new page makes servicing such an access significantly slower than one that
hits the current page. Other modern devicésr gimilar features (e.g. nibble mode, static-
column mode, or on-chip SRAM cache) or exhibit novghaizations (e.g. Rambus,

Ramlink, or synchronous DRAM) [Ram92, IEEE92]. The order of requests strofegitsaf

the performance of all these components.

For multiple-module memory systems, the order of requests is important on yet another
level: successive accesses to the same memory bank cannot be performed as quickly as
accesses to dérent banks. d@ get the best performance out of such a system, we must take

advantage of the architectuselvailable concurrency

A comprehensive, successful solution to the memory bandwidth problem must exploit the
richness of théull memory hierarchyboth its architecture and its component
characteristics. One way to do this isataess ordering, which we define as any technique

for changing the order of memory requests to increase bandwidth. Here we are especially

concerned with ordering a set of veelike “stream” accesses.

3. TheSMC

[Moy93] develops algorithms and analyzes the performance benefits and limitations of
doing compile-time access ordering. The beneficial impact of access orderifgotinesf
memory bandwidth together with the limitations inherent in implementing the technique
statically motivate us to consider an implementation that reorders accesses dynamically at
run time. What follows is an overview of the architecture proposed in [McK93b, McK93c]:

see those documents for more details.

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

Our discussion is based on the simplified architecture of Figurethis system, memory

is interfaced to the processors through a controller labeled “MSU” for Memory Scheduling
Unit. The MSU includes logic to issue memory requests as well as logic to determine the
order of requests during streaming computations. For non-stream accesses, the MSU

provides the same functionality and performance as a traditional memory cantroller

scalar access¢s
EES mem
-0 _FIFO i
. mem
(o] rsta't :)
LT FIFO M) mem
CPU SBU =
(@)
(@)
(@]
—| CACHE
mem

Figurel Stream Memory Controller for Uniprocessor System

The MSU has full knowledge of all streams currently needed by the processor: given the
base address, vector stride, and vector length, it can generate the addresses of all elements
in a stream. The scheduling unit also knows the details of the memory architecture,
including interleaving, device characteristics, and current state. The access-ordering
circuitry uses this information to issue requests for individual stream elements in an order

that attempts to optimize memory system performance.

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

A separate Stream BEef Unit (SBU) contains high-speed Berfs for stream operands and
provides control registers that the processor uses to specify stream parameters (base
address, stride, length, and data sizeyetherthe MSU and SBU comprise a Stream

Memory Controller (SMC) system.

The stream biérs are implemented logically as a set of FIFOs within the SBU, as
illustrated in Figurel. Each stream is assigned to one FIFO, which is asynchronously filled
from (or drained to) memory by the access/issue logic of the MSU. The “head” of the FIFO
is another memory-mapped registend load instructions from (or store instructions to) a
particular stream reference the FIFO head via this regiktqueueing or enqueueing data

as is appropriate.

Note that we assume the processor can perform non-caching loads and stores so that non-
unit stride streams can be accessed without concomitantly accessing extraneous data and
wasting bandwidth. While not a common architectural feature, some commercial
processors such as the Convex C-aIR¥] and Intel i860 [Int91] include such “cache
bypassing”. Others, such as the DEC Alpha [DEC92], provide a means of specifying some

portions of memory as non-cacheable.

4. Simulation Environment

In order to validate the SMC concept, we have simulated a wide range of SMC
configurations and benchmarks, varying FIFO depth, dynamic order/issue pohdyer

of memory banks, DRAM speed, benchmark algorithm, and vector length, stride, and
alignment with respect to memory banks. Complete uniprocessor results for stride-one
vectors, including a detailed description of each access-ordering heuristic, can be found in

[McK93a]; highlights of these results are presented in [McK93b, McK93c].

Most performance figures in Section 6 are given as a percentage of peak bandwidth, i.e.,

the bandwidth necessary to allow the processor to perform a memory operation each cycle.

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

The vectors used in these simulations are 10,000 doublewords in length, and all vectors
within acomputation have the same stride. In all cases, servicing an access that missesthe
current DRAM page is assumed to require four times as long as servicing a page-hit. This

4:1 cost ratio isfairly representative of current technology.

The DRAM page size used in the ssimulations discussed hereis 4K doublewords (thisis
twice the page size used in [McK 93a, McK93b, and McK93b]). This may seem large with
respect to current technology, but thisis of little import, for DRAM page size and vector
stride are strongly related performance parameters. SM C performance for vectors of stride
S on asystem with DRAM pages of size N isidentical to that for vectors of stride 2Son a
system with pages of size 2N, assuming that both strides hit the same number of memory
banks. To determine performance for DRAM components with a smaller page, we simply
look at SMC performance for vectors with the appropriate larger stride, scaling the
interleaving factor if necessary. This keeps the number of banks used by the computation

and the number of vector elements per page constant, hence performance remains constant.

5. Benchmark Suite

Scientific computations are perhaps the most obvious examples of applications that are
severely bandwidth-limited. Caching may provide adequate bandwidth for some, but not
all, portions of such programs. The bottlenecksin these computations usually take theform
of memory-intensive inner loops, which tend to derive little benefit from caching. Thuswe
have chosen a suite of benchmark kernels representing access patterns found in the inner
loops of real scientific codes. Scalar and instruction references are assumed to hit in the

cache, and all stream references use non-caching loads and stores.

In the following, “axpy” refers to a computation involving some entity a times a vector x
plusavector y, with thefirst |etter of the name indicating the type of a. For instance, daxpy

denotes a computation involving a double-precision scalar times a vector plus a vector.

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

Our benchmark suite is depicted in Figure 2. Daxpy, copy, scale, and swap are from the
BLAS (Basic Linear Algebra Subroutines) [Law79, Don79]. These vector and matrix
computations occur frequently in scientific applications, and have been collected into a set
of library routinesthat are highly optimized for variousarchitectures. Hydro and tridiag are
the first and fifth Livermore Loops [McM86], a set of kernels culled from important
scientific computations. The former is a hydrodynamics code fragment, and the latter isa
tridiagonal elimination computation. Although the computations differ, their access
patterns are identical, thus results for these benchmarks are presented together. Vaxpy isa
vector axpy computation that occurs in matrix-vector multiplication by diagonals; this
algorithm is useful for the diagonally sparse matrices that arise frequently in the solution

of parabolic or eliptic partial differential equations by finite element or finite difference

methods [Gol93].
copy: Oi Y < X
daxpy: i y; « ax, +Y,
hydro: i Xi « QY X (I X2% , 10+ 1X2% , 19)
scale: i X « ax
swap: i tmp vy, Yi < X; X« tr
tridiag: i Xi — Z % (Y;—=%_4)
vaxpy: Oi Yi —axty

Figure2 Benchmark Algorithms

Note that although these computations do not reuse vector elements, they are often found
in the inner loops of algorithms that do, as with vaxpy for matrix-vector multiply, and

blocked algorithms such asthose in the Level 3 BLAS [Don90].

