
 Uniprocessor SMC Performance on Vectors
with Non-Unit Strides

Sally A. McKee

Computer Science Report No. CS-93-67
January 31, 1994

This work was supported in part by a grant from Intel Supercomputer Division and by NSF contract MIP-9114110.

Abstract

Memory bandwidth is rapidly becoming the performance bottleneck in the application of
high performance microprocessors to vector-like algorithms, including the “grand chal-
lenge” scientific problems.Access ordering is one technique that can help bridge the pro-
cessor-memory performance gap. Our solution combines compile-time detection of
memory access patterns with a memory subsystem that decouples the order of requests
generated by the processor from that issued to the memory system. This decoupling per-
mits the requests to be issued in an order that optimizes use of the memory system. The
hardware part of this solution is theStream Memory Controller, or SMC. We have con-
ducted numerous simulation experiments to evaluate uniprocessor SMC performance for
unit-stride vectors; the results of these are presented elsewhere. Here we examine unipro-
cessor SMC performance for non-unit stride vectors. We present simulation results and
extend the analytic performance model proposed in an earlier report.

Uniprocessor SMC Performance for Vectors with Non-
unit Strides

Uniprocessor SMC Performance on Vectors with Non-
Unit Strides

Sally A. McKee
Department of Computer Science

University of Virginia
Charlottesville, VA 22903

mckee@cs.virginia.edu

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

1

Uniprocessor SMC Performance on Vectors with Non-
Unit Strides

1. Introduction

The growing disparity between processor speeds and memory speeds is well known

[Kat89, Hen90]. Memory bandwidth is becoming the limiting performance factor for many

applications — particularly scientific computations.Access ordering is one technique that

can help bridge the processor-memory performance gap. [Moy93] develops and analyzes

algorithms to perform access ordering statically at compile time. [McK93c] proposes a

combined hardware/software scheme for implementing access ordering dynamically at

run-time, and presents simulation results demonstrating its effectiveness. The hardware

part of this solution is theStream Memory Controller (SMC), the design and

implementation of which is described in more detail in [McK93b]. We have conducted

numerous simulation experiments to evaluate uniprocessor SMC performance for unit-

stride vectors; results of these can be found in [McK93a].

Here we examine uniprocessor SMC performance for non-unit stride vectors. This report

is organized as follows. Section 2 provides a brief introduction to access ordering in

general, and Section 3 gives an overview of the design of the SMC. Section 4 and Section

5 describe the simulation environment and benchmark suite used to conduct the

experiments whose results are presented in Section 6 and in the Appendix. Section 7

presents the conclusions we draw from these results.

2. Access Ordering

Memory components are usually assumed to require about the same amount of time to

access any random location, but this assumption no longer applies to modern memory

devices: most components manufactured in the last decade provide special capabilities that

make it possible to perform some access sequences faster than others. For instance, nearly

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

2

all current DRAMs implement a form of page-mode operation [Qui91]. These devices

behave as if implemented with a single on-chip cache line, orpage (this should not be

confused with a virtual memory page). A memory access falling outside the address range

of the current DRAM page forces a new page to be accessed. The overhead time required

to set up the new page makes servicing such an access significantly slower than one that

hits the current page. Other modern devices offer similar features (e.g. nibble mode, static-

column mode, or on-chip SRAM cache) or exhibit novel organizations (e.g. Rambus,

Ramlink, or synchronous DRAM) [Ram92, IEEE92]. The order of requests strongly affects

the performance of all these components.

For multiple-module memory systems, the order of requests is important on yet another

level: successive accesses to the same memory bank cannot be performed as quickly as

accesses to different banks. To get the best performance out of such a system, we must take

advantage of the architecture’s available concurrency.

A comprehensive, successful solution to the memory bandwidth problem must exploit the

richness of thefull memory hierarchy, both its architecture and its component

characteristics. One way to do this is viaaccess ordering, which we define as any technique

for changing the order of memory requests to increase bandwidth. Here we are especially

concerned with ordering a set of vector-like “stream” accesses.

3. The SMC

[Moy93] develops algorithms and analyzes the performance benefits and limitations of

doing compile-time access ordering. The beneficial impact of access ordering on effective

memory bandwidth together with the limitations inherent in implementing the technique

statically motivate us to consider an implementation that reorders accesses dynamically at

run time. What follows is an overview of the architecture proposed in [McK93b, McK93c]:

see those documents for more details.

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

3

Our discussion is based on the simplified architecture of Figure1. In this system, memory

is interfaced to the processors through a controller labeled “MSU” for Memory Scheduling

Unit. The MSU includes logic to issue memory requests as well as logic to determine the

order of requests during streaming computations. For non-stream accesses, the MSU

provides the same functionality and performance as a traditional memory controller.

The MSU has full knowledge of all streams currently needed by the processor: given the

base address, vector stride, and vector length, it can generate the addresses of all elements

in a stream. The scheduling unit also knows the details of the memory architecture,

including interleaving, device characteristics, and current state. The access-ordering

circuitry uses this information to issue requests for individual stream elements in an order

that attempts to optimize memory system performance.

CPU

mem

mem

mem

mem

M
SU

Figure 1 Stream Memory Controller for Uniprocessor System

state

FIFO

FIFO

scalar accesses

FIFO

CACHE

state

state

SBU

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

4

A separate Stream Buffer Unit (SBU) contains high-speed buffers for stream operands and

provides control registers that the processor uses to specify stream parameters (base

address, stride, length, and data size). Together, the MSU and SBU comprise a Stream

Memory Controller (SMC) system.

The stream buffers are implemented logically as a set of FIFOs within the SBU, as

illustrated in Figure1. Each stream is assigned to one FIFO, which is asynchronously filled

from (or drained to) memory by the access/issue logic of the MSU. The “head” of the FIFO

is another memory-mapped register, and load instructions from (or store instructions to) a

particular stream reference the FIFO head via this register, dequeueing or enqueueing data

as is appropriate.

