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Abstract

Reconciling requirements for (1) the efficient integration of independently developed and evolving
components and (2) the evolution of systems built from such components requires novel architectural
styles, standards and idioms. Traditional object-oriented approaches have proven inadequate. Two
important new mechanisms supporting integration and evolution are dynamic interface negotiation and
aggregation, an approach to efficient composition. Both feature prominently in the Component Object
Model (COM), a de facto standard providing the architectural foundation for many important systems.
Because these are important mechanisms in general, and because they are central to COM in particular, it
is essential that engineers be able to reason effectively about them. In earlier work (Sullivan et al. 1997),
we showed that reasoning about them is hard and that formal mathematical theories of such mechanisms
can provide a foundation for effective reasoning. In this paper, we present a new theory of interface
negoetiation and aggregation in COM. Our new theory is based on a relaxed interpretation of the COM
specification. Our earlier theory reflected an interpretation of the specification in which components had
to be designed to follow COM-specified rules for interface negotiation and aggregation under any possible
usage. Our new, dtrictly weaker theory requires only that actual system executions not manifest any
violations of the rules. Architectural styles using mediators that we showed to be untenable under the
earlier theory are tenable under this one provided that designers follow certain rules. We derive these
necessary and sufficient conditions for legal use of interface negotiation in the presence of aggregation.
Our results provide a basis for documenting what engineers must not do to use aggregation and interface
negoetiation properly.



1. Introduction

Rewnciling requirements for (1) the dficient integration of independently developed and evolving
components and (2) ease of the evolution of systems built from such components is a demanding task that
requires novel architedural standards, styles, mechanisms and idioms [Sulli van 1994 Sullivan & Notkin
1997. Indudtrial software designers are beginning to med this chall enge with advanced mechanisms and
compositional reuse models. Two important new mechanisms that feature prominently in the Component
Objed Model [COM 1999 are interface negotiation and aggregation, a mechanism for efficient
composition. Unfortunately, the introduction of architedural innovations of this srt without extremey
careful analysis can create unintended and subtle design “land-mines’ that remain latent until unwary
adopters inadvertently detonate them. In earlier work we showed that this concern is not academic: The
COM standard has architedurally critical properties that are easy to owerlook and hard to reason about
[Sullivan et al. 1997.

The importance of having a sound basis for enginees to reason about architecural standards should not
be underestimated. First, on the positive side, mechanisms guch as interface negotiation and aggregation
are bath general and extremely useful; so they are worthy of careful scientific study. Interface negotiation
appearsto be espedally important for evolution in a context of independently evolving components, which
is perhaps the central feature of a marketplace of reusable components as envisaged by Mcllroy at the
founding of the software engineeaing field [Mcllroy, 1969. Sewnd, interface negotiation and aggregation
are caitral to COM, in particular; and because COM is © widely used, it behoowves us to understand the
medhanisms on which it is based. Third, not understanding these mechanisms puts developers at serious
risk. Interface negotiation and aggregation are at the very heart of COM, and COM is the basis for
critical, early architedural design dedsions. The aroneous use of mechanisms at this sage an severdy
compromise a system design. Moreover, because these mechanisms provide the basis for late integration
of independently developed components, errors can remain undiscovered until disastroudy late, after a
system is fielded.

In earlier work, we showed that the use of formal methods in-the-small facilit ates predse reasoning about
such standards. We did not seek a theory of architedure in general, or of COM in its entirety. Rather, we
focused on developing a spedfic theory of interface negotiation and aggregation in COM: the aspeds
relevant to aur design situation. Spedfically, we developed a formal theory that showed that an
architedural style, intended for use in a commercial multimedia aithoring system, and based on
mediators [Sulli van 94, Sulli van & Notkin 1992 and COM, was untenable [Sullivan et al. 1997.

That theory of COM formali zed key aspeds of the published spedfication of COM [COM 1994. A key
question is whether the theory is a valid model of COM. We tried to validate the theory, having it
reviewed by the designers of COM, who agreed that it captured the structure of COM. Nevertheless one
can ask whether our negative results characterize COM, or whether they are artifacts of an artificially
restrictive theory.

We believe that our earlier theory captures one widdly held view of the meaning of the COM spedfication.
Somewhat astonishingly, however, we have discovered a second interpretation of the spedfication that
leads to a different theory in which our earlier conclusions are weakened. Our earlier theory refleded an
interpretation in which components had to be designed to follow COM rules about interface negotiation
and aggregation irrespedive of any particular operational context. Our new theory refleds an
interpretation requiring only that any actual exeaution of a system not manifest any violations of the rules
of COM.

Our earlier work hinted at rules beyond those stipulated in the COM spedfication that would enable the
use of mediators, aimost as intended, without problems. Our new theory leads to such a set of rules. We
derive necessary and sufficient conditions for the legal use of interface negotiation and aggregation. One
result is that the architedural style using mediators that was untenable under the erlier theory is tenable
under the new theory, provided that the additional conditions are satisfied. If our new theory is valid, our



results provide a basis for documenting what practicing engineas must do and not do to use COM
aggregation and interface negotiation properly. Unfortunately, the new interpretation is even subtler than
our earlier theory. The interaction between COM interface negotiation and aggregation appears to be
inherently complex. The results we present here bdster our earlier claim that the light-weight use of
formal methods can significantly aid in reasoning about subtle but critical aspeds of widely used software
architedural standards.

The rest of the paper is organized as follows. Sedion 2 introduces the basic concepts of COM and
formali zes them within our new theory. Sedion 3 gves a new definition of COM component that we use
in our dynamic theory. Sedion 4 formalizes the interface negotiation rules and defines component
legality. Sedion 5 formalizes aggregation and dscusss the isaues of component identity under
aggregation. In sedion 6 we state and prove three necessary conditions of legality of an aggregated
component. Sedion 7 contains the statement and proof of a sufficient condition of legality of an
aggregated component. Sedion 8 concludes

2. Informal Introduction to COM

COM itsdf comprises a prescriptive objed model for interoperable binary components, and a runtime
infrastructure supporting components that conform to the moddl. The runtime infrastructure provides
such services as component creation. In this paper we are wncerned only with the objed model. When
we refer to COM, we are implicitly referring only to the objed modd and not to the runtime
infrastructure.

The heart of COM is a set of rules that define what a component is and how it must behave in certain key
areas. For instance, COM spedfies that components provide services through multiple interfaces; that
components interact with each other only through interfaces; and that components must support certain
behaviors enabling components to negotiate with each at runtime for desired kinds of interfaces.

Ancther key part of the standard defines compositional reuse mechanisms. COM delegation is a
traditional objed-oriented composition mechanism in which the implementation of a service provided by
an outer component uses the services of encapsulated, inner objeds. In this paper we are mncerned with
a novel mechanism called aggregation. Aggregation permits an outer ohjed to “pretend” to its clients
that an interface implemented by an inner objed is actually one of its own interfaces. Aggregation
supports efficient composition in that requests to “the outer” can be handled by “the inner” without an
additional call. Aggregation can also play arolein COM analogous to classinheritance in objed-oriented
programming.

A component is sid to be a legadl COM component if and only if it implements these mechanisms
acoording to rules given in the COM spedfication. Because more and more systems use COM as their
foundation it is important to have a clear understanding of the limitations that these rules impose on
designers. In particular, an important property that we have been exploring is whether systems of
communicating COM components can be encapsulated by outer components guch that that the foll owing
conditi ons hold:

1) some services of inner components are made visible as srvices of the outer component
2) the performance penalty for the encapsulation boundary imposed by the outer is negligible
3) theouter component isalegal COM component, i.e., it satisfies all the rules of COM

In this compositional style a complex is encapsulated, turning it into a new. One might use this gyle to
encapsulate a subsystem comprising off-the-shelf components integrated by component mediators
[Sullivan 94] into a new component that could then be used as a basic building block at the next level of
composition. The key idea is that the aggregate abstracts the subsystem by hiding some of the services
(interfaces) provided by some of the individual subsystem components (Figure 1).



Such a style appeared to be natural, involving little more than an information-hiding encapsulation of
complex subsystems. However, our analysis [Sullivan et a. 1997] revealed serious problems that made
sdlective hiding of services of inner objects and the legality of the inner components of such aggregates
mutually exclusive.

Something had to give. For example, application designers could be prohibited from selectively hiding the
interfaces of aggregated components. However, the designers of COM rejected that option, stating that
they required sdlective hiding of aggregated interfaces to be permitted. We were led to introduce the
notion of non-conforming objects (objects that did not follow the rules of COM) into our theory, and to
permit non-conforming components inside aggregates. Other options were to change the specification of
COM (which we rejected, because we wanted to study COM as it was defined) or to find another
interpretation of the specification under which the difficulty would no longer obtain.

hidden L
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Figure 1. An advanced compositional style

To our surprise we found that the published COM specification does admit two distinct interpretations of
the interface negoatiation rules. We call these two interpretations “static” and “dynamic.” Our earlier work
formalized the static interpretation and led to the conclusion that legal COM components could not be
aggregated (with sdective hiding of interfaces). The notion of legality of a component under the dynamic
interpretation is strictly weaker than that under the static interpretation.

In this paper we present a formal theory of COM aggregation and interface negotiation based on the
dynamic interpretation. Under the dynamic interpretation, it is possible to assemble aggregates of
communicating legal COM components that hide some of their services and still never violate the rules of
COM for the duration of their lifetime. However, in some cases to achieve this “legality” requires
cooperation from all the components of the aggregate. The cost, then of the relaxed theory is that the
legality of components and systems ceases to be a property of individual components alone and becomes
instead a non-local system property.