6. Results
Figure 3 through Figure 10 illustrate performance for vectors of various strides run on four
different memory systems with several SMC configurations. We present results for two

different dynamic ordering policies, algorithms A1 and T1 from [McK93a]. These figures

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

represent SMC performance on topy benchmark as a function of vector stride and FIFO
depth or number of memory banks. Since these are representative of all results, they are
discussed in detail here. Performance graphs for other benchmarks are aidikme

included in the Appendix.

Non-SMC system performance numbers presented here were generated with the simulator
of [Moy93]. These results represent the bandwidth attained by executing the benshmark’
accesses in their natural order (without loop unrolling or other compiler optimizations)

using non-caching loads and stores.

6.1 Algorithm Al

In this ordering scheme, the MSU examines each FIFO in round-robin iortiating

accesses for the current FIFO until no ready accesses remain.reghgaccess refers to

an empty position in a read FIFO (that position is ready to be filled with the appropriate
data element) or a full position in a write FIFO (the corresponding data element is ready to
be written to memory). If there are no ready accesses, the MSU advances to the next FIFO
and proceeds to initiate accesses for it. While servicing a particular FIFO, if the next ready
access from that FIFO is to a busy bank, the MSU waits until the bank is idle; it does not

try to find an access to a currently idle bank.

In the simulation experiments involving A1, the vectors are all aligned to begin in the same
bank of memoryFor unit-stride vectors, this alignment has littlieeff on SMC

performance, since accesses are reordered and the vectors are distributed evenly across all
banks of memoryin general, such an alignment limits achievable bandwidth in the cases
where the vector stride is not relatively prime to the number of memory banks: only a subset
of the banks will be used, thus the SMC cannot take full advantage of the sysstait@ble
concurrencySince Al services each FIFO (i.e. each vector) in turn, howbeerelative

alignment of the vectors in the computation has litdleatfon performance.

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

Figure 3 provides an overview of the effect increasing vector stride hason SMC
performance for the copy benchmark. For asingle-bank system, smaller stridesyield very
similar performance, as depicted in Figure 3(a). Strides of up to 64 yield in excess of about
95% of the total system bandwidth. When the stride grows to 512, performance ceases to
be limited by FIFO depth, and isinstead limited by the number of vector elements per
DRAM page. Sincein this case there are only 8 vector elementsin each page, the best the

SMC can do isto get 7 page-hits for each page-miss. The attainable bandwidth is thus
100

(4+ (7x1))/8=1.375

stride of 8K, only one vector element residesin aDRAM page, thus every access

limited to

= 72.73% of available system bandwidth. At a

necessarily misses the current DRAM page, realizing only 25% of the available system
bandwidth. Performanceisidentical to that of anon-SMC system using non-caching loads

and stores.

Figure 3(b) illustrates performance on a system with two interleaved memory banks.
Performancefor unit-stride vectors and deep FIFOsis akin to that for asingle-bank system.
For the non-unit strides depicted here, all vector elementsfall in just one of the two banks.
The SMC cannot take advantage of the system’s available concurrency, thus performance
islimited to half of the potential bandwidth. Asindicated by the curves for stride-8 and
stride-64, we can expect the SMC to deliver close to 50% of the full system bandwidth for
even strides around thisrange. Performance for odd-stride vectorsin thisrange corresponds
to that for like strides on a single-bank system. Non-SMC performance and SMC

performance for large-stride vectors are limited to 12.5% of the system bandwidth.

Asillustrated by the non-unit-stride curves in Figure 3(c) and Figure 3(d), SMC
performance is bounded by a maximum of 25% of system bandwidth in the four-bank case
and 12.5% in the eight-bank case. Performance for very large-stride vectorsis only 9.99%
and 7.12% of total bandwidth for these respective memory systems. Although the vector

strideisas large asthe DRAM page size, the interleaving factors make the effective stride

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

within a single bank small enough that the SMC can take some advantage of page-mode

operation. The corresponding non-SM C systems incur the DRAM page-miss overhead at
each access, and are thus limited to one-quarter of the maximum attainable bandwidth, or
6.25% and 3.12% of peak. The unit-stride curves in Figure 3 emphasi ze that as the degree
of interleaving increases, deep FIFOs become essential to good performance. The straight

linesin the graphs indicate that for very large strides, FIFO depth no longer affects

performance.
— stride 1
—-—- dtride 8
- - - dlride64
------ stride 512
——— stride 8192
100 100 —
80 - 80 _/—
< | e
5 | EEE 5 l
S 60 S 60
S i S j e
;% 40+ § T e
S S y
20+ 20 4
0 T T T 1 0 T T T 1
8 16 32 64 128 256 8 16 32 64 128 256
fifo depth fifo depth
(a) one bank (b) two banks
100 100 —
80 80 -
< <
5 l 5 l
'S 60 S 60
© i o i
§ 40 — § 40 —
X] e RS I
) =TT T T TR 20 4
0 T T T 1 0 T T T 1
8 16 32 64 128 256 8 16 32 64 128 256
fifo depth fifo depth
(c) four banks (d) eight banks

Figure 3 copy Performancefor Increasing Strides

Figure 4 through Figure 7 give amore detailed view of how SMC performance changes

with vector stride. These results are given as a percentage of the system’s peak bandwidth.

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

The highest value on the y-axisin each graph indicates the maximum attai nable bandwidth

for acomputation using vectors of the given strides on a particular memory system.

100
80
=
©
= 60—
=
g
o 40
X
20
O_
MO M AdMDNMNLD A MNNSLW A
HN(')&ONLOHNSOO
S8BgReH
vector stride

Figure4 copy Performancefor a 1-Bank Memory System with 256-Deep FIFOs

Figure 4 depicts performance for a single-bank SMC-system with FIFOs that are 256
double-words deep. The percentage of system bandwidth delivered remains above 90% for
strides up to 127. Aswe saw earlier, performance for strides greater than the DRAM page
size, 2K double words, islimited to 25% of the potential bandwidth by virtue of the 4:1

page-miss/page-hit cost ratio.
100 50
80 40
s =
=} _ S
S 60 S
g 5
Q 40— a 20
s S
20 10
0- 0
TURASBIBIRT RS CIANBELEIINES S
NNEg5ed GNBgIEH
vector stride vector stride
(a) ged(stride, banks) = 1 (b) gcd(stride, banks) = 2

Figure5 copy Performancefor a 2-Bank Memory System with 256-Deep FIFOs

10

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

Figure 5 depicts SMC performance on the copy benchmark for two families of strides and

atwo-bank memory system. Figure 5(a) illustrates the percentage of system bandwidth

delivered for vectors with odd strides (i.e. relatively prime to the number of banks), and

Figure 5(b) illustrates performance for even strides. Note that the these two graphs are

drawn to different scales: the percentage of peak bandwidth delivered in the case of even

strides is limited to half that possible for odd strides. Performance for the odd stridesis

comparable to that for the same strides on a single-bank system: the percentage of peak

bandwidth delivered does not fall below 90% until the stride grows above 127.

