Two Computer Graphics Systems for the
Visualization of Pressure Distributions and
Airflow in Wind Tunnel Experimentation
By
Carol T. Luan
and
W. N. Martin
Computer Science Report RM-85-01

April, 1985

Two Computer Graphics Systems for the Visualization of
Pressure Distributions and Airflow in

Wind Tunnel Experimentation

Carocl T. Luan
and
W.N., Martin

Department of Computer Science
Thornton Hall
University of Virginia
Charlottesville, Virginia 22901

RM-85-1
April, 1985

This research was supported in part by NASA Langley Research
Center through Grant NAG-1-242 and by the National Science
Foundation through Grant ESC-83-07248.

Acknowledgement

We would like to thank Mr. Don Lansing of ACD, NASA Langley
- Research Center for his guidance and encouragement of Ms.
Luan while she worked on the first part of this project at
NASA Langley Research Center during the summer of 1984,

Abstract

A method is presented for displaying pressure
distributions with planer color contours and general surface
meshes. McAllister's algorithm for shape~preserving
osculatory quadratic splines is the major approach.

A graphics system is alsp presented for visualization
of solid obstacles immersed in a set of convective
transliucent particles. Approximation of particle density
volumes and Torrence-Sparrow's method for computing surface

reflectance are the major approaches.

NTEN

Chapter 1. Introduction

Chapter 2. Display of Pressure Distribution

2.1 Input data

2.2 McAllister's algorithm and Coon's

bivariate interpolating scheme

2.3 Planar color contour

2.0 Genersl surface mesh

Chapter 3, Visualization of Particles

2.1 Theoretical approach

3.2 Implementation

Chapter 4., Visulization of a Solid Obstacle

Chapter 5. Discussion on Generalized System

5.1 Increase input data size

5.2 Rotating viewpoiht and light source

5,3 Particle flow throughtout a segquence

of ¢£ime intervals

Chapter 6. Conclusion

10
10
13

16

21

21

21

24

26

Chapter 1. troductio

The 1list of computer graphics applications is enormous
land growing rapidly. In this paper, two systems in
engineering applications are presented. The first system is
concerned with the pressure distribution on an airfoil
surface in wind-tunnel testing. In an actual wind-tunnel
test, the pressure values of & collection of points on the
airfoil surface are measured gnd.reoorded. Our Jjob 1is ¢to
help with the interpretation of the data obtainea, by
providing a visualization of the pressure distribution with
color graphics.

L second system 1is concerned with the air flow in
wind-tunnel testing. To assist with the observation of this
flow, some opaque trace particles are also injected into the
flow. If the trace particles are injected in a localized
manner, the resulting stream can help visulize the air flow
through a selected volume, With a wind-tunnel flow
simulator, frames of three-dimensional volumes of air and
trace particle densities throughout a sequence of time
intervals c¢an be generated. Qur Jjob 1is to provide a
visualization of the particle flow through «color graphics
presentation. Oﬁr_discussion of this second system will Dbe
subdivided into two parts. The first part deals with
visualization of particles while the second part deals with

visualization of a solid obstacle which can be immersed in

the particle flow.

Although Dboth systems are wind-tunnel systems, the
-first one centers attention on the flow on an airfoil
surface, while the second system centers attention on the
flow of injected particles in the wind-tunnel.

A graphics package has been written for the first
system. This package is to be used by the aeronautic
engineers for pressure analysis' at NASA Langley, Va. A
sumation of =algorithms wused in this package is coveréd in
Chapter 2.

