References:

[Bewley]

[Blombem]

[Calder]

[Dewan]

[Foley86]

[Foley90]

[Goldbeg89]

[McCormack]

[Myers90]

Bewley, William, Roberts, €resa,
Schroit, David, and &tplank,
Williams, Human Factors dsting in
the Design of Xexx's 8010 ‘Star
Office VWorkstation, 1983,
Proceedings of ACM CHI'83
Conference on Human Factors in
Computing Systems

Blombeqg, Jeanette, and Henderson,
Austin, Reflections on Participatory
Design: Lessonsdm the Tillium
ExperienceProceedings of ACM
CHI'90 Conference on Human
Factors in Computing Systems, pp.
353-359

Calder Paul, Linton, Mark, and
Vlissides, JohnComposing User
Interfaces with Interiws IEEE
Computey 1989.

Dewan, PrasurA Guide to Suite
Software Engineering Research
Center Purdue UniversitySERC-
TR-60-R February 1990

Foley James D. and McMath, C.F
Dynamic Pocess Vualization,
Computer Graphics and
Applications 6:3, March, 1986.

Foley James, van Dam, Andries,
Feiner Steven, and Hughes, John
Computer Graphics: Principles and
Practice gnd Edition), 1990,
Addison-Wesley Publishing Co,
Reading, MA, ISBN 0-201-12D-7;
T385.C587.

Goldbep, Adele, and Robson,
David, Smalltalk--80: The
Language Addison-Viésley
Reading, MA, 1989.

McCormack, Joel, and Asente, Paul,
An Overview of the Xoblkit. In
Proceedings of the ACM
SIGGRAPH Symposium on User
Interface Software, pp 46-55. Bénf
Alberta, Canada, Octoher988.

Myers, Brad, et alGarnet:
Compehensive Support for
Graphical, Highly Interactive User
InterfaceslEEE Computer23:11,
Novembey 1990.

[Myers91]

[Palay]

[Rochkind]

Myers, Brad Graphical echniques
in a Speadsheet for Specifying User
Interfaces Proceedings of ACM
CHI'91 Conference on Human
Factors in Computing Systems.

Palay Andrew eta alThe Andew
Toolkit---An OverviewUSENIX
Technical Conference Proceedings,
Dallas, TX, Feb, 1988.

Rochkind, Marc JTechnical
Overview of the Extensiblerival
Toolkit, Advanced Programming
Institute, Ltd., January 16, 1989,
API Ltd., Box 17665, BouldeCO
80308 (303) 443-4223

[Schneiderman] Shneiderman, BeDirect

[Sibert]

[UIMX]

[Valdes]

[Welsh]

[Wilde]

[Wirth]

Manipulation: A Step Beyond
Programming Language$EEE
Computer 16:8, Aug, 1983, pp. 57-
69.

Sibert, John, HurleyWilliam, and
Bleser TeresaAn Object-Oriented
User Interface Management
SystemComputer Graphics, 20:4
August 1986 (Proceedings of
SIGGRAPH ‘86).

Visual Edge Software Ltd, 101 First
St., Suite 443, Los Altos, CA 94022
(415) 948-0753

Valdes, RayA Mrtual Toolkit for
Windows and the MaBYTE,
March, 1989.

Welsh, J. Ambiguities and
Insecurities in PascalSoftware -
Practice and Experience 7, 1977, pp.
685-696.

Wilde, Nicholas, and Lewis,
Clayton,Speadsheet-based
Interactive Graphics: fsm
Prototype to dol, Proceedings of
ACM CHI'90 Conference on
Human Factors in Computing
Systems, pp. 153-159.

Wirth, Niklaus,The pogramming
language Pascahcta informatica
1:1 (1971) pp. 35-63.

Acknowledgments

We would like to thankRoderic Collins, Matt
Conway, Jim Defay, Pramod Dwivedi, Brandon
Furlich, Rich Gossweiler, Drew Kessler, James
Leatherby, Chris Long, William McClennan, Anne
Shackelford, and Hans-Martin Werner, all of whom
have contributed to SUIT’s developmeBUIT should
not be confused with SUITE [Dewan], a project at
Purdue with a similar name.