100
80
S
(o]
= 60—
=
g
o 40-
R
20
0_
MO M Ad M~ -
A N MO N LW A
— NN
vector stride

(a) gcd(stride, banks) = 1

% bandwidth

1023
2047

4095

25
20
15

10

TYRASB

8191

124
252

50

40

30

20

% bandwidth

10

©CINBILIINESS
— N I O <Or -
— N o0}

vector stride

(b) gcd(stride, banks) = 2

508
1020
2044
4092
8188

vector stride

(c) ged(stride, banks) = 4

Figure 6 copy Performancefor a 4-Bank Memory System with 256-Deep FIFOs

11

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

100 50
80 — 40
= =
S 604 S
s S %
g 5
Q 40+ o 20
R X
20 10
0- 0
"TARSBNBHd8583 CINSSIRZNEES
SNP3Res SN 32Re
vector stride vector stride
(a) gcd(stride, banks) = 1 (b) gcd(stride, banks) = 2
25—_ 7]
20 10
s] £ |
S 154 S
=] %
g] 5
§10—' o 5
e] ES
5]
o 0-
0 O < 0 O© N < O N
“§8%8§§§§§§§ HN«:%g&Bg‘g%%
vector stride vector stride
(c) ged(stride, banks) =4 (d) gcd(stride, banks) = 8

Figure 7 copy Performancefor an 8-Bank Memory System with 256-Deep FIFOs

Figure 6 illustrates SMC performance for a memory system with four interleaved banks
and three families of strides, and Figure 7 presents the analogous information for an eight-
bank system. The stridesin Figure 6(a) and Figure 7(a) are relatively prime to the number
of banks. The greatest common denominator (gcd) of the number of banks and the strides
in Figure 6(b) and Figure 7(b) istwo: only half the memory banks are being used, and SMC
performanceis limited to 50% of the system peak. For the strides in Figure 6(c) and

12

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

Figure 7(c), theged isfour, thus achievable bandwidth islimited to 25% of peak. Likewise,
for the strides in Figure 7(d), achievable bandwidth only 12.5% of peak. In all cases, the

SMC deliversvery closeto the maximum achievabl e bandwidth for strides up to about 256.

—— lbank
—-—- 2banks
- ——- 4 banks
------ 8 banks
100 100
= /_7 < /‘
S 80+ S 80+
= - = _
e e
S 60 S 60
Q T e R R
§ 4L -7 § 40"
1] - 1] 4
@ 20 S B ikl
=S 1 =S 1
0 T T T 1 0 T T T 1
8 16 32 64 128 256 8 16 32 64 128 256
fifo depth fifo depth
a) stride 2 b) stride 4
100 100
= _/J < 1
S 80 S 804 _—F
= - = _
o o
S 60 S 60
X Q 1.
§ 407 § 40— T 7T
1] 4 7] J
@ 04+ -—~—""" """~ 7777 7 out+------—-——-—--
N SRR R N EEAEEEE R
0 T T T 1 0 T T T 1
8 16 32 64 128 256 8 16 32 64 128 256
fifo depth fifo depth
c) stride 16 d) stride 256

Figure 8 copy Performance as a Percentage of System Bandwidth

Figure 8 and Figure 9 illustrate how SMC performance varies with the number of memory
banks as vector stride increases. Figure 8 depicts performance as a percentage of the peak
system bandwidth. Figure 9 presents the same curves scaled to indicate the relative

percentage of attainable bandwidth. Asthe vector stride grows, the systems with more

13

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

banks deliver a greater percentage of attainable bandwidth. Thisis especially evident in
Figure 9(d). This phenomenon occurs because in a multi-bank memory system, the

distance between vector elements within asingle bank is the vector stride divided by the

number of banks the vector hits: Stri de_ . We refer to this value as the effective
gcd (b, stride)

intrabank stride, or eis. Thus with two interleaved banks, elements of a stride-two vector

have an eisof 1, and are contiguous within asingle bank of memory. In general, when more
vector elements are contained within aDRAM page, fewer page-misses are incurred, and
the SMC is able to deliver a greater portion of the attainable bandwidth for that memory

system and vector stride.

—— 1 bank
—-—- 2banks
- ——-4banks
------ 8 banks
100 100
g0 -~ .- g0
= L L = -
R g
= 60-.- = 60 —
© i © i
é 40 — é 40 —
N 1 N 1
20 20
0 T T T T | 0 T T T T |
8 16 32 64 128 256 8 16 32 64 128 256
fifo depth fifo depth
a) stride 2 b) stride 4
100 100 s
4 /’——’-""g“" i >'i—-;;;'-: -
80 QOF _—
e e
5] 5]
= 60 — = 60 —
© i © i
é 40 — é 40 —
N 1 N 1
20 20
0 T T T T | 0 T T T T |
8 16 32 64 128 256 8 16 32 64 128 256
fifo depth fifo depth
C) stride 16 d) stride 256

Figure 9 copy Performance as a Percentage of Attainable Bandwidth

14

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

6.2 Algorithm T1

Although vector alignment had little effect on algorithm A1’s performance, it has a
significant effect on the performance of our second ordering scheme, T1. Thispolicy isable
to take better advantage of memory system concurrency for non-unit stride vectors. Like
Al, T1triestoinitiate amemory access at each available bus cycle. In doing so, however,
it considers only one memory bank, the next one in round-robin order from the bank
considered during thelast “turn”. If that bank is busy, or if no ready accessto it exists, then
no accessisinitiated at the current time. Otherwise, first looks for an access that hits the
current DRAM page, and if found, issuesit. If no such accessexists, then an accessisissued
for the FIFO requiring the most service from that bank. The vectors used in simulations
involving T1 are aligned such that the ith vector in the computation, v;, resides in bank b

mod n» Where nisthe total number of memory banks.

Figure 10 presentsan overview of the effect increasing vector stride has on the performance
of SMC systems using the T1 ordering scheme, much as Figure 3 did for systems using the
A1 ordering policy. Figure 10(a) illustrates results for a single-bank memory system. For
deep FIFOs, performanceis similar to that for A1. For shallow FIFOs and larger vector
strides, T1 makes better use of available buffer space than Al. For strides of at least 512,
bandwidth isindependent of FIFO depth. At a stride of 8192, performance for both the
SMC and non-SMC systemsiis limited to 25% of peak, since at this stride every access

incurs the DRAM page-miss overhead.