The remainder of this report discusses the second
system. Chapter 3 covers the visualization of particles.
Chapter 4 covers the visualization of & solid obstacle.
Chapter 5 addresses extending the second system by
discussing problems and difficulties that would arise from
the alteration of our assumptions for visualization of

density particles and an obstacle,

Chapter 2. Display of Pressure Distribution
2.1 Input data

The input to the system is a set of gridded data
points. By gridded, we mean that the projection of these
data points on an x-y plane is a set of intersection points
of orthorgonal lines. See Fig. 2.1.1. Each data item 1is
an ordered triple (x,y,z), where z is the pressure value
measured at a point (x,¥y) on‘an‘airfoil. In this ﬁay, z can
be viewed as the result of a single-valued function, f(#,y).
If the original data are scattered, not gridded, a separate
program has been written to compute an interpolated sampling
with uniform spacing. This program uses a contouring
subroutine JSSGRD of DI-3000, a software package by
Precision Visuals Inc,. The subroutine is an implementation
of an algorithm by Akima [1], which in turn uses the
triangulation algorithm cf Lawson [2]. The x-y plane is
divided 1into triangular cells, with the vertices determined
by projecting groups of three data points onto the plane, A
bivariate‘fifth—degree polynomial in x and y 1s applied to
interpolate points within a triangle. Estimated values of
partial derivatives at each data point are used in
determining the ‘polynomial. Optional extrapolation may be
performed to determine pressure values at points 1lying
outside of the area covered by traiangles, but within the

outermost grid area.

Akima's interpolating scheme, our first interpolating
mechanism in this system, can be used independent of any
‘other interpolating schemes which will be introduced in the
next two sections. But it is not too sucessful in
preserving the original shape of data. Therefore, we only
apply this method to scattered data for computing an initial

course sampling with uniform spacing.
Vil v
{ 1

Fig. 2.1.1

2.2 McAllister's algorithm and Coon's bivariate
interpolating scheme _

McAllister's algorithm [3] (4] is an algorithm for
calculating a Shape-Preserving Osculatory Quadratic Spline
that preserves thé monotonicity and convexity of the data
when consistent with the given derivation at the data
points. This élgorithm is wused here to compute the
shape-preserving splines passing through each grid 11line in
both the ¥ and y direction, as shown in Fig 2.2.1.

In Fig. 2.?,2, the pressure value for point p* can be
interpolated using Coon's Bivariate Interpolating Scheme if
pressure values are known at points 1, 2, 3, and 4.

our second interpolating mechanism is the combination

- -

of McAllister's algorithm and Coon's scheme. With this
second method, the lattice 1in Fig. 2.2.2 can be refined
'into smaller uniformly spaced grids, as shown in Fig 2.2.3.
Without the third interpolating scheme which is to be
introduced in the next section, this method alone can
produce better results, but at too high a cost. Hénce, we
apply this second interpolating scheme only to compute an
intermediate course sampling, and let the third

interpolating scheme do the final refinement.

rrrry 1
?a ‘. fé};ﬁ ?]|
P3 ! 127
Fig., 2.2.1 Fig. 2.2.2 Fig. 2.2.3

2.3 Planer color contour

Upon completion of the éecond interpolating process as
described in Sec. 2.2, if each unit area of the new grid is
sufficiently small; it can be used as a display wunit by
converting 1its pressure measure to an intensity value. For
each different pressure level, a distinctive pseudo-color
can be assigned. ‘For instance, red can be used to represent
a high pressure level and blue to represent a low pressure
level. If each new grid is not small enough to be a display

unit, we further refine the course sampling. Since .each

grid should be relatively small at this point, it can be
assumed that its surface 1is appropriately approximated by a
-quadric surface. With this underlying assumption, the
following bilinear interpolating formula can be used to save
computation time and storage.

Z = C1X + C2Y + C3XY + C4

The coefficients, €1, C2, C3, C4 are determined by the
values of the four corner points, e.g., peints 1, 2, 3, 4 in
Fig. 2.3.1. With the coefficients known, the preésure
value of any point on the surface can be interpolated.

This last interpolating method is very economical in

comparison with the first two methods.