Button Widgets Radio Button Widget On/Off Switch Widget Menu Widget
Done .~ Chocolate _| my switch Monday
~ Vanilla
Abort
\ Strawberry ek
.~ Rocky Road Wednesday
Scrollable List Widget Text Editor Widget Type In Widget Thursday
- outsuitor This text editor INOW is thel Friday
overunsuitable supports |
playsuit emacs-style
itabili key bindings
presu!tablllty Y J Memory Monitor Widget
presuitable
presuitably
pursuit
pursuitmeter
repursuit)
resuit Bounded Value Widget _ _
snowsuit Color Chips Widget
suit |
suitability . . .
suitable D
/ B BNE R

Figure 6: Popular SUIT Object Classes, In Motif Look and Feel

common property types, and users can define dialo(SUIT’s Current Status

boxes for modifying usedefined types. _
SUIT has been created over the last eighteen months.

In fact, the program shown in Figure 5 can be createcApplications built with SUIT appear identical across
with no programming, starting with a blank screen. all platforms, within limitations imposed by font

The user creates a “polygon object” via the menus ofavailability, color palettes, and physical screen size.
standard objects, and then exposes that polygorSUIT is implemented in 9,000 lines of ANSI-C code,

objects “number of sides” and “filled” properties. and provides a library of standard objects implemented
by another 6,000 lines. Figure 6 shows the more

Hierar chy popular objects, all cycled to the Motif-like display
style.

With most interface builders, novices confuse the

logical tree of subclasses with the geometric tree thalSUIT currently has over one hundred users at the
visually nests objects. &Vavoid this problem in SUIT University of Mrginia and is used routinely in the
by limiting classes to one level, and by hiding the undegraduate software engineering course and the
geometric hierarchy from novice users. Although graduate graphics course. Students from teferit
some basic SUIT objects, such as a radio button, ardepartments have used it on all platforms to create
actually hierarchial collections of other objects, we interfaces in support of their ongoing research. SUIT
provide procedural and interactive operations that treaiS currently complete, although we are still developing
these objects atomicallyBy providing interactive New classes of objects and continuing to optimize both
operations that allow users to move and resize multiplespeed and size. By UNIX/X standards, we are a
objects at one time, we sidestep the only motivationflyweight system, but under DOS and the Macintosh
most novices have for wanting to compose basicour 300k executable images are relativelgdar

objects into a hierarch - o .
) y We are currently beginning distribution via

Once users are comfortable with the basic system, w@nonymous FTPIn the spirit of SUIT we are
introduce them to interactive manipulation of investing a lage efort in making SUIT easy to obtain
hierarchy SUIT allows users to create a composite, or and install. Our current goal is to allow a remote user
tupperwae object. There is only one type of Who has no previous experience with FTP to be able to
composite object because multiple display styles areread a network news post and be running a SUIT demo
used to implement vertical tiling (vboxes in on their workstation in under ten minutes.
Interviews/BX terminology), horizontal tiling

(hboxes), bulletin boards, pull down menus, etc. Conclusions

Screen objects can be nested within a tupperware

object by dragging them inside it. Any object can be Students who are not familiar with external control
nested into any of the tupperware styles. and have never seen another Ul toolkit are able to use

SUIT productively after only two and a half hours.
When objects are inside a tupperware object, there isOur undegraduate software engineering class projects
ambiguity as to which object should receive input. For have been able to expand their scope significantly by
regular input, this is simple: the input handler for the using SUIT and students are highly motivated by
tupperware object merely passes the input down to thebeing able to easily produce professional looking
appropriate child. SUIT input, such as an attempt tointerfaces for their projects.
move an object, is more problematic. This is resolved _ _ o
by allowing the user tmpen a tupperware object. By using a reduced model for subclassing, hiding
When a tupperware object is open, SUIT draws ageometric hierarchy and providing direct
special border around it to indicate that its children, manipulation tools for property setting and linkage, we
and not the tupperware object, will receive SUIT have been able to radically reduce the learning time
commands. If a child is moved outside the boundariesand complexity for a user interface toolkit. By keeping
of its geometric parent, it becomes autonomous,the toolkit's implementation lightweight and building

moving up to be a sibling a sibling of its parent in the it on top of an easily ported graphics package, we have
geometry tree. been able to implement SUIT on a wide variety of

platforms. SUIT is a success, and we hope that it will
be accepted as a standard teaching vehicle for user
interface software as we begin to distribute it widely

due to the combination of limiting the class hierarchy
to a single level, exposing information at all three
levels, and using direct manipulation.

~ new century schoolbook v 24

v charter I™ boid ~ Linking Objects to Other Objects

“ Ccourer A . . .