Note that we assume the processor can perform non-caching loads and stores so that non-

unit stride streams can be accessed without concomitantly accessing extraneous data and

wasting bandwidth. While not a common architectural feature, some commercial

processors such as the Convex C-1 [Wal85] and Intel i860 [Int91] include such “cache

bypassing”. Others, such as the DEC Alpha [DEC92], provide a means of specifying some

portions of memory as non-cacheable.

4. Simulation Environment

In order to validate the SMC concept, we have simulated a wide range of SMC

configurations and benchmarks, varying FIFO depth, dynamic order/issue policy, number

of memory banks, DRAM speed, benchmark algorithm, and vector length, stride, and

alignment with respect to memory banks. Complete uniprocessor results for stride-one

vectors, including a detailed description of each access-ordering heuristic, can be found in

[McK93a]; highlights of these results are presented in [McK93b, McK93c].

Most performance figures in Section 6 are given as a percentage of peak bandwidth, i.e.,

the bandwidth necessary to allow the processor to perform a memory operation each cycle.

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

5

The vectors used in these simulations are 10,000 doublewords in length, and all vectors

within a computation have the same stride. In all cases, servicing an access that misses the

current DRAM page is assumed to require four times as long as servicing a page-hit. This

4:1 cost ratio is fairly representative of current technology.

The DRAM page size used in the simulations discussed here is 4K doublewords (this is

twice the page size used in [McK93a, McK93b, and McK93b]). This may seem large with

respect to current technology, but this is of little import, for DRAM page size and vector

stride are strongly related performance parameters. SMC performance for vectors of stride

S on a system with DRAM pages of size N is identical to that for vectors of stride 2S on a

system with pages of size 2N, assuming that both strides hit the same number of memory

banks. To determine performance for DRAM components with a smaller page, we simply

look at SMC performance for vectors with the appropriate larger stride, scaling the

interleaving factor if necessary. This keeps the number of banks used by the computation

and the number of vector elements per page constant, hence performance remains constant.

5. Benchmark Suite

Scientific computations are perhaps the most obvious examples of applications that are

severely bandwidth-limited. Caching may provide adequate bandwidth for some, but not

all, portions of such programs. The bottlenecks in these computations usually take the form

of memory-intensive inner loops, which tend to derive little benefit from caching. Thus we

have chosen a suite of benchmark kernels representing access patterns found in the inner

loops of real scientific codes. Scalar and instruction references are assumed to hit in the

cache, and all stream references use non-caching loads and stores.

In the following, “axpy” refers to a computation involving some entity a times a vector x

plus a vector y, with the first letter of the name indicating the type of a. For instance, daxpy

denotes a computation involving a double-precision scalar times a vector plus a vector.

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

6

Our benchmark suite is depicted in Figure 2. Daxpy, copy, scale, and swap are from the

BLAS (Basic Linear Algebra Subroutines) [Law79, Don79]. These vector and matrix

computations occur frequently in scientific applications, and have been collected into a set

of library routines that are highly optimized for various architectures. Hydro and tridiag are

the first and fifth Livermore Loops [McM86], a set of kernels culled from important

scientific computations. The former is a hydrodynamics code fragment, and the latter is a

tridiagonal elimination computation. Although the computations differ, their access

patterns are identical, thus results for these benchmarks are presented together. Vaxpy is a

vector axpy computation that occurs in matrix-vector multiplication by diagonals; this

algorithm is useful for the diagonally sparse matrices that arise frequently in the solution

of parabolic or elliptic partial differential equations by finite element or finite difference

methods [Gol93].

Note that although these computations do not reuse vector elements, they are often found

in the inner loops of algorithms that do, as with vaxpy for matrix-vector multiply, and

blocked algorithms such as those in the Level 3 BLAS [Don90].

6. Results

Figure 3 through Figure 10 illustrate performance for vectors of various strides run on four

different memory systems with several SMC configurations. We present results for two

different dynamic ordering policies, algorithms A1 and T1 from [McK93a]. These figures

Figure 2 Benchmark Algorithms

copy:

daxpy:

hydro:

scale:

swap:

tridiag:

vaxpy:

i∀ yi xi←

i∀ yi axi yi+←

i∀ xi q yi r zxi 10+× t zxi 11+×+()×+←

i∀ xi axi←

i∀ tmp yi← yi xi← xi tmp←

i∀ xi zi yi xi 1––()×←

i∀ yi aixi yi+←

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

7

represent SMC performance on thecopy benchmark as a function of vector stride and FIFO

depth or number of memory banks. Since these are representative of all results, they are

discussed in detail here. Performance graphs for other benchmarks are similar, and are

included in the Appendix.

Non-SMC system performance numbers presented here were generated with the simulator

of [Moy93]. These results represent the bandwidth attained by executing the benchmark’s

accesses in their natural order (without loop unrolling or other compiler optimizations)

using non-caching loads and stores.

6.1 Algorithm A1

In this ordering scheme, the MSU examines each FIFO in round-robin order, initiating

accesses for the current FIFO until no ready accesses remain. Here aready access refers to

an empty position in a read FIFO (that position is ready to be filled with the appropriate

data element) or a full position in a write FIFO (the corresponding data element is ready to

be written to memory). If there are no ready accesses, the MSU advances to the next FIFO

and proceeds to initiate accesses for it. While servicing a particular FIFO, if the next ready

access from that FIFO is to a busy bank, the MSU waits until the bank is idle; it does not

try to find an access to a currently idle bank.