For the non-unit strides shown in Figure 10(b), the combination of amore favorable vector
alignment and a more intelligent ordering scheme allows the SMC to deliver at least twice
the bandwidth achieved for the aignment and policy (A1) used in Figure 3(b). At aFIFO
depth of 256, T1 delivers 99.64%, 97.63%, 84.12%, and 25% of peak bandwidth for strides
8, 64, 512, and 8192, respectively, whereas the corresponding values for A1 are 49.57%,

48.57%, 41.91%, and 12.5%. For even strides, each of the two vectors in the benchmark

15

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

lies entirely within one memory bank. The SMC need never switch DRAM pages (recall
that scalar and operand references are assumed to hit in cache), thus the only page-misses
are the compulsory onesincurred when crossing page boundaries. This explainswhy FIFO
depth has no effect on performance for these non-unit stride vectors. For stride-8192
vectors, anon-SMC system can deliver performanceto that of the SMC, since at thisstride,
DRAM pagesize, and two banks, all accesses missthe current page. Odd-stride vectorswill

exhibit performance much like that for similar-stride vectors depicted in Figure 10(a).

— dtride 1
—-—- dtride 8
- — —- stride 64
------ stride 512
——— stride 8192
100 100
80 — 80+
o =
S S]
S 60 S 60
© 4 © 4
§ 40 § 40
S S
20— 20—
0 T T T T | 0 T T T T |
8 16 32 64 128 256 8 16 32 64 128 256
fifo depth fifo depth
(a) one bank (b) two banks
100 100
80 — 80 —
e =
S] S]
S 60 S 60
© 4 © 4
§ 40 § 40
O\o i Q\o Fe T . ST s s T
204+—————————— 20 T T
0 T T T T | 0 T T T T |
8 16 32 64 128 256 8 16 32 64 128 256
fifo depth fifo depth
(c) four banks (d) eight banks

Figure 10 copy Performancefor Increasing Strides (Algorithm T1)

16

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

When we go to afour-bank memory system, attainable bandwidth is once again limited to
50% of peak system bandwidth for these non-unit strides, asillustrated in Figure 10(c). The
gcd of these strides and the four banks istwo, thus the SMC can only make use of half the
memory banks. Even so, we still encounter only compulsory page-misses, thus bandwidth
for these non-unit stridesis constant across all FIFO depths. Figure 10(d) exhibitsasimilar

phenomenon for an eight-bank system, with attainable bandwidth limited to 25% of peak.

For the memory systems of Figure 10(c) and Figure 10(d), the DRAM pages contain more
than one vector element, even at stride 8192. By exploiting the DRAM’s page-mode, the
SMC systems deliver better performance than the comparable non-SMC systems, for
which every access generates a page-miss. The non-SMC systems are limited to 15.17%
and 10.65% of peak for the memory systems with four and eight banks, respectively. The
corresponding SM C systemsdeliver 20% and 14.28% of peak system bandwidth. Notethat
the vector alignment used for these experiments allows both SMC and non-SMC systems
to take better advantage of each interleaved memory’s concurrency, thus performance for

this alignment always exceeds that for the less-favorable alignment used in Section 6.1.

6.3 An Analytic Model

Thegraphsin Figure 4 through Figure 7 in Section 6.1 emphasize that for larger strides, the
predominant factor affecting performance isno longer FIFO depth, but the number of
vector elements per page. In light of this, we might expect the bandwidth delivered for
stride-one vectors an SM C system with 16-deep FIFOsto perform comparably to asimilar
system with deeps FIFOs and a vector stride equal to the page size divided by sixteen times
the data size. The relationship turns out to be slightly more complicated than this, but is
explained by the analytic model of [McK93d].

Let b be the number of interleaved memory banks, f be the depth of the FIFOs, v be the

number of distinct vectors in the computation, and s be the number of streams. A single-

17

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

access vector constitutes one stream, whereas a read-modify-write vector counts as two.

The model states that the average page-miss rate for each FIFO in a stride-1 computation
involving at least two vectorsis b(s—1) (2\/— 1)

fxs
vectors with non-unit strides, provided that the number of vector elementsresidingin a

[McK93d]. Thisformulaalso appliesto

DRAM page is significantly greater than the FIFO depth. The (s—1) /s part of this
equation comes from taking the limit of a converging series; this series models the effect
created by the processor’s draining data from the FIFO at the same time that the memory
system isfilling it. This processor interaction makes SMC performance for 16-deep FIFOs
different from that for vectors having sixteen elements per DRAM page, thus we must

extend the model in order to describe performance for large-stride vectors.

Asnoted in Section 4, decreasing DRAM page size and increasing vector stride affect SMC
performancein similar ways. Let p be the number of dataelementsin aDRAM (i.e., page

sizedivided by datasize). Then for vectorswith large eisvalues (up to p), the average page-
stride

gcd (b, stride) x p

effective intrabank strides greater than p will have the same performance as those with an

missrateper FIFOis , or eis/ p. Computationsinvolving vectorswith

eisof p: in both cases, only one vector element residesin aDRAM page.

For single-vector computations, only thefirst accessto each bank generatesa DRAM page
miss. The average page-missrate per stream for aunit-stride vector isthus b/ p [McK93d].

For anon-unit stride vector, the average miss rate becomes gcd (b, stride) /p.

We can now use these miss rates to calculate SMC performance. Let h be the cost of
servicing an access that hits the current DRAM page, and let m be the cost of servicing an
access that misses the current DRAM page. The percentage of attainable bandwidth

delivered by the computation is approximately:

h
(missratexm) + ((1—missrate) x h) 8

100

18

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

Dividing the percentage of attainable bandwidth by the gecd gives the percentage of peak
system bandwidth. Note that neither FIFO depth nor the processor’s access pattern comes
into play in the large-stride model: analytic results for large strides are identical for all

benchmarks (given sufficiently deep FIFOs).