A nelvetica 14 By default, SUIT provides a very simple linkage
: [T ot v 12 mechanism. Application-level callbacks can be

v e talie Y registered with objects, and those callbacks are

sz LI ~ invoked by the input handlers for the screen objects. A

more complicated problem is how to provide general
linkage between screen components and arbitrary user
ok | cancel | routines. The Next Interface Buildefor example,
allows the user to draw a connection between two
screen objects, then prompts the user to specify details
Figure 4: The Font Dialog Box about the linkage via a sequence of dialog boxes.
SUIT provides a simpler but more limited form of
prototype objects are typically not visible on-screen linkage that handles a g& number of common cases

examine and alter the state of objects. The Sullinked to the first.
property editoralways displays the object, class, and
global property lists when allowing the user to edit the
state of an object. The SUIT property editor is showr
in Figure 3.

The quick brown fox jumps over the lazy dog

Many linkages between on-screen objects merely
allow one object to control a particular aspect, or
property of another For example, in the polygon

drawing program in Figure 5, the slider controls the

Users alter a property’value by clicking on that number of sides in the polygon. Rather than
property with the mouse; boolean properties toggleattempting to _Ilnk two existing objects,_ a SUIT user
when clicked, and other properties either bring up évould start with only the polygon object and then
type-in box, or a type-specific dialog box, such as thdnvoke the property editofhe user would then drag
dialog box for typdont shown in Figure 4. If an object the “number of sides” property to the “expose” icon,
is currently inheriting a value from its class, the userwhich causes SUIT to create a new object that controls
can take that property value and drag it from the clasthat property This also has the sidefedt of locking
level to the object level, thereby copying it. If a the propertywhich is shown with a small “lock” icon
property is currently specified at the object level ancin the property editorThis avoids the ambiguous
the user wishes to have that property default to thsituation of the user modifying the polygsrihumber
class’ specification, the user drags the property fronOf sides” in the property editor after exposing it. SUIT
the object level to the trash can, deleting the objecknows what kind of object to use to expose all
level property In the same wayproperties can be
manipulated at the global level. An exercise in the
SUIT tutorial asks students to make all labels in ar
application blue, and then have one particular labe
override that default and be red.

Property sheets date back to (at least) the Xerox St:
[Bewley]. Other systems use a spreadsheet model fc
accessing attributes of objects [Myers91ildé]. Our
contribution is to always expose the fixed three levels
on every invocation. This produces some screet
clutter, but also avoids having the student learn the
mechanisms for accessing inherited state. The
property editor has been tremendously successful;
allows our students to understand and use stat Figure 5: The Polygon Pogram
inheritance in less than five minutese Weélieve this is

inherit some portion of their state from that class. containing that object’state. If SUIT does not find the
When explaining the class and inheritance requested propertyit then looks in a property list
mechanisms, we find it necessary to briefly lie to ourstored with the objed’ class. If the property is not
students. There is a strong analogy here tofound at that level, SUIT looks in a global property
programming languages: introductory students are nolist. If the property is not found in the global property
typically receptive to explanations that subroutines arelist, SUIT creates it using the tygeinitialization

an abstraction mechanism. They do, however routine to establish a default value.

understand that subroutines are a great way to save ¢

code space in a compiled program. StudentsThe Property Editor

understand concrete explanations much better thai

abstract ones, and once they understand the concegStudents do best with concrete, visible items. Screen
one can revisit the motivation for it. Therefore, we objects are good for explaining object-oriented
explain that having each object describe things like itsprogramming, as shown by the early success in
foreground and background color is wasteful, Smalltalk [Goldbeg]. The problem with class and
especially since all buttons will probably be the sameglobal property lists is that they are no longer
color When a program requests the value of aimplicitly visible. The prototype-instance architecture
property SUIT looks first in the property list [Myers90] does not really solve this problem, because

Global Properties

border raised: yes
border type: 1 "simple
border width: 5
clipping on: yes
default object height: 80
default object width: 80

draw border on inside: no
font: helvetica,bold,24.000000
foreground color: black
handle gravity: 2

handle width: 8

has background: yes

has border: yes

interface builder enabled: yes
margin: 5

open border color: red
permanent object: yes

ratio snap threshold: 0.100000
screen depth: 7

screen height: 885

motif" "fancy motif”

button foreground color: AntiqueWhite2

chained to object:
current value: 0.000000
granularity: 0.000000
has arrow: yes

has background: no

has border: yes

increase clockwise: yes
minimum value: 0.000000

DONE editing properties I

active display: speedometer
callback function: function ptr
current value: 0.400000
granularity: 0.100000