The results presented in this paper do not contradict the basic conclusion presented in our earlier work: By
any reasonable measure, COM aggregation and interface negotiation are subtle mechanisms whaose proper
usage requires careful reasoning. Fortunately, under the dynamic interpretation, we have been able to
identify necessary and sufficient conditions for component legality in the face of interactions among



aggregated components. Thus, we have applied formal reasoning to deduce a set of rules conformance to
which ensures proper usage of aggregation and interface negotiation. The extent to which these impede
architectural design in practiceis not yet clear, and will be the subject of future investigations.

3. COM components

In this section we formally define the basic notions of Component Object Moddl: interface instances, their
specifications and unique identifiers, the lUnknown interface and components. For details on the object
model we refer the reader to [COM96, Kindel 95, Rogerson 97, Sullivan et al. 97].

3.1. Interfaces

The only way that a COM component provides services and communicates to clients is through one or
more interfaces. A COM interface is a standardizes binary structure (a pointer to table of function
pointers), however this fact is irrdlevant for the purposes of our analysis. More importantly, every
interface instance corresponds to one or more interface specifications or types that declare the operations
of that interface. A globally unique interface identifier or 11D identifies every interface specification. We
formalize interfaces, specificationsand [IDsin Z as given sets.

[IID, Interface, InterfaceSpec |

Every COM interface instance must implement the functions of the IlUnknown interface specification.
This specification, whose 1ID aso has a special name IID_IUnknown defines the Queryinterface
function which isin the hart of the COM interface negotiation mechanism. We formalize the existence of
IUnknown and its 11D in the following axiom:

IUnknown : InterfaceSpec
HD_IUnknown : IID

We model the association of each interface specification with its unique I 1D as a total one-to-one function
that, in particular, associates |Unknown with [1D_IUnknown.

IIDOfInterfaceSpec : InterfaceSpec »— IID

IIDOfInterfaceSpec (IUnknown) = IID_IUnknown

We use a relation | nterfaceSpecOf to model the one-to-many relationship between interface instances and
specifications. In particular, every interface satisfies at least the lUnknown specification.

InterfaceSpecOf : Interface < InterfaceSpec

Interface x {IUnknown } € InterfaceSpecOf

Finally, composing InterfaceSpecOf with IIDOfInterfaceSpec we get a relation I1DOfInterface that maps
an interface instance to the set of 11Ds of specifications that the instance satisfies. In particular, this
relation maps every interface into at least IID__IUnknown.

IIDOfInterface : Interface <« IID

HDOfInterface= InterfaceSpecOf s IIDOfInterfaceSpec



Figure 2 illustrates the relationships between interfaces, interface specifications and unique interface
identifiers.

3.2. Queries

COM requires that every interface implements a special operation called Querylnterface. Querylnterface
allows a client with a pointer to any interface on an object to obtain pointers to other interfaces on the
same object. Querylnterface allows objects that were designed independently to negotiate

_IIDOfInterface
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Interfaces InterfaceSpec

1ID_IUhknown

IUnknown

any interface

IDOfInterfaceSpec

Figure 2 Relationships between inter faces, specificationsand 11Ds

communication protocols dynamically. Querylnterface takes an 11D as a parameter and returns, through
another parameter, a pointer to an interface of the designated type on the same object. If the object does
not support the designated type of interface, Querylnterface returns a null pointer. The return value
indicates whether an interface was returned successfully.

In order to make the interface negotiation process smple and logical, section 3.3.1.1 of COM
specification [COM95] defines a set of rules that every implementation of Querylnterface must follow.
Somewhat surprisingly, these rules are stated as constraints on sequences of calls to Querylinterface
functions of interfaces on the same component.

For example, the following paragraph of section 3.3.1.1 defines the “dtatic interface set” or as we call it
stability property that every Querylinterface implementation must have. Appendix A contains the full
text of the Querylnterface specification.

HRESULT IUnknown::Querylnterface(iid, ppv)

It is required that the set of interfaces accessible on an object via Querylinterface be static, not dynamic, in the following precise sense
Suppose we have a pointer to an interface
ISomelnterface * psome = (some function returning an ISomelnterface *);

where ISomelnterface derives from lUnknown. Suppose further that the following operation is attempted:

I0therinterface * pother;
HRESULT hr;
hr=psome->Querylnterface(IID_IOtherInterface, &pother); Mine 4

1 While this set of rules may seem surprising to some, they are needed in order that remote access to interface pointers can be provided
with a reasonable degree of efficiency (without this, interface pointers could not be cached on a remote machine). Further, as
Querylnterface forms the fundamental architectural basis by which clients reason about the capabilities of an object with which they
have comein contact, stability is needed to make any sort of reasonable reasoning and capability discovery possible.



Then, the foll owing must be true:

. If hr==S_OK, then if the Queryinterface in “line 4” is attempted a seandtime from the same psome painter, then S_OK must be
answered again. This is independent of whether or nat pother->Release was called in the interim. In short, if you can get to a
pointer once you can get to it again.

. If hr==E_NOINTERFACE, then if the Queryinterface in line 4 is attempted a semnd time from the same psome painter, then
E_NOINTERFACE must be answered again. In short, if you didn't get it the first time, then you won't get it later.

Effedively, this says that if in a sequence of calls to Querylnterface functions there is a subsequence of
two call s through the same interface that ask for the same |1 D, then bath of the @lls must succeel or bath
fail. Unfortunately, although the spedfication claims to state the required properties of Queryinterface
“‘in the following predse sense’ there are at least two distinct interpretations of this rule as wel as the
other rules. The static interpretation assumes that the requirements imposed by the COM spedfication
upon sequences of calls to Querylnterface apply to al potential sequences including those not actually
exeauted and even those that could not posshly be exeauted duing the lifetimes of the interfaces in
question. The theory of COM that we presented in our earlier work [SSVI97] uses this interpretation. It
formali zes requirements upon the entire wlledion of all potential sequences of callsto Querylnterface as
axioms of the QI function defined as fall ows:

QI : Interface xIID - Interface

For any given pair of interfacei and I1D d QI(i, d) determines the result of every call to Querylnterface
function of interface i asking for 11D d. In particular, if (i, d) ¢ dom QI, then every such call will return
NULL (object does not have an interface of requested type). If QI(i, d) = r, then every such call will
successfully return interface ». Thus QI implicitly defines all possible sequences of calls to

Querylnterface functions of al interface instances on all components and there is no need to model such
sequences explicitly.

An alternative dynamic interpretation of the rules of interface negotiation makes a weaker assumption. It
assumes that only actual sequences of calls to Querylinterface functions of interfaces exposed by an
object must follow the rules of the Querylnterface specification. By an actual sequence of calls we mean
a sequence of calls that have been made during the lifetime of the object. The dynamic interpretation is
the basis for a new theory that we will present for the rest of this paper along with a dightly modified
version of the static theory that we first presented in [SSM97].

We begin with formalizing the informal notion of invocation of a Querylnterface function of an
interface. We will call such invocations queries and model them as dements of set Query of triples
(i, d, r) wherei isthe interface instance whose Querylnterface function was called, d isthe 11D requested
and r is the result returned by the cal to Querylnterface. In order to modd both successful and
unsuccessful Querylinterface calls we introduce a special interface constant null.

null : Interface

null ¢ dom IIDOfInterface

We model an unsuccessful Querylnterface call asan (i, d, null) triple. A successful call corresponds to a
triple having an interface other than null as its third eement. Thus null roughly corresponds to the NULL
interface pointer that Querylnterface returns when the component does not have the requested interface.

In order to emphasize the fact that null isavalid query result we introduce a synonym QueryResult for the
Interface type that we will use to designate the type of query result values. We will use the type Interface

only for the variables that cannot assume value null.



QueryResult == Interface

Now we are ready to formally define a call to Querylnterface as an e ement of the Query set.

Query == { receiver : Interface; request : IID; result : QueryResult | receiver = null
o (receiver, request, result) }

We define receiver, request and result as accessor functions for queries returning respectively the first,
second and third elements of the query triple.

receiver : Query — Interface
request : Query — IID
result : Query — QueryResult

Vi : Interface; d : IID; v : QueryResult | (i,d,r) € Query
o receiver (i,d,;r) =i Arequest (i,dyr) =d Aresult (i,dr)=r

3.3. Components

In this section we give formal definitions of components for the static (QI-based) and dynamic (query
sequence-based) models of COM.

3.3.1. Ql-based (static) model

A COM component instance (or component) is an object that exposes a finite set of interfaces. The set of
interfaces that the component exposes is defined recursively. Firstly, firstinterface, the interface that the
COM component creation routine returned when it created the instance, is exposed. Secondly, every object
exposes a distinguished interface (not necessarily distinct from firstinterface) that satisfies at least the
IUnknown specification. In COM, this interface is called the distinguished IUnknown of the object.
Lastly, if defined, the result of applying QI to an interface of an object is another interface on the same
object. We define the set of 11Ds of an object to be equal to the set of I1Ds of the specifications that are
satisfied by the individual interfaces of the object.

— Component,

interfaces : [F Interface
iids : FID
firstInterface,

iunknown : Interface

{firstInterface, iunknown} C interfaces
Vi :interfaces;d : IID | (i,d) edom QI e QI(i, d) € interfaces
iids = IIDOfInterface ( interfaces |)

Note that the set interfaces contains the interfaces that a component can potentially expose to its clients.
The component does not necessarily expose all of them in its lifetime. Indeed, the static model of COM
does not deal at all with the issue of interfaces that clients can potentially get from an object versus those
they actually get. Thisdistinction is abstracted out and we assume the rules of Querylnterface to apply to
all potentially exposable interfaces, i.e., the members of interfaces set.