P’; T 1P4
777 /i
27T J
[t /
//// . Z = C1%X + C2%Y + C3xXxY + C4
] Y'ﬁ"“"“j 1?3
v
&ﬁ
Fig. 2.3.1

With these interpolating schemes the program can now
step through each image coordinate, (x,y), calculate the
appropriate preséure value, 2z, and then display the color
assigned to this pressure level, The resulting display
appears as a planar contour map of the pressure values.

2.4 General surface mesh

An alternative approach is to create a mesh
corresponding to the surface of the pressure fﬁnction. For
leach grid line segment in the intermediate interpclation a
line is drawn corresponding to the orthogonal projection of
the grid segment from an arbitrary observation point., These
mesh lines should preserve the shape of the original data.
By rotating the observer's position, different views can be
obtained.

Two mechanisms are used for line drawing, hardware.line
drawing, and software line drawing. Hardware line drawing
is done through the TEKTRCNIX 4115 command -‘"DRAW LINE",
Because <fhe 1line drawings are done in hardware, the large
data transmission <cost is avoided. Therefore, it is
relatively fast in comparison with the second line drawing
method which is to be introduced next. But precision and
flexibility are sacrificed for speed. One has 1little
control over the coior of each display unit,

The second mechanism is software line drawing. Lines
are drawn point by point using the "RASTER WRITE" commands,
for each point along the line, specifying the color. One
has total control over the position and color of each point,
Bresenham's algoritbm [5] is applied here to plot a straight
line between two points. Because of high transmission cost,
speed is the price paid for flexibility here. On the

average, to generate the same picture, using software line

-7 -

drawing mechanism takes four times as long as using hardware
line drawing mechanism. Obvicusly, this proportion is
‘closely related to the average length of lines being drawn.
Terry Jenssen's [6] algorithm for removal of hidden
lines is used in our package. The basis of the algorithm is
to compare each unique line to be plotted against potential
planar surfaces which may hide all or a portion of the line,
Each unit grid area is decomppsed inteo a pair of triangles.
Triangular area coordinateé are then used to determiné the
intersection point of the 1line and the triangle. By
vtilizing area coordinates, no angle determination or

trigonometric functions are required.

Fig., 2.4.1

While working with Jenssen's algorithm, we encountered
a few problems which are not addressed in his paper. His
algorithm takes four T"corner" points and creates two
triangles, as shown in Fig. 2.4.1, with one triangle having
vertices P1, P2, §3, and another having vertices P1, P3, P4,
His algorithm does not hide a line which lies along the
diagonal line connecting P1 and P3., Also, a wuniform error

tolerance cannot be used throughout the algorithm. This

-8 -

error tolerence problem is the weakest part of Jenssen's
algorithm and our program currently requires the user to set

various error tolerance for their particular data sets.

Chapter 3. VYisualization of Particles

Objects such as clouds, fog, flames, dust, and
“particles can be represented by densities within a volume
unit. James Kajiya and Brian Von Herzen of California
Institute of Technology developed light scattering equations
[6] to solve the three-dimensional radiative scattering
problem associated with objects in the above category. But
an enpormous amount of computation and resources are
necessary in order to apply their new approximation mefhod.
As a much more economic alternative, we approximate each
density volume by a sequence of unit planes to determine a
reflection coefficient for the volume, and then apply
geometric optics to the set of unit volumes.

3.1 Theoretical approach

Let A be a finite subset of Z% where Z is the set of
integers, Given a set of parfticles contained in A, we can
represent 1t Dby é density function D: A - 3, where R 1is
the set of reals. Here, for any (i,},k) ¢ A, D(i,j,k) 1is
the density of particles in the unit cube C(i,j;k} centered
at point (i,j, k).

In order to apply geometric optics, the particles in
each "unit cube -are approximated by a sequence of parallel
unit planes perpendicular to the incident 1light, These
planes are identical and translucent. The number of planes,

N, obtained for cube C(i,j,k), depends linealy on density

- 10 -

D(i, j,k) with a approximation coefficient a:
N = N(i,Jj,k) = [D(i,3,k)/al (3.1)
where [x] is the floor of x.

