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Abstract

Reconciling requirements for (1) the efficient integration of independently developed and evolving
components and (2) the evolution of systems built from such components requires novel architectural
styles, standards and idioms.  Traditional object-oriented approaches have proven inadequate. Two
important new mechanisms supporting integration and evolution are dynamic interface negotiation and
aggregation, an approach to efficient composition. Both feature prominently in the Component Object
Model (COM), a de facto standard providing the architectural foundation for many important systems.
Because these are important mechanisms in general, and because they are central to COM in particular, it
is essential that engineers be able to reason effectively about them. In earlier work (Sullivan et al. 1997),
we showed that reasoning about them is hard and that formal mathematical theories of such mechanisms
can provide a foundation for effective reasoning.  In this paper, we present a new theory of interface
negotiation and aggregation in COM.  Our new theory is based on a relaxed interpretation of the COM
specification.  Our earlier theory reflected an interpretation of the specification in which components had
to be designed to follow COM-specified rules for interface negotiation and aggregation under any possible
usage.  Our new, strictly weaker theory requires only that actual system executions not manifest any
violations of the rules.  Architectural styles using mediators that we showed to be untenable under the
earlier theory are tenable under this one provided that designers follow certain rules.  We derive these
necessary and sufficient conditions for legal use of interface negotiation in the presence of aggregation.
Our results provide a basis for documenting what engineers must not do to use aggregation and interface
negotiation properly.
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1. Introduction
Reconcili ng requirements for (1) the eff icient integration of independently developed and evolving
components and (2) ease of the evolution of systems built from such components is a demanding task that
requires novel architectural standards, styles, mechanisms and idioms [Sulli van 1994, Sulli van & Notkin
1992]. Industrial software designers are beginning to meet this challenge with advanced mechanisms and
compositional reuse models. Two important new mechanisms that feature prominently in the Component
Object Model [COM 1996] are interface negotiation and aggregation, a mechanism for eff icient
composition. Unfortunately, the introduction of architectural innovations of this sort without extremely
careful analysis can create unintended and subtle design “ land-mines” that remain latent until unwary
adopters inadvertently detonate them.  In earlier work we showed that this concern is not academic: The
COM standard has architecturall y criti cal properties that are easy to overlook and hard to reason about
[Sulli van et al. 1997].

The importance of having a sound basis for engineers to reason about architectural standards should not
be underestimated.  First, on the positi ve side, mechanisms such as interface negotiation and aggregation
are both general and extremely useful; so they are worthy of careful scientific study.  Interface negotiation
appears to be especiall y important for evolution in a context of independently evolving components, which
is perhaps the central feature of a marketplace of reusable components as envisaged by McIlroy at the
founding of the software engineering field [McIlroy, 1969]. Second, interface negotiation and aggregation
are central to COM, in particular; and because COM is so widely used, it behooves us to understand the
mechanisms on which it is based.  Third, not understanding these mechanisms puts developers at serious
risk.  Interface negotiation and aggregation are at the very heart of COM, and COM is the basis for
criti cal, early architectural design decisions.  The erroneous use of mechanisms at this stage can severely
compromise a system design. Moreover, because these mechanisms provide the basis for late integration
of independently developed components, errors can remain undiscovered until disastrously late, after a
system is fielded.

In earlier work, we showed that the use of formal methods in-the-small facilit ates precise reasoning about
such standards. We did not seek a theory of architecture in general, or of COM in its entirety.  Rather, we
focused on developing a specific theory of interface negotiation and aggregation in COM: the aspects
relevant to our design situation.  Specificall y, we developed a formal theory that showed that an
architectural style, intended for use in a commercial multimedia authoring system, and based on
mediators [Sulli van 94, Sulli van & Notkin 1992] and COM, was untenable [Sulli van et al. 1997].

That theory of COM formalized key aspects of the published specification of COM [COM 1996].  A key
question is whether the theory is a valid model of COM.  We tried to validate the theory, having it
reviewed by the designers of COM, who agreed that it captured the structure of COM.  Nevertheless, one
can ask whether our negative results characterize COM, or whether they are artifacts of an artificiall y
restrictive theory.

We believe that our earlier theory captures one widely held view of the meaning of the COM specification.
Somewhat astonishingly, however, we have discovered a second interpretation of the specification that
leads to a different theory in which our earlier conclusions are weakened.  Our earlier theory reflected an
interpretation in which components had to be designed to follow COM rules about interface negotiation
and aggregation irrespective of any particular operational context.  Our new theory reflects an
interpretation requiring only that any actual execution of a system not manifest any violations of the rules
of COM.

Our earlier work hinted at rules beyond those stipulated in the COM specification that would enable the
use of mediators, almost as intended, without problems. Our new theory leads to such a set of rules.  We
derive necessary and suff icient conditions for the legal use of interface negotiation and aggregation. One
result is that the architectural style using mediators that was untenable under the earlier theory is tenable
under the new theory, provided that the additional conditions are satisfied.  If our new theory is valid, our
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results provide a basis for documenting what practicing engineers must do and not do to use COM
aggregation and interface negotiation properly.  Unfortunately, the new interpretation is even subtler than
our earlier theory.  The interaction between COM interface negotiation and aggregation appears to be
inherently complex.  The results we present here bolster our earlier claim that the light-weight use of
formal methods can significantly aid in reasoning about subtle but criti cal aspects of widely used software
architectural standards.

The rest of the paper is organized as follows. Section 2 introduces the basic concepts of COM and
formalizes them within our new theory. Section 3 gives a new definition of COM component that we use
in our dynamic theory. Section 4 formalizes the interface negotiation rules and defines component
legalit y. Section 5 formalizes aggregation and discusses the issues of component identity under
aggregation. In section 6 we state and prove three necessary conditions of legalit y of an aggregated
component. Section 7 contains the statement and proof of a suff icient condition of legalit y of an
aggregated component. Section 8 concludes

2. Informal Introduction to COM
COM itself comprises a prescriptive object model for interoperable binary components, and a runtime
infrastructure supporting components that conform to the model.  The runtime infrastructure provides
such services as component creation.  In this paper we are concerned only with the object model.  When
we refer to COM, we are implicitl y referring only to the object model and not to the runtime
infrastructure.

The heart of COM is a set of rules that define what a component is and how it must behave in certain key
areas.  For instance, COM specifies that components provide services through multiple interfaces; that
components interact with each other only through interfaces; and that components must support certain
behaviors enabling components to negotiate with each at runtime for desired kinds of interfaces.

Another key part of the standard defines compositional reuse mechanisms. COM delegation is a
traditional object-oriented composition mechanism in which the implementation of a service provided by
an outer component uses the services of encapsulated, inner objects.  In this paper we are concerned with
a novel mechanism called aggregation.  Aggregation permits an outer object to “pretend” to its clients
that an interface implemented by an inner object is actuall y one of its own interfaces. Aggregation
supports eff icient composition in that requests to “ the outer” can be handled by “ the inner” without an
additional call .  Aggregation can also play a role in COM analogous to class inheritance in object-oriented
programming.

A component is said to be a legal COM component if and only if it implements these mechanisms
according to rules given in the COM specification.  Because more and more systems use COM as their
foundation it is important to have a clear understanding of the limitations that these rules impose on
designers. In particular, an important property that we have been exploring is whether systems of
communicating COM components can be encapsulated by outer components such that that the following
conditions hold:

1)  some services of inner components are made visible as services of the outer component
2)  the performance penalty for the encapsulation boundary imposed by the outer is negligible
3)  the outer component is a legal COM component, i.e., it satisfies all the rules of COM

In this compositional style a complex is encapsulated, turning it into a new.  One might use this style to
encapsulate a subsystem comprising off-the-shelf components integrated by component mediators
[Sulli van 94] into a new component that could then be used  as a basic building block at the next level of
composition.  The key idea is that the aggregate abstracts the subsystem by hiding some of the services
(interfaces) provided by some of the individual subsystem components (Figure 1).
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Such a style appeared to be natural, involving little more than an information-hiding encapsulation of
complex subsystems.  However, our analysis [Sullivan et al. 1997] revealed serious problems that made
selective hiding of services of inner objects and the legality of the inner components of such aggregates
mutually exclusive.

Something had to give. For example, application designers could be prohibited from selectively hiding the
interfaces of aggregated components. However, the designers of COM rejected that option, stating that
they required selective hiding of aggregated interfaces to be permitted. We were led to introduce the
notion of non-conforming objects (objects that did not follow the rules of COM) into our theory, and to
permit non-conforming components inside aggregates.  Other options were to change the specification of
COM (which we rejected, because we wanted to study COM as it was defined) or to find another
interpretation of the specification under which the difficulty would no longer obtain.

Outer component

Component 1 Component 2

Mediator

hidden
interfaces

exposed
interfaces

Figure 1. An advanced compositional style

To our surprise we found that the published COM specification does admit two distinct interpretations of
the interface negotiation rules. We call these two interpretations “static” and “dynamic.”  Our earlier work
formalized the static interpretation and led to the conclusion that legal COM components could not be
aggregated (with selective hiding of interfaces). The notion of legality of a component under the dynamic
interpretation is strictly weaker than that under the static interpretation.

In this paper we present a formal theory of COM aggregation and interface negotiation based on the
dynamic interpretation. Under the dynamic interpretation, it is possible to assemble aggregates of
communicating legal COM components that hide some of their services and still never violate the rules of
COM for the duration of their lifetime. However, in some cases to achieve this “legality” requires
cooperation from all the components of the aggregate. The cost, then of the relaxed theory is that the
legality of components and systems ceases to be a property of individual components alone and becomes
instead a non-local system property.

The results presented in this paper do not contradict the basic conclusion presented in our earlier work: By
any reasonable measure, COM aggregation and interface negotiation are subtle mechanisms whose proper
usage requires careful reasoning. Fortunately, under the dynamic interpretation, we have been able to
identify necessary and sufficient conditions for component legality in the face of interactions among
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aggregated components.  Thus, we have applied formal reasoning to deduce a set of rules conformance to
which ensures proper usage of aggregation and interface negotiation.  The extent to which these impede
architectural design in practice is not yet clear, and will be the subject of future investigations.

3. COM components
In this section we formally define the basic notions of Component Object Model: interface instances, their
specifications and unique identifiers, the IUnknown interface and components. For details on the object
model we refer the reader to [COM96, Kindel 95, Rogerson 97, Sullivan et al. 97].

3.1. Interfaces
The only way that a COM component provides services and communicates to clients is through one or
more interfaces. A COM interface is a standardizes binary structure (a pointer to table of function
pointers), however this fact is irrelevant for the purposes of our analysis. More importantly, every
interface instance corresponds to one or more interface specifications or types that declare the operations
of that interface. A globally unique interface identifier or IID identifies every interface specification. We
formalize interfaces, specifications and IIDs in Z as given sets.
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 ���
�������������
Every COM interface instance must implement the functions of the IUnknown interface specification.
This specification, whose IID also has a special name IID_IUnknown defines the QueryInterface
function which is in the hart of the COM interface negotiation mechanism. We formalize the existence of
IUnknown and its IID in the following axiom:
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We model the association of each interface specification with its unique IID as a total one-to-one function
that, in particular, associates IUnknown with IID_IUnknown.
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We use a relation InterfaceSpecOf to model the one-to-many relationship between interface instances and
specifications. In particular, every interface satisfies at least the IUnknown specification.
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Figure 2 illustrates the relationships between interfaces, interface specifications and unique interface
identifiers.