3.3.2. Sequence-based (dynamic) model

Our dynamic theory also modeds component instances as objects exposing one or more interfaces.
However, in contrast with the static theory, where the emphasis was on the set of exposed interfaces, the
essence of an object here is the sequence queries of calls to the Querylnterface functions of the interfaces
on the object made during the lifetime of the object. Since the lifetime of every component instance is
finite, queriesis a finite sequence. Asit was in the static model, firstinterface is the interface returned by
the routine that created the instance. In addition, pUnkQOuter is an interface, not necessarily distinct from
firstinterface, that COM requires an aggregating component to expose to its aggregatees. We assume this
variable to be null if the component is not an aggregator. In order to simplify our model we assume that
every query receiver in the queries sequence is either firstinterface or pUnkOuter or a result of an earlier
successful query (C1). In other words we assume that an object does not pass its interfaces to clients by
means other than Querylnterface calls. Although not explicitly stated in the COM specification, this
assumption has recently been confirmed by the designers of COM [Brockschmidt 1997]. The set
interfacesis the set of interface instances the component exposes to its clients during its lifetime. As such
it contains the interface firstInterface that the creator of the component obtains from the creation routine,
pUnkQOuter that the component passes to the objects it aggregates (if any) and the results of all successful
gueries on the component (C2). Unlike the QI-based definition, here it is specifically not the case that
interfaces contains all the interface instances an object may potentially expose if queried for. The set
interfaces contains only the interfaces actually exposed to some clients of the component during its
lifetime. Likewise, iids contains the types of all the interfaces that the component actually exposes. (C3)
formalizes the COM identity requirement that any query asking for IID_IUnknown must succeed and for
any given object two such queries must return the same interface.

— Component,
queries : seq Query

firstinterface, pUnkOuter : Interface
interfaces : [F Interface

iids : FID

Vn, : dom queries (C1)
o receiver queries(n,) € 1 firstlnterface, pUnkOuter }
v (dn;:{1..ny} e result queries(n;) = receiver queries(n,))

firstinterface = null

interfaces = {q : Query | q € ran queries ® result g } (C2)
v A firstInterface, pUnkOuter } \ {null}

iids = IIDOfInterface ( interfaces |)
V41, q2 : ran queries (C3)

| {request q,, request g, = {1ID_IUnknown }
o result q; = result q, A result q; = null

3.4. COM identity

In this section we formalize the notion of component identity as defined by COM standard in its static and
dynamic interpretations.



3.4.1. Static model

COM object identity is defined in terms of the distinguished 1Unknown interfaces of components. The
basis for identity is the requirement that every call to Querylnterface made through any interface of an
object, with I1D_IUnknown as a parameter, always returns the same, distinguished |Unknown interface of
that object. The identity axiom of the static model formalizes this requirement.

V X : Component; i : Interface | i € X.interfaces
e QI(i, IID_IUnknown) = X.iunknown

COM defines object identity as follows. Given any two interfaces, you determine whether they are
interfaces on the same object by querying for I1D_IUnknown through each, then comparing the returned
interfaces (pointers). We formalize COM object identity as a binary relation =, . It is easy to see that

=com,s 1S 8N €quivalence relation.

_ —coms — - Component <> Component

VX, Y : Component
o X=wms Y <> X.iunknown = Y.iunknown

3.4.2. Dynamic model

The dynamic interpretation of the rules of COM naturaly leads to a different notion of component
identity. The identity inherent to a component is no longer applicable and is replaced by manifested
identity. Under the dynamic interpretation one has no other way to find out whether two components are
identical in the COM sense than to compare the results of queries for 11D _IUnknown in the respective
component query sequences. We call such query results manifested identities. Since whether a component
gets a chance to manifest its identity depends on the sequence of queries that clients make to the
component during its lifetime, manifested identity is not defined for every component. Instead we define it
through iunknowny, a partial function that maps a component into the common result of all queries for
I1D_IUnknown on its interfaces, if there are any such queries. (C3) guarantees that iunknowng isindeed a
function.

iunknown, : Component, - Interface
dom iunknowny = { C : Componenty | (3 q : ran C.queries o request ¢ = IID_IUnknown) e C }

V C : dom iunknowny
o iunknowny C = (U q : ran C.queries | request q = IID_IUnknown e result q)

Now we can define anew COM identity predicate.

_ =coma — : dom iunknowny < dom iunknowng

VX, Y :dom iunknown; e X =, 4 Y <> iunknowng X = iunknowng Y

One can interpret the expression X =,mq Y @s “@mponents X and Y both have manifested their identities
and those identities have been found equal”. Obvioudly, a component that has not manifested its identity
during its lifetime is simply not in the domain of the =mq relation and the result of the comparison is
undefined.

10



4, Formalizing the interface negotiation rules

In this section we give two forma modds of the interface negotiation rules of COM. The first model is
static (Ql-based). It states the interface negotiation rules as constraints on the QI function. The second
model is based on sequences of queries.

4.1. Static model

In order to be able to reason formally both about interfaces whose Querylnterface functions obey the
rules of interface negotiation and those whose Querylnterface functions don't, we limit the domain of
those rules to the subset COMInterfaces, of Interface. The dements of COMInterfaces, are caled legal
COM interfaces. The first requirement on a legal COM interface is that successful invocations of its
Querylnterface operation always return interfaces that actually have the requested I1Ds (Appendix A,
lines1,2)

COMInterfaces, : P Interface

Vi : COMInterfacess; d : 1ID | (i,d) edom QI e QI(i,d) > d e IIDOfInterface (S1)

The other interface negotiation rules of COM include stability (Appendix A, lines 10-22), reflexivity (line
28), symmetry (lines 29-31) and transitivity (lines 32-37). Because we model Querylnterface as a partia
function QI, the stability rule applies automatically to al interfaces, including those of COMInterfaces,
set. We formalize the other three rules in the following axioms.

First, COM defines reflexivity to mean that if you have a legal COM interface a with type iidA, then
calling Querylnterface on a for iidA must succeed. It is not required that the returned interface be a itsdf,
unless a is the distinguished 1Unknown and iidA is I1D_IUnknown. Recall that 11DOfInterface associates
an interface with all of the 11Ds that it satisfies. We formalize the COM nction of reflexivity by stating
that the domain of QI contains the subrelation of [1DOfInterface restricted to the subset of legal COM
interfaces.

COMInterfaces, <t IDOfInterface < dom QI (52)

Second, the symmetry rule in its “static” interpretation means that if you had alegal COM interface a of
type iidA, and if calling Querylinterface on a with iidB would succeed in returning an interface b, then
calling Querylnterface on b with iidA would have to succeed. This condition must hold regardiess of
whether the sequence of these two calls has actually been executed or it can potentially be executed or
even if it cannot possibly ever be executed on a given component.

Va,b : COMInterfaces; iidA, iidB : IID (S3)
| (a,iidB) e dom QI
e a — iidA € IIDOfInterface A QI(a, iidB) =b — (b, iidA) € dom QI

Finally, transitivity under the static interpretation of COM interface negotiation rules means, informally,
that if Querylnterface can get you from “here to there’ and “there to somewhere else” it can get you
“here to somewhere else.” The formal statement is similar to those in the preceding paragraphs. 2 Again,
the word “@n” in this rule implies that the subsequence in question need not be in the sequence of
Querylnterface calls actually executed on the component.

2 The specification actually gives an unorthodox definition of transtivity: informally, that you can get “from elsewhere back to here” The
definition is not equivalent to the ordinary definition of transitivity, and it is not strong enough to ensure that Querylnterface operations
have the required “ anywhere-in-one-step” property. We therefore interpret the COM specification as using an erroneous definition of
trangtivity; and we have used the common definition in place of the unorthodox one.

11



Va, b, ¢ : COMInterfaces,; iidA, iidB, iidC : IID (S4)
| {(a,iidB), (b,iidC)} < dom QI
e a > iidA € lIDOfInterface
A Ql(a, iidB) =b A QI(b, iidC) = ¢
= (a, iidC) e dom QI

Just as we had to distinguish legal COM interfaces, we also had to distinguish legal COM objects. We
model legal COM objects as a subset of Component whose el ements have only legal COM interfaces.

COMObjects,  : P Component,

¥ C: COMObjects, o C.interfaces < COMlInterfaces,

4.2. Dynamic model

The legality of a component in the static model of COM is determined by the legality of its essential part
that isthe set of interfaces. Likewise, in the dynamic model a component is considered legal if and only if
its essential part is legal. In this case the essential part is the sequence of queries that the component
receives in its lifetime. In this section we define a legal query sequence as a sequence of queries that
satisfy the definition of Querylnterface and all the interface negotiation rules of COM, namely, stahility,
reflexivity, symmetry and transitivity.

First we formalize the requirement that every successful query in a sequence returns an interface of the
requested type. This corresponds to the way COM specification defines Querylnterface.

- CorrectResult
s 1 seq Query

WV q:rans e result g =null = result q — request q € IIDOfInterface (L1)

Then we formalize the rule that requires the behavior of Querylnterface be stable (or “static’ & the
COM gpecification callsit) in the following sense. If a request for a given 11D succeeds (fails) once, then
any subsequent call to the Querylnterface function requesting the same 11D must succeed (resp. fail). In
the static theory this property of legal Querylnterface implementations was implicitly superseded by a
stronger assumption. Since QI is a mathematical function, it always returns the same result for the same
tuple of arguments. The following schema defines the set of stable query sequences. In any such sequence
any two calls g; and g, to the Querylnterface function of the same interface asking for the same 11D must
both succeed or both fail.