For simplicity, we assume that only a first order
approximation to the reflected light intensity is
considered, By first order approximation, we mean that any
light ray which 1is reflected twice or more is neglected.
For example, when the light tgy”reflected by Py reaches Py,
a portion of it is reflected back to P,. This portion is of
order 2 because its intensity is O&Kz) where o 1s the
reflection coefficient of a single plane. If ® is small
encugh, the amount of light bouncing back and forth among
the planes can be considered neglectable, 3See Fig. 3.1.3.

Let I be the incident light ray, the intensity of the
light reflected by cube C{i,j,k) is

Ip = 1 %o ® _%f___; (1 ~-t>()21 (3.2}
where N =lN€£;j;k) from Eq. (3.1).
For simplicity, we assume that the light transmitted through
the cube is

I = I - IT (3.3)

t
See Fig. 3.1.1.

Eq. (3.3) is derived from the assumption that no 1light is
lost in the process, that is, all light is either reflected

or transmitted. In reality, this assumption would not

sustain since there is always 1light scattered in other

- 11 =

~ directions. But the amount of scattered light for each unit
plane can be viewed as a constant proportion of the incident

light.

I ke

Fig. 3.1.1 Fig., 3.1.2

——— i
! N -
b [—

Fig. 3.1.3

In Fig. 3.1.2, the light ray reflected by the plane P.
has to go through plane Ppwq, Ppegy -..y Pg before reaching
the viewer. This is the reason why the exponent in Eq.
(3.2) is 2N instead of N.

It is obviocus that the reflection coefficient « depends
on the substance of the particles as well as the
approximation coéfficient a, while the approximation
coefficient a depends not only on the substance of the
particles, but also on the accuracy desired, and of course,

on the capacity of the computing system.

- 12 -

3.2 Implementation

In the actual implementation, we assume that we are
lworking with parallel projection, the light source coincides
with the viewpoint, and incident light rays are parallel to
z axis. See Fig 3.2.1. Different intensities of grey scale
are used to represent light reflected by various particle
densities. The orginal 1light intensity is set to the
brightest white color ([255, 255, 255] in Tektronix [red,
green, bluel color coordinaté system). Qur input dehsity
data size is 150 X 150 X 150. These data are sfored in a
file such that D(i,j,k) precedes D(i1,Jt,k1) if (k,j,i) 1is
lexicographically less than (k1,j1,1i1). The data are
projected onto a plane of size 150 X 150. Each display unit
on this plane contains 3 X 3 (9) pixels. Thus, we have a

viewport of 450 X 450.

%
£

X i
Left-handed Coordinate System

Fig. 3.2.1
Color at display unit [i,Jj] is determined by intensity

of light reflected by cubes ¢[i,J3,1}, ¢[i,3,2], ..., and

- 13 -

cli, j,1501. In the previous section, we described how
yeflected and transmitted light intensity for each volume
unit can be calculated. The light intensity transmitted
through C[i, j,1], Iti’ becomes the incident light intensity
for C{i,3,2]. From Ity4 and D[i,],2], we then can determine
I49, and Iy, the reflected and transmitted light intensity
for cube Cli,j,2], respectively. And I4s Dbecomes the
incident 1light intensity forﬂ cli, j,31. This process is
repeated throughout the 150 cubes, The final reflected
light intensity 1is the sum of light intensity reflected by
each of the 150 cubes, '
IT = 171 + ITZ * ...+ IT!SO’
see Fig., 3.2.2. Tektronix command, "RUNLENGTH WRITE" is

used to paint 50 display units at a time.

c(1,1,3)
c(1,1,2)
c(1,1,1)

Fig. 3.2.2

- 14 -

150

The reflection coefficient, o, is set to 0.005. The
approximation coefficient a is set to 1.0.

Since our data are "discrete®, not "continuous®, there
exist aliasing problems. But overall, the result that we

obtained from this approximation scheme is satisfactory.