3.2. Queries
COM requires that every interface implements a special operation called QueryInterface.  QueryInterface
allows a client with a pointer to any interface on an object to obtain pointers to other interfaces on the
same object.  QueryInterface allows objects that were designed independently to negotiate

����� ��� �
	����������� ��� �
	������

any interface
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Figure 2 Relationships between interfaces, specifications and IIDs

communication protocols dynamically. QueryInterface takes an IID as a parameter and returns, through
another parameter, a pointer to an interface of the designated type on the same object. If the object does
not support the designated type of interface, QueryInterface returns a null pointer. The return value
indicates whether an interface was returned successfully.

In order to make the interface negotiation process simple and logical, section 3.3.1.1 of COM
specification [COM95] defines a set of rules that every implementation of QueryInterface must follow.
Somewhat surprisingly, these rules are stated as constraints on sequences of calls to QueryInterface
functions of interfaces on the same component.

For example, the following paragraph of section 3.3.1.1 defines the “static interface set” or as we call it
stability property that every QueryInterface implementation must have. Appendix A  contains the full
text of the QueryInterface specification.

HRESULT IUnknown::QueryInterface(iid, ppv)

It is required that the set of interfaces accessible on an object via QueryInterface be static, not dynamic, in the following precise sense.1

Suppose we have a pointer to an interface
ISomeInterface * psome = (some function returning an ISomeInterface *);

where ISomeInterface derives from IUnknown. Suppose further that the following operation is attempted:

IOtherInterface * pother;
HRESULT   hr;
hr=psome->QueryInterface(IID_IOtherInterface, &pother); //line 4

                                                       
1 While this set of rules may seem surprising to some, they are needed in order that remote access to interface pointers can be provided

with a reasonable degree of efficiency (without this, interface pointers could not be cached on a remote machine). Further, as
QueryInterface forms the fundamental architectural basis by which clients reason about the capabilities of an object with which they
have come in contact, stability is needed to make any sort of reasonable reasoning and capability discovery possible.
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Then, the following must be true:

• If hr==S_OK, then if the QueryInterface in “line 4” is attempted a second time from the same psome pointer, then S_OK must be
answered again. This is independent of whether or not pother->Release was called in the interim. In short, if you can get to a
pointer once, you can get to it again.

• If hr==E_NOINTERFACE, then if the QueryInterface in line 4 is attempted a second time from the same psome pointer, then
E_NOINTERFACE must be answered again. In short, if you didn’ t get it the first time, then you won’ t get it later.

Effectively, this says that if in a sequence of call s to QueryInterface functions there is a subsequence of
two call s through the same interface that ask for the same IID, then both of the call s must succeed or both
fail . Unfortunately, although the specification claims to state the required properties of QueryInterface
“in the following precise sense” there are at least two distinct interpretations of this rule as well as the
other rules. The static interpretation assumes that the requirements imposed by the COM specification
upon sequences of call s to QueryInterface apply to all potential sequences including those not actuall y
executed and even those that could not possibly be executed during the li fetimes of the interfaces in
question. The theory of COM that we presented in our earlier work [SSM97] uses this interpretation. It
formalizes requirements upon the entire collection of all potential sequences of call s to QueryInterface as
axioms of the QI function defined as follows:
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For any given pair of interface �  and IID  "!�#�$%�'&( *)  determines the result of every call to QueryInterface
function of interface �  asking for IID  . In particular, if $%�'&+ *)-,. 
/
01!�# , then every such call will return
NULL (object does not have an interface of requested type). If !�#�$%�'&2 *)4315 , then every such call will
successfully return interface 576  Thus !�#  implicitly defines all possible sequences of calls to
QueryInterface functions of all interface instances on all components and there is no need to model such
sequences explicitly.

An alternative dynamic interpretation of the rules of interface negotiation makes a weaker assumption. It
assumes that only actual sequences of calls to QueryInterface functions of interfaces exposed by an
object must follow the rules of the QueryInterface specification. By an actual sequence of calls we mean
a sequence of calls that have been made during the lifetime of the object. The dynamic interpretation is
the basis for a new theory that we will present for the rest of this paper along with a slightly modified
version of the static theory that we first presented in [SSM97].

We begin with formalizing the informal notion of invocation of a QueryInterface function of an
interface. We will call such invocations queries and model them as elements of  set Query of triples
(i, d, r) where i is the interface instance whose QueryInterface function was called, d is the IID requested
and r is the result returned by the call to QueryInterface. In order to model both successful and
unsuccessful QueryInterface calls we introduce a special interface constant null.
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We model an unsuccessful QueryInterface call as an (i, d, null) triple. A successful call corresponds to a
triple having an interface other than null as its third element. Thus null roughly corresponds to the NULL
interface pointer that QueryInterface returns when the component does not have the requested interface.
In order to emphasize the fact that null is a valid query result we introduce a synonym QueryResult for the
Interface type that we will use to designate the type of query result values. We will use the type S�T
U�V�W X�Y
Z�V
only for the variables that cannot assume value T;[+\�\ .
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Now we are ready to formally define a call to QueryInterface as an element of the Query set.
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We define receiver, request and result as accessor functions for queries returning respectively the first,
second and third elements of the query triple.
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3.3. Components
In this section we give formal definitions of components for the static ( ¦�§ -based) and dynamic (query
sequence-based) models of COM.

3.3.1. QI-based (static) model
A COM component instance (or component) is an object that exposes a finite set of interfaces. The set of
interfaces that the component exposes is defined recursively. Firstly, firstInterface, the interface that the
COM component creation routine returned when it created the instance, is exposed. Secondly, every object
exposes a distinguished interface (not necessarily distinct from firstInterface) that satisfies at least the
IUnknown specification.  In COM, this interface is called the distinguished IUnknown of the object.
Lastly, if defined, the result of applying QI to an interface of an object is another interface on the same
object. We define the set of IIDs of an object to be equal to the set of IIDs of the specifications that are
satisfied by the individual interfaces of the object.
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Note that the set 
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�
 contains the interfaces that a component can potentially expose to its clients.

The component does not necessarily expose all of them in its lifetime. Indeed, the static model of COM
does not deal at all with the issue of interfaces that clients can potentially get from an object versus those
they actually get. This distinction is abstracted out and we assume the rules of QueryInterface to apply to
all potentially exposable interfaces, i.e., the members of 
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set.
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3.3.2. Sequence-based (dynamic) model
Our dynamic theory also models component instances as objects exposing one or more interfaces.
However, in contrast with the static theory, where the emphasis was on the set of exposed interfaces, the
essence of an object here is the sequence ���������	��
 of calls to the QueryInterface functions of the interfaces
on the object made during the lifetime of the object. Since the lifetime of every component instance is
finite, queries is a finite sequence. As it was in the static model, firstInterface is the interface returned by
the routine that created the instance. In addition, pUnkOuter is an interface, not necessarily distinct from
firstInterface, that COM requires an aggregating component to expose to its aggregatees. We assume this
variable to be null if the component is not an aggregator. In order to simplify our model we assume that
every query receiver in the queries sequence is either firstInterface or pUnkOuter or a result of an earlier
successful query (C1). In other words we assume that an object does not pass its interfaces to clients by
means other than QueryInterface calls. Although not explicitly stated in the COM specification, this
assumption has recently been confirmed by the designers of COM  [Brockschmidt 1997].  The set
interfaces is the set of interface instances the component exposes to its clients during its lifetime. As such
it contains the interface firstInterface that the creator of the component obtains from the creation routine,
pUnkOuter that the component passes to the objects it aggregates (if any) and the results of all successful
queries on the component (C2). Unlike the �
� -based definition, here it is specifically not the case that
interfaces contains all the interface instances an object may potentially expose if queried for. The set
interfaces contains only the interfaces actually exposed to some clients of the component during its
lifetime. Likewise, iids contains the types of all the interfaces that the component actually exposes. (C3)
formalizes the COM identity requirement that any query asking for IID_IUnknown must succeed and for
any given object two such queries must return the same interface.
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3.4. COM identity
In this section we formalize the notion of component identity as defined by COM standard in its static and
dynamic interpretations.
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3.4.1. Static model
COM object identity is defined in terms of the distinguished IUnknown interfaces of components. The
basis for identity is the requirement that every call to QueryInterface made through any interface of an
object, with IID_IUnknown as a parameter, always returns the same, distinguished IUnknown interface of
that object. The identity axiom of the static model formalizes this requirement.

����������	�
���
���
�����������
������ ������� ���"!#�%$ ��
������ ��������&
')(+*�,.-0/�*1*12 34*.5#6�7�6�8:9;6"<;=?>%@ - AB6�7�6�8:9;6

COM defines object identity as follows: Given any two interfaces, you determine whether they are
interfaces on the same object by querying for IID_IUnknown through each, then comparing the returned
interfaces (pointers). We formalize COM object identity as a binary relation C D�E1F�G H . It is easy to see that
C D�E1F�G H  is an equivalence relation.

IKJML N�O1P�Q R SUTWV�X�Y�Z�X�[�\�[�]�^_V�X�Y�Z�X�[�\�[�]`�abababababababababac�d�e)f�gih�j�k�l�m�k�n�o�n�pc q�esr t�u1v�w x y{z |%} ~ �B�������:�;����yb} ~ �B�������:�;�

3.4.2. Dynamic model
The dynamic interpretation of the rules of COM naturally leads to a different notion of component
identity. The identity inherent to a component is no longer applicable and is replaced by manifested
identity. Under the dynamic interpretation one has no other way to find out whether two components are
identical in the COM sense than to compare the results of queries for IID_IUnknown in the respective
component query sequences. We call such query results manifested identities. Since whether a component
gets a chance to manifest its identity depends on the sequence of queries that clients make to the
component during its lifetime, manifested identity is not defined for every component. Instead we define it
through iunknownd, a partial function that maps a component into the common result of all queries for
IID_IUnknown on its interfaces, if there are any such queries. (C3) guarantees that iunknownd is indeed a
function.

��~ �B�������:�;� � ������������������� � ����������� ����������b�b�b�b�b�b�b�b�b���������� �B �¡� ��:¢;  £ ¤M¥§¦�¨�¦�©�ª�«�©�¬�­�¬�® ¯ °�±.²´³?µ�¶K·�¸ ¹»º ³:¼B½�¶K¾�½�¿�À»¶K½�³:¼B½�¿KÁÂ³�ÃÅÄ1Ä1Æ Ç4Ä.È#¸�É�¸�Ê:Ë;¸"Ì�À)¹ÎÍÏÏ�ÐsÑ�Ò�Ó�Ô�Õ�Ö ×BØ�Ù�Ø�Ô:Ú;Ø ÛÏ�Ü»Ö ×BØ�Ù�Ø�Ô:Ú;Ø Û ÝMÞÎß.àâá?ã�äKå�æ Ý»ç á:èBé�äKê�é�ë#ì�äKé�á:èBé�ëKíÂá�ÞÅî1î1ï ð4î.ñ#æ�ò�æ�ó:ô;æWõ»äKé�ë�è÷ö íÂá"ø

Now we can define a new COM identity predicate.

ùKúMû ü�ý1þ�ÿ � ú��������	� 
���
�������� � �������	� 
���
�������� ������������������������������� ��!�"�#	$ %�&�'�&�"�(�& ) *�+-, .0/2143 ) 576 8 9�:�;�:�<�=�: ) +-,>8 9�:�;�:�<�=�: ) 5

One can interpret the expression X =com,d Y as “components X and Y both have manifested their identities
and those identities have been found equal”. Obviously, a component that has not manifested its identity
during its lifetime is simply not in the domain of the =com,d relation and the result of the comparison is
undefined.
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4. Formalizing the interface negotiation rules

In this section we give two formal models of the interface negotiation rules of COM. The first model is
static (QI-based). It states the interface negotiation rules as constraints on the ���  function. The second
model is based on sequences of queries.