- Stable
s 1 seq Query

V (5, q2: ran s | receiver q; = receiver q, A request q; = request g (L2)
o result q; = null < result q, = null

The next schema is the reflexivity rule. In areflexive sequence any query that requests an interface of the
same type as the query receiver, must succeed.
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- Reflexive
s 1 seq Query

V q :ran s e receiver q +— request q ¢ IIDOfInterface — result g + null (L3)

The following schema formalizes the symmetry requirement. If a sequence s contains a query to interface
x for 11D iidY that successfully returns interface y, then any later query to interface y asking for an 11D of
interface x in the same query sequence must succeed. Informally, this rule states that if Querylnterface
actually gets you from “here€’ to “there” and you ask it to get you back “here” it must do so or eseit is
illegal. Compare this with the informal rendition of the symmetry rule in our static theory: “if you can get
from here to there, you can get from there to here’.

- Symmetric
s 1 seq Query

V x,y : Interface; iidX, iidY : IID; r : QueryResult; ny, n, : dom s (L4)
| s(ny) = (x,iidY,y) A x> iidX e IIDOfInterface

Ang<ng A yzmll As(ng) = (y, iidX, r)
o v~ null

And finally we formalize the transitivity rule requiring that for a sequence s containing three queries: to
interface x for iidY returning interfacey, to interfacey for iidZ, returning interface z, to interface x for iidZ
returning result r (in this order), the third query must succeed. Again the informal interpretation of this
ruleisthat if you did get from here to there and from there to somewhere ese, then you must be able to
get from somewhere else back here. The dynamic theory does not constrain what must happen if you never
actually tried to get from “here” to “there” and then to “somewhere e se’ but could potentially.

- Transitive
s 1 seq Query

V x,y,z : Interface; iidY,iidZ : 1ID; nyny, n; : dom s; r : QueryResult (L3
| n;<n, An,<nzAx£null
A s(ng) = (x,1idY, y) As(ng) = (v, 1idZ, z) A z-null
As(ng) = (x, iidZ, r)
e v~ null

Now we are ready to define the set of legal query sequences. We define it as a subset of sequences of
gueriesin which every sequences satisfies the five requirements (L1) — (L5).

LegalQuerySequences : P seq Query

V s : seq Query
o 5 ¢ LegalQuerySequences < CorrectResult A Stable A Symmetric A Reflexive A Transitive

4.3. Dynamic legality of a component

As one might expect, the dynamic model of COM defines alegal COM object as a component for which
the actual sequence of queries made to its interfaces for its entirelifetimeisalegal query sequence.
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COMOhbjects; : P Component

V¥ C : Component  C ¢ COMObjects; < C.queries ¢ LegalQuerySequences

Thus a component instance is legal if and only if the sequence of Querylnterface calls (and their results)
that the clients of the instance have actually made to its interfaces complies with the rules stated in
p. 3.3.1.1 of the COM specification document. Put ancther way, a component is legal if it does not
demonstrate the opposite through its behavior for the duration of itslifetime.

4.4. Relationship between static and dynamic legality of a component

Our static and dynamic theories of COM define the legality of a COM component differently. In this
section we will consider the relationship between the two definitions. We will show that a component that
islegal under the static interpretation of the rules of COM isalso legal under their dynamic interpretation.
The converse is not true. Thus the notion of legality as defined in our dynamic theory is weaker than the
static legality of components.

Unfortunately we cannot express this statement formally smply as COMObjects, € COMObjects, because
the two sets consist of eements of distinct schema types Components and Componenty. In order to
establish a pairwise correspondence between values of these types we define a total one-to-one mapping
Dyn from Components to Componenty. This mapping relates static and dynamic models of the same
component.

Dyn : Component; »—» Componenty

V S : Component,; D : Component; | D =Dyn S
o S firstlnterface = D .firstInterface
AV i:Interface; d : IID; r : QueryResult
| (i, d, r) € D.queries
oif (i,d) edom QI then r=QI(i,d) else r=null (DI1)
A D.pUnkOuter = null = D.pUnkQuter € S.interfaces

Now we are ready to formally express the connection between the static and dynamic definitions of
component legality.

Theorem 1: Static legality implies dynamic legality
Dyn ( COMObjects, ) © COMObjects,

Pr oof:

Let S : Component, , D : Componenty such that S € COMObjects,, D = Dyn(S).

We shall show that D ¢ COMObjects, by way of showing that D.queries satisfies the axioms (L1) - (L5)
of dynamic legality.

(L1) follows from the fact that since Sisin COMODbjects,, all of its interfaces are COMInterfaces.. By
(D) dl of interfaces from D.interfaces arein Sinterfaces. Then for al i : Interface; d : IID;

r : QueryResult such that (i, d, r) € ran D.queries wehave: r zmull = (r—d) = (QI(i,d) —d)
and so by (S1) r+— d e IDOfInterface.

(L2) follows from the fact that QI isa partial function and its result on given parameters, if defined, is
always the same.

L3, L4, L5 follow from the reflexivity, symmetry and transitivity properties of QI respectively.

Leti: Interfuce; d : IID; r : QueryResult | (i, d, r) e ran D.queries A i+ d e IIDOfInterface. By (D1)
D.interfaces < S.interfaces and by (C1) i € D.interfaces. Thusi € S.interfaces and S0
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i € COMInterfaces, because S € COMObjects,. By the reflexivity property (C2) (i, d)  dom QI and by
(DY) r = QI(i, d). We conclude that r == null, sincenull ¢ dom IIDOfInterface and

r > d € IIDOfInterface by (S1). Thus the dynamic reflexivity property (L3) holds for D.queries.

Now we will show that (L4) holds for D.queries.

Let x, v : Interface; iidX, iidY : IID; r : QueryResult; ny, n, : dom s such that

D.queries(n;) = (x, iidY, y), x> iidX e IIDOfInterface, n; <n, and D.queries(n,) = (v, iidX, r). We
need to show that r = null. First, observe by combining (C1), D.interfaces < S.interfaces and

S € COMObjects, that {x, y} € COMInterfaces,. Second, by (D1) QI(x, iidY) =y and so by (S3)

(v, iidX) e dom QI. Applying (D1) again we get r = QI (v, iidX) that impliesr = null.

We have shown that the dynamic symmetry property (L4) holds for D.queries.

The proof of the fact that (L5) also holds for D.queries issimilar and isleft as an exercise for the reader.
Since all of the schemas CorrectResult, Stable, Symmetric, Reflexive and Transitive (L1) - (L5) hold for
D.queries, by definition of LegalQuerySequences set, D.queries € LegalQuerySequences and S0

D € COMObjects,.

[

5.  Aggregation

In this section we use our dynamic theory to develop a formal model of COM aggregation in terms of
sequences of queries.

5.1. Dynamic model of aggregation

The COM specification document defines the rules of aggregation and those of Querylinterface using
similar definition styles. The approach used for the Querylinterface rules as we have observed consists of
imposing constraints on the behavior of well-implemented Querylnterface functions. COM formulates
these congtraints as rules (e.g., symmetry, reflexivity, transitivity) that all legal sequences of calls to
Queryinterface must follow. Similarly, COM defines aggregation in a set of the following six rules
[COM96, section 6.6.2] that constrain the behavior of the outer (aggregating) and the inner (aggregated)
components.

1. When creating the inner object, the outer object must passits own lUnknown to the inner object through the pUnkOuter parameter
of IClassFactory::Createlnstance. pUnkOuter in this caseis called the “controlling unknown.”

2. Theinner object must check pUnkOuter in its implementation of Createlnstance. If this parameter is non-NULL, then the inner
object knows it is being created as part of an aggregate. If the inner object does not support aggregation, then it must fail with
CLASS_E_NOAGGREGATION. If aggregation is supported, the inner object saves pUnkOuter for later use, but does not call
AddRef onit. Thereason is that the inner object’s lifetime is entirely contained within the outer object’s lifetime, so there is no need
for the call and to do so would create a circular reference.

3. If the inner object detects a non-NULL pUnkOuter in Createlnstance, and the call requests the interface IlUnknown itsdlf (as is
almost alwaysthe case), theinner object must be sureto return its non-delegating IUnknown,

4. If theinner object itself aggregates other objects (which is unknown to the outer object) it must pass the same pUnkOuter pointer it
receives down to the next inner object.

5. When the outer object is queried for an interface it exposes from the inner object, the outer object calls Querylinterface in the non-
delegating lUnknown to obtain the pointer to return to the client.

6. Theinner object must delegate to the controlling unknown, that is, puUnkOuter, al IUnknown calls occurring in any interface it
implements other than the non-del egating IlUnknown,

In our dynamic theory we render these rules in terms of interfaces and query sequences. We define
Aggregates; as a binary relation on the set of components which in this case is Componenty. For every
pair of components O and | where O aggregates | we state that they must have at least one interface that
they share. In other words their sets of interfaces exposed to clients intersect (Al). In the spirit of our
dynamic model we do not consider aggregation a situation where the outer component creates an inner
component but never returns its interfaces to clients. Such a set up is of no interest to us because it does
not actually manifest aggregation and from the client point of view is no different from having no inner
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component at all. We specify that according to rule 1 above the outer pUnkOuter interface must be non-
null (A2). By rule 3 the first interface of the inner must be of type IlUnknown only (A3). This is the
hidden non-delegating iunknown interface of theinner. It is called “hidden” because it is never exposed to
clients by the outer (A4). Rule 4 requires that if the inner is itsaf an aggregator, it must pass down the
pUnkQuter of the outer component and not its own pUnkOuter (A5). For simplicity we do not consider the
situations of multi-level aggregation in our theory, however the theory can easily be generalized to include
such aggregates. Finally, (A6) states that a component cannot have more than one aggregator, the inverse
of Aggregates; relation isa partial function.