In the simulation experiments involving A1, the vectors are all aligned to begin in the same

bank of memory. For unit-stride vectors, this alignment has little effect on SMC

performance, since accesses are reordered and the vectors are distributed evenly across all

banks of memory. In general, such an alignment limits achievable bandwidth in the cases

where the vector stride is not relatively prime to the number of memory banks: only a subset

of the banks will be used, thus the SMC cannot take full advantage of the system’s available

concurrency. Since A1 services each FIFO (i.e. each vector) in turn, however, the relative

alignment of the vectors in the computation has little effect on performance.

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

8

Figure 3 provides an overview of the effect increasing vector stride has on SMC

performance for the copy benchmark. For a single-bank system, smaller strides yield very

similar performance, as depicted in Figure 3(a). Strides of up to 64 yield in excess of about

95% of the total system bandwidth. When the stride grows to 512, performance ceases to

be limited by FIFO depth, and is instead limited by the number of vector elements per

DRAM page. Since in this case there are only 8 vector elements in each page, the best the

SMC can do is to get 7 page-hits for each page-miss. The attainable bandwidth is thus

limited to % of available system bandwidth. At a

stride of 8K, only one vector element resides in a DRAM page, thus every access

necessarily misses the current DRAM page, realizing only 25% of the available system

bandwidth. Performance is identical to that of a non-SMC system using non-caching loads

and stores.

Figure 3(b) illustrates performance on a system with two interleaved memory banks.

Performance for unit-stride vectors and deep FIFOs is akin to that for a single-bank system.

For the non-unit strides depicted here, all vector elements fall in just one of the two banks.

The SMC cannot take advantage of the system’s available concurrency, thus performance

is limited to half of the potential bandwidth. As indicated by the curves for stride-8 and

stride-64, we can expect the SMC to deliver close to 50% of the full system bandwidth for

even strides around this range. Performance for odd-stride vectors in this range corresponds

to that for like strides on a single-bank system. Non-SMC performance and SMC

performance for large-stride vectors are limited to 12.5% of the system bandwidth.

As illustrated by the non-unit-stride curves in Figure 3(c) and Figure 3(d), SMC

performance is bounded by a maximum of 25% of system bandwidth in the four-bank case

and 12.5% in the eight-bank case. Performance for very large-stride vectors is only 9.99%

and 7.12% of total bandwidth for these respective memory systems. Although the vector

stride is as large as the DRAM page size, the interleaving factors make the effective stride

100
4 7 1×()+() 8⁄ 1.375=

--- 72.73=

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

9

within a single bank small enough that the SMC can take some advantage of page-mode

operation. The corresponding non-SMC systems incur the DRAM page-miss overhead at

each access, and are thus limited to one-quarter of the maximum attainable bandwidth, or

6.25% and 3.12% of peak. The unit-stride curves in Figure 3 emphasize that as the degree

of interleaving increases, deep FIFOs become essential to good performance. The straight

lines in the graphs indicate that for very large strides, FIFO depth no longer affects

performance.

Figure 4 through Figure 7 give a more detailed view of how SMC performance changes

with vector stride. These results are given as a percentage of the system’s peak bandwidth.

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

(a) one bank (b) two banks

(c) four banks (d) eight banks

stride 1
stride 8
stride 64
stride 512
stride 8192

Figure 3 copy Performance for Increasing Strides

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

10

The highest value on the y-axis in each graph indicates the maximum attainable bandwidth

for a computation using vectors of the given strides on a particular memory system.

Figure 4 depicts performance for a single-bank SMC-system with FIFOs that are 256

double-words deep. The percentage of system bandwidth delivered remains above 90% for

strides up to 127. As we saw earlier, performance for strides greater than the DRAM page

size, 2K double words, is limited to 25% of the potential bandwidth by virtue of the 4:1

page-miss/page-hit cost ratio.

Figure 4 copy Performance for a 1-Bank Memory System with 256-Deep FIFOs

7 15 23 31 63 12
7

25
5

51
1

10
23

20
47

40
95

81
91

vector stride

0

20

40

60

80

100

%
 b

an
dw

id
th

Figure 5 copy Performance for a 2-Bank Memory System with 256-Deep FIFOs

7 15 23 31 63 12
7

25
5

51
1

10
23

20
47

40
95

81
91

vector stride

0

20

40

60

80

100

%
 b

an
dw

id
th

6 14 22 30 62 12
6

25
4

51
0

10
22

20
46

40
94

81
90

vector stride

0

10

20

30

40

50

%
 b

an
dw

id
th

(a) gcd(stride, banks) = 1 (b) gcd(stride, banks) = 2

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

11

Figure 5 depicts SMC performance on the copy benchmark for two families of strides and

a two-bank memory system. Figure 5(a) illustrates the percentage of system bandwidth

delivered for vectors with odd strides (i.e. relatively prime to the number of banks), and

Figure 5(b) illustrates performance for even strides. Note that the these two graphs are

drawn to different scales: the percentage of peak bandwidth delivered in the case of even

strides is limited to half that possible for odd strides. Performance for the odd strides is

comparable to that for the same strides on a single-bank system: the percentage of peak

bandwidth delivered does not fall below 90% until the stride grows above 127.

Figure 6 copy Performance for a 4-Bank Memory System with 256-Deep FIFOs

(a) gcd(stride, banks) = 1 (b) gcd(stride, banks) = 2

7 15 23 31 63 12
7

25
5

51
1

10
23

20
47

40
95

81
91

vector stride

0

20

40

60

80

100

%
 b

an
dw

id
th

6 14 22 30 62 12
6

25
4

51
0

10
22

20
46

40
94

81
90

vector stride

0

10

20

30

40

50

%
 b

an
dw

id
th

4 12 20 28 60 12
4

25
2

50
8

10
20

20
44

40
92

81
88

vector stride

0

5

10

15

20

25

%
 b

an
dw

id
th

(c) gcd(stride, banks) = 4

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

12

Figure 6 illustrates SMC performance for a memory system with four interleaved banks

and three families of strides, and Figure 7 presents the analogous information for an eight-

bank system. The strides in Figure 6(a) and Figure 7(a) are relatively prime to the number

of banks. The greatest common denominator (gcd) of the number of banks and the strides

in Figure 6(b) and Figure 7(b) is two: only half the memory banks are being used, and SMC

performance is limited to 50% of the system peak. For the strides in Figure 6(c) and