Chapter 4. JY¥isulization of a Solid Obstacle

The Torrance~Sparrow model [8,9] is a
‘theoretically-based model of a reflecting surface, To
determine the amount of light reflected at a certain point
on the surface of a solid obstacle, we apply the Gaussian
distribution function in Torrence-8parrow's model. The
surface of the obstacle is reconstructed from input data by
constructing local facets onlthé surface.

Let f[x,y,2z] be an orthorgonal coordinate system ﬁhere
X, ¥, z are integers. =z-axis is perpendicular to the screen
and parallel to the incident light ray. The density of any
unit volume C[i,Jj,k] contained 1in the obstacle is set to
infinity, oo. The visible parts of the obstacle surface can
be characterized by & two-dimensional array S in the
following way:

S = { S(i,3) / S(i,J) = k where k is the minimum k

for which D(i,j,k) = oo}
or $(i,3d) = oo 1if no D(i,J,k) = oo }

See Flg. 4.1.1.

D(i,,4)=° 1/1D{1,3,4)=1 s(i-2,3)
D(i,j,3)= 2 D(i,3,3)=2 é
D(i,j,2)=0 . /0 ;5 2)=0
D(i,3,1)=1 1 D{L, J,) %é
' D(i,J,1)=1 W24 .
i N _ S(ly;])
S(i,3-2
S(i,3)=3 (1,3-2)
Fig. 4.1.1 ' ' Fig. 4.1.2

- 16 -

The array, S, is then used to reconstruct the surface
of the obstacle. By taking three S values, S[i-2,]jl],
.S[i,j-23, and S{i, i}, as shown in Fig. 4.1.2, a local facet
can be determined. If i¢3, i.e., this cube is on the top
edge of the viewport, S[i-2,j] = ea; if j<3, i.e., this cube
is on the left edge of the viewport, S[i,j-2] = oa. By
‘repeating the same process for every possible S[i,j], the
surface of the obstacle can be reconstructed from these
individual facets. | |

To reduce aliasing problem, we define T[m,n] as the
average of S[m-1,n-1J, S[m,n-11, 8[m-1,n], and - Sim,n]. In
other words, instead of letting three points determine a
surface, we let twelve points determine a surface. See Fig.
4,1.3, In Fig. 4.1.3, four X's determine the value for
point 1, four Ofs determine the value for point 2, and four
_ V's determine the value for point 3. Therefore, the surface

is determined by values of twelve points,

X X

X

o |o %
P 0

SRR,

Fig. 4.1.3
Another advantage of this mechanism 1s that we only

w 17 -

have to maintain a maximum of five rows of information
(three rows of T and two rows of 3) at any given instance,

For every facet, we need to determine 1its normal
vector:

B‘zé’XB’

See Fig. 4.2.5.

The angle, B, between normal vector W and eye line vector ¥
is :

B = Arc Cos (B8 /7 (mLiE)n

hoPy
ol

b

Fig. 4#4.2.5

Knowing angle p, we can now apply Torrance-Sparrouw's
" method to calculate the amount of light reflected by this
local facet. Torrance-3Sparrow's method assﬁmes that an
imperfect | macrosurface is composed of thousands of
miqroscopio facets. Most of them are perpendicular to the
norﬁal direction of the macrosurface, some facing other
directions. We assume that the facets on the obstacle
surfaée, as computed above, are such imperfect
macrosurfaces, The angle r between the normal direction of

the macrosurface and the normal direction of each

- 18 -~

microscopic facet varies according to a Gaussian
distribution. See Fig. 4.2.6.

| In Fig. 4.2.6, area A with width w1, represents number
of microscopic facets whose normal direction forms an angle
P with B. Since T is in a three~dimensional space, there
are infinitely many vectors which point in different
directions and form a angle P with n. w2 is a constant to
cut off the invisible range; as shown in Fig. 4.2.7.