Aggregates, : Component,; <> Component,

V I, 0 : Component; | Or—1 e Aggregates;

e Linterfaces n O.interfaces = & 41
A O.pUnkOuter + null (A2)
A InterfaceSpecOf ({1 firstInterface ) = {IUnknown }
(43)
| A Lfirstinterface ¢ O.interfaces
(44)
A LpUnkOuter = null (A5)
Aggregates;, | € Component, - Component, (46)

pUnkOuter:IUnknown(%)v_

forwarding delegation

a:iA Oﬁ ‘ Outer

firstInterface :lUnknow

Inner

Figure 3: a smple aggregate

We want to emphasize that the mechanism of aggregation allows two or more independent components to
share their interfaces. This means that the Querylnterface functions of elements of an aggregate may in
fact return interfaces implemented by a different component. The outer may return interfaces implemented
by the inner and vice versa. Because for the purposes of our analysis we still need to distinguish the sets of
interfaces implemented by different objects, we define a function Nativelnterfaces that maps an
aggregating component into the set of interfaces it implements and exposes to clients during its lifetime.
According to rule 5 above this set includes only those interfaces, that are not obtained from an inner

16



component by querying its L firstInterface (A7). We require that O.pUnkOuter be a native interface of O.
Likewise, we define NativellDs as a function that maps an aggregated component into a set of |IDs
interfaces of which that component implements and exposes to clients. The set of native IIDs of an
aggregated component consists of the IIDs for which its clients have successfully queried its non-
delegating hidden IUnknown interface (A8). Although this last definition looks a little unnatural at first,
it follows from the combination of rules 5 and 6 above. For the aggregate on Figure 3
Nativelnterfaces (Outer) may, for example, be {pUnkOuter, a} and NativellDs(Inner) can be { IB, IC },

for a suitable sequence of queries to interfaces of Inner and Outer.

Nativelnterfaces : dom Aggregates; — [F Interface
NativellDs : ran Aggregatesy — [F 1ID

V O : dom Aggregates; (47)
o Nativelnterfaces O = { a : O.interfaces | (V I : Aggregates,{O}]); iidA : IID
o (LfirstInterface, iidA, a) ¢ ran Lqueries) o a

A O.pUnkOuter € Nativelnterfaces O

V I : ran Aggregates, (48)
o NativelIDs I = { q : ran Lqueries | receiver q = LfirstInterface A result q # null o request q }

Rules 5 and 6 of aggregation prescribe the necessary actions that Querylinterface functions of the
interfaces on the outer and inner components respectively must perform when clients call them. Expressed
in the language of our dynamic theory these rules establish 1-1 correspondences between some
subsequences of the query sequences of the outer and inner components. StrictCorrespondence defines
the class of all such correspondences as order preserving 1-1 functions from indices to indices.

StrictCorrespondence == { f: N> N | (Vnpny:domf e ny<n, = fn;<fny)ef}

Rule 5 that we call the forwarding rule requires the outer component forward to the hidden non-delegating
iunknown interface of the inner every query for an interface of the inner component that the outer wants
to expose, and then return the result of that subsequent query to the client. We represent the fact of
forwarding as a mapping Forward from all pairs (O, 1) of components in the Aggregates, relation to strict
correspondences fo, from the indices of the outer query sequence to the indices of the query sequence of
the inner component. The domain of o, is restricted to the indices of only those queries to interfaces of
the outer that are not interfaces of the inner (A9). The image of such an index corresponds to a query from
the inner component query sequence that has the same request and result parts but whose receiver is the
hidden non-del egating iunknown interface (A10).

Forward : Componenty x Component; - StrictCorrespondence

dom Forward = Aggregates;
V 1, O : Componenty; fo: StrictCorrespondence
| O—1 e Aggregates;
A for=Forward(O, 1)
o dom for = {i : dom O.queries | receiver(O.queries i) ¢ Nativelnterfuces(O) o i} (A9)
Aranfor © dom l.queries
AV n:domfo;
o Lqueries(fo; n) = (IfirstInterface, request(O.queries n), result (O.queries n)) (A10)
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To illustrate the action of f,, ; consider the aggregate on Figure 3. Suppose that the sequences of calls that
Outer and Inner components have received are as follows:

Outer.queries = {(a IID_IUnknown pUnkOuter) (a IB b) (b IC ¢) (pUnkOuter IC ¢) (pUnkOuter IA a))

fo,
Inner.queries = { (firstInterface IB b) (b IC ¢) (firstInterface IC ¢) (c 1A a) )

Then the arrows indicate the pairs of queries related by fo ;.

We model sharing interfaces between the outer and inner components of an aggregate as a mapping Share
that defines for every pair O — I in the Aggregates, relation a strict correspondence po, between indices
of queries in the query sequences of | and O. When a client queries a shared interface, an appropriate
query appears in both query sequences. p,; establishes a one-to-one correspondence between such queries
in the query sequences of | and O.

Share : Component; x Component; —+ StrictCorrespondence

dom Share = Aggregates;
V I, O : Componenty; poy: StrictCorrespondence
| O—1 e Aggregates;
A por=Share(O,I)
o dom po; = { n: dom Lqueries | receiver(l.queries n) € O.interfaces e n }
Aran poy =14 m: dom O.queries | receiver(O.queries m) € Linterfaces e m }
AVn:dompo; ® O.queries(porn) = Lqueries(n) (Al11)

Again, for the same query sequences of Outer and Inner as in the previous example we get the following
sharing correspondencepo :

Outer.queries = {(a IID_IUnknown pUnkOuter) (a IB b) (b IC ¢) (pUnkOuter IC ¢) (pUnkOuter 1A a))
o,
Inner.queries = { (firstInterface IB b) (b IC ¢) (firstInterface IC ¢) (c 1A a) )

Rule 6 establishes a correspondence between the queries to the delegating interfaces of the inner and the
gueries to the pUnkQuter interface of the outer component. We define a mapping from aggregates O +— 1
to order preserving 1-1 correspondences go, between the indices of the queries to the inner and to the
outer in their respective sequences. For every query to a delegating interface of the inner, go, gives the
index of a query in the outer query sequence that the inner sends to the outer in order to delegate the
original query (A12).

Delegate : Component; x Component; —+ StrictCorrespondence

dom Delegate = Aggregates
V I, O : Componenty; go;: StrictCorrespondence
| O—1 e Aggregates;
A 2oy = Forward(O, 1)
o dom go; = {i : dom Lqueries | receiver(I.queries i) = I firstInterface o i}
Aran goy < dom O.queries
AVn:dom go;
o O.queries(gon) = (O.pUnkOuter, request (I.queries n), result(I.queries n)) (A12)
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Once again we use the same pair of query sequences of Inner and Outer to illustrate the action of the
del egation correspondence go ;.

Outer.queries = {(a IID_IUnknown pUnkQuter) (a IB b) (b IC ¢) ( UWIW IA a))
do,

Inner.queries = { (firstInterface IB b) (b IC ¢) (firstInterface IC ¢) (c 1A a) )

We assume that Querylnterface called in the query to a deegating interface does nothing but delegates
the call to pUnkOuter, i.e., callsits Querylnterface function. Thus if a client queries an interface of the
inner that is delegating and shared with the outer component, then the copy of this query and the
delegation query are next to each other in the outer query sequence.

V 1, O : Componentg; n: N ;5 g0, poy : StrictCorrespondence (A13)
| O—1 e Aggregates;
A go1 = Delegate(O,I) A po; = Share(O,I)
Adom go;n dom po =+ &
An €dom gorn dom po;
e g0(n) =pos(n)+i

5.2. COM identity under aggregation

Theorem 2: Dynamic COM Component |dentity

If a component outer aggregates a component inner and inner reveals its identity through an interface
other than its hidden non-delegating IUnknown, then outer and inner share dynamic object identity as
defined for COM components.

VI, O : Componenty
| O 1Ic Aggregates,
A 1 q : ran Lqueries o request ¢ = IID_IUnknown A receiver q # LfirstInterface (A14)
o] —com,d O

Pr oof:
First we shall demonstrate that the relation =,mq is indeed defined for components | and O. This is
equivalent to iunknowny function being defined for both of the componentsin question. Recall that

dom iunknowny = { C : Componenty | (3 q : ran C.queries | request ¢ = IID_IUnknown) e C }
It follows from (A14) that I € dom iunknowny .
Let n be the index of a query g € ran Lqueries such that receiver q = Lfirstinterface. Such a query exists
by (A14). Thenn isin the domain of the delegation strict correspondence function g=Delegate(O, 1). By
(A12) the image of n under ¢ identifies a query q’= O.queries(g n) in O.queries that requests for the
same |ID as g, namely [ID_IUnknown. Thus O manifestsitsidentity and so O € dom iunknowny .
It remains to show that iunknown, I = iunknowny O, in other words that there exists a pair of queries for
I1D_IUnknoawn in |.queries and O.queries respectively that have identical results.
Observation that g and g’ are just such two queries completes the proof.
O

The premise (Al14) that inner manifests its identity through an interface other than its hidden non-
delegating lUnknown is essential as the following counterexample illustrates. Consider the aggregate on
Figure 3. Suppose that theinner and outer components have the following parameters:
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Outer firstInterface = Outer pUnkOuter;
Outer.queries = {(pUnkOuter, IB, b) (pUnkOuter, IID_IUnknown, pUnkOuter))

Inner pUnkQuter = null;
Inner.queries = { (firstInterface, IB, b) (firstInterface, IID_IUnknown, firstInterface))

Although the components O and | satisfy all the requirements of aggregation in its dynamic interpretation
and manifest their identities, so that iunknowny is defined for both of them, we have

iunknowny(Outer) = pUnkOuter
iunknowngy(Inner) = firstInterface

Thus Outer #,p g Inner.