Figure 7 copy Performance for an 8-Bank Memory System with 256-Deep FIFOs

(a) gcd(stride, banks) = 1 (b) gcd(stride, banks) = 2

7 15 23 31 63 12
7

25
5

51
1

10
23

20
47

40
95

81
91

vector stride

0

20

40

60

80

100

%
 b

an
dw

id
th

6 14 22 30 62 12
6

25
4

51
0

10
22

20
46

40
94

81
90

vector stride

0

10

20

30

40

50

%
 b

an
dw

id
th

4 12 20 28 60 12
4

25
2

50
8

10
20

20
44

40
92

81
88

vector stride

0

5

10

15

20

25

%
 b

an
dw

id
th

8 16 24 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

vector stride

0

5

10

%
 b

an
dw

id
th

(c) gcd(stride, banks) = 4 (d) gcd(stride, banks) = 8

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

13

Figure 7(c), the gcd is four, thus achievable bandwidth is limited to 25% of peak. Likewise,

for the strides in Figure 7(d), achievable bandwidth only 12.5% of peak. In all cases, the

SMC delivers very close to the maximum achievable bandwidth for strides up to about 256.

Figure 8 and Figure 9 illustrate how SMC performance varies with the number of memory

banks as vector stride increases. Figure 8 depicts performance as a percentage of the peak

system bandwidth. Figure 9 presents the same curves scaled to indicate the relative

percentage of attainable bandwidth. As the vector stride grows, the systems with more

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

a) stride 2 b) stride 4

c) stride 16 d) stride 256

Figure 8 copy Performance as a Percentage of System Bandwidth

1 bank
2 banks
4 banks
8 banks

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

14

banks deliver a greater percentage of attainable bandwidth. This is especially evident in

Figure 9(d). This phenomenon occurs because in a multi-bank memory system, the

distance between vector elements within a single bank is the vector stride divided by the

number of banks the vector hits: . We refer to this value as the effective

intrabank stride, or eis. Thus with two interleaved banks, elements of a stride-two vector

have an eis of 1, and are contiguous within a single bank of memory. In general, when more

vector elements are contained within a DRAM page, fewer page-misses are incurred, and

the SMC is able to deliver a greater portion of the attainable bandwidth for that memory

system and vector stride.

stride
gcd b stride,()

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

a) stride 2 b) stride 4

c) stride 16 d) stride 256

Figure 9 copy Performance as a Percentage of Attainable Bandwidth

1 bank
2 banks
4 banks
8 banks

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

15

6.2 Algorithm T1

Although vector alignment had little effect on algorithm A1’s performance, it has a

significant effect on the performance of our second ordering scheme, T1. This policy is able

to take better advantage of memory system concurrency for non-unit stride vectors. Like

A1, T1 tries to initiate a memory access at each available bus cycle. In doing so, however,

it considers only one memory bank, the next one in round-robin order from the bank

considered during the last “turn”. If that bank is busy, or if no ready access to it exists, then

no access is initiated at the current time. Otherwise, first looks for an access that hits the

current DRAM page, and if found, issues it. If no such access exists, then an access is issued

for the FIFO requiring the most service from that bank. The vectors used in simulations

involving T1 are aligned such that the ith vector in the computation, vi, resides in bank bi

mod n, where n is the total number of memory banks.

Figure 10 presents an overview of the effect increasing vector stride has on the performance

of SMC systems using the T1 ordering scheme, much as Figure 3 did for systems using the

A1 ordering policy. Figure 10(a) illustrates results for a single-bank memory system. For

deep FIFOs, performance is similar to that for A1. For shallow FIFOs and larger vector

strides, T1 makes better use of available buffer space than A1. For strides of at least 512,

bandwidth is independent of FIFO depth. At a stride of 8192, performance for both the

SMC and non-SMC systems is limited to 25% of peak, since at this stride every access

incurs the DRAM page-miss overhead.

For the non-unit strides shown in Figure 10(b), the combination of a more favorable vector

alignment and a more intelligent ordering scheme allows the SMC to deliver at least twice

the bandwidth achieved for the alignment and policy (A1) used in Figure 3(b). At a FIFO

depth of 256, T1 delivers 99.64%, 97.63%, 84.12%, and 25% of peak bandwidth for strides

8, 64, 512, and 8192, respectively, whereas the corresponding values for A1 are 49.57%,

48.57%, 41.91%, and 12.5%. For even strides, each of the two vectors in the benchmark

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

16

lies entirely within one memory bank. The SMC need never switch DRAM pages (recall

that scalar and operand references are assumed to hit in cache), thus the only page-misses

are the compulsory ones incurred when crossing page boundaries. This explains why FIFO

depth has no effect on performance for these non-unit stride vectors. For stride-8192

vectors, a non-SMC system can deliver performance to that of the SMC, since at this stride,

DRAM page size, and two banks, all accesses miss the current page. Odd-stride vectors will

exhibit performance much like that for similar-stride vectors depicted in Figure 10(a).

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

(a) one bank (b) two banks

(c) four banks (d) eight banks

stride 1
stride 8
stride 64
stride 512
stride 8192

Figure 10 copy Performance for Increasing Strides (Algorithm T1)

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

17

When we go to a four-bank memory system, attainable bandwidth is once again limited to

50% of peak system bandwidth for these non-unit strides, as illustrated in Figure 10(c). The

gcd of these strides and the four banks is two, thus the SMC can only make use of half the

memory banks. Even so, we still encounter only compulsory page-misses, thus bandwidth

for these non-unit strides is constant across all FIFO depths. Figure 10(d) exhibits a similar

phenomenon for an eight-bank system, with attainable bandwidth limited to 25% of peak.