Table 1 Analytic vs. Simulated Performance Resultsfor copy

Percentage of Peak System Bandwidth

® 1 Bank 2 Banks 4 Banks 8 Banks

il

] ° Q ° Q ° Q ° Q
E 05 202 &5 £/%8 & 5|2 & ¢

1020 57.24 5710 0.14 36.40 36.27 0.13 21.07 20.97 0.10 21.07 2090 0.17

1022 57.19 57.00 0.19 36.38 36.23 0.15 36.38 36.39 -0.01 36.38 36.36 0.02

1023 | 57.17 57.03 0.14 57.17 56.90 0.27 57.17 56.50 0.67 57.17 56.11 1.06

1024 | 57.14 56.99 0.15 36.36 36.23 0.13 21.05 20.96 0.09 11.43 11.37 0.06

2044 | 40.05 39.96 0.09 28.60 28.50 0.09 18.19 18.11 0.08 18.19 18.21 -0.02

2046 | 40.02 39.98 0.04 28.58 28,52 0.06 28.58 2847 0.11 28.58 2829 0.29

2047 | 40.01 39.97 0.04 40.01 39.92 0.09 40.01 39.84 0.17 40.01 39.64 0.37

2048 | 40.00 39.95 0.05 28.5 28,50 0.07 18.18 18.11 0.07 10.53 10.48 0.05

4092 | 25.02 25.02 0.00 20.01 19.99 0.02 1429 14.26 0.03 1429 1424 0.05

4094 | 25.01 25.01 0.00 20.01 19.98 0.03 20.01 19.97 0.04 20.01 19.93 0.08

4095 25.01 25.00 0.00 25.01 25.00 0.00 25.01 2498 0.02 25.01 2496 0.04

4096 | 25.00 25.00 0.00 20.00 19.98 0.02 1429 1425 0.04 9.09 9.06 0.03

8188 | 25.00 25.00 0.00 1251 1251 0.00 10.0 9.99 0.01 10.00 9.98 0.02

8190 25.00 25.00 0.00 12.50 12.50 0.00 12.50 1250 0.00 1250 12.49 0.01

8191 | 25.00 25.00 0.00 25.00 2499 0.01 25.00 2495 0.05 25.00 2492 0.08

8192 | 25.00 25.00 0.00 1250 12.50 0.00 10.00 9.99 0.01 7.14 7.12 0.02

gcd(banks, stride) = 1 gcd(banks, stride) = 2 gcd(banks, stride) = 4 gcd(banks, stride) = 8

19

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

Table 1 compares analytic and simulated performance results of the copy benchmark with
large strides on memory systems with deep FIFOs and one to four banks. Table entries are
shaded according to the value of gcd (b, stride) . Strides for which the gcd is one are | eft
white, whereas strides with a gcd of two through eight are grayed, with darker shades
representing greater values. Recall that performance is limited to 50%, 25%, and 12.5% of
system bandwidth for computations using strides with gcds of two, four, and eight,
respectively. Note that the differences in aimost all cases are less than 0.2% of peak
bandwidth. The largest differences occur for the two smaller strides that are relatively
prime to the number of banks. The maximum differenceisonly 1.06% of peak, for astride

of 1023 on an eight-bank memory system.

7. Conclusions

Our experiments indicate that small changes in stride have little effect on SMC
performance, provided the number of banks hit by the vectors remains constant. For all
SMC configurations and memory systems examined here, the SMC is ableto deliver very

close to the maximum attainable performance for small to moderate strides.

Although SMC systems are fairly immune to changes in vector stride, data alignment has
asignificant effect on achievable bandwidth. Obviously the SMC cannot deliver better
bandwidth than the layout of operands will allow. Mapping different vectors of the
computation to different sets of memory banks allows the SM C to more effectively exploit
page-mode and similar component capabilities; as we have seen, this can improve
bandwidth considerably. Aligning the vectorsin acomputation such that all memory banks
are used will insure that the concurrency of the memory architectureis exploited. One way
to achieve thisisto use astride that is relatively prime to the number of memory banks.
Skewed storage [Bud71, Har87] or dynamic address transformations [Har89, Rau91]

provide another means of increasing concurrency.

20

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

Very lage vector strides hinder the SMGibility to take advantage of page-mode, but

given such a stride, the SMC will do the best it can to maximize bandwidth. Note that our
simulations do not reflect the greater number of TLB misses — and subsefgrtataaf
performance — that lger strides are likely to generate. Here we have modeled the
processor as a simple generator of loads and stores, in order to place maximum stress on
the memory system. In practice, the SMC will be able to overlap memory latency with
computation by prefetching read operands, thereby mitigating some of the unfavorable

effects lager strides have on memory bandwidth.

Finally, we have presented an extension to the analytic model of [McK93d] to explain SMC
performance for non-unit strides. In particulae have developed a performance model for

when FIFO depth exceeds the number of data elements residing within a DRAM page.

21

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

Appendix
—— 1 bank
—-—- 2banks
- ——-4banks
------ 8 banks
100 _ X: stride 1 100 _ X: stride 1
% 80 y: stride 1024 % 80 y: stride 1024
s 6 s |
o o
g 60+ S 60
o { T o | e
§ 40 § 40
1) | -~~~ 77~ B | -7 7T
B 20 e 0
X X]
0 T T T 1 0 T T T 1
8 16 32 64 128 256 8 16 32 64 128 256
fifo depth fifo depth
(a) Al ordering and alignment (b) T1 ordering and alignment
100 _ X: stride 1024 100 _ X: stride 1024
% 80 y: stride 1024 % 80 y: stride 1024
=] = .
© ©
g 604 00 S 60
o] 4 o] 4
§ 404 . § 40 f--—--—-—-—-------
v T v]
B 20 o mmmm - T R
S X]
0 T T T 1 0 T T T 1
8 16 32 64 128 256 8 16 32 64 128 256
fifo depth fifo depth
(c) Al ordering and alignment (d) T1 ordering and alignment

Figure 11 copy Performancefor Vectorsof Different Strides

Figure 11 depicts SMC performance on the copy benchmark when the two vectors are of
different strides. In these experiments, X is a unit-stride vector, whiley has avery large
stride (1024). Figure 11(a) uses the ordering policy and vector alignment of Section 6.1.
Figure 11(b) uses the ordering policy and vector alignment of Section 6.2. Relative vector
alignment, ordering policy, and FIFO depth have little effect on bandwidth. This indicates

that performance is dominated by the accesses to vector y, all elements of which liein a

22

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

single bank. Figure 11(c) illustrates bandwidth for copy using two stride-1024 vectors and
the alignment and ordering policy Section 6.1, and Figure 11(d) presents analogous results
for the alignment and ordering policy Section 6.2. Note that in Figure 11(d) the SMC
performance for atwo-bank memory far exceeds that for the other memory systemsin
Figure 11(c) and Figure 11(d). This results from the advantageous partitioning of the

vectors among the banks: x liesin the even banks, and y lies in the odd banks.

Figure 12 through Figure 34 present simulation results for the remaining kernelsin our
benchmark suite. These results were generated using the ordering scheme and vector
alignment from Section 6.1, unless otherwise indicated. Performance trends for these
benchmarks are remarkably like those exhibited by copy, thusin the interests of brevity we
omit performance details for deep FIFOs and the various families of vector stridesfor one,

two, and four-bank memory systems.

Figure 12 through Figure 16 describe SMC performance on the daxpy benchmark.

Figure 17 through Figure 21 present the same kinds of information for the hydro and tridiag
kernels. Figure 22 through Figure 24 depict simulation results for scale. Since this
benchmark involves only one vector, performanceisamost entirely unaffected by changes
in FIFO depth and iscompl etely immuneto changesin vector alignment. Wetherefore omit
resultsfor the ordering scheme and alignment of Section 6.2. We also leave out the detailed
breakdown of performance for changing strides and an eight-bank memory system with
deep FIFOs. Performance for the swap kernel is presented in Figure 25 through Figure 29,

and performance for vaxpy is given in Figure 30 through Figure 34.