4.1. Static model
In order to be able to reason formally both about interfaces whose QueryInterface functions obey the
rules of interface negotiation and those whose QueryInterface functions don’t, we limit the domain of
those rules to the subset �������	��

��� ��������� �  of �	��

��� ������� . The elements of �������	��

��� ��������� � are called legal
COM interfaces. The first requirement on a legal COM interface is that successful invocations of its
QueryInterface operation always return interfaces that actually have the requested IIDs (Appendix A,
lines 1,2)

�	�������	���
��� �� �!���" # $&%'�	���
��� �� �!��(*)&)&)&)&)&)&)&)&)&)+-,/.10�2�3�4�5	6�7
8�9 :�;�<�8�= > ?A@CBEDFDFGIHKJMLONA@QPSRT@�U�VXW�DZY[W�DEJMLONA@QP]\^@_R`DFDFG`acbdD	e�f
g�h b�i�j�g kMl-monkMl-mon

The other interface negotiation rules of COM include stability (Appendix A, lines 10-22), reflexivity (line
28), symmetry (lines 29-31) and transitivity (lines 32-37).  Because we model QueryInterface as a partial
function p�q , the stability rule applies automatically to all interfaces, including those of r�s�t�q	u�v
w�x y�z�{�w�| }
set. We formalize the other three rules in the following axioms.

First, COM defines reflexivity to mean that if you have a legal COM interface a with type iidA, then
calling QueryInterface on a for iidA must succeed. It is not required that the returned interface be a itself,
unless a is the distinguished IUnknown and iidA is IID_IUnknown. Recall that IIDOfInterface associates
an interface with all of the IIDs that it satisfies. We formalize the COM notion of reflexivity by stating
that the domain of QI contains the subrelation of IIDOfInterface restricted to the subset of legal COM
interfaces. ~������	���
��� ��������� � ���F�F�`�c�d�	���
��� �������[�������[��� �M� �¢¡�M� �¢¡

Second, the symmetry rule in its “static” interpretation means that if you had a legal COM interface a of
type iidA, and if calling QueryInterface on a with iidB would succeed in returning an interface b, then
calling QueryInterface on b with iidA would have to  succeed. This condition must hold regardless of
whether the sequence of these two calls has actually been executed or it can potentially be executed or
even if it cannot possibly ever be executed on a given component.

£/¤¦¥�§©¨�ª�«�¬�­	®�¯
°�± ²�¤�³�°�´ µ ¶A·
·
¸�¹»ºA·
·
¸½¼�¾E¿F¿FÀ ÁMÂ¦Ã&ÄÁMÂ¦Ã&ÄÅKÆMÇ¦ÈAÉ
É
Ê½ËÍÌSÎTÊ�Ï�Ð[Ñ�Ò
Ó/ÔTÕ^Ö
Ö
×�ØÚÙ`ÛFÛFÜ`ÝcÞdÛ	ß�à
á�â Þ�Ô�ã�á/äæå�ÛEçMÔ¦èAÖ
Ö
×½éÍêSëíìïî çðìoèAÖ
Ö
×�Ø`êSÙT×�ñ�ò[å�Û

Finally, transitivity under the static interpretation of COM interface negotiation rules means, informally,
that if QueryInterface can get you from “here to there” and “there to somewhere else,” it can get you
“here to somewhere else.” The formal statement is similar to those in the preceding paragraphs. 2  Again,
the word “can” in this rule implies that the subsequence in question need not be in the sequence of
QueryInterface calls actually executed on the component.

                                                       
2 The specification actually gives an unorthodox definition of transitivity: informally, that you can get “from elsewhere back to here.” The

definition is not equivalent to the ordinary definition of transitivity, and it is not strong enough to ensure that QueryInterface operations
have the required “anywhere-in-one-step” property. We therefore interpret the COM specification as using an erroneous definition of
transitivity; and we have used the common definition in place of the unorthodox one.
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Just as we had to distinguish legal COM interfaces, we also had to distinguish legal COM objects. We
model legal COM objects as a subset of Component whose elements have only legal COM interfaces.

�������q������������� � �3���������7��������� �
���3�3�3�3�3�3�3�3�3�
���J )¡¢ �£�¤q£�¥�¦�§�¨�©�ª « ¬J­�® ¯�°�±�²�³ ´�µ�¶�²�·¹¸º­�»�¼�½�°�±�²�³ ´�µ�¶�²�· ¾

4.2. Dynamic model
The legality of a component in the static model of COM is determined by the legality of its essential part
that is the set of interfaces. Likewise, in the dynamic model a component is considered legal if and only if
its essential part is legal. In this case the essential part is the sequence of queries that the component
receives in its lifetime. In this section we define a legal query sequence as a sequence of queries that
satisfy the definition of QueryInterface and all the interface negotiation rules of COM, namely, stability,
reflexivity, symmetry and transitivity.

First we formalize the requirement that every successful query in a sequence returns an interface of the
requested type. This corresponds to the way COM specification defines QueryInterface.

¿ÁÀ�Â�ÃAÃAÄ�Å�Æ Ç�Ä�È�É�Ê ÆÌË3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3Ë3ËÍ�Î#Ï	ÎAÐ�ÑOÒ�Ó�Ð�Ô,Õ
Ö�×3×3×3×3×3×3×3×3×3×
Ø�Ù)ÚÜÛ	ÝAÞ�ß¢à�á�ÝAâ�à�ã�ä åÌÚ¢æçß%ã�ä�äéèêÝAâ�à�ã�ä åÌÚOëQÝAâ�Ú%ã�â�àAåÌÚíìWî,î,ïWð[ñ\î�ß�å�â�Ý ñ�Þ�ò�â ó�ô�õ�öó�ô�õ�ö
÷�ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø3ø

Then we formalize the rule that requires the behavior of QueryInterface be stable (or “static” as the
COM specification calls it) in the following sense. If a request for a given IID succeeds (fails) once, then
any subsequent call to the QueryInterface function requesting the same IID must succeed (resp. fail). In
the static theory this property of legal QueryInterface implementations was implicitly superseded by a
stronger assumption. Since QI is a mathematical function, it always returns the same result for the same
tuple of arguments. The following schema defines the set of stable query sequences. In any such sequence
any two calls q1 and q2 to the QueryInterface function of the same interface asking for the same IID must
both succeed or both fail.
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The next schema is the reflexivity rule. In a reflexive sequence any query that requests an interface of the
same type as the query receiver, must succeed.
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The following schema formalizes the symmetry requirement. If a sequence s contains a query to interface
x for IID iidY that successfully returns interface y, then any later query to interface y asking for an IID of
interface x in the same query sequence must succeed. Informally, this rule states that if QueryInterface
actually gets you from “here” to “there” and you ask it to get you back “here” it must do so or else it is
illegal. Compare this with the informal rendition of the symmetry rule in our static theory: “if you can get
from here to there, you can get from there to here”.
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i�jlknm�o*prqDs.tEu�v w
x.y�unz>{E{E|
}~m�{E{E|n��prq"q"�<z>v�p.����u�v"o���u��D�J� t�z�s � ��� � ���.�.�(� ���P������P���
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And finally we formalize the transitivity rule requiring that for a sequence s containing three queries: to
interface x for iidY returning interface y, to interface y for iidZ, returning interface z, to interface x for iidZ
returning result r (in this order), the third query must succeed. Again the informal interpretation of this
rule is that if you did get from here to there and from there to somewhere else, then you must be able to
get from somewhere else back here. The dynamic theory does not constrain what must happen if you never
actually tried to get from “here” to “there” and then to “somewhere else” but could potentially.
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å�æ�æ�æ�æ�æ�æ�æ�æ�æ�æ
ç�èlénê ëJê ì~írîDï.ðEñ�ò ó
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Now we are ready to define the set of legal query sequences. We define it as a subset of sequences of
queries in which every sequence s satisfies the five requirements (L1) – (L5).
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4.3. Dynamic legality of a component
As one might expect, the dynamic model of COM defines a legal COM object as a component for which
the actual sequence of queries made to its interfaces for its entire lifetime is a legal query sequence.
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Thus a component instance is legal if and only if the sequence of QueryInterface calls (and their results)
that the clients of the instance have actually made to its interfaces complies with the rules stated in
p. 3.3.1.1 of the COM specification document. Put another way, a component is legal if it does not
demonstrate the opposite through its behavior for the duration of its lifetime.

4.4. Relationship between static and dynamic legality of a component
Our static and dynamic theories of COM define the legality of a COM component differently. In this
section we will consider the relationship between the two definitions. We will show that a component that
is legal under the static interpretation of the rules of COM is also legal under their dynamic interpretation.
The converse is not true. Thus the notion of legality as defined in our dynamic theory is weaker than the
static legality of components.

Unfortunately we cannot express this statement formally simply as S�T�U�T	V�W
X�Y�Z�[ \ ]^S�T�U�T	V�W
X�Y�Z�[ _ because
the two sets consist of elements of distinct schema types Components and Componentd. In order to
establish a pairwise correspondence between values of these types we define a total one-to-one mapping
Dyn from Components to Componentd. This mapping relates static and dynamic models of the same
component.
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Now we are ready to formally express the connection between the static and dynamic definitions of
component legality.

Theorem 1: Static legality implies dynamic legality������������� �"!$#�%�&�'�( ) *,+-����� �"!$#�%�&�'�( .

Proof:
Let /10�243�5�673�8�9�8�: ; <>=?0�243�5�673�8�9�8�: @ such that /BAC2�D�E D"F$G�9�H�:�I ; J>KML K�N�OQPSRUT�V
We shall show that KMWCX�Y�Z Y"[$\�]�^�_�` a by way of showing that D.queries satisfies the axioms (L1) - (L5)
of dynamic legality.
(L1) follows from the fact that since S is in COMObjectss, all of its interfaces are COMInterfacess. By
(D1) all of interfaces from D.interfaces are in S.interfaces. Then for all bQc>dfe�g�h�i j�k�l�hnmpo1c>dqdqrBm
isc�t�uvh�iqwyx�h�zfu�{ g  such that |Sb~}po�}pi>���
i�k�e�rB� �yuvh�i�b�h�z we have:  �����y���������S�4���U���������>�S�~�p�U�����U�
and so by (S1)  �4���B���q�q�� �¡¢�f£�¤�¥�� ¡�¦�§�¥ .
(L2) follows from the fact that QI is a partial function and its result on given parameters, if defined, is
always the same.
L3, L4, L5 follow from the reflexivity, symmetry and transitivity properties of QI respectively.
Let ¨Q©>ªf«�¬�­�® ¯�°�±�­n²p³1©>ªqªq´B²p®s©�µ�¶v­�®q·y¸�­�¹f¶�º ¬Q»�¼S¨~½p³�½p®>¾�¿
®�°�«�´BÀ Áy¶v­�®�¨�­�¹�ÂÃ¨�Ä�³B¿�ªqªq´�Å�¯¢ªf«�¬�­�® ¯�°�±�­ . By (D1)ÆBÇ È�É�Ê�Ë�Ì Í�Î�Ï�Ë�Ð4ÑÓÒ�Ç È�É�Ê�Ë�Ì Í�Î�Ï�Ë�Ð

 and by (C1) 
ÈUÔ�ÆBÇ È�É�Ê�Ë�Ì Í�Î�Ï�Ë�Ð

. Thus 
ÈUÔ
Ò�Ç È�É�Ê�Ë�Ì Í�Î�Ï�Ë�Ð

 and so



15

���������
	���
���� ��������� �
because � ������������������
�� � . By the reflexivity property (C2) �! #"%$�&(')$�*�+-,�. and by