For the memory systems of Figure 10(c) and Figure 10(d), the DRAM pages contain more

than one vector element, even at stride 8192. By exploiting the DRAM’s page-mode, the

SMC systems deliver better performance than the comparable non-SMC systems, for

which every access generates a page-miss. The non-SMC systems are limited to 15.17%

and 10.65% of peak for the memory systems with four and eight banks, respectively. The

corresponding SMC systems deliver 20% and 14.28% of peak system bandwidth. Note that

the vector alignment used for these experiments allows both SMC and non-SMC systems

to take better advantage of each interleaved memory’s concurrency, thus performance for

this alignment always exceeds that for the less-favorable alignment used in Section 6.1.

6.3 An Analytic Model

The graphs in Figure 4 through Figure 7 in Section 6.1 emphasize that for larger strides, the

predominant factor affecting performance is no longer FIFO depth, but the number of

vector elements per page. In light of this, we might expect the bandwidth delivered for

stride-one vectors an SMC system with 16-deep FIFOs to perform comparably to a similar

system with deeps FIFOs and a vector stride equal to the page size divided by sixteen times

the data size. The relationship turns out to be slightly more complicated than this, but is

explained by the analytic model of [McK93d].

Let b be the number of interleaved memory banks, f be the depth of the FIFOs, v be the

number of distinct vectors in the computation, and s be the number of streams. A single-

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

18

access vector constitutes one stream, whereas a read-modify-write vector counts as two.

The model states that the average page-miss rate for each FIFO in a stride-1 computation

involving at least two vectors is [McK93d]. This formula also applies to

vectors with non-unit strides, provided that the number of vector elements residing in a

DRAM page is significantly greater than the FIFO depth. The part of this

equation comes from taking the limit of a converging series; this series models the effect

created by the processor’s draining data from the FIFO at the same time that the memory

system is filling it. This processor interaction makes SMC performance for 16-deep FIFOs

different from that for vectors having sixteen elements per DRAM page, thus we must

extend the model in order to describe performance for large-stride vectors.

As noted in Section 4, decreasing DRAM page size and increasing vector stride affect SMC

performance in similar ways. Let p be the number of data elements in a DRAM (i.e., page

size divided by data size). Then for vectors with large eis values (up to p), the average page-

miss rate per FIFO is , or . Computations involving vectors with

effective intrabank strides greater than p will have the same performance as those with an

eis of p: in both cases, only one vector element resides in a DRAM page.

For single-vector computations, only the first access to each bank generates a DRAM page

miss. The average page-miss rate per stream for a unit-stride vector is thus [McK93d].

For a non-unit stride vector, the average miss rate becomes .

We can now use these miss rates to calculate SMC performance. Let h be the cost of

servicing an access that hits the current DRAM page, and let m be the cost of servicing an

access that misses the current DRAM page. The percentage of attainable bandwidth

delivered by the computation is approximately:

b s 1–() v 1–()

f s× 2
--

s 1–() s⁄

stride
gcd b stride,() p×
--- eis p⁄

b p⁄

gcd b stride,() p⁄

h
missrate m×() 1 missrate–() h×()+

--- 100×

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

19

Dividing the percentage of attainable bandwidth by the gcd gives the percentage of peak

system bandwidth. Note that neither FIFO depth nor the processor’s access pattern comes

into play in the large-stride model: analytic results for large strides are identical for all

benchmarks (given sufficiently deep FIFOs).

Table 1 Analytic vs. Simulated Performance Results for copy

S
tr

id
e

Percentage of Peak System Bandwidth

1 Bank 2 Banks 4 Banks 8 Banks

M
od

el
ed

S
im

ul
at

ed

D
iff

er
en

ce

M
od

el
ed

S
im

ul
at

ed

D
iff

er
en

ce

M
od

el
ed

S
im

ul
at

ed

D
iff

er
en

ce

M
od

el
ed

S
im

ul
at

ed

D
iff

er
en

ce

1020 57.24 57.10 0.14 36.40 36.27 0.13 21.07 20.97 0.10 21.07 20.90 0.17

1022 57.19 57.00 0.19 36.38 36.23 0.15 36.38 36.39 -0.01 36.38 36.36 0.02

1023 57.17 57.03 0.14 57.17 56.90 0.27 57.17 56.50 0.67 57.17 56.11 1.06

1024 57.14 56.99 0.15 36.36 36.23 0.13 21.05 20.96 0.09 11.43 11.37 0.06

2044 40.05 39.96 0.09 28.60 28.50 0.09 18.19 18.11 0.08 18.19 18.21 -0.02

2046 40.02 39.98 0.04 28.58 28.52 0.06 28.58 28.47 0.11 28.58 28.29 0.29

2047 40.01 39.97 0.04 40.01 39.92 0.09 40.01 39.84 0.17 40.01 39.64 0.37

2048 40.00 39.95 0.05 28.5 28.50 0.07 18.18 18.11 0.07 10.53 10.48 0.05

4092 25.02 25.02 0.00 20.01 19.99 0.02 14.29 14.26 0.03 14.29 14.24 0.05

4094 25.01 25.01 0.00 20.01 19.98 0.03 20.01 19.97 0.04 20.01 19.93 0.08

4095 25.01 25.00 0.00 25.01 25.00 0.00 25.01 24.98 0.02 25.01 24.96 0.04

4096 25.00 25.00 0.00 20.00 19.98 0.02 14.29 14.25 0.04 9.09 9.06 0.03

8188 25.00 25.00 0.00 12.51 12.51 0.00 10.0 9.99 0.01 10.00 9.98 0.02

8190 25.00 25.00 0.00 12.50 12.50 0.00 12.50 12.50 0.00 12.50 12.49 0.01

8191 25.00 25.00 0.00 25.00 24.99 0.01 25.00 24.95 0.05 25.00 24.92 0.08

8192 25.00 25.00 0.00 12.50 12.50 0.00 10.00 9.99 0.01 7.14 7.12 0.02

gcd(banks, stride) = 1 gcd(banks, stride) = 2 gcd(banks, stride) = 4 gcd(banks, stride) = 8