Reflected light intensity 1is ca%gulated by:

L " 202
- % % *
IT = Wi we e e I

where w1 and w2 are user-~defined constants,

determined by the reflectivity and smoothness of the

surface., ?
A
i
-
% .y
0 |8] | — 7%
Fig. 4.2.6 Fig. 4.2.7

With I determined for a volume unit corrsponding to
the obstacle surface our system can create an image for a
wind-tunnel volume containing both particles and obstacles.

The system processes the non-obstacle units as described in

- 19 -

Chapter 3, but when an obstacle unit 1is encountered the
appropriate I, is added to the display intensity and

processing is terminated for that (i,j).

- 20 -

Chapter 5. Discussion on Generalized Svstem

In previcus chapters, we made several assumptions for
'reasons of simplicity and developed methods for the
simplified systems. Now, we will further explore possible
ways to deal with more general and complicated systems.
Problems arising because of increased data size, rotated
viewpoint, and separation of light source and viewpoint are
discussed., Possible sclutions and alternatives are also
included. |

5.1 Increasing input data size

This is an easy task provided storage is not a problem.
A1l underlying algorithms remain the same, We need to
increase size of arrays, and do one or all of the following:
1) increase viewport
2) increase resolution
3) pack data (if resolution has reached maximum)

Here,keach new uﬁit volume contains the average density
of more than one cube,
Of course, with the input data size increased, one should
expect processing time be proportionally increased.
5.2 Rotating viewpoint and light source

Recall that-_our input data are arranged in the order
that D(i,j,k) is preceeding D(i1,j1,k1) if (k,j,1i) is
lexicographically 1less than (k1,j1,1i1). See Fig, 5.2.1.

This makes it possible for us to process one row at a time,

- 21 =

as row 1 and row 2 in Fig., 5.2.1. But if we rotate the
light source and viewpoint (i.e., light source and viewpoint
ho longer on z~axis) and still keep the same data file, we
will not be able to take the same approach. There are two
possible cases:

1) light source and viewpoint moving together

{\\ g\\ g\\ ;\\ —ww;iirow1 |
\\5 6\ 7\ 8\ ———rOW2'

Lo:
<5,
W

\\ | input sequence
y i as marked
|

Fig. 5.2.1

Fig. 5.2.2 Fig. 5.2.3
A new cube array C2 and a corresponding density array D2
are allocated. Elements in D2 are initialized to zeroes.

When a new density value D(i,j,k) is read in, we first

- 22 -

perform the rotation on (i,J,k), obtain a new point
(0i,03,0k), and D(i,j,k) is added to D2(0i,0j,0k). We have
.addition here because two different points may be rotated to
be within the same volume,

Note that after the rotaion, C2 is not necessarily on
the lattice Z% See Fig. 5.2.2. There are several possible
ways to solve this problem. For example, in Fig. 5.2.2, we
can compute the intersection ;ahgth of the 1incident 1light
ray and cube 1, 2, and 3 éeparately; and with the deﬁsity
values for the three cubes known, we can thus determine the
number of f¢ranslucent unit planes between C(0i,0j,0k) and
viewpoint. A second method is to let C2 be on lattice Z%
and for each rotated cube, find an approximated (0i,0j,0k)
to £fit in. See Fig. 5.2.3. The approximation mechanism
may vary. The advantage of this method is that it is much
simpler. But we pay the price on precision.

2) separating 1ight source and viewpoint

For obstacles, our algorithm can be applied without any
significant modification, But for particle volumes, we
would need a three-dimensional array to keep all the input
data in storage. For each cube C(i,j,k), we have to
determine the inﬁensity of light ray reaching the cube from
the light source using our method described in Sec. 3.1,
And by applying Kajiya and Von Herzen's light scattering

equation [6] at C(i,Jj,k), we can compute the intensity of

- 23 -

light scattered to direction of viewpoint. Knowing this
light intensity, the density of volume units between
.C(i,j,k) and viewpoint, and the intersection length of light
ray and cubes, the intensity of light reflected to viewpoint
can be calculated, again, using our method described in Sec.
3.1. See Fig. 5.2.4.