(D1) /�01,�.2�! #"%$�& . We conclude that /436587:9�9 , since 587:9�9<;)$�*�+=.>.>?A@CBD.�5�E�F�/ B�G�H�F and
/JIK$L'A.>.>?A@CBD.�5�E�F�/ B�G�H�F by (S1). Thus the dynamic reflexivity property (L3) holds for ?LM N87OF�/P �F�Q .
Now we will show that (L4) holds for ?LM N87OF�/P �F�Q .
Let RTSVUXW2Y�Z�[�\�] ^�_�`�\TaAb�b�c�deS%b�b�cTfgW2Y>Y>hLaA]iW�j�kO\�]>U8l4\�m�k:n [�a%Z o p%q r s%t�u�vxw such thatyLz {8|O}�~P��} w%�!q o �(�����T�%�����T�<�V�����-�A�K�������-�A�>�>�A�C�D��������� �������%�%� � �X� � and �L� �8�O �¡P¢� �£%¤!� � ¥(¦�¤#§:¨%¢�¢�©�ªe¨%¡2¥ . We
need to show that ¡4«6�8�:¬�¬ . First, observe by combining (C1), ­L® ¯�°�±�²�³ ´�µ�¶�²�·J¸º¹C® ¯�°�±�²�³ ´�µ�¶�²�·  and
¹L»�¼�½�¾�½�¿�À�²�¶�±�· Á  that {ÂTÃVÄ�Å�ÆxÇ�È�É
Ê�Ë�Ì�Í�Î Ï�Ð�Ñ�Í�Ò Á Ó Second, by (D1) Ô�Õ2Ö�×TØ%Ù�Ù�ÚTÛÝÜ(Þàß  and so by (S3)
Ö#ß:Ø%Ù�Ù�Ú�á)Ü(â)Ú�ã�ä-Ô�Õ . Applying (D1) again we get å�Þ1Ô�Õ2Ö#ß:Ø%Ù�Ù�Ú�á)Ü  that implies å4æ6ç8è:é�é .
We have shown that the dynamic symmetry property (L4) holds for êLë ì8èOí�åPÙ�í�î .
The proof of the fact that (L5) also holds for êLë ì8èOí�åPÙ�í�î  is similar and is left as an exercise for the reader.
Since all of the schemas ïJð�ñPñPò�ó�ô õ4ò�ö�÷:ø ô#ù%ú�ô�ûTü�ø ò%ù%ú�ý�þ�þ�ò�ô�ñPÿ�ó%ù2õ4ò��Vø ò��8ÿ �8ò and ���	��
��	
���
 ���  (L1) - (L5) hold for��� ��� ���	
������ by definition of ���������� � ���"!�#�� ��� ��
�$���� set, 

��� ��� ���	
����&%'���������� � ���"!�#�� ��� ��
�$����  and so� %)(+*&,-*/.10���$���� 2 34

5. Aggregation
In this section we use our dynamic theory to develop a formal model of COM aggregation in terms of
sequences of queries.

5.1. Dynamic model of aggregation
The COM specification document defines the rules of aggregation and those of QueryInterface using
similar definition styles. The approach used for the QueryInterface rules as we have observed consists of
imposing constraints on the behavior of well-implemented QueryInterface functions. COM formulates
these constraints as rules (e.g., symmetry, reflexivity, transitivity) that all legal sequences of calls to
QueryInterface must follow. Similarly, COM defines aggregation in a set of the following six rules
[COM96, section 6.6.2] that constrain the behavior of the outer (aggregating) and the inner (aggregated)
components.

1. When creating the inner object, the outer object must pass its own IUnknown to the inner object through the pUnkOuter parameter
of IClassFactory::CreateInstance. pUnkOuter in this case is called the “controlling unknown.”

2. The inner object must check pUnkOuter in its implementation of CreateInstance. If this parameter is non-NULL, then the inner
object knows it is being created as part of an aggregate. If the inner object does not support aggregation, then it must fail with
CLASS_E_NOAGGREGATION. If aggregation is supported, the inner object saves pUnkOuter for later use, but does not call
AddRef on it. The reason is that the inner object’s lifetime is entirely contained within the outer object’s lifetime, so there is no need
for the call and to do so would create a circular reference.

3. If the inner object detects a non-NULL pUnkOuter in CreateInstance, and the call requests the interface IUnknown itself (as is
almost always the case), the inner object must be sure to return its non-delegating IUnknown.

4. If the inner object itself aggregates other objects (which is unknown to the outer object) it must pass the same pUnkOuter pointer it
receives down to the next inner object.

5. When the outer object is queried for an interface it exposes from the inner object, the outer object calls QueryInterface in the non-
delegating IUnknown to obtain the pointer to return to the client.

6. The inner object must delegate to the controlling unknown, that is, pUnkOuter, all IUnknown calls occurring in any interface it
implements other than the non-delegating IUnknown.

In our dynamic theory we render these rules in terms of interfaces and query sequences. We define
Aggregatesd as a binary relation on the set of components which in this case is Componentd. For every
pair of components O and I where O aggregates I we state that they must have at least one interface that
they share. In other words their sets of interfaces exposed to clients intersect (A1). In the spirit of our
dynamic model we do not consider aggregation a situation where the outer component creates an inner
component but never returns its interfaces to clients. Such a set up is of no interest to us because it does
not actually manifest aggregation and from the client point of view is no different from having no inner
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component at all. We specify that according to rule 1 above the outer pUnkOuter interface must be non-
null (A2). By rule 3 the first interface of the inner must be of type IUnknown  only (A3). This is the
hidden non-delegating iunknown interface of the inner. It is called “hidden” because it is never exposed to
clients by the outer (A4). Rule 4 requires that if the inner is itself an aggregator, it must pass down the
pUnkOuter of the outer component and not its own pUnkOuter (A5). For simplicity we do not consider the
situations of multi-level aggregation in our theory, however the theory can easily be generalized to include
such aggregates. Finally, (A6) states that a component cannot have more than one aggregator, the inverse
of Aggregatesd  relation is a partial function.

�����������	��
����	
 � ���������������	��� � ���������������	��� �������������������������! #"�$&%�'�(�)�*�(�+�,	+�- . /�021436587�9�9�:�;	9�<�=�;	> ?@BA!CED F�G�H�I	J KML�N	I	O�PRQSD F�G�H�I	J KML�N	I	O�TVU WYX[Z]\WYX[Z]\^B_a`Sb cedgf�hi`kj]l�m	n�opfqjsr�r tYukvxwtYukvxwyBz|{~}����	� �M���	�	�M���	�i��������{E� �M������� {~}����	� �M���	�s�	���!��{��g}��	}��q��}e�
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pUnkOuter  :  IUnknown

forwarding delegat ion

Inner

a : IA

b : IB

c : IC

Outer
f i rst Interface : IUnknown

Figure 3: a simple aggregate

 We want to emphasize that the mechanism of aggregation allows two or more independent components to
share their interfaces. This means that the QueryInterface functions of elements of an aggregate may in
fact return interfaces implemented by a different component. The outer may return interfaces implemented
by the inner and vice versa. Because for the purposes of our analysis we still need to distinguish the sets of
interfaces implemented by different objects, we define a function à�á�â�ã äqåMæ~ç�â�å	è éMá�ê	å	ë  that maps an
aggregating component into the set of interfaces it implements and exposes to clients during its lifetime.
According to rule 5 above this set includes only those interfaces, that are not obtained from an inner
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component by querying its ��� �����	�	
 ���

���� ���
���  (A7).  We require that ��� �����
������
���� be a native interface of O.
Likewise, we define ���

�� � ���!�!"#� as a function that maps an aggregated component into a set of IIDs
interfaces of which that component implements and exposes to clients. The set of native IIDs of an
aggregated component consists of the IIDs for which its clients have successfully queried its non-
delegating hidden IUnknown interface (A8). Although this last definition looks a little unnatural at first,
it follows from the combination of rules 5 and 6 above.  For the aggregate on Figure 3���
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Rules 5 and 6 of aggregation prescribe the necessary actions that QueryInterface functions of the
interfaces on the outer and inner components respectively must perform when clients call them. Expressed
in the language of our dynamic theory these rules establish 1-1 correspondences between some
subsequences of the  query sequences of the outer and inner components. StrictCorrespondence defines
the class of all such correspondences as order preserving 1-1 functions from indices to indices.
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Rule 5 that we call the forwarding rule requires the outer component forward to the hidden non-delegating
iunknown interface of the inner every query for an interface of the inner component that the outer wants
to expose, and then return the result of that subsequent query to the client. We represent the fact of
forwarding as a mapping Forward from all pairs (O, I) of components in the Aggregatesd relation to strict
correspondences fO,I from the indices of the outer query sequence to the indices of the query sequence of
the inner component. The domain of fO,I is restricted to the indices of only those queries to interfaces of
the outer that are not interfaces of the inner (A9). The image of such an index corresponds to a query from
the inner component query sequence that has the same request and result parts but whose receiver is the
hidden non-delegating iunknown interface (A10).
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To illustrate the action of � ��� �  consider the aggregate on Figure 3. Suppose that the sequences of calls that���	��

�
 and ����� 

�  components have received are as follows:

���	���
��� ���	�
�����
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.�1�23.54#-/.�0����	���
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L�P�K
Q�RTS#U VWP�L�Q�X I�J�X�K
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K3I([]\;^_U�\`I%a]ZA^_U VWP�L�Q�X I�J�X�K
L VWY�Z
K3I%a]ZA^_U%Z3IEb'Y#^dc
Then the arrows indicate the pairs of queries related by 

V e�f g
.