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

20

Table 1 compares analytic and simulated performance results of the copy benchmark with

large strides on memory systems with deep FIFOs and one to four banks. Table entries are

shaded according to the value of . Strides for which the gcd is one are left

white, whereas strides with a gcd of two through eight are grayed, with darker shades

representing greater values. Recall that performance is limited to 50%, 25%, and 12.5% of

system bandwidth for computations using strides with gcds of two, four, and eight,

respectively. Note that the differences in almost all cases are less than 0.2% of peak

bandwidth. The largest differences occur for the two smaller strides that are relatively

prime to the number of banks. The maximum difference is only 1.06% of peak, for a stride

of 1023 on an eight-bank memory system.

7. Conclusions

Our experiments indicate that small changes in stride have little effect on SMC

performance, provided the number of banks hit by the vectors remains constant. For all

SMC configurations and memory systems examined here, the SMC is able to deliver very

close to the maximum attainable performance for small to moderate strides.

Although SMC systems are fairly immune to changes in vector stride, data alignment has

a significant effect on achievable bandwidth. Obviously the SMC cannot deliver better

bandwidth than the layout of operands will allow. Mapping different vectors of the

computation to different sets of memory banks allows the SMC to more effectively exploit

page-mode and similar component capabilities; as we have seen, this can improve

bandwidth considerably. Aligning the vectors in a computation such that all memory banks

are used will insure that the concurrency of the memory architecture is exploited. One way

to achieve this is to use a stride that is relatively prime to the number of memory banks.

Skewed storage [Bud71, Har87] or dynamic address transformations [Har89, Rau91]

provide another means of increasing concurrency.

gcd b stride,()

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

21

Very large vector strides hinder the SMC’s ability to take advantage of page-mode, but

given such a stride, the SMC will do the best it can to maximize bandwidth. Note that our

simulations do not reflect the greater number of TLB misses — and subsequent effects on

performance — that larger strides are likely to generate. Here we have modeled the

processor as a simple generator of loads and stores, in order to place maximum stress on

the memory system. In practice, the SMC will be able to overlap memory latency with

computation by prefetching read operands, thereby mitigating some of the unfavorable

effects larger strides have on memory bandwidth.

Finally, we have presented an extension to the analytic model of [McK93d] to explain SMC

performance for non-unit strides. In particular, we have developed a performance model for

when FIFO depth exceeds the number of data elements residing within a DRAM page.

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

22

Appendix

Figure 11 depicts SMC performance on the copy benchmark when the two vectors are of

different strides. In these experiments, x is a unit-stride vector, while y has a very large

stride (1024). Figure 11(a) uses the ordering policy and vector alignment of Section 6.1.

Figure 11(b) uses the ordering policy and vector alignment of Section 6.2. Relative vector

alignment, ordering policy, and FIFO depth have little effect on bandwidth. This indicates

that performance is dominated by the accesses to vector y, all elements of which lie in a

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

x: stride 1
y: stride 1024

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

x: stride 1
y: stride 1024

1 bank
2 banks
4 banks
8 banks

(a) A1 ordering and alignment (b) T1 ordering and alignment

Figure 11 copy Performance for Vectors of Different Strides

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

x: stride 1024
y: stride 1024

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

x: stride 1024
y: stride 1024

(c) A1 ordering and alignment (d) T1 ordering and alignment

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

23

single bank. Figure 11(c) illustrates bandwidth for copy using two stride-1024 vectors and

the alignment and ordering policy Section 6.1, and Figure 11(d) presents analogous results

for the alignment and ordering policy Section 6.2. Note that in Figure 11(d) the SMC

performance for a two-bank memory far exceeds that for the other memory systems in

Figure 11(c) and Figure 11(d). This results from the advantageous partitioning of the

vectors among the banks: x lies in the even banks, and y lies in the odd banks.

Figure 12 through Figure 34 present simulation results for the remaining kernels in our

benchmark suite. These results were generated using the ordering scheme and vector

alignment from Section 6.1, unless otherwise indicated. Performance trends for these

benchmarks are remarkably like those exhibited by copy, thus in the interests of brevity we

omit performance details for deep FIFOs and the various families of vector strides for one,

two, and four-bank memory systems.

Figure 12 through Figure 16 describe SMC performance on the daxpy benchmark.

Figure 17 through Figure 21 present the same kinds of information for the hydro and tridiag

kernels. Figure 22 through Figure 24 depict simulation results for scale. Since this

benchmark involves only one vector, performance is almost entirely unaffected by changes

in FIFO depth and is completely immune to changes in vector alignment. We therefore omit

results for the ordering scheme and alignment of Section 6.2. We also leave out the detailed

breakdown of performance for changing strides and an eight-bank memory system with

deep FIFOs. Performance for the swap kernel is presented in Figure 25 through Figure 29,

and performance for vaxpy is given in Figure 30 through Figure 34.