has border: yes

maximum value: 1.000000
minimum value: 0.000000
number of children: 0

percent full: 0.200000

_| show temporary properties I

TRASH

_ | show property types I

Figure 3: The SUIT Property Editor

“run vs. build” mode used by other interface builders, Objects as Abstract Data Vpes

such as the Next Interface Buildéwoiding this mode)

switch is important for new users, and we have Many students tend to confuse the notion of an
experienced almost no cases of users being confuseobjects state and the mechanisms whicfecif that
about when they are giving input to SUIT and when state. V¢ have had good success combating this by

they are giving input to the application. treating objects as abstract data types which have

multiple mechanisms for displaying state. For
External Control and Attaching User Call- example, SUIT supportsEounded valuebject with
backs properties:

Students have diéulty adjusting to the idea that a [minimum value”, *floating point”, 0.0]

painting procedure may examine an objestate, but [‘currentvalue”, “floating point”, 0.7]

that only that object input handler may alter the [‘maximum value”, “floating point”, 1.0]

objects state. Most students, when implementing their o

own objects, place graphics library calls in their input Which can appear as any of the followdigplay styles
handlers. The more advanced students alter thdSibert, Foley86] shown in Figure 2. A keystroke
objects state and then call the objsctpainting
procedure from within the input handleBecause
SUIT traps all state changes and triggers calls to the
appropriate paint routines, the input handler only
needs to update the objecstate. This separation of
“painting reads the state” and “input handling sets the
state” is often a difcult concept for students. &\have
experimented with producing run time errors if
programs paint while inside input handlers and/or set
properties while inside painting routines, but this tends
to confuse students even more.

=

Figure 2: Bounded \alue Display Styles

Having grasped how external control works, many command (again, with keyboard modifiers down)

students find it mildly unsettling, because they havecyclesbetween the various display styles, and this has

become accustomed to using the flow of control inbeen very déctive in establishing the d#rence

programs to sequence actions. Students do notbetween an objedt’ state and the mechanism for

however find external control to be nearly asfidifilt displaying and altering that state. For many students, it

as their first introduction to either pointer variables or is the most visceral experience they have had in

recursion. Once students understand the basiunderstanding general concept of abstract data

mechanism which drives SUlITwe explain that a type

standard set of screen objects have already bee

implemented and stored in a libraifhis motivates User Defined Poperty Types

the question of how screen objects can be made t

invoke application procedures, or “callbacks.” In the Users may define their own types for use in property

example of a slidestudents understand how the input lists by registering subroutines with SUIT that

handler and painting procedure will cause the slider toinitialize, copy destroyconvert the type to ASCII, and

behave properlybut are not sure how an application convert from ASCIl to the type. The ASCII

routine can be informed that a value contained in thatconversion allows SUIT to write the interface file that

slider has changed. &\then explain that aallback is saved between executions, and to convert one

property of typefunction pointercan be added to the arbitrary type to another by going through an ASCII

slider objects property list. If such a property exists, representation.

the input handler calls the function after changing the

state of the slider object. This attachment of desezl The Class Mechanism

callbacks is the most diifult intellectual leap for most

students. Subclassing and inheritance are complex ideas. When
we first show students SUlTve explain that SUIT
provides a non-hierarchical collection of screen
objects, each of which belongs to one class, and can

Simplicity [Visual, Lee], based on Motif Mbet set, or
_ Interviews. Instead, we have observed the
Throughout SUITS development, we applied the phenomenon that also occurred with Pascal: Unless

following principles: students discovered a specific need to move to a more
S . advanced platform, they continued to use SUIT for
* minimize the uses need to learn new things their own research projects.
* make the simple things easy and the hard things
possible The Basic SUIT Model
* perform end-user testing early and often The remainder of this paper describes SUIT in detail.

.) . Again, we wish to stress that SUs$T¢ontribution is its
Current Ul toolkits and UIMSs tend to violate the first portability and ease of learning, not its functionality

point by forcing their users to learn a new pany other toolkits provide more functionality
programming language. For example, Motif-oriented

tools require learning UIL, the Next Interface Builder sy|T provides a collection of screen objects, where
[Mahoney] requires learning objective-C, and each object is described by:

Interviews requires learning C++. While these

languages are required to support the model eacl -« its state, contained in a property list

system provides, users who are focused on their task ¢
hand often fail to use advanced tools because the
learning threshold of these languages is too high.