We model sharing interfaces between the outer and inner components of an aggregate as a mapping Share
that defines for every pair hjilk  in the Aggregatesd relation a strict correspondence pO,I between indices
of queries in the query sequences of I and O. When a client queries a shared interface, an appropriate
query appears in both query sequences. m n�o p establishes a one-to-one correspondence between such queries
in the query sequences of I and O.
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Again, for the same query sequences of lnm'o+p)q and Inner as in the previous example we get the following
sharing correspondence r s�t u v
wnx'y+z){}| ~%x'z){��+z)�����`�d�������i���d�.���)���%�����`�.����wnx'y+z){��
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Rule 6 establishes a correspondence between the queries to the delegating interfaces of the inner and the
queries to the pUnkOuter interface of the outer component. We define a mapping from aggregates »�¼¾½
to order preserving 1-1 correspondences gO,I between the indices of the queries to the inner and to the
outer in their respective sequences. For every query to a delegating interface of the inner, gO,I gives the
index of a query in the outer query sequence that the inner sends to the outer in order to delegate the
original query (A12).
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Once again we use the same pair of query sequences of ���������  and �	��
����  to illustrate the action of the
delegation correspondence 
 ��� � .�	��������� ���������������! #"%$'&(&()+*,&%-/.�0�.�1�23.54#-/.�0��	��������67"%$'&(8:9;67"�9<&%=:>?67"@4#-/.�0��	�������A&%=:>?67"@4#-/.�0��	�������A&CBD$#6FE
G�H�H�I�J�K L�M�I�J�N�I�O	PRQ#S TUN�J�O�V G�H�V�I�J TUW�X�I3G(Y[Z;\]S�Z^G%_[X?\]S TUN�J�O�V G�H�V�I�J TUW�X�I3G%_[X?\]S%X3GC`aW#\cb

We assume that QueryInterface called in the query to a delegating interface does nothing but delegates
the call to pUnkOuter, i.e., calls its QueryInterface function. Thus if a client queries an interface of the
inner that is delegating and shared with the outer component, then the copy of this query and the
delegation query are next to each other in the outer query sequence.
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5.2. COM identity under aggregation

Theorem 2: Dynamic COM Component Identity
If a component outer aggregates a component inner and inner reveals its identity through an interface
other than its hidden non-delegating IUnknown, then outer and inner share dynamic object identity as
defined for COM components.
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Proof:
First we shall demonstrate that the relation =com,d is indeed defined for components I and O. This is
equivalent to iunknownd  function being defined for both of the components in question. Recall that#�$�%'& (*)�+�)�$�,�) - .0/21'3�1�$�%546$�)�7�)�8 - 9�:�;=<?>A@CB�D�EGF <�H*I�@CJ�I�KL9M@CI�<�H*I�KCNO<QPSR�R�T�UVR�WXD�Y�D�Z�[�D]\�^_Ea`
It follows from (A14) that b�c�d�e�f'g h*i�j�i�e�k�i l .
Let i  be the index of a query m?c?nCo�ipbrq m�h*s�nCg�s�t such that uCv�w�v�x y�v�u�z={0|r} ~�x�uC�C� |�����v�u ~���w�v . Such a query exists
by (A14).  Then �  is in the domain of the delegation strict correspondence function g=Delegate(O, I). By
(A12) the image of n under �  identifies a query � ’ ����� ���*���C�����A�����]�  in O.queries that requests for the
same IID as q, namely IID_IUnknown. Thus O manifests its identity and so �a�������'� �*����������� �  .
It remains to show that � �*������ �¡�� � ¢X£¤� �*������ �¡�� � ¥ , in other words that there exists a pair of queries  for
IID_IUnknown in I.queries and O.queries respectively that have identical results.
Observation that q and  q’ are just such two queries completes the proof.¦

The premise (A14) that inner manifests its identity through an interface other than its hidden non-
delegating IUnknown is essential as the following counterexample illustrates. Consider the aggregate on
Figure 3. Suppose that the inner and outer components have the following parameters:

gO,I
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Although the components O  and I satisfy all the requirements of aggregation in its dynamic interpretation
and manifest their identities, so that iunknownd is defined for both of them, we have

� ���������'�C� � �������������C�������������������
� ���������'�C� � �������������C���
���� �¡ ����¡���� �
¢�£��

Thus ¤�¥ ¡����§¦ ¨�©7ª�« ¬ ­�®�®�¯�° .
We conclude that under the dynamic interpretation of the rules of COM the parts of an aggregate are not
necessarily COM identical as it was the case under the static interpretation. An extra premise that the
inner must manifest its identity through an interface other than the non-delegating IUnknown reveals the
mechanics of aggregation. It is the delegation of QueryInterface calls that makes the COM identities of
the parts of an aggregate equal. As long as we access the identity of the inner through a non-delegating
interface, we may get a result different from the outer’s identity and from the identities of all other inner
components.

6. Necessary conditions of legality of an aggregated
component

Our static theory of the rules of COM predicted that selective hiding of interface types of an inner
aggregate component implies that we no longer can assume that the rules of COM in their static
interpretation hold for that component.  In particular, we cannot assume that the symmetry, reflexivity
and transitivity properties hold for all potential sequences of queries to the interfaces of that component.
This, however, is not a problem if we want to guarantee these properties only for the actual sequence of
queries that will be made to the component in its lifetime. Our dynamic model describes just such a case
and, as we will soon show, imposes weaker necessary conditions upon the legality of aggregated
components.

6.1. Theorem: Reflexivity and selective hiding of interfaces
If  a component O aggregates a legal COM object I, then the sequence of QueryInterface calls to
interfaces of I does not include a reflexive call to a delegating interface requesting an interface type that O
does not expose. A reflexive call is a call to the QueryInterface function of an interface, requesting an
IID of that interface. (Figure 4)
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Proof:
By contradiction.
Let I:J K+L�M @�N�O�@�=�<�=�A P such that Q�R�S�T�U�V�V�W�X�V�Y�Z!X�[ P and S�T(\�Q+],Q.^0_2X�`�Z![ P a
Let bdcfehg�i!j�k l2b�m�jonqp!p!r�stcfeueuvwnqkxc�y+z{j�ku|?}�j�~hz�� i  such that �!�!��������� �!�!��������� �!�!�����������!�!�������u�u�������h���!��� �2�����
and������  ¡2¢!£�¤�¥ �h¦�¥!§�£ ¡2��¨�§o  Suppose that © ��ªq¢!¢!«�¬xªq£f­�®�£���¦:��  ¯?°{§�£�¢!§�¤  and let ±d²´³ such that ± µ�¶�·�¸º¹�» ¼?½{¾�¿�À!¾�Á andÂ�Ã Ä?Å{Æ�Ç�È!Æ�ÉqÊÌËÎÍ�ÏÐÊÌÑ�ÒqÈ!È!Ó�ÔxÒqÇfÍ�Ã
Then 

Ë
 is in the domain of the delegation correspondence  Õ Öf× Ø Ù,Ú:ÛfÜ Û�Ý�Þ�ß!Û�à�á:âfãFä   and by property (A12) of

aggregation  á�å æ?ç{Û�è�é!Û�êqàÌÝ Öf× Ø ëÎì�íÐî�ï�ð ñÎòxë�ófï+ô{õ!ö�÷�øqù!ù!ú�ûxøq÷fì�üý÷�þ�ë�ï�ð ÿ?ô{ö�÷�ù!ö��Fð
Since 

���������	��
 �����
�
, �  must be equal to �������  by definition of 

� �
����� ���
��� �  and 
�����
�

 sets of a component.
Thus ����� ������� �����������! "�#�
�%$ 
 & �'��� � � � . On the other hand, since $( 	) �+*,�.-0/ ����� � 1  we have:243 5�6'7�8#9�7�:+;=<>7�?
@BA�C+6'7�8ED
F
7�5�6'7�G
H�7�:

 and by the reflexivity rule (L3) I @�J�9�9�K�LMJ�G�6�A�A�N!OP8#@
G%243 5�6'7�8#9�7�: .
We have a contradiction. Our assumption that I @�J�9�9�K�LMJ�8QN!;P8#@
G%243 5�6'7�8#9�7�:  is untenable and so
I @�J�9�9�K�LMJ�8QN!O"8#@
G%243 5�6'7�8#9�7�: R
S

pUnkOute r

delegation

T

U

a : i idA

i i dA?

V'WYXZX

non-delegat ing
IUnknown

iid
A

?

V'WYXZX

Figure 4: A reflexive query of a hidden interface

6.2. Theorem: Symmetry and selective hiding of interfaces
If  a component O aggregates a legal COM object I, then the sequence of QueryInterface calls to
interfaces of I does not include a subsequence of the following two calls. The first call is to
QueryInterface of a delegating interface a of type iidA, not exposed by O, asking for an IID iidB exposed
by O. This call succeeds and returns interface b. The second call, not necessarily immediately following
the first one, is a call to QueryInterface of b asking for iidA. (Figure 5)
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Proof:
By contradiction.
Let ���������	��
��
��������� � ����� ��������� ��! "#��$��&%�' ' (�)*��' ' (,+-���.�./0%�!*��1324��!.5,6���7�2�8 �9%�� : ;�< = >�?�@�ACBED F,G4H�IKJ H�LNM  such thatO O P�Q-RTSEU O O P�V�WYXZU O O P�VE[�S	R]\^X3_`Xba9c#d�e�f V g h�i i j,kml]nZo i i j�pEhrq�sutvi i j�w*h�xZtvi i j,kzyb{m|.|.}TnY~�|���� ��� ~#s����

and 
� � �

� � � Assume further that � � �,�4���K� ������� � ����������� � �,�3���
� and � � �,�4���K� ������� � �����K�4��� � ���*�������
First, we shall show that �T� �E¡ ¢#£ ¤K¥K¦ ��§�¦ ¨�¤ ¢#©�ª�¨ . Assume the opposite, �]«`�E¡ ¢#£ ¤K¥K¦ ��§�¦ ¨�¤ ¢#©�ª�¨ . Then
£ £ ¬,­m«`�.�.®u¯°��±*§�²�§�³,´�§ . Since we assume that £ £ ¬,­mµ]¶Z¡ £ £ ¬�¥ and £ £ ¬�·-¸]¶Z¡ £ £ ¬�¥ , we conclude that
£ £ ¬�·¹� �.�.®u¯°��±*§�²�§�³,´�§ . Combining this with (A3) we get ©Z� �E¡ ¢#£ ¤K¥K¦ ��§�¦ ¨�¤ ¢#©�ª�¨&¡ Thus § º »u¼�½�¾À¿�Á where
¿0Â`ÃÅÄ�Æ Ä�¿�Ç�È ÄYÉKÊÅÁ�ËNÌ and ÍKÎZÏ ÐÒÑ*Ó�Ô�Î3Õ4Ö ×�ØEÙ�Ú Ú Û,Ü3Ù�Ý
Þ�ßuØKà�ÓuÎZÏ á,Õ4×�ØKÚ ×�â  and Ý]ß]ÎZÏ Ú Ó�Ö ×�Ø ã#à�ä�×�â . But by (A4)åEæ ç#è éKêKë å�ì�ë í�é ç#î�ï�í

cannot be in ð æ è ì�ë í�é ç#î�ï�í�ê
. We have reached a contradiction and so ñTò åEæ ç#è éKêKë å�ì�ë í�é ç#î�ï�í&æ

Second, suppose that 
é ò ì,ó�ô ô

. Since 
åEæ õ,ó4í�éKè í�ê�ö�ì ÷ ø�ù�úKû4ü�ý ý þ�ÿ*ü���ø

 and 
�������
	��bû
��������� �

, we have:��� ������� ����!
"$#%��&('*)�+
�����-,(.(��������/(0���!
and by (L1) 1�243�3�5�687$9-9-:$;=<>9@?(A�B�1 <�C(D�B . E$FG9�H <�3�1 I A 9@?(A�B�1 <�C(D�B implies that

? J KML(N(OQP and R SUT VXWZY([\S
]�^�_�`�a�b�b�c�dZa�`\egfM` h(YMSUT b�Y(^�_�` i�h(j�_�k . Thus `
f�SUT b�Y(^�_�` i�h(j�_�k and b�b�c�d8f�SUT b�b�c(k which
contradicts our assumption that l�l�m�n8o$p�q l�l�m(rts=uUq l�l�m(r . We have shown by contradiction that v wyx�z|{�{ .
Finally, we have established that }�~ ������� ����� contains the following subsequence:�X���|���������
�(�%�U� �����������Z�����|���@�>�

. This apparently contradicts our premise that �������
�����
���������    because it
violates the symmetry axiom (L4).
Therefore our hypothesis that ��¡ ¢�£���¤ ¥�����¦�§ ¨ ©gª¬«�­|®�¯�¯�°�±
®(²%© and ³�´ µ�¶�·�¸ ¯�·�¹�«�º » ©gª¬« ²�®�¯�¯�°�¼Z®�¸\©  is untenable
and ½@¾(¿ À�Á(Â\Ã
Ä�Å ÆgÇ(Å�È�É(Ê�Ê�Â�Å�Ë À�Ì holds for all aggregates ÃQÍÎ½ such that ½�Ï�Ð�Ã
Ñ�Ã�Ò
Ó�Â�Ì�Å�¿ Ô ÕÖ
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Figure 5: Symmetric pair of queries where the second IID is hidden

6.3. Theorem: Transitivity and the hidden non-delegating IUnknown
If  a component O aggregates a legal COM object I, then the sequence of QueryInterface calls to
interfaces of I does not include a subsequence of the following three calls, not necessarily next to one
another. The first call is to QueryInterface of the hidden non-delegating interface of I asking for an IID
of a delegating interface on I. This call succeeds and returns interface a. The second call is to
QueryInterface of a asking for iidB, not exposed by I. This call also succeeds. The third call is again to
QueryInterface of the hidden non-delegating interface of I now asking for iidB. (Figure 6)
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Figure 6: A sequence of two queries going from the non-delegating IUnknown of the inner outside to
a native interface on the outer does not allow a shortcut.