23

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

100 50
80 40
= =
S 604 S
s S %
g 5
Q 40+ o 20
R X
20 10
0- 0
TARHE8JIBIRETR S CINBTIELISNELSES
— N 1O O g g b — N 1O O g <Ol' b
— N [ee] — N 0]
vector stride vector stride
(a) gcd(stride, banks) = 1 (b) gcd(stride, banks) = 2
25—_ 7]
20 10
T £ |
S 154 S
=] %
g] 5
§ 10 o 5
e] ES
5]
o 0-
0 O < 0 O© N < O N
“§8%8§§§§§§§ HN«:%g&Bg‘g%%
vector stride vector stride
(c) ged(stride, banks) =4 (d) gcd(stride, banks) = 8

Figure 12 daxpy Performancefor an 8-Bank Memory System with 256-Deep FIFOs

24

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

100 —
E '//__
S 80+
= i
©
S 60
= e -t
§ 40f -
2
@ 20
=S |
0 —
8 16 32 64 128 256
fifo depth
a) stride 2
100
£ //__
S 80+
= i
©
S 60
R
§ 404~
B |
& gt ----———-——---
S D
0 —
8 16 32 64 128 256
fifo depth
c) stride 16

% system bandwidth

100
80
60 —

40

0

£ =~ — —

20—+ =TT

[I T T]
8 16 32 64 128 256
fifo depth

b) stride 4

% system bandwidth

100 —

% _//__

60 —

40 +

0f-------------

0

[I T]
32 64 128 256
fifo depth

d) stride 256

Figure 13 daxpy Performance as a Percentage of System Bandwidth

25

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

100

% bandwidth

a) strid

100 —

80 —

60 —

40

20+

% bandwidth

0

T T T T I
8 16 32 64 128 256

fifo depth
e?2

v

8 16

c) strid

T T | 1 |
32 64 128 256

fifo depth

e 16

100

% bandwidth

T T T T I
8 16 32 64 128 256

fifo depth

b) stride 4

100 —

80

60 —

40

20+

% bandwidth

0

8 16

T T | 1 |
32 64 128 256
fifo depth

d) stride 256

Figure 14 daxpy Performance as a Percentage of Attainable Bandwidth

26

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

— dtride 1

stride 8

- — — - stride 64

stride 512

——— stride 8192

100 4

80—

60

% bandwidth

0 T T T T |
8 16 32 64 128 256
fifo depth

(a) one bank

100 4
80—
60 —

40 —

% bandwidth

——— ———— ——r——— ——

20 =TT T T TR

I I]

64 128 256
fifo depth

(c) four banks

% bandwidth

100

o

60 —

I

20

T T |
64 128 256
fifo depth

(b) two banks

% bandwidth

100
80—-
60—-
40—-

20

0

T T |
64 128 256
fifo depth

(d) eight banks

Figure 15 daxpy Performancefor Increasing Strides (A1)

27

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

— dtride 1

stride 8

- — — - stride 64

stride 512

——— stride 8192

100 4

80 —

60 —

% bandwidth

0 T T T T |
16 32 64 128 256
fifo depth

(a) one bank

100 4
80—-
60—-

% bandwidth

04—"F"F"""——""—

I I]

64 128 256
fifo depth

(c) four banks

% bandwidth

100
80
60 -

40 —

o+

0

8

T T T T I
16 32 64 128 256

fifo depth

(b) two banks

% bandwidth

100
80

60 —

40 —

VD4+—rer—— -

0

T T |
64 128 256
fifo depth

(d) eight banks

Figure 16 daxpy Performancefor Increasing Strides(T1)

28

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

100 — 50
80 40
s £
S _ 2 30
s % 5
g 5
Q 40— o 20
S S
20 1 10
0- 0
~aREBNAHEELE ©INBBEEINEES
— N [ee] — N 0]
vector stride vector stride
(a) gcd(stride, banks) = 1 (b) gcd(stride, banks) = 2
25—_ 7]
20 10
T £ |
S 154 S
=] %
g] S
§ 10 -} o 5
e] ES
5]
o 0-
0O I N W O N < O N
“§8%8§§§§§§§ HN«:%g&Bg‘g%%
vector stride vector stride
(c) ged(stride, banks) =4 (d) gcd(stride, banks) = 8

Figure 17 hydro/tridiag Performance for an 8-Bank Memory System
with 256-Deep FIFOs

29

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

100

£ -/'
S 80
= i
©
S 60—
= | oI E AT
& 40-f —ZETTT
B I
@ 0]
=S |
0 —
8 16 32 64 128 256
fifo depth
a) stride 2
100
S -/'
S 80
= i
©
S 60—
o] 1
§ 40+~
B |
& ot ——-——————==—-
I .
0 —
8 16 32 64 128 256
fifo depth
c) stride 16

100

s -/J
T 80
=]
o
S 60
o] L
& 40—+~
B
a\ 204+ -~ —mmmm
ES]
0 I
8 16 32 64 128 256
fifo depth
b) stride 4
100
E 4
S| —
=]
©
S 60
Q -
£ a0 .—-— T T
B
B gl _——mmmm—— -
N
0 -
8 16 32 64 128 256
fifo depth
d) stride 256

Figure 18 hydro/tridiag Perfor mance as a Percentage of System Bandwidth

30

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

100

% bandwidth

I I I I |
8 16 32 64 128 256
fifo depth
a) stride 2

100 —

80 _/ﬂ_}b

60 —

40

20+

0 T T T T |
8 16 32 64 128 256
fifo depth

% bandwidth

c) stride 16

100

% bandwidth

T T T T I
8 16 32 64 128 256

fifo depth

b) stride 4

100 —

80

60 —

40

20+

% bandwidth

0

=T

T T T 1
8 16 32 64 128 256

fifo depth

d) stride 256

Figure 19 hydro/tridiag Perfor mance as a Percentage of Attainable Bandwidth

31

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

— dtride 1

stride 8

- — — - stride 64

stride 512

——— stride 8192

100 4

80

60

% bandwidth

0 T T T T |
16 32 64 128 256
fifo depth

(a) one bank

100 4
80—
60 —

40 —

% bandwidth

e e ———— ——

20 === T T T T

I I]

64 128 256
fifo depth

(c) four banks

% bandwidth

100
80-
60-
40 -

20

e = s = 2T

T T |
64 128 256
fifo depth

(b) two banks

% bandwidth

100
80—-
60—-
40—-

20

4d—————————————

0

T T |
64 128 256
fifo depth

(d) eight banks

Figure 20 hydro/tridiag Performancefor Increasing Strides (A1)

32

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

— dtride 1

stride 8

- — — - stride 64

stride 512

——— stride 8192

100 4

80

60 —

% bandwidth

0 T T T T |
16 32 64 128 256
fifo depth

(a) one bank

100 4

80 —

60 —

% bandwidth

0 T T T T |
16 32 64 128 256
fifo depth

(c) four banks

% bandwidth

100
80
60— /

40 —

o+

0

8

T T
16 32

T T I
64 128

fifo depth

(b) two banks

% bandwidth

100
80
60 —

40 H

0

20

T T |
64 128 256
fifo depth

(d) eight banks

Figure 21 hydro/tridiag Performance for Increasing Strides (T 1)