We conclude that under the dynamic interpretation of the rules of COM the parts of an aggregate are not
necessarily COM identical as it was the case under the static interpretation. An extra premise that the
inner must manifest its identity through an interface other than the non-delegating lUnknown reveals the
mechanics of aggregation. It is the delegation of Querylnterface calls that makes the COM identities of
the parts of an aggregate equal. As long as we access the identity of the inner through a non-delegating
interface, we may get a result different from the outer’s identity and from the identities of all other inner
components.

6. Necessary conditions of legality of an aggregated
component

Our static theory of the rules of COM predicted that sdlective hiding of interface types of an inner
aggregate component implies that we no longer can assume that the rules of COM in their static
interpretation hold for that component. In particular, we cannot assume that the symmetry, reflexivity
and transitivity properties hold for all potential sequences of queries to the interfaces of that component.
This, however, is not a problem if we want to guarantee these properties only for the actual sequence of
gueries that will be made to the component in its lifetime. Our dynamic model describes just such a case
and, as we will soon show, imposes weaker necessary conditions upon the legality of aggregated
components.

6.1. Theorem: Reflexivity and selective hiding of interfaces

If a component O aggregates a legal COM object |, then the sequence of Querylnterface calls to
interfaces of | does not include areflexive call to a delegating interface requesting an interface type that O
does not expose. A reflexive cal is a call to the Querylnterface function of an interface, requesting an
1D of that interface. (Figure 4)

- HiddenNotReflexive
I, O : Component,

V a : Interfuce; iidA : IID; r : QueryResult
| iidA e Liids \ O.iids
A a > iidA e IIDOfInterface
A a # LfirstInterface
e (a, iidA, r) ¢ ran Lqueries
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VI, O : Componenty
| O—1c Aggregates; n I e COMObjects,
o HiddenNotReflexive

Proof:

By contradiction.

Let O,I : Componenty such that O r— I ¢ Aggregates; and I ¢ COMObjectss.

Let a : Interface; iidA : IID; v : QueryResult such that iidA4 < Liids \ O.iids, a +— iidA € IIDOfInterface
and

a =+ LfirstInterface. Supposethat (a, iid4, r) e ran Lqueries and let n : N such that n € dom Iqueries and
Lqueries(n) = (a, iidA, r).

Thenn isin the domain of the delegation correspondence gor = Delegate(O, I) and by property (A12) of
aggregation O.queries(gorn) = (O.pUnkOuter, iidA, r) € ran O.queries.

SinceiidA ¢ O.iids, r must be equal to null by definition of interfaces and iids sets of a component.

Thus (a, iidA, null) € ran Lqueries. On the other hand, sincel € COMObjects,; we have:

Lqueries € LegalQuerySequences and by the reflexivity rule (L3) (a, iidA, null) ¢ ran Lqueries.

We have a contradiction. Our assumption that (a, iidA, r) € ran I.queries is untenable and so

(a,iidA, r) ¢ ran Lqueries.

[

pUnkOuter

—iidas
CPV L \‘ null

O

non-delegating

IUnknown (P delegation
I a:iidA
nu11‘~/

Figure 4: A reflexive query of a hidden interface

dA?/

"

6.2. Theorem: Symmetry and selective hiding of interfaces

If a component O aggregates a legal COM object |, then the sequence of Querylnterface calls to
interfaces of | does not include a subsequence of the following two calls. The first call is to
Querylnterface of a delegating interface a of typeiidA, not exposed by O, asking for an |1D iidB exposed
by O. This call succeeds and returns interface b. The second call, not necessarily immediately following
thefirst one, isacall to Querylnterface of b asking for iidA. (Figure 5)
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- InsideOutNotSymmetric
I, O : Component,

V a,b : Interface; iidA, iidB : IID; r : QueryResult; ny, n, : dom Lqueries
| iidA e Liids \ O.iids A iidB € O.iids
A dar—iidA, b — iidB} € IIDOfInterface
AN, >N
o - (Lqueries(n;) = (a, iidB, b) A Lqueries(n,) = (b, iidA, r))

VI, O : Componenty
| O—1c Aggregates; n I e COMObjects,
o InsideOutNotSymmetric

Proof:

By contradiction.

LetI, O : Componenty, a,b : Interface; iidA, iidB : IID; r : QueryResult; ny, n, : dom Lqueries; such that
iidA € Liids \ O.iids, I € COMObjects,, iidB € O.iids, {a + iidA, b +— iidB} € IIDOfInterface and n, >
n,;. Assume further that Lqueries(n;) = (a, iidB, b) and Lqueries(n;) = (b, iidA4, r).

First, we shall show that b = I firstInterface. Assume the opposite, b = I firstInterface. Then

iidB = IID_IUnknown. Since we assume that iidB < O.iids and iid4 ¢ O.iids, we conclude that

iidA = IID_1Unknown. Combining thiswith (A3) we get a = L firstInterface. Thusn; € dom g, where

g = Delegate(O, I) and (O.pUnkOuter, iidB, b) € ran O.queries and b € O.interfaces. But by (A4)
LfirstInterface cannot bein O.interfaces. We have reached a contradiction and so b = I firstInterface.
Second, suppose that r = null. Sincel.queries(n,) = (b, iidA, r) andI € COMObjects;, we have:
Lqueries € LegalQuerySequences and by (L1) r v iidA ¢ HIDOfInterface. b = LfirstInterface implies that
n, € dom g and (O.pUnkQOuter, iidA, r) € ran O.interfaces. Thusr e O.interfaces and iidA < O.iids which
contradicts our assumption that iidA < Liids \ O.iids. We have shown by contradiction that r = null.
Finally, we have established that I.queries contains the following subsequence:

{(a, iidB, b) (b, iidA, null)}). This apparently contradicts our premise that I ¢ COMObjects, because it
violates the symmetry axiom (L4).

Therefore our hypothesis that I.queries(n;) = (q, iidB, b) and ILqueries(n,) = (b, iid4, r) is untenable
and InsideOutNotSymmetric holds for all aggregates O +— I such that I ¢ COMObjects,.

[
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6.3. Theorem: Transitivity and the hidden non-delegating lUnknown

If a component O aggregates a legal COM object |, then the sequence of Querylnterface calls to
interfaces of | does not include a subsequence of the following three calls, not necessarily next to one
another. The first call isto Querylnterface of the hidden non-delegating interface of | asking for an 11D
of a delegating interface on |. This call succeeds and returns interface a. The second cal is to
Querylnterface of a asking for iidB, not exposed by I. This call also succeeds. The third call is again to
Querylnterface of the hidden non-delegating interface of | now asking for iidB. (Figure 6)

- NonDelegatingNotTransitive
I, O : Component,

¥V a,b : Interface; iidA, iidB : IID; r : QueryResult; ny, ny, n; : dom Lqueries
| iidA e Liids A iidB ¢ NativelIDs I
A dar—iidA, b — iidB} € IIDOfInterface
A a # LfirstInterface
AN <ns A ny<ni
o - (Lqueries(n;) = (LfirstInterface, iidA, a)
A Lqueries(n,) = (a, iidB, b)
A Lqueries(nz) = (LfirstInterface, iidB, r))

VI, O : Componenty
| O—1c Aggregates; n I e COMObjects,
o NonDelegatingNotTransitive
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Figure 6: A sequence of two queries going from the non-delegating | Unknown of the inner outside to
a native interface on the outer does not allow a shortcut.

Pr oof:

By contradiction.

Let I, O : Componentg, a,b : Interface; iidA, iidB : IID; r : QueryResult; ny, n,, ns : dom Lqueries such
that

I € COMObjects, iidA € Liids, iidB ¢ NativelIDs(I), {a + iidA, b — iidB} € IIDOfInterface,

a =+ LfirstInterface andn; <n, < n;. Suppose further that I.queries(n;) = (I firstlnterface, iidA, a),
Lqueries(n;)=(a, iidB, b) and Lqueries(ns;) = (IfirstInterface, iidB, r).

First, note that our assumptionsimply that b = null because b +— iidB ¢ IIDOfInterface and

null ¢ dom 1IDOfInterface.

Second, suppose that r = null. One of our assumptionsisthat I ¢ COMObjects, or equivaently

Lqueries € LegalQuerySequences. By axiom (L1) r + iidB € dom HDOfInterface. On the other hand,
Lqueries(ns) = (LfirstInterface, iidB, r). By definition of NativelIDs function (A8) iidB <
NativellDs(I). This contradicts the assumption that iidB ¢ NativeIIDs(I). Our assumption that r - null is
therefore untenable and we conclude that » = null.