» a C procedure which examines the obgestate
and displays it on the screen

_ _ e a C procedure which handles user input to the
The importance of end-user testing cannot beobject and updates the objecttate

overstated. & routinely forced SUIF developers to

sit silently in the back of a room where new users wereThe property list containing an objecttate is a set of
learning to use SUIT from a printed tutorial. By [name, type, value] triples, as in:

constantly observing new users, we were able to

maintain perspective on the fiilties new users face [“label”, “text”, “pizza”]
when trying to understand the SUIT model. This sort [“diameter”, “floating point”, 10.5]
of user testing is well understood in some corporate [“nymper of slices”, “integer”, 6]
cultures, most notably at Apple ComputéFhis [“has anchovies”, “boolean”, FALSE]
techniqgue was also used with great success in the

development of fillium [Blomberg]. Once students understand that a ShaSed

application is a collection of objects, we introduce
external control by explaining that SUIT maintains a
table of all on-screen objects, and that SUIT
multiplexes keyboard and mouse input based on the
location of the cursorStudents quickly understand
that three dierent slider objects share code for their
input handling and display procedures, but have a
distinct property lists in the state table. The contents of
this table are written to a human-readable ASCII text
file between executions of the program.

It can be hard to know what is going through a single
usefs mind when he or she becomes confused. While
one way to address this is to ask the user to think ou
loud, a more natural solution is to have two or more
students work togethefhe students learn the system
togetherand as they talk to each otheavesdropping
provides valuable feedback. It is important not only to
observe when the systegnresponse confuses the
users, but also to note what the users had expected tt
system to do at that time. In a similar vein, when

students use SUJTwe suggest they work in groups, After students understand that SUIT maintains a table
since interactive software is more easily learned as éf objects, we explain that SUHinteractive tools are
collaborative €brt. provided by accepting some of the useinput as

- . ., commands to SUlTrather than to a particular screen
Our original desire was merely to produce a tool which gt \When user input occurs, SUIT queries the state

would introduce students to relatively failt — o¢ye CONTROL and SHIFT keys: if they are both
concepts, specifically external control and mherltance.OIOWn when mouse buttons are pressed, SUIT

We had presumed that after spending a few weeks Withiso o rets the input as a command to move or resize a
SUIT the¥ woulddoutgrO\I/v I an(il move OQ to O&Tl\eﬂrxscreen object, and updates the object table accordingly
more matureé and compiex Systems such as This use of keyboard modifiers allows us to avoid the

Over one hundred students currently use SUIT forwrite an ASCIl text file, and the standard C 1/O
both course work and research projects at thelibraries always support this.

University of Mrginia. We have formally measured _

that students require an average of two and a halFor graphics, we needed a common, low-level
hours to become productive with SUMMhis is a vast ~ graphics package which supported operations such as
improvement over the four to six week learning curve Dr awLi ne and DrawFi | | edGircl e on each of

we observed for our students with systems like Xtk the platforms. W were surprised to find few graphics
[McCormack], the Andrew dol Kit [Palay], packages implemented for all three platforms. Most
Interviews [Calder], and the Motif Mget Set. The researchers we contacted said that they had always
description of the system itself is a secondary goal ofported between platforms by implementing small
this paper; the main goal is to stress the desigrcompatibility libraries for the specific graphics

methodology which drove us throughout the project. commands they used in their applications. This made
porting their systems unnecessarily time-consuming,

so we determined that we would use a well-defined
common graphics layer from the beginning of the

Software used to support education must meetProject.

stringent criteria. At many universities, . :
undegraduates begin their programming experience V& chose to use SRGEe Simple Raster Graphics

on Macintosh or DOS machines, and then move up tc°@ckage, which was being distributed by the Addison-
UNIX workstations in their junior or senior yedihis esley publishing company with the second edition of
requires learning a new file system, a new operatingFundamentals of Interactive Computer Graphibg
system, a new text editoa new set of utilities, and " °l€% van Dam, Feingand Hughes [Foley90]. SRGP
often a new programming language. Given this, most¥as already implemented for the Macintosh and X
educators are not willing to invest gar amounts of ~Windows; we ported it todrbo C on DOS, on top of
time exposing their students to interface developmeniBorlands BGI graphics driverOur DOS version of
tools. This is especially problematic with current tools, SRGP is now distributed with the textbook. Figure 1
which are designed more for expert users than forSNows the software layering which makes SUIT
novices. A six week learning curve during a fourteen Portable.

week course is intolerable. Given these constraints, we
established the following design goals for SUIT