Proof:
By contradiction.�
	���
��������������
����	���� � ��� � !#"%$'&�(*)�+ ,-��.�)0/�1*1*2�34��1*1*2657"%$�$�89/�+4"�:�;�)�+�<6=�)�>'; ? (@/�& A B�C D B�C E F�G�H�IKJML N6O�P�QSR*P�T

 such
thatJ�UWVYX�Z[X]\@^-P�_�`*T a b�c*c*d�e7fhgMi c*c*d�jMbhc*c*d6kmlonqp�r*c s6t-g�g�uvj�w@gyx-b{z%p}|~c*c*d�e4b���|~c*c*d6k��]�mg�g�uh����g'��r*t�� �-p���t�b
�����M� �-�*�S�S� �'���*��� �-����� and � � ��� � ��� � . Suppose further that �M� �6�����S�*����� � � ¡q¢¤£@¥M¦ §-¨*©SªS« ¥'¬�«*­�© §-®�¯�­�°h¨*¨*±�²4°h®³¡-°
¥M¦ ´6µ�­�©S¨*­�ª�£ ¬ ¶ ·-¸v¹ º »h¼*¼*½6¾�»�¿
· and ÀMÁ Â6Ã�Ä�Å ¼ Ä�Æ ¹ Ç È ÉqÊ¤Ë@ÌMÍ Î-Ï*ÐSÑSÒ Ì'Ó�Ò*Ô�Ð Î-Õ�Ö�Ô�×hÏ*Ï*Ø6Ù�×hÐ%É�Í
First, note that our assumptions imply that ÚhÛ Ó6Ü Ý*Ý  because Þ�ß~à*à*á6âmãhä�ä�åhæ�ç�ä'è�é*ê�ë ç-ì�í�ê and
è6î ï*ï
ð}á�ñ�òKä�ä�åhæ�ç�ä'è�é*ê�ë ç-ì�í�ê0ó
Second, suppose that ë�ôõè6î ï*ï�ó One of our assumptions is that ä�ãWöYæ�÷[æ]Þ@ø-ê�í�é*ù ú or equivalentlyûMü ý6þ�ÿ����*ÿ������
ÿ�	�

����þ�ÿ�������ÿ�ý6þ�ÿ�����ÿ��yü

By axiom (L1) ���������������� �!#"�"�$�%'&("*)�+�,�� &.-�/�, . On the other hand,
"10 2�34,�����,�5768) 9 :<;>=@?1A B.C�D�E�F ?*G�F�H�D B.I�J�H7K�C�C�L�M�K�DN: . By definition of O<I�F�C P�H.?�?�QRE function (A8)  C�C�L�M�S
O<I�F�C P�H.?�?�QRE7=@?T: . This contradicts the assumption that C�C�L�M�U�O<I�F�C P�H.?�?�QRE7=@?T:�A Our assumption that VXWZY�[]\�\ is
therefore untenable and we conclude that V�^_Y�[]\�\�`
We have shown that a1` b�[4c�V�d�c�e , contains a subsequence of three queries: f@a1` g.d�V�e�h a*Y�h�c�V g.i�j�c7k7d�d�l�mnk7ipoqf8i]k7d�d�l�r�ks o and f@a1` g.d�V�e�h a*Y�h�c�V g.i�j�c7k7d�d�l�r�k7Y�[]\�\*o in this order, where 

s WZY�[]\�\�`  This contradicts the transitivity axiom
(L5) of legal query sequences. We finally conclude that our assumption about the existence of the query
subsequence a1` b�[4c�V�d�c�e7f8Y t u<v>w@x1y z.{�|�}�~ x*��~���| z.�����7��{�{����n���pu.��x1y ���4��|�{���}7w8� � �.�R�8�]�����������q��� and�1� ���4��� � ��� �8� � �<�>�@ 1¡ ¢.£�¤�¥�¦  *§�¦�¨�¤ ¢.©�ª�¨7«�£�£�¬�­�«�¤N� is untenable. No such subsequence is present in  1¡ ®�¯4¨�¤�£�¨�¥ .°

7. A sufficient condition of legality of an aggregated
component

In this section we will state and prove a condition on the outer and a given inner components of an
aggregate that guarantees the legality of the inner component. In essence, this condition states that if the
outer component is a legal COM object with a static set of interfaces, then every inner component will
behave according to the rules of COM unless its clients (including other inner components) provoke it to



25

an “illegal” action by executing one of the three query sequences ruled out by the necessary conditions of
legality.

7.1. Theorem: The legality of an inner component
Let a component O aggregate a component I.
I is a legal COM object in the dynamic interpretation of the rules of COM if all of the following
conditions hold:
(R1)  O is a legal COM object under the definition of legality given in the dynamic theory of COM
(R2)  If O exposes an IID d, then any query in O.queries made to an interface of O and asking for d

succeeds.
(R3)  All successful queries to the inner non-delegating IUnknown in the inner query sequence return

results  of requested type.
(R4)  The subsequence of queries to the inner non-delegating IUnknown in the inner query sequence is

stable, so that if two queries from this subsequence request the same IID, then they both fail or
both succeed.

(R5)  The consequents of theorems 6.1, 6.2 and 6.3 (the necessary conditions of dynamic legality) hold for
the pair ����� .
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Proof:
Let ��
���������������������� � � � �!�#"%$'&�&�()��&�*��
��+ � . Suppose that ,.-0/',�12,�3�4�5�6�7
8 9 , (R2), (R3) and (R4)
hold for I.queries and the predicates of HiddenNotReflexive, InsideOutNotSymmetric and
NonDelegatingNotTransitive schemas hold for the pair : ;!< .
We shall show that =?> @BADC�E)F
C�G�HJI�C�K�LNM
O�ADC�EQP�R�C�@BADC�S�T�C�G .
By definition of LegalQuerySequences  setU GWVXG)C�@YO�ADC�EQPZ�[�\J]�^�_�`Na
b�cD^�dQe�f�^�gBcD^�h�i�^�[�j k�l�d)d)^�i�m n�^�[ocpa mrqsf�m
`Nt�a ^�qsf�e�u�u�^�m
d)v
i�qwn�^yxza ^�{Bv |B^�q2}pd)`�h�[)v
m
v |B^
We need to show that the predicates (L1) - (L5) of schemas CorrectResult, Stable, Symmetric, Reflexive
and Transitive hold for I.queries. We will accomplish this in the following five lemmas. For the rest of the
proof we let _  be the delegation correspondence between the query sequences of ~  and � , ��������� �������
���)����z�

 and �  be the interface sharing correspondence between these sequences, �2���N�X���)���)��� �z�

Lemma 1: Successful queries of I.queries sequence return results of requested types.� ���X�) �¡�¢?£ �B¤D¥��)¦
¥�§�¨��)¥�§o¤p© ªr�¬«­¡B¤p©
©¯®°�)¥�§o¤p© ªr�Y±²�)¥��B¤D¥�§)ªr�´³J¢Q¢QµJ¶�·¸¢o¡�ª
¥�� ·� �¹�¥

Proof:
Let º�»�¼�½D¾�¿QÀ�ÁÂº´ÃY¿)Ä�Å�Æ?Ç ºB½D¾�¿)È
¾�É�Ês¿)¾�Éo½pË Ìrº¬Í­ÅB½pË
ËQÇ  There are two possible cases.
1) Î)Ï�Ð�Ï�Ñ ÒBÏ�Î�Ó´Ô2Õ?Ö ×�Ñ
Î)Ø)Ù ÕoÚ�Ù
Ï�Î ×�Û�Ð�Ï Ü Then Ý)Þ�ßoàpá ârãYä²Ý)Þ�ãBàDÞ�ß)ârã´åJæQæQçJè�é¸æoê�â
Þ�Ý é�ë�ì�Þ  by (R3).íïî

 ð)ñ�ò�ñ�ó ôBñ�ð�õ¬öø÷?ù ú�ó
ð)û)ü ÷oý�ü
ñ�ð ú�þ�ò�ñNù Let n ÿ � ��������� 	�

��������������� 	�

������������� � �����! 
Then by (A12)"$# %�&
'�(�)�'�*�+�,$- . /�01+�"$# 243�-�56"7&
8�'�(�9�(�'�%�&
'�*�8:%;9�(�'�*<&;= 8:%4/

. By (R1) >$? @�A
B�C�D�B�E7FHGIB�J�KML�N7A
B�CPO�Q�B�@�A
B�R�S�B�E .
Thus (L1) holds for >$? @�A
B�C�D�B�E  and T�U�V<W;X Y:Z\[]T�U�Z�W
U�V�Y:Z_^H`P`PaHb!cd`<e�Y�U�T cgf�h�UMi
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�

Lemma 2: I.queries is stable��� � ��� � ��	�

����� ������	���������	�������� ����	 � ! "$#�%�&�%�' (�%�# ) * +,#�%�)�-�%�.�/0) ! "$#�%�)�-�%�.�/0) *
1 #�%�.2-43 /0) ! "$5�-43�3067#�%�.2-43 /0) * "$5�-43�3

Proof:
Let 

) ! 8�) * 9
:;-�%�#=<?>�@A) ! 8�) * BDCFE�G
H�I�J K�L�M�E�N�M�O PQE�M�R�M�N S�M�E K T U$V�W�X�W�Y Z�W�V [ \ ],V�W�[�^�W�_�`0[ T U$V�W�[�^�W�_�`0[ \
.