33

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

100 —
80 —
S
(o]
= 60-
=
g
o 40-
B
20
0_
MO M A M~ -
A N MO N LW A
— NN
vector stride

(a) gcd(stride, banks) = 1

25
20
IS]
=]]
= 15
; 4
%]
S 10
L]
5
o

THR¥BIDS

— AN O

vector stride

(c) ged(stride, banks) = 4

1023
2047

4095

(=]
AN
(=}
— N

8191

8188

50
40
=
©
= 30
2
E
o 20
N
10
0
©CINBIELIINESS
SNbPgRed
vector stride
(b) gcd(stride, banks) = 2
12.5 -
10.0 1
=
S 754
=
g
o 50
S
2.5
0.0 -
P9I IZEBYS § 8
SaBggRE
vector stride

(d) gcd(stride, banks) = 8

Figure 22 scale Performance for an 8-Bank Memory System with 256-Deep FIFOs

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

100

80
60 —

T . e ————— —

a0

% system bandwidth

20+

0

I I I I |
8 16 32 64 128 256
fifo depth
a) stride 2

100
80 —

60 —

40

20+

% system bandwidth
|

0 T
8 16

I I I]
32 64 128 256
fifo depth
c) stride 16

% system bandwidth

100

80 -
60 —
40

20 +

0

T T | T |
8 16 32 64 128 256
fifo depth

b) stride 4

% system bandwidth

100 —

o4+

60 —
40

20

0

T | 1 |
32 64 128 256
fifo depth

d) stride 256

Figure 23 scale Performance as a Per centage of System Bandwidth

35

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

100 ==

80

60 —

40

% bandwidth

20+

0

a) stride 2

T T T T I
8 16 32 64 128 256

fifo depth

100 Jemer e s e e

80 —

60 —

40

20+

% bandwidth

0

c) stride 16

T T T 1
8 16 32 64 128 256

fifo depth

100

80

60 —

40

% bandwidth

20 +

0 T T T T |
8 16 32 64 128 256
fifo depth

b) stride 4

100

o4+

60 —

40

20+

0 T T T T |
8 16 32 64 128 256
fifo depth

d) stride 256

% bandwidth

Figure 24 scale Performance as a Percentage of Attainable Bandwidth

36

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

100 50
80 40
= =
S 604 S
s S %
g 5
Q 40+ o 20
R X
20 10
0- 0
TARHE8JIBIRETR S CINBTIELISNELSES
— N 1O O g g b — N 1O O g <Ol' b
— N [ee] — N 0]
vector stride vector stride
(a) gcd(stride, banks) = 1 (b) gcd(stride, banks) = 2
25—_ 7]
20 10
T £ |
S 154 S
=] %
g] 5
§ 10 o 5
e] ES
5]
o 0-
0 O < 0 O© N < O N
“§8%8§§§§§§§ HN«:%g&Bg‘g%%
vector stride vector stride
(c) ged(stride, banks) =4 (d) gcd(stride, banks) = 8

Figure 25 swap Performance for an 8-Bank Memory System with 256-Deep FIFOs

37

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

100

E -//__

S 80—

= _

©

S 60—

2 B e e

§ af-- T

2

@ 20-

=S |

0 —
8 16 32 64 128 256
fifo depth
a) stride 2
100

E - —

S 80—

= _

©

S 60—

K

§ 40

B |

T

I S

0 —
8 16 32 64 128 256
fifo depth
c) stride 16

100

E -/_
S 80+
= j
e
S 60—
S 4
§ 40
B]
a\ 20+ —_reTem e
S]
0 T T T T]
8 16 32 64 128 256
fifo depth
b) stride 4
100
<]
T s —
= _
o
S 60—
Q i
£ 44-—— " T T
B]
el R
S
0 T T T T]
8 16 32 64 128 256
fifo depth
d) stride 256

Figure 26 swap Performance as a Per centage of System Bandwidth

38

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

100

E -//__

S 80—

= _

©

S 60—

2 B e e

§ af-- T

2

@ 20-

=S |

0 —
8 16 32 64 128 256
fifo depth
a) stride 2
100

E - —

S 80—

= _

©

S 60—

K

§ 40

B |

T

I S

0 —
8 16 32 64 128 256
fifo depth
c) stride 16

100

E -/_
S 80+
= j
e
S 60—
S 4
§ 40
B]
a\ 20+ —_reTem e
S]
0 T T T T]
8 16 32 64 128 256
fifo depth
b) stride 4
100
<]
T s —
= _
o
S 60—
Q i
£ 44-—— " T T
B]
el R
S
0 T T T T]
8 16 32 64 128 256
fifo depth
d) stride 256

Figure 27 swap Performance as a Per centage of Attainable Bandwidth

39

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

— dtride 1

stride 8

- — — - stride 64

stride 512

——— stride 8192

100 4
80 —

60 —

% bandwidth

0 T T T T |
16 32 64 128 256
fifo depth

(a) one bank

100 4
80—
60 —

40 —

% bandwidth

—— ——— ————— —

2§ =TT T T T T TR

I I]

64 128 256
fifo depth

(c) four banks

% bandwidth

100
wl —
60 —-
40

20

T T |
64 128 256
fifo depth

(b) two banks

% bandwidth

100
80—-
60—-
40—-

20

—F—_—————— e ———

0

T T |
64 128 256
fifo depth

(d) eight banks

Figure 28 swap Performancefor Increasing Strides (A1)

40

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

— dtride 1

stride 8

- — — - stride 64

stride 512

——— stride 8192

100 4

80—

60 —

% bandwidth

0 T T T T |
16 32 64 128 256
fifo depth

(a) one bank

100
80 _/
e
E=]
S 60
g T TS ST T T T
o 40
\O _____________
< 204
0 T T T T |
8 16 32 64 128 256
fifo depth

(c) four banks

100

80

% bandwidth

20

60 —

40 —

0

8

T T T T I
16 32 64 128 256

fifo depth

(b) two banks

100

80

% bandwidth

0

60
40 —

20

T T |
64 128 256
fifo depth

(d) eight banks

Figure 29 swap Performancefor Increasing Strides (T1)

41

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

100 50
80 40
= =
S 604 S
s S %
g 5
Q 40+ o 20
R X
20 10
0- 0
TARHE8JIBIRETR S CINBTIELISNELSES
— N 1O O g g b — N 1O O g <Ol' b
— N [ee] — N 0]
vector stride vector stride
(a) gcd(stride, banks) = 1 (b) gcd(stride, banks) = 2
25—_ 7]
20 10
T £ |
S 154 S
=] %
g] 5
§ 10 o 5
e] ES
5]
o 0-
0 O < 0 O© N < O N
“§8%8§§§§§§§ HN«:%g&Bg‘g%%
vector stride vector stride
(c) ged(stride, banks) =4 (d) gcd(stride, banks) = 8