Design Goals

SUIT (Simple User Interface Toolkit)
SRGP (Simple Raster Graphics Package)

 portability: SUIT must run transparently across
UNIX, Macintosh, and DOS

» simplicity: SUIT must be usable by undexdu-

ates in under three hours X Mac Toolbox | | BGI driver
UNIX -
Portability machine Macintosh DOS PC

A user interface toolkit requires three basic forms of
support: an implementation language, operating Figure 1: Layered Software for Portability
system support, and a graphics package. Oui
implementation language had to be either C or Pascal
since they are the only languages most widely knownA different approach to portability is taken by XVT
by undegraduates. Although Pascal is more widely [Valdes, Rochkind], which provides a virtual toolkit on
used and is simpler than C, implementing SUIT in top of the native toolkit layer on each platform. The
Pascal was not technologically feasible. Pascal existadvantage of the XVT approach is that on each
on all three platforms, but it varies widely §¥sh]. platform the application has the same look and feel as
Also, standard Pascal is not powerful enough toother applications built locally on that platform. There
support the external control model: it lacks the ability are two major drawbacks to this approach. First, XVT
to store function addresses as variables. Therefore, wis forced to provide only those functions common to
chose ANSI-C. Our operating system dependency waall platforms - the lowest common denominator
very small: we only needed to be able to read andsolution. Second, the user must usdedgnt support
tools (e.g. layout editors) on each platform.

SUIT: The Pascal of User Interface Toolkits

Randy Pausch, Nathaniel R. Young |1, and Robert Deline

Computer Science Department, Thornton Hall
University of Virginia
Charlottesville, VA, 22903
(804) 982-2211
contact: suit@Virginia.Edu

Keywords undegraduate and graduate course work and for

_ _ research projects.
Interface Builder Ul Toolkit, UIMS, Pedagogy

Portability Software Engineering. Intr oduction

Abstract In the 1960s and 1970s, many computer science
) ~ researchers developed new programming languages.

User interface support software, such as Ul toolkits,Most of the advances were incremental, and

UIMSs, and interface builders, are currently too eventually with the advent of languages like PL/1,

complex for undgraduates. dols typically require @ even advanced programmers could not master all the
learning period of several weeks, which is impractical capabiliies presented to them. For novice

in a semester course. Most tools are also limited to éprogrammers, the situation was dire: language

specific platform, usually either Macintosh, DOS, or designers had been rapidly developing new paradigms

UNIX/X. This is problematic for students who switch and semantic advances, but as the languages grew
from DOS or Macintosh machines to UNIX machines they became harder to learn.

as they move through the curriculum. The situation is
similar to programming languages before the In 1971, Niklaus Wth presented Pascaljwh], a
introduction of Pascal, which provided an easily language whose primary contribution to the field was
ported, easily learned language for ugdaduate that it had been designed to be easy to learn. Despite
instruction. its many drawbacks, Pascal succeeded for two basic
reasons. First, it presented a small, consistent language
SUIT (the Smple User Interface Toolkit), is a C with simple semantics. Second, the language was
subroutine library which provides an external control designed so that compilers could easily be
UIMS, an interactive layout editorand a set of implemented for a variety of hardware platforms.
standard screen objects. SUIT applications run
transparently across Macintosh, DOS, UNIX/X, and User interface toolkits and UIMSs are now in a state
Silicon Graphics platforms. Through careful design analogous to programming languages in 1970.
and extensive user testing of the system and itsStudents still write Ph.D. dissertations on new UIMS
documentation, we have been able to reduce learninmodels, but practical experience indicates that the
time. We have formally measured that new users areexisting tools are much too fidult for new users. In
productive with SUIT in less than three hours. SUIT the same spirit as Pascal, we have developed, StdT
currently has over one hundred students using it forSimple User Interfaceoblkit, which ofers the same
two advantages as Pascal: it is easy to learn, and it can
be easily ported to dédrent platforms. SUIT already
to appear in: Poceedings of UISTthe Annual ACM runs on the DOS, Macintosh, UNIX/X, and Silicon
SIGGRAPH Symposium on User Interface Softwar Graphics platforms.
and echnologyNovember 1-13, 1991.

SUIT: The Pascal of User Interface dolkits

Randy Pausch, Nathaniel R. Young |1,
and Robert DelLine

Computer Science Report No. TR-91-20
October 7, 1991

Thiswork was supported in part by the National Science Foundation, the
Science Applications International Corporation, the Virginia Engineering
Foundation, the Virginia Center for Innovative Technology, and the United
Cerebral Palsy Foundation.