—t

Note that cubes along 1 are approximated into planes
perpendicular to f, and cubigs along e are approximated into
planes perpendicular to €. Geometric optics are applieﬁ to
211 cubes but C€{(i,j,k) where we apply Kajiya and Von

Herzen's light scattering equations instead.

Fig. 5.2.4

5.3 ' Particle flow throughout a sequence of time intervals
To represent flow of particles, we need only ¢to
identify positions of particles at a sequence of time, t1,

£2, ...,tn. The simulation or actual tracing of particle

- 24 -

flow is done in a separate system which creates the sequence
of frames. Each frame contains a three-dimensional volume
.of density data points. Our program can read these data in
through a secondary device and graphically represent the
change of states from one time to another. Note that the
sequence of frames would take up an enormous amount of
storage. For instance, with a frame of 1000 X 10600 X 1000
unit volumes, we need approx;mately 2000 megabytes to store
a single frame. With a movié which displays 16 frames‘ per

second, we need a total of 1,920,000 megabytes for only one

minute of movie.

- 25 -

Chapter 6. Conclusion

The two systems discussed in this paper are jJust two
examples among thousands of computer graphics systems being
developed for engineering applications. One of the major
goals of computer graphics is aimed at making an engineer's
job easier. The-analysis and interpretation effort involved
in experiments and simulationé can be drastically reduced
with the aid of computer graphics, especiallly when a vast
amount of data is involved. The two systems we have
developed aid in the visualization of wind-tunnel phenomena
which were difficult or impossible to visualize in tbe‘past.
Aircraft and automobile design-engineering are two examples
of areas that benefit greatly from the use of computer
graphics technology. We can expect to see this trend
continue as the use of computer graphics as a helpful tool
grown in the future, In particular, the second system
discribed in this paper is Jjust the first phase in the
development of an extensive graphics system for the

visualization of airflow in wind-tunnel simulations.

- 26 -

[1]

£2]

[3]

[4]

(5]
[6]
[71]

[8]

(9]

REFERENCES

Akima, Hirosha. "A method of Bivariate Interpolation
and Smooth Surface Fitting for Irregularly Distributed
Data Points." ACM Transactions on Mathemstical
Software, Vol. 4, No 2, pp. 148-159, June 1978.

Lawson, C. L. "Software for C1 Surface Interpolation.®
JPI, Publication 77=30, 15 August 1977.

McAllister, D. F., Dodd, S. L., Roulier J. A.
"Shape-~Preserving Spline Interpolation for Specifying
Bivariate Functions on Grids"™ IEEE Computer Graphics and
Applications, September 1983.

McAllister David F., Roulier John A, "An algorithnm
for Computing a Shape~Preserving Osculatory Quadratic
Spline" ACM Transactions on Mathematical Software,
Vol 7, No 3, September 1981, Pages 331-347. '

Foley James D., Van Dam Andries, Fundamentals of
Interactive Computer Graphics, Addison~Wesley,
Reading, Massachusetts, 1983.

Janssen Terry L. "A Simple Efficient Hidden
Line Algorithm", Computers and Structures, Vol. . 17,
No 4, pp. 563-571, 1983.

Kajiya, James T., Von Herzen, Brian P. "Ray
Tracing Volume Densities", ACM Computer Graphics,
Vol 18, No 3, pp 165-175, July 1984,

Torrance, K. E., Sparrow, E., M., "Polarization,
Direction Distribution, and Off-Specular Peak Phenomena
in Light Reflected from Roughened Surfaces", J. QOpt.
Soc. Am., 56(7), July 1966, pp. 916-925,

Torrance, K. E., Sparrow, E. M. "Theory for
Off-Specular Reflection from Roughened Surfaces",
J. 0Opt. Sce. Am., 57(9), Sept. 1967, pp. 1105-1114,