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

24

Figure 12 daxpy Performance for an 8-Bank Memory System with 256-Deep FIFOs

(a) gcd(stride, banks) = 1 (b) gcd(stride, banks) = 2

7 15 23 31 63 12
7

25
5

51
1

10
23

20
47

40
95

81
91

vector stride

0

20

40

60

80

100

%
 b

an
dw

id
th

6 14 22 30 62 12
6

25
4

51
0

10
22

20
46

40
94

81
90

vector stride

0

10

20

30

40

50

%
 b

an
dw

id
th

4 12 20 28 60 12
4

25
2

50
8

10
20

20
44

40
92

81
88

vector stride

0

5

10

15

20

25

%
 b

an
dw

id
th

8 16 24 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

vector stride

0

5

10

%
 b

an
dw

id
th

(c) gcd(stride, banks) = 4 (d) gcd(stride, banks) = 8

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

25

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100
%

 s
ys

te
m

 b
an

dw
id

th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

a) stride 2 b) stride 4

c) stride 16 d) stride 256

Figure 13 daxpy Performance as a Percentage of System Bandwidth

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

26

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100
%

 b
an

dw
id

th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

a) stride 2 b) stride 4

c) stride 16 d) stride 256

Figure 14 daxpy Performance as a Percentage of Attainable Bandwidth

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

27

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

(a) one bank (b) two banks

(c) four banks (d) eight banks

stride 1
stride 8
stride 64
stride 512
stride 8192

Figure 15 daxpy Performance for Increasing Strides (A1)

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

28

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

(a) one bank (b) two banks

(c) four banks (d) eight banks

stride 1
stride 8
stride 64
stride 512
stride 8192

Figure 16 daxpy Performance for Increasing Strides (T1)

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

29

Figure 17 hydro/tridiag Performance for an 8-Bank Memory System
with 256-Deep FIFOs

(a) gcd(stride, banks) = 1 (b) gcd(stride, banks) = 2

7 15 23 31 63 12
7

25
5

51
1

10
23

20
47

40
95

81
91

vector stride

0

20

40

60

80

100

%
 b

an
dw

id
th

6 14 22 30 62 12
6

25
4

51
0

10
22

20
46

40
94

81
90

vector stride

0

10

20

30

40

50

%
 b

an
dw

id
th

4 12 20 28 60 12
4

25
2

50
8

10
20

20
44

40
92

81
88

vector stride

0

5

10

15

20

25

%
 b

an
dw

id
th

8 16 24 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

vector stride

0

5

10

%
 b

an
dw

id
th

(c) gcd(stride, banks) = 4 (d) gcd(stride, banks) = 8

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

30

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100
%

 s
ys

te
m

 b
an

dw
id

th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

a) stride 2 b) stride 4

c) stride 16 d) stride 256

Figure 18 hydro/tridiag Performance as a Percentage of System Bandwidth

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

31

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100
%

 b
an

dw
id

th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

a) stride 2 b) stride 4

c) stride 16 d) stride 256

Figure 19 hydro/tridiag Performance as a Percentage of Attainable Bandwidth

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

32

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

(a) one bank (b) two banks

(c) four banks (d) eight banks

stride 1
stride 8
stride 64
stride 512
stride 8192

Figure 20 hydro/tridiag Performance for Increasing Strides (A1)

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

33

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

(a) one bank (b) two banks

(c) four banks (d) eight banks

stride 1
stride 8
stride 64
stride 512
stride 8192

Figure 21 hydro/tridiag Performance for Increasing Strides (T1)

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

34

Figure 22 scale Performance for an 8-Bank Memory System with 256-Deep FIFOs

(a) gcd(stride, banks) = 1 (b) gcd(stride, banks) = 2

7 15 23 31 63 12
7

25
5

51
1

10
23

20
47

40
95

81
91

vector stride

0

20

40

60

80

100

%
 b

an
dw

id
th

6 14 22 30 62 12
6

25
4

51
0

10
22

20
46

40
94

81
90

vector stride

0

10

20

30

40

50

%
 b

an
dw

id
th

4 12 20 28 60 12
4

25
2

50
8

10
20

20
44

40
92

81
88

vector stride

0

5

10

15

20

25

%
 b

an
dw

id
th

8 16 24 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

vector stride

0.0

2.5

5.0

7.5

10.0

12.5

%
 b

an
dw

id
th

(c) gcd(stride, banks) = 4 (d) gcd(stride, banks) = 8

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

35

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100
%

 s
ys

te
m

 b
an

dw
id

th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

a) stride 2 b) stride 4

c) stride 16 d) stride 256

Figure 23 scale Performance as a Percentage of System Bandwidth

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

36

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100
%

 b
an

dw
id

th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

a) stride 2 b) stride 4

c) stride 16 d) stride 256

Figure 24 scale Performance as a Percentage of Attainable Bandwidth

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

37

Figure 25 swap Performance for an 8-Bank Memory System with 256-Deep FIFOs

(a) gcd(stride, banks) = 1 (b) gcd(stride, banks) = 2

7 15 23 31 63 12
7

25
5

51
1

10
23

20
47

40
95

81
91

vector stride

0

20

40

60

80

100

%
 b

an
dw

id
th

6 14 22 30 62 12
6

25
4

51
0

10
22

20
46

40
94

81
90

vector stride

0

10

20

30

40

50

%
 b

an
dw

id
th

4 12 20 28 60 12
4

25
2

50
8

10
20

20
44

40
92

81
88

vector stride

0

5

10

15

20

25

%
 b

an
dw

id
th

8 16 24 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

vector stride

0

5

10

%
 b

an
dw

id
th

(c) gcd(stride, banks) = 4 (d) gcd(stride, banks) = 8

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

38

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100
%

 s
ys

te
m

 b
an

dw
id

th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

a) stride 2 b) stride 4

c) stride 16 d) stride 256

Figure 26 swap Performance as a Percentage of System Bandwidth

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

39

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100
%

 s
ys

te
m

 b
an

dw
id

th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

a) stride 2 b) stride 4

c) stride 16 d) stride 256

Figure 27 swap Performance as a Percentage of Attainable Bandwidth

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

40

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

(a) one bank (b) two banks

(c) four banks (d) eight banks

stride 1
stride 8
stride 64
stride 512
stride 8192

Figure 28 swap Performance for Increasing Strides (A1)