We have shown that I.queries, contains a subsequence of three queries: (I.firstInterface, iidA, a) (a, iidB,
b) and (I firstInterface, iidB, null) in this order, whereb = null. This contradicts the transitivity axiom
(L5) of legal query sequences. We finally conclude that our assumption about the existence of the query
subsequence Lqueries(n;) = (IfirstInterface, iidA, a), Lqueries(n,)=(a, iidB, b) and

Lqueries(ns) = (LfirstInterface, iidB, r) isuntenable. No such subsequenceis present in Iqueries.

O

7. A sufficient condition of legality of an aggregated
component

In this section we will state and prove a condition on the outer and a given inner components of an
aggregate that guarantees the legality of the inner component. In essence, this condition states that if the
outer component is a legal COM object with a static set of interfaces, then every inner component will
behave according to the rules of COM unlessiits clients (including other inner components) provoke it to
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an ‘illegal” ation by executing one of the three query sequences ruled out by the necessary conditions of
legality.

7.1. Theorem: The legality of an inner component

Let a component O aggregate a component |.

| is alega COM object in the dynamic interpretation of the rules of COM if al of the following

conditions hold:

(R1) Oisalegal COM object under the definition of legality given in the dynamic theory of COM

(R2) If O exposes an IID d, then any query in O.queries made to an interface of O and asking for d
succeeds.

(R3) All successful queries to the inner non-delegating lUnknown in the inner query sequence return
results of requested type.

(R4) The subsequence of queries to the inner non-delegating lUnknown in the inner query sequence is
stable, so that if two queries from this subsequence request the same 11D, then they both fail or
both succeed.

(R5) The consequents of theorems 6.1, 6.2 and 6.3 (the necessary conditions of dynamic legality) hold for

thepairO+—1.
V O,1: Component; | O—1 e Aggregates,
e O € COMODbjects; (R1)
A (V d : O.ids; q : ran Lqueries o request ¢ =d = result q = null) (R2)

A (VY qu, 92 : ran Lqueries | {receiver q, receiver q,} = {LfirstInterface}
o result q; = null = result q; + request q; € IDOfInterface

(R3)
A result g2 = null <> result q; = null) (R4)
A HiddenNotReflexive A InsideOutNotSymmetric A NonDelegatingNotTransitive (R3)
= I €¢ COMObjectsy

Proof:

Let O, 1: Component; | O—1 e Aggregates,;. Supposethat O € COMObjects,, (R2), (R3) and (R4)
hold for I.queries and the predicates of HiddenNotReflexive, InsideOutNotSymmetric and
NonDelegatingNot Transitive schemas hold for the pair O +— 1.

We shall show that I.queries € LegalQuerySequences.

By definition of Legal QuerySequences set

V s : seq Query

o 5 ¢ LegalQuerySequences < CorrectResult A Stable A Symmetric A Reflexive A Transitive

We need to show that the predicates (L1) - (L5) of schemas CorrectResult, Sable, Symmetric, Reflexive
and Transitive hold for |.queries. We will accomplish thisin the following five lemmas. For the rest of the
proof we let ¢ be the delegation correspondence between the query sequences of I and O, g = Delegate (O,

I) and p be the interface sharing correspondence between these sequences, p = Share(O,I)

Lemma 1: Successful queries of |.queries sequence return results of requested types.
V q : ran Lqueries ® result g = null = result q v request q € IIDOfInterface

Pr oof:
Let g : Query | q € ran Lqueries A result g = null. There are two possible cases.

1) receiver q = LfirstInterface. Then result q — request q € IIDOfInterface by (R3).

2) receiver q = LfirstInterface. Let n, : dom Lqueries | I.queries(n,) = q. Then by (A12)
O.queries(g ny) = (O.pUnkOuter, request q, result q). By (R1) O.queries € LegalQuerySequences.
Thus (L1) holds for O.queries and result g +— request q € IIDOfInterface.
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Lemma 2: |.queriesis stable
V q1, 42 : ran Lqueries | receiver q; = receiver q, A request q; = request ¢,
o result q; = null < result q, = null

Proof:
Letq,, g2 : Query | {q,, g2+ S ran Lqueries A receiver q; = receiver q; A request q; = request ¢,.
Let a : Interface | a = receiver q; = receiver ¢q,. Again there are two cases to consider.
1) a = Lfirstinterface. Then result q; = null <= result q, = null by (R4).
2) a =+ LfirstInterface. L&t N, n, : dom Lqueries | Lqueries(n;) = q; A Lqueries(n,) = g,. Then by
(A12) O.queries(g n;) = (O.pUnkOuter, request q, result q,),
O.queries(g n,) = (O.pUnkOuter, request g2, result q,).
By (R1) O.queries € LegalQuerySequences. Thus (L2) holds for O.queries and so
result q ;= null < result ¢, = null.
1

In the rest of the proof we will demonstrate that, given the assumptions of the theorem, |.queries contains
no query subsequences that violate the reflexivity, symmetry or transitivity axioms of Querylinterface as
defined by our dynamic theory. We will split the set of possible subsequences of |.queries into classes and
prove for each class that its elements do not violate those rules. A class is identified by a k-tuple of
mutually exclusive sets of element indices, where every set isone of the following three: dom p,

(dom g \ dom p) and (dom I.queries \ dom g). Note that the last class of the three contains the indices of
all those queriesin Lqueries whose receiver is I firstInterface, the non-delegating hidden 1Unknown. The
classification is especially simple for a proof of reflexivity property because in this case k = 1 and the
subsequences of interest are singletons. To prove the symmetry property we have to consider 9 classes of
two-element subsequences, several of which are easy to show to be empty under the assumptions of the
theorem. In the proof of symmetry property we operate three-element sequences and the number of classes
to consider threatens to reach 27. However it is not hard to demonstrate that most of those 27 classes are
empty.

Lemma 3: |.queriesisreflexive
V ¢ : ran Lqueries ® receiver q +— request q € IIDOfInterface = result q = null

Proof:
Letq : Query;n: N| Lqueries(n) =q A receiver q — request q € IIDOfInterface
Then one of the fallowing istrue.
1) nedomp.
Then by (A11) O.queries(p n) = Lqueries(n) = q. By (R1) O.queries € LegalQuerySequences and so
(L3) haldsfor it and result g = null.
2) receiver q = LfirstInterface (or equivalently n € dom I.queries \ dom g)
By (A3) IIDOfInterface (| LfirstInterface |) = {1ID_IUnknown} and so request q = IID_IUnknown.
By (C3) result g = null.
Since HiddenNotReflexive (theorem 4c) schema holds for the pair O +— I (R5), we need not consider the
casen ¢ dom p A receiver q # LfirstInterface (or equivalently n € dom g \ dom p), because the predicate
of HiddenNotReflexive impliesthat g ¢ ran I.queries that contradicts our assumptions.
This exhausts all possible cases for n. We have shown that result q == null and (L3) holds for I.queries.
O
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Lemma4: |.queriesis symmetric
Lqueries € { s : seq Query | Symmetric e s }

Proof:

Let x, v : Interface; iidX, iidY : IID; r : QueryResult; ny, n, : dom Lqueries such that n; <n,,

Lqueries(n;) = (x, iidY, y), x> iidX € IIDOfInterface and IL.queries(n,) = (y, iidX, r).

It is sufficient to show that under these assumptionsr = null.

Again, we will consider several cases.

1) Both x and y are exposed delegating interfaces. {n;,n,} < dom p.

Then by (A11) O.queries(p n;) = Lqueries(n;) = (x, iidY, y),
O.queries(p n,) = Lqueries(ny) = (y, iidX, r). Because by (R1) O.queries € LegalQuerySequences,
(L4) holds for it and sor = null.

2) If x isan exposed delegating interface, then y cannot be a hidden interface, because by (A11)
O.queries(p n;) = Lqueries(n;) = (x, iidY, y) and soy e O.interfaces and iidY € O.iids. Thusit
cannot be the casethat n; € dom p andn, ¢ dom p. In particular, if n; € dom p, theny =
Lfirstinterface.

3) Ifxisadédegating hidden interfaceof I (n; € dom g\ dom p) then we only need to consider the case
n, € dom p becausen; ¢ dom g along with (A12) imply that y € O.interfaces. Suppose that
n; € dom g\dom p andn, ¢ dom p. Then if iidX ¢ O.iids, we have a contradiction with
InsideOutNotSymmetric schema, sincel.queries(n;) = (x, iidY, y), l.queries(n,) = (v, iidX, r) and
n; <ny. IfiidX € O.iids, we combine (R2), (A11) and n, € dom p to conclude that r = null.

4) Theonly casel€ft to consider iswhen x isthe non-delegating hidden interface of I, x =
LfirstInterface, or equivalently n; € dom Lqueries \ dom g. Then by (A3) iidX = IID_IUnknown and
no matter what kind of interfacey is, (C3) guarantees that the query (y, iidX, r) succeeds and sor =
null.

This exhausts all possible cases for n; and n,. We have shown that r = null and so (L4) holds for

Lqueries.

[

Lemma5: |.queries istransitive
Lqueries € { s :seq Query| Transitivee s }

Proof:

Let x,y,z : Interface; iidY,iidZ : IID; ny, na, ns : dom Lqueries; r : QueryResult such that n; <n, <ns,
Lqueries(n;) = (x, iidY, y), Lqueries(ny) = (y, iidZ, z), z = null and Lqueries(ns) = (x, iidZ, r).

We shall show that under these assumptionsr = null. Just aswe did in the proofs of lemmas 3 and 4 we
will partition the set of indices dom Lqueries into classes and show that no matter what classesn,, n, and
n; fall into, provided the combination of classes does not contradict our assumptions, the result of the third
query is not null.