Let a?bAc2d `�W�V e a X�Wgf a U$V�W�X�W�Y Z�W�V [ T U$V�W�X�W�Y Z�W�V [ \ h Again there are two cases to consider.
1) a U c h eiY�V�_�` c2d `�W�V e a X�W j Then k�l�m2n4o p0q r s$t�n4o�o0u7k�l�m2n4o p0q v s$t�n4o�o  by (R4).wyx

 z|{~}�� �i������� }2�
����� �iz
����� Let n � ��� � ���
�
����� ������������������� ����������������� � �¡ $¢ � £¥¤�¦ ¢�§�¨�©�ª�¨�«�¬�­ ® �¡ $¢ ® ¦ Then by
(A12) ¯|¦ ¢�§�¨�©�ª�¨�«�¬�°|­ � �¡  ±�²|³ ´¶µ�·
¸A²;¹�º�»�¼�½�¼�»�¾�¹�»�¿�º0¾ À ½�¼�»�¿2¹4Á º0¾ À Âi½Ã|Ä Å�Æ�Ç�È�É�Ç�Ê�Ë�Ì|Í Î Ï¡Ð Ñ�Ò|Ó Ô¶Õ�Ö
×AÒ;Ø�Ù�Ú�Û�Ü�Û�Ú�Ý�Ø�Ú�Þ�Ù0Ý ß Ü�Û�Ú�Þ2Ø4à Ù0Ý ß á�Ó
â

y (R1) ã|ä å�æ�ç�è�é�ç�ê;ëíìîç�ï
ð�ñ�ò;æ�ç�è=ó
ô
ç�å�æ�ç�õ
ö�ç�ê÷ä  Thus (L2) holds for ã|ä å�æ�ç�è�é�ç�ê  and so
è�ç�ê2æ4ñ ø0å ù ú$û�ü4ý�ý0þ7ÿ����2ü4ý ��� � ú$û�ü4ý�ý .�

In the rest of the proof we will demonstrate that, given the assumptions of the theorem, I.queries contains
no query subsequences that violate the reflexivity, symmetry or transitivity axioms of QueryInterface as
defined by our dynamic theory. We will split the set of possible subsequences of I.queries into classes and
prove for each class that its elements do not violate those rules. A class is identified by a k-tuple of
mutually exclusive sets of element indices, where every set is one of  the following three: 	�
���
��� 	�
�������	�
���
�� and (	�
������ � �"!�#�$%!�&'��	�
��(�)� . Note that the last class of the three contains the indices of
all those queries in ��� � �"!�#�$%!�& whose receiver is ��� *+$%#�&�, �.-�,%!�# *+/�0�!1� the non-delegating hidden IUnknown. The
classification is especially simple for a proof of reflexivity property because in this case k = 1 and the
subsequences of interest are singletons.  To prove the symmetry property we have to consider 9 classes of
two-element subsequences, several of which are easy to show to be empty under the assumptions of the
theorem. In the proof of symmetry property we operate three-element sequences and the number of classes
to consider threatens to reach 27. However it is not hard to demonstrate that most of those 27 classes are
empty.

Lemma 3: I.queries is reflexive2�35416�7�8:9�; 3 <"=�6�>%=�?A@B6�=�C�=�> D =�6A3FEG6�=�3 <"=�?�H�3JIK9L9LMKNPOQ9.8�H%=�6 O+7�C�=SRT6�=�?.<VU H�3XW�8 <VU%U

Proof:
Let Y5Z�[]\"^�_L`Pa1b5Zdc(egf�h Y \"^�_�i%^�j1klb)monpY(qr_�^�s�^�i t ^�_AYFuG_�^�Y \"^�j�v�YJwKfLfLxKyPzQf.b�v%^�_ z+{�s�^
Then one of the following is true.
1) |J}F~������ .

Then by (A11) �X� � �"�����%���1����|)�o����� � �"�����%���1�l|)�o�p� . By (R1) �X� � �"�����%���]�K���������%�]�"���L �¡���� �"��¢�£����  and so
(L3) holds for it and �����.�V� ¤��X¥�¢ �V�%�L�

2) ����£���� ¦ ���A�J§�¨�� ©+�%����¤ ¨.¢�¤%��� ©+��£��  ª or equivalently «J¬F­�®�¯±°�² ³ ´"µ�¶�·%µ�¸A¹�­�®�¯�º)»
By (A3) ¼L¼L½K¾P¿Q¼.À�Á%Â�Ã ¿+Ä�Å�ÂBÆ"¼�Ç ¿+È%Ã�É�Á ¼.À�Á%Â�Ã ¿+Ä�Å�ÂËÊdÌ±ÍÎ¼L¼L½FÏg¼lÐÑÀ�Ò�À�Ó ÔoÀ)Õ  and so Ö�×�Ø Ù"×�Ú�Û�ØJÜ�ÝLÝLÞFßgÝlàÑá�â�á�ã äoá .
By (C3) Ö�×�Ú.ÙVå Û�ØXæ�á ÙVå%å .

Since HiddenNotReflexive (theorem 4c) schema holds for the pair ç�èéÝ (R5), we need not consider the
case êJëFì�í�î�ï�ðòñ�ó�ô�ó�õ ö ó�ñA÷Xø�ù�ú û+õ%ñ�ü�ý ù.ê�ý%ó�ñ û+þ�ô�ó5ÿ or equivalently ��� �������
	������
���

, because the predicate
of HiddenNotReflexive implies that ������������� ��������� ��!  that contradicts our assumptions.
This exhausts all possible cases for n. We have shown that ����!"�$# %��
&'���$# #  and (L3) holds for ��� ��������� ��! .(
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Lemma 4: I.queries is symmetric��� �����	��
��	
�����
���
��	�������	�������	��� � �	!���
�" # 
�$

Proof:
Let %'&)(�*,+.-�/�0	1 243�5	0'687�7�94:�&�7�7�9';<*,+�+�=>681�*�?�@�0	1�(�AB0	C.@ED /F6�- G H�I J K�L�M�NPO�Q R�S�T	U�V�T	W  such that I G X�I J H
O�Q R�S�T	U�V�T	W�YZI G []\_^F`'a�b�b�c'dea)fg[4a�`8hib�b�c4jlk8m�m�n8oqprm.s�t�u	v p4w�x	u  and y�z {�|�}	~���}	���Z� � �]�_���E�������4����~,� .
It is sufficient to show that under these assumptions ~B����|E��� .
Again, we will consider several cases.
1) Both x and y are exposed delegating interfaces. �,� � � � � � �����������

Then by (A11) ��� �����	�� ��	¡�¢£�¥¤ ¦ §]¨ª©�� �����	�� ��	¡�¢Z¤ ¦ «]¬_­F®'¯�°�°�±'²e¯)³g«4¯´�µ ¶�·�¸	¹ ° ¸	º ­£»¥¼ ½ «]¬ª¾ µ ¶�·�¸	¹ ° ¸	º ­Z¼ ½ «]¬_­�³E¯�°�°�±4¿�¯ ¹ « . Because by (R1) À�Á Â�Ã�Ä	Å�Æ�Ä	Ç�È8ÉeÄ	Ê�Ë'Ì�Í�Ã�Ä	Å�Î�Ï�Ä	Â�Ã�Ä	Ð�Ñ	Ä	Ç�Ò
(L4) holds for it and so ÅBÓ�Ð�ÃEÌ�Ì .

2) If Ô is an exposed delegating interface, then Î  cannot be a hidden interface, because by (A11)
À�Á Â�Ã�Ä	Å�Æ�Ä	Ç�Õ£Ö¥Ð × Ø]ÙªÚ�Û Ü�Ý�Þ	ß�à�Þ	á�âZã × Ø]Ù_âFä'å�à�à�æ'çeå)ègØ  and so è>éëê�Û à�ã�ì�Þ	ß í4î�ï	Þ	á  and ð�ð�ñ'ò¥óëô�õ ð�ð�ñ�ö . Thus it
cannot be the case that ÷ ø ù�ú�û�ü�ý  and þ ÿ ��ú�û�ü�ý . In particular, if þ � ù�ú�û�ü�ý�� then ����	� 
���
���� ��������
 
������

.
3) If �  is a delegating hidden interface of 

�
(
� � �������! �"#�����%$

) then we only need to consider the case& ' �(�����%$  because & ) �������! 
 along with (A12) imply that *,+.-�/ 0�1�2�3�4 5�6�7�3�8 . Suppose that

1 9 +�:�;�<!=�>#:�;�<%? and 1 @ +(:�;�<%?A/ Then if 0�0�:�BDC.-�/ 0�0�:�8	E we have a contradiction with
InsideOutNotSymmetric  schema, since F	G HJILK�M�N�K�OQPSR T UWV XZY\[Q]�]�^\_`[badc�[  I e fJgLh�i�]�h�jQXSk l cWmnXoap[Q]�]�^�qr[Qisc and
k t uvk l e If ]�]�^�qDw.x�e ]�]�^�j	[ we combine (R2), (A11) and k l y(z�{�|%} to conclude that ~����J�p�����

4) The only case left to consider is when �  is the non-delegating hidden interface of � , �(�
�	� ����~���� ��������~ ������� , or equivalently � � �(�������	� �J�L�����������#�����! ¡�  Then by (A3) ������¢D£¤����¥(¦A�S§©¨�ª�¨��J«W¨  and
no matter what kind of interface ¬  is, (C3) guarantees that the query ­o®p¯Q°�°�±�²r¯Q³s´ succeeds and so ³�µ¶J·p¸�¸�¹

This exhausts all possible cases for ¶ º and ¶ » . We have shown that ³�µ ¶J·p¸�¸ and so (L4) holds for¼ ¹ ½J·L¾ ³�° ¾�¿ .À

Lemma 5: I.queries  is transitiveÁ	Â ÃJÄLÅ�Æ�Ç�Å�ÈÊÉÌËrÈ©ÍQÈ�Å�Ã(ÎÏÄLÅ�Æ�ÐvÑÓÒpÆ�Ô�Õ�È�Ç�Ö�Ç ×JÅÙØÙÈrÚ

Proof:
Let Û\Ü ÝpÜ Þrßsà�á�â�ã�ä å�æ�ç�ã\èQé�é�ê\ë`Ü é�é�ê�ì¤ßsà�à�í,èQá î ïQð ñ ïQð ò óQô�õ�ö�÷	ø ùJúLû�ü�ý�û�þbÿQü©ó��ÏúLû�ü�����û�þ�ú�� � such that 	 
 �
� � �
� � ,��� ��������������� � 
 �! �#"%$�����&%'($*) � $+��� ��������������� � � ,!-/.10�2�3�3�4�56287�,9287;:=<�>�?�? and @�A B�>�C�D�3�C�E�.F< G H!I/J#K%L�M�M�N�O6L�P8H .
We shall show that under these assumptions PRQ=S�T�U�U . Just as we did in the proofs of lemmas 3 and 4 we
will partition the set of indices V�W�XZY�[ \�]�^�_�`�^�a  into classes and show that no matter what classes b c d�b e  and
b f  fall into, provided the combination of classes does not contradict our assumptions, the result of the third
query is not b�]�g�g .
1) Suppose that h  is an exposed delegating interface, b c ijV�W�Xlkm[  Then it is also the only possible class

for n and o because by (A11)  pq[ \�]�^�_�`�^�a�rsktb c u!v/w#x%y�z�z�{9|+y*}6u and so }�~��q� z�������� �9������� . Thus we do not
need to consider the cases when x  is exposed and }  is hidden. If both of x and } are exposed
delegating interfaces we have: {� � ��� � ��� � ���������l�����q� ������������ �¡s�t� � ¢!£/¡#¤%�������9¥+�*¦6¢9���q� ������������ �¡s�t� � ¢
£/¡1¦��������9¥+�8§�¢9�
�q� ������������ �¡s�t� � ¢!£/¡#¤%�������9¥+�8§�¢  and by assumption (R1) ¨q© ª�«�¬�­�®�¬�¯±°³²(¬�´�µ%¶�·±«�¬�®�¸�¹�¬�ª�«�¬�º�»�¬�¯ . Thus (L5)
holds for ¨q© ª�«�¬�®�­�¬�¯ and ®R¼=º�«�¶�¶ .
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2) Now let �  be a hidden delegating interface, � � � �����	��
�������
�� Then by definition of �  � � �������	� .
By (A12) we have: ������� �  "!$#&%�' (*),+�-.%0/21436587:9494;=<>7@?*  and so again ?BAC%�' 94+�14365 DFE�G636H which means
that y is an exposed delegating interface. By definition of the I=J:E�5&3  and Delegate mappings + K L�M�N�OPRQ M�N�O	S T  By (A13) and monotonicity of g, there exist O U V:O K V:O W X:Y�Z�[]\�^ _a`2b6c&d4b6e such that [ f gh[ i
gh[ j  and
\�^ _a`2b6c&d4b6e:k�[ f l"m$n&o�p q*r,s�t.o0u2v4w6x8y:z4z4{=|>y@}*lFy�o�p ~au2w6x&z4w6�:n�� � �"�$�����:�4�4���*�.�:�F���� �a�2�6� � �6� ��� � �"�$�&��� �*�,���.�0�2 4¡6¢8£:¤4¤4¥�¦*£:¢.� . We can take, for example, § ¨ �ª©�� ¨ £:§ « �h�¬� « £:§ ­ �ª©�� ­ �
Since ®�¯ °a±2²6³&´4²6µ0¶¸·>²6¹�º=»4¼0±2²6³¾½�¿�²6°a±2²6À�Á6²6µ  and ÂÃ·ÅÄÇÆ holds for it, we conclude that ³ÉÈÊÀa±�»4»¾¯