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

41

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

(a) one bank (b) two banks

(c) four banks (d) eight banks

stride 1
stride 8
stride 64
stride 512
stride 8192

Figure 29 swap Performance for Increasing Strides (T1)

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

42

Figure 30 vaxpy Performance for an 8-Bank Memory System with 256-Deep FIFOs

(a) gcd(stride, banks) = 1 (b) gcd(stride, banks) = 2

7 15 23 31 63 12
7

25
5

51
1

10
23

20
47

40
95

81
91

vector stride

0

20

40

60

80

100

%
 b

an
dw

id
th

6 14 22 30 62 12
6

25
4

51
0

10
22

20
46

40
94

81
90

vector stride

0

10

20

30

40

50

%
 b

an
dw

id
th

4 12 20 28 60 12
4

25
2

50
8

10
20

20
44

40
92

81
88

vector stride

0

5

10

15

20

25

%
 b

an
dw

id
th

8 16 24 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

vector stride

0

5

10

%
 b

an
dw

id
th

(c) gcd(stride, banks) = 4 (d) gcd(stride, banks) = 8

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

43

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100
%

 s
ys

te
m

 b
an

dw
id

th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 s

ys
te

m
 b

an
dw

id
th

a) stride 2 b) stride 4

c) stride 16 d) stride 256

Figure 31 vaxpy Performance as a Percentage of System Bandwidth

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

44

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100
%

 b
an

dw
id

th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

a) stride 2 b) stride 4

c) stride 16 d) stride 256

Figure 32 vaxpy Performance as a Percentage of Attainable Bandwidth

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

45

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

(a) one bank (b) two banks

(c) four banks (d) eight banks

stride 1
stride 8
stride 64
stride 512
stride 8192

Figure 33 vaxpy Performance for Increasing Strides (A1)

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

46

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

8 16 32 64 128 256

fifo depth

0

20

40

60

80

100

%
 b

an
dw

id
th

(a) one bank (b) two banks

(c) four banks (d) eight banks

stride 1
stride 8
stride 64
stride 512
stride 8192

Figure 34 vaxpy Performance for Increasing Strides (T1)

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

47

References

[Bud71] Budnik, P., and Kuck, D., “The Organization and Use of Parallel
Memories”, IEEE Trans. Comput., 20, 12, 1971.

[DEC92] Alpha Architecture Handbook, Digital Equipment Corporation, 1992.

[Don79] Dongarra, J.J., et. al., “Linpack User’s Guide“, SIAM, Philadelphia, 1979.

[Don90] Dongarra, J.J., DuCroz, J., Duff, I., and Hammerling, S., “A set of Level 3
Basic Linear Algebra Subprograms”, ACM Trans. Math. Softw., 16:1-17,
1990.

[Gol93] Golub, G., and Ortega, J.M., Scientific Computation: An Introduction with
Parallel Computing, Academic Press, Inc., 1993.

[Har87] Harper, D. T., Jump, J., “Vector Access Performance in Parallel Memories
Using a Skewed Storage Scheme”, IEEE Trans. Comput., 36, 12, 1987.

[Har89] Harper, D. T., “Address Transformation to Increase Memory Performance”,
1989 International Conference on Supercomputing.

[Hen90] Hennessy, J., and Patterson, D., “Computer Architecture: A Quantitative
Approach”, Morgan Kaufmann, San Mateo, CA, 1990.

[IEEE92] “High-speed DRAMs”, Special Report, IEEE Spectrum, vol. 29, no. 10,
October 1992.

[Int91] i860 XP Microprocessor Data Book, Intel Corporation, 1991.

[Kat89] Katz, R., and Hennessy, J., “High Performance Microprocessor
Architectures”, University of California, Berkeley, Report No. UCB/CSD
89/529, August, 1989.

[Law79] Lawson, et. al., “Basic Linear Algebra Subprograms for Fortran Usage”,
ACM Trans. Math. Soft., 5, 3, 1979.

[McK93a] McKee, S.A, “Hardware Support for Access Ordering: Performance of
Some Design Options”, University of Virginia, Department of Computer
Science, Technical Report CS-93-08, August 1993.

[McK93b] McKee, S.A., Klenke, R.H., Schwab, A.J., Wulf, Wm.A., Moyer, S.A.,
Hitchcock, C., Aylor, J.H., “Experimental Implementation of Dynamic
Access Ordering”, University of Virginia, TR CS-93-42, August 1993. In
Proc. HICSS-27, Maui, HI, January 1994.

[McK93c] McKee, S.A., Moyer, S.A., Wulf, Wm.A., Hitchcock, C., “Increasing
Memory Bandwidth for Vector Computations”, University of Virginia, TR

Uniprocessor SMC Performance on Vectors with Non-Unit Strides

48

CS-93-34, August 1993. To appear in Proc. Conf. on Prog. Lang. and Sys.
Arch., Zurich, Switzerland, March 1994.

[McK93d] McKee, S.A., “An Analytic Model of SMC Performance”, University of
Virginia, TR CS-93-54, November, 1994.

[McM86] McMahon, F.H., “The Livermore Fortran Kernels: A Computer Test of the
Numerical Performance Range”, Lawrence Livermore National Laboratory,
UCRL-53745, December 1986.

[Moy93] Moyer, S.A., “Access Ordering and Effective Memory Bandwidth”, Ph.D.
Dissertation, Department of Computer Science, University of Virginia,
Technical Report CS-93-18, April 1993.

[Qui91] Quinnell, R., “High-speed DRAMs”, EDN, May 23, 1991.

[Ram92] “Architectural Overview”, Rambus Inc., Mountain View, CA, 1992.

[Rau91] Rau, B. R., “Pseudo-Randomly Interleaved Memory”, 18th International
Symposium on Computer Architecture, May 1991.

[Wal85] Wallach, S., “The CONVEX C-1 64-bit Supercomputer”, Compcon Spring
85, February 1985.