1) Supposethat x isan exposed delegating interface, n; ¢ dom p. Then it is aso the only possible class
for y and z because by (A11) O.queries(p n;) = (x, iidX, y) and soy € O.interfaces. Thus we do not
need to consider the cases when x is exposed and y is hidden. If both of x and y are exposed
delegating interfaces we have: {n,, n,, n;} < dom p, O.queries(p n;) = (x, iidX, y), O.queries(p n,)
= (y, iidX, z),

O.queries(p n3) = (x, iidX, z) and by assumption (R1) O.queires € LegalQuerySequences. Thus (L5)
holds for O.queries and r = null.
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2) Now let x beahidden delegating interface, n; ¢ dom g \ dom p. Then by definition of g n; ¢ dom g.
By (A12) we have: O(g n;) = (O.pUnkOuter, iidY, y) and so againy < O.interfaces which means
that y is an exposed dd egating interface. By definition of the Share and Delegate mappingsn, € dom
p € dom g. By (A13) and monotonicity of g, there exist m, m,, m; : dom O.queries such that m; <m,
<m; and
O.queries(m;) = (O.pUnkOuter, iidY, y), O.queries(m;) = (y, iidZ, z),

O.queries(ms3) = (O.pUnkOuter, iidZ, r). We can take, for example, m; = g n,, my = p ny, mz = g ns.
Since O.queries € LegalQuerySequences and (L3) holds for it, we conclude that r == null.

3) Theonly caseleft isx being the hidden non-delegating interface, x = L firstInterface. This
corresponds to
{ny, n3} € dom Lqueries \ dom g. There are three subcases to consider.

a) nycdomg A iidZ € NativellDs 1.
Then by definition of NativellDs function (A8)
3 z; € Linterfaces\{null} | (I firstInterface, iidZ, z;) € Lqueries. By lemma 2 I.queries is stable
and so the query Lqueries(ns) = (I firstInterface, iidZ, r) must also succeed. r = null.

b) n,cdom g A iidZ ¢ NativellDs I
In this case we have a contradiction with the assumption that the NonDelegatingNotTransitive
schema holds for the pair O +— 1. By that schema the sequence of three queries:
(IfirstInterface, iidY, y), (v, iidZ, z), z = null and (I firstInterface, iidZ, r) in this order cannot
be a subsequence of I.queries provided that iidZ ¢ NativelIDs I and y = 1 firstInterface.

C) nrgdomg
Thisimpliesthat y = Ifirstinterface and sincez = null, we haveiidZ ¢ NativelIDs I. Again, asin
subcase (a) we use the definition of NativellDs along with lemma 2 to get r -~ null.

This exhausts all possible cases for nj, n,, n;. We have shown that r == null and so (L5) holds for L.queries.

1

Lemmas 1 through 5 demonstrate that predicates (L1) - (L5) of schemas CorrectResult, Sable,
Symmetric, Reflexive and Transitive hold for |.queries. By definition of the LegalQuerySequences set we
have:

Lqueries € LegalQuerySequences, and finally I ¢ COMObjects,.

O

7.2. Significance of the sufficient condition result

Armed with a sufficient condition of the legality of inner components, we now produce a set of guidelines
for constructing legal COM aggregates from legal COM components. The designers of sophisticated
COM-based systems with multiple aggregation and interface hiding can use these guidelines to build
aggregates, whose inner and outer components are certain not to violate the interface negotiation rules.

1. Thelegality of an inner component cannot be guaranteed unless the interface negotiation mechanism
of the outer component is implemented according to the rules of COM. Implementing the outer
component so that it islegal under the static interpretation of the rules of COM will guarantee that
conditions (R1) and (R2) hald for it.

2. Every inner component must implement its hidden non-delegating IlUnknown interface correctly, so
that its Querylnterface function returns interfaces of the requested types (R3) and satisfies the
stability requirement (R4).

3. Every inner component must know which of its interfaces and interfaces of other inner components
are of hidden types and not query such interfaces for their hidden types. This guarantees that
HiddenNotReflexive schema holds for the aggregate. For example, it is reasonable for a mediator to
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assume an interface through which it communicates with ancther inner component to be a hidden
interface and not query it reflexively.

4. Inner components must not query hidden interfaces of themselves or other inner components for 11Ds
exposed by the outer component. If all of them follow this rule, then no sequence of calls prohibited
by the InsideOutNotSymmetric schema can be executed and so InsideOutNotSymmetric holds for the
aggregate.

5. Inner components should never query their hidden non-delegating IUnknown interfaces or such
interfaces of other inner components. This guarantees that the aggregate satisfies the predicate of the
NonDelegatingNotTransitive schema.

This sat of guiddines appears to be loose enough to allow flexible connection architectures within
encapsulated systems. At the same time Theorem 7.1 guarantees that as long as all the components of an
aggregate follow these guiddines, they can assume that all components of the aggregate follow the rules
of COM interface negotiation.

8. Conclusion

We have presented a new theory of COM aggregation and interface negotiation. The new “dynamic”

theory differs fundamentally from earlier “static” theory [Sullivan et a. 1997] in one critical way:

Whereas the “dtatic” theory required components to be designed to act legally under any usage situation,

the “dynamic” theory requires only that components act legally in each particular system execution. Thus,

in the static theory, we formalized the legality of Querylnterface as a timeless rdation; and in the
dynamic theory, we formalize it in terms of sequences of calls to Querylnterface.

Under the static theory, we demonstrated that the selective hiding of the interfaces of inner (aggregated)
components is incompatible with those inner components being legal under the rules of COM. Under the
dynamic theory, by contrast, we showed that this incompatibility disappears, at least in principle. It
becomes incumbent on clients of inner objects to follow additional rules that ensure that no violations of
therules of COM are ever manifested. Thus, we used the dynamic theory of COM to derive necessary and
sufficient conditions for the legal aggregation of subsystems of interacting components. These additional
rules should be of interest to designers who are considering advanced uses of COM aggregation. In
addition, it might be appropriate for the designers of COM to consider integrating these rules into the
specification of the COM standard, and into adopter-level documentation of the standard.

It is not entirdly clear which interpretation people are using in practice. We suspect that people are
generally confused about aggregation and, having heard rumors about difficulties with aggregation, that
they ssmply avoid problems by not using except in ways that are well known not to be problematical. We
have anecdotal support from several users of COM to support this suspicion, but no results from carefully
administered studies.

Far from contradicting the basic conclusion of our earlier work, we take the results presented in this paper
as convincing evidence of that conclusion. It is both necessary and profitable to apply formal methods to
the analysis of innovative aspects of architectural standards and styles based on such standards. However,
until industrial developers and adopters of standards are convinced of the need for and profitability of
formal analysis, it isincumbent on the research community to earn its own way by proving the case for the
innovative application of formal methods. We can continue to do that by solving problems that are at the
heart of highly relevant industrial concerns. In this and in our earlier paper, we have shown that the
light-weight use of formal methods “in-the-small” has significant potential to play arolein that endeavor.
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Appendix A: COM interface negotiation rules

HRESULT IUnknown::Querylnterface(iid, ppv)

Return a pointer within this object instance that implements the indicated interface. Answer NULL if the receiver does not contain an
implementation of the interface.
It is required that any query for the specific interface IUnknown® always returns the same actual pointer value, no matter through which
interface derived from lUnknown it is called. This enables the following identity test algorithm to determine whether two pointersin fact
point to the same object: call Queryinterface(lID_IUnknown, ...) on both and compare the results.
In contrast, queries for interfaces other than IUnknown are not required to return the same actual pointer value each time a
Querylinterface returning one of them is called. This, among other things, enables sophigticated object implementors to free individual
interfaces on their objects when they are not being used, recreating them on demand (reference counting is a per-interface notion, as is
explained further below). Thisrequirement isthe basisfor what is called COM identity.
It is required that the set of interfaces accessible on an object via Querylinterface be static, not dynamic, in the following precise sense.*
Suppose we have a pointer to an interface

ISomelnterface * psome = (some function returning an ISomelnterface *);

where ISomelnterface derives from IlUnknown. Suppose further that the following operation is attempted:
IOtherInterface * pother;

HRESULT hr;
hr=psome->Querylnterface(lID_IOtherInterface, &pother); lNine 4
Then, the following must be true:
. If hr==S_OK, then if the Queryinterface in “line 4” is attempted a second time from the same psome pointer, then S_OK must be

answered again. This is independent of whether or not pother->Release was called in the interim. In short, if you can get to a
pointer once, you can get to it again.

. If hr==E_NOINTERFACE, then if the Queryinterface in line 4 is attempted a second time from the same psome pointer, then
E_NOINTERFACE must be answered again. In short, if you didn't get it the first time, then you won't get it later.

Furthermore, Querylnterface must be reflexive, symmetric, and transitive with respect to the set of interfaces that are accessble. That is,
given the above definitions, then we have the following:

Symmetric: psome->Querylinterface(lID_ISomelnterface, ...) must succeed
Reflexive: If inline 4, pother was successfully obtained, then
pother->Querylinterface(IID_lSomelnterface, ...)
must succeed.
Transitive: If inline 4, pother was successfully obtained, and we do

IYetAnother * pyet;
pother->Querylinterface(lID_lYetAnother, &pyet); //Line 7

and pyet is successfully obtained in line 7, then
pyet->Queryinterface(lID_ISomelnterface, ...)
must succeed.

Here, “must succeed” means “must succeed barring catastrophic failures.” Aswas mentioned above, it is specifically not the case that two
Querylinterface calls on the same pointer asking for the same interface must succeed and return exactly the same pointer value (except in
the lUnknown case as described previoudy).
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