3) The only case left is Ë being the hidden non-delegating interface, Ì�ÍÏÎ8Ð ÑFÒ4Ó&Ô&Õ Î×Ö�Õ4Ø6Ó ÑFÙ�Ú6Ø=Ð  This
corresponds toÛ Ö Ü Ý:Ö Þ ßáàãâ�ä�åçæ8è éaê2ë6ì&í4ë6îÉï�â�ä�å	ðñè  There are three subcases to consider.
a) ò ó ô�õ�ö�÷	ø�ùûú4ú4õ�üRô¸ý"þ�ÿ4ú ��� ���������
	

Then by definition of ý"þ�ÿ4ú ��� ������� function (A8)�
� � ���
� ��������� ���������! #"$��%'&�&)(+*�,#�
� �����!�!� �)������� �������.-.����/�01-$2 3 465�7
8 9�:<;�=!>�;�?
. By lemma 2 

7
8 9�:<;�=!>�;�?
is stable

and so the query 
7
8 9�:<;�=!>�;�?.@BA C 46DE@#7
8 F�>�=!?!G 7)A�G�;�= F�H�I�;.J.>�>�K�L1J.=$4

 must also succeed. MONQP�R'S�S .
b) P T UWV�X�Y[Z+\^]�]�V�_a`�b6c�d�] e�f�g�g�h�i�g

In this case we have a contradiction with the assumption that the b6X�j�h�f$k f�Z�c�d�]�j�Z�b6X�dml'n!c�j�i!]�d�] e�f
schema holds for the pair o[pqg
r By that schema the sequence of three queries:s#t
u v�w�x!y!z t){�z�|�x v�}�~�|.�.w�w��������1���^s��'�.w�w����1�$�.���$���Q{��'���

and 
s#t
u v�w�x!y!z t){�z�|�x v�}�~�|.�.w�w����1�.x$�

 in this order cannot
be a subsequence of �
� ���<���!����� provided that �������a���6����� �������������  and �+� �
� ¡����!�!� �)¢������ ¡���£�� .

c) ¢ ¤ �W��¥�¦[§
This implies that �©¨ª�
� ¡����!�!� �)¢������ ¡���£��  and since «�¬Q­�®'¯�¯ , we have °�°�±�²a³�´6µ�¶�° ·�¸�¹�¹�º�»�¹ . Again, as in
subcase (a) we use the definition of ́6µ�¶�° ·�¸�¹�¹�º�»  along with lemma 2 to get ¼O¬Q­�®'¯�¯ .

This exhausts all possible cases for ­ ½ ¾.­ ¿ ¾.­ À . We have shown that ¼O¬Q­�®'¯�¯ and so (L5) holds for ¹
Á Â�®<¸�¼!°�¸�» .Ã

Lemmas 1 through 5 demonstrate that predicates (L1) - (L5) of schemas CorrectResult, Stable,
Symmetric, Reflexive and Transitive hold for I.queries. By definition of the Ä�Å�Æ�Ç�È�ÉËÊ<Å�Ì�Í�Î�Å�Ï�Ê<Å�Ð�Ñ�Å�Ò set we
have:Ó
Ô Ï�Ê<Å�Ì!Õ�Å�ÒËÖ�Ä�Å�Æ�Ç�È�ÉËÊ<Å�Ì�Í�Î�Å�Ï�Ê<Å�Ð�Ñ�Å�Ò
× and finally 

Ó Ö
Ø�ÙËÚªÙÜÛ#Ý�Å�Ñ�Þ�Ò ß àá

7.2. Significance of the sufficient condition result
Armed with a sufficient condition of the legality of inner components, we now produce a set of guidelines
for constructing legal COM aggregates from legal COM components. The designers of sophisticated
COM-based systems with multiple aggregation and interface hiding can use these guidelines to build
aggregates, whose inner and outer components are certain not to violate the interface negotiation rules.

1. The legality of an inner component cannot be guaranteed unless the interface negotiation mechanism
of the outer component is implemented according to the rules of COM. Implementing the outer
component so that it is legal under the static interpretation of the rules of COM will guarantee that
conditions (R1) and (R2) hold for it.

2. Every inner component must implement its hidden non-delegating IUnknown interface correctly, so
that its QueryInterface function returns interfaces of the requested types (R3) and satisfies the
stability requirement (R4).

3. Every inner component must know which of its interfaces and interfaces of other inner components
are of hidden types and not query such interfaces for their hidden types. This guarantees thatâ�ã�ä�ä�å�æ�ç6è�é êOåìë�í å�î�ã ï�å

schema  holds for the aggregate. For example, it is reasonable for a mediator to
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assume an interface through which it communicates with another inner component to be a hidden
interface and not query it reflexively.

4. Inner components must not query hidden interfaces of themselves or other inner components for IIDs
exposed by the outer component. If all of them follow this rule, then no sequence of calls prohibited
by the ����������	�

��� ��������������	��������  schema can be executed and so ����������	�

��� ��������������	�������� holds for the
aggregate.

5. Inner components should never query their hidden non-delegating IUnknown interfaces or such
interfaces of other inner components. This guarantees that the aggregate satisfies the predicate of the
��������	�� 	������������������! "������������� #�	  schema.

This set of guidelines appears to be loose enough to allow flexible connection architectures within
encapsulated systems. At the same time Theorem 7.1 guarantees that as long as all the components of an
aggregate follow these guidelines, they can assume that all components of the aggregate follow the rules
of COM interface negotiation.

8. Conclusion

We have presented a new theory of COM aggregation and interface negotiation.  The new “dynamic”
theory differs fundamentally from earlier “static” theory [Sullivan et al. 1997] in one critical way:
Whereas the “static” theory required components to be designed to act legally under any usage situation,
the “dynamic” theory requires only that components act legally in each particular system execution.  Thus,
in the static theory, we formalized the legality of QueryInterface as a timeless relation; and in the
dynamic theory, we formalize it in terms of sequences of calls to QueryInterface.

Under the static theory, we demonstrated that the selective hiding of the interfaces of inner (aggregated)
components is incompatible with those inner components being legal under the rules of COM.  Under the
dynamic theory, by contrast, we showed that this incompatibility disappears, at least in principle.  It
becomes incumbent on clients of inner objects to follow additional rules that ensure that no violations of
the rules of COM are ever manifested.  Thus, we used the dynamic theory of COM to derive necessary and
sufficient conditions for the legal aggregation of subsystems of interacting components.  These additional
rules should be of interest to designers who are considering advanced uses of COM aggregation.  In
addition, it might be appropriate for the designers of COM to consider integrating these rules into the
specification of the COM standard, and into adopter-level documentation of the standard.

It is not entirely clear which interpretation people are using in practice.  We suspect that people are
generally confused about aggregation and, having heard rumors about difficulties with aggregation, that
they simply avoid problems by not using except in ways that are well known not to be problematical.  We
have anecdotal support from several users of COM to support this suspicion, but no results from carefully
administered studies.

Far from contradicting the basic conclusion of our earlier work, we take the results presented in this paper
as convincing evidence of that conclusion.  It is both necessary and profitable to apply formal methods to
the analysis of innovative aspects of architectural standards and styles based on such standards.  However,
until industrial developers and adopters of standards are convinced of the need for and profitability of
formal analysis, it is incumbent on the research community to earn its own way by proving the case for the
innovative application of formal methods.  We can continue to do that by solving problems that are at the
heart of highly relevant industrial concerns.  In this and in our earlier paper, we have shown that the
light-weight use of formal methods “in-the-small” has significant potential to play a role in that endeavor.
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Appendix A: COM interface negotiation rules

HRESULT IUnknown::QueryInterface(iid, ppv)

Return a pointer within this object instance that implements the indicated interface. Answer NULL if the receiver does not contain an
implementation of the interface.
It is required that any query for the specific interface IUnknown3 always returns the same actual pointer value, no matter through which
interface derived from IUnknown it is called. This enables the following identity test algorithm to determine whether two pointers in fact
point to the same object: call QueryInterface(IID_IUnknown, ...) on both and compare the results.
In contrast, queries for interfaces other than IUnknown are not required to return the same actual pointer value each time a
QueryInterface returning one of them is called. This, among other things, enables sophisticated object implementors to free individual
interfaces on their objects when they are not being used, recreating them on demand (reference counting is a per-interface notion, as is
explained further below).  This requirement is the basis for what is called COM identity.
It is required that the set of interfaces accessible on an object via QueryInterface be static, not dynamic, in the following precise sense.4

Suppose we have a pointer to an interface
ISomeInterface * psome = (some function returning an ISomeInterface *);

where ISomeInterface derives from IUnknown. Suppose further that the following operation is attempted:

IOtherInterface * pother;
HRESULT   hr;
hr=psome->QueryInterface(IID_IOtherInterface, &pother); //line 4

Then, the following must be true:

• If hr==S_OK, then if the QueryInterface in “line 4” is attempted a second time from the same psome pointer, then S_OK must be
answered again. This is independent of whether or not pother->Release was called in the interim. In short, if you can get to a
pointer once, you can get to it again.

• If hr==E_NOINTERFACE, then if the QueryInterface in line 4 is attempted a second time from the same psome pointer, then
E_NOINTERFACE must be answered again. In short, if you didn’t get it the first time, then you won’t get it later.

Furthermore, QueryInterface must be reflexive, symmetric, and transitive with respect to the set of interfaces that are accessible. That is,
given the above definitions, then we have the following:

Symmetric: psome->QueryInterface(IID_ISomeInterface, ...) must succeed
Reflexive: If in line 4, pother was successfully obtained, then

pother->QueryInterface(IID_ISomeInterface, ...)

must succeed.

Transitive: If in line 4, pother was successfully obtained, and we do
IYetAnother * pyet;
pother->QueryInterface(IID_IYetAnother, &pyet);   //Line 7

and pyet is successfully obtained in line 7, then

pyet->QueryInterface(IID_ISomeInterface, ...)

must succeed.

Here, “must succeed” means “must succeed barring catastrophic failures.” As was mentioned above, it is specifically not the case that two
QueryInterface calls on the same pointer asking for the same interface must succeed and return exactly the same pointer value (except in
the IUnknown case as described previously).
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