Figure 30 vaxpy Performancefor an 8-Bank Memory System with 256-Deep FIFOs

42

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

100 —
= //"
S 80
= _
©
S 60
= i s oELTETEE
§ a4 T
T
@ 20-
=S |
0 —
8 16 32 64 128 256
fifo depth
a) stride 2
100
= /ﬂ
S 80
= _
©
S 60
o] o
§ 40
B |
& g l----—————-——-
I
0 —
8 16 32 64 128 256
fifo depth
c) stride 16

% system bandwidth

100
80
60 —

20+

0

e e m e~ ———

204+ —TTTET

[I T T]
8 16 32 64 128 256
fifo depth

b) stride 4

% system bandwidth

100 —

% _/_

60 —

20 —emem T

Qe mmmm

0

[I T]
32 64 128 256
fifo depth

d) stride 256

Figure 31 vaxpy Performance as a Percentage of System Bandwidth

43

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

100

% bandwidth

a) stride 2

100 —

80

60 —

40

20+

% bandwidth

0

T T T T I
8 16 32 64 128 256

fifo depth

c) stride 16

T T T 1
8 16 32 64 128 256

fifo depth

100

% bandwidth

8

T
16

b) stride 4

100 —

60 —

40

20+

% bandwidth

0

T | T |
32 64 128 256
fifo depth

80 —W—‘

8

d) stride 256

T
16

T | 1 |
32 64 128 256
fifo depth

Figure 32 vaxpy Performance as a Percentage of Attainable Bandwidth

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

— dtride 1

stride 8

- — — - stride 64

stride 512

——— stride 8192

100 4

80 —

60—

% bandwidth

0 T T T T |
16 32 64 128 256
fifo depth

(a) one bank

100 4
80—
60 —

40 —

% bandwidth

e e ———————

20 =TI T T

I I]

64 128 256
fifo depth

(c) four banks

% bandwidth

100
0 _/"
60—-
40 —-‘_ .

20

—_— ==

T T |
64 128 256
fifo depth

(b) two banks

% bandwidth

100
80—-
60—-
40—-

20

e ———

0

T T |
64 128 256
fifo depth

(d) eight banks

Figure 33 vaxpy Performancefor Increasing Strides (A1)

45

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

— dtride 1

stride 8

- — — - stride 64

stride 512

——— stride 8192

100 4

80 —

60 —

% bandwidth

0 T T T T |
16 32 64 128 256
fifo depth

(a) one bank

100 4
80—

60 —

40 —

% bandwidth

20—

0 T T T T |
8 16 32 64 128 256

fifo depth

(c) four banks

100

80

% bandwidth

60 —
40 —

20

0

8

T T T T I
16 32 64 128 256

fifo depth

(b) two banks

100

80

% bandwidth

0

60 —
40 —

20

T T |
64 128 256
fifo depth

(d) eight banks

Figure 34 vaxpy Performancefor Increasing Strides (T1)

46

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

References

[Bud71]

[DEC92]

[Don79]

[Don90]

[Gol93]

[Har87]

[Har8g]

[Hen90]

[IEEE92]

[Int91]

[Kat8g]

[Law79]

[McK 93]

[McK 93]

[McK93c]

Budnik, P, and Kuck, D., “The Organization and Use of Parallel
Memories’, |IEEE Trans. Comput., 20, 12, 1971.

Alpha Achitectue HandbookDigital Equipment Corporation, 1992,
Dongarra, J.J,, et. al., “Linpack User’'s Guide”, SIAM, Philadelphia, 1979.

Dongarra, J.J., DuCroz, J., Duff, 1., and Hammerling, S., “A set of Level 3
Basic Linear Algebra Subprograms’, ACM Trans. Math. Softw., 16:1-17,
1990.

Golub, G., and Ortega, J.M., Scientific Computation: An Irdduction with
Parallel ComputingAcademic Press, Inc., 1993.

Harper, D. T., Jump, J., “Vector Access Performance in Parallel Memories
Using a Skewed Storage Scheme”, |EEE Trans. Compuit., 36, 12, 1987.

Harper, D. T., “ Address Transformation to I ncrease Memory Performance”,
1989 International Conference on Supercomputing.

Hennessy, J., and Patterson, D., “Computer Architecture: A Quantitative
Approach”, Morgan Kaufmann, San Mateo, CA, 1990.

“High-speed DRAMS’, Special Report, |EEE Spectrum, vol. 29, no. 10,
October 1992.

i860 XP Micoprocessor Data Boghntel Corporation, 1991.

Katz, R., and Hennessy, J., “High Performance Microprocessor
Architectures’, University of California, Berkeley, Report No. UCB/CSD
89/529, August, 1989.

Lawson, et. al., “Basic Linear Algebra Subprograms for Fortran Usage”,
ACM Trans. Math. Soft., 5, 3, 1979.

McKee, S A, “Hardware Support for Access Ordering: Performance of
Some Design Options’, University of Virginia, Department of Computer
Science, Technical Report CS-93-08, August 1993.

McKee, SA., Klenke, R.H., Schwab, A.J., Wulf, Wm.A., Moyer, SA.,
Hitchcock, C., Aylor, J.H., “Experimental Implementation of Dynamic
Access Ordering”, University of Virginia, TR CS-93-42, August 1993. In
Proc. HICSS-27, Maui, HI, January 1994.

McKee, SA., Moyer, SA., Wulf, Wm.A., Hitchcock, C., “Increasing
Memory Bandwidth for Vector Computations’, University of Virginia, TR

47

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

[McK93d]

[McM86]

[Moy93]

[Qui9l]
[Ram92]

[RaL91]

[Wal85]

CS-93-34, August 1993. To appear in Proc. Conf. on Prog. Lang. and Sys.
Arch., Zurich, Switzerland, March 1994.

McKee, SA., “An Analytic Model of SMC Performance’, University of
Virginia, TR CS-93-54, November, 1994.

McMahon, F.H., “ The Livermore Fortran Kernels: A Computer Test of the
Numerical Performance Range”, Lawrence Livermore National L aboratory,
UCRL-53745, December 1986.

Moyer, S.A., “Access Ordering and Effective Memory Bandwidth”, Ph.D.
Dissertation, Department of Computer Science, University of Virginia,
Technical Report CS-93-18, April 1993.

Quinnell, R., “High-speed DRAMS’, EDN, May 23, 1991.
“Architectural Overview”, Rambus Inc., Mountain View, CA, 1992.

Rau, B. R., “Pseudo-Randomly Interleaved Memory”, 18th International
Symposium on Computer Architecture, May 1991.

Wallach, S., “The CONVEX C-1 64-bit Supercomputer”, Compcon Spring
85, February 1985.

48

