
Architecture as an Independent Variable

Hamid Bagheri
University of Virginia
151 Engineer’s Way

Charlottesville, VA 22903 USA
hb2j@virginia.edu

Yuanyuan Song
University of Virginia/Amazon

151 Engineer’s Way
Charlottesville, VA 22903 USA

ys8a@virginia.edu

Kevin Sullivan
University of Virginia
151 Engineer’s Way

Charlottesville, VA 22903 USA
sullivan@virginia.edu

ABSTRACT
The idea that we can separate application content from ar-
chitectural form, or style, is a mainstay of modern software
engineering. Architectural styles have themselves been a
subject of intensive study. The problem is that we do not
yet have an adequate account of the mappings that combine
choices of application description independent of style, and
of architectural style independent of application, to produce
style-specific, application-specific architectural descriptions.
An account of such mappings would deepen our understand-
ing of architecture and provide a foundation for technologies
for manipulating architecture as an independent variable.
We contribute a validated early model of this kind.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architecture

General Terms
Design, Architectural Styles

1. INTRODUCTION
Researchers and practitioners have long known that ap-

plication content can be considered largely separately from
architectural form. As far back as 1972, Parnas [8] described
a key word in context (KWIC) system and consequences of
choosing to design it in one of two forms: functional decom-
position (FD), or information hiding (IH). As recently as
2009, in their textbook on architecture, Taylor, et al. [11]
described a lunar landing control system and showed how
programs implementing it could be written in many styles.

In many related works (e.g. [9, 2, 10, 11, 3]) we find the
same basic assumption: a choice of architecture-independent
application description, p, can be combined with choices
of application-independent architectural styles, s1, . . . , sn, to
produce application- and style-specific architectural descrip-
tions i(p,s1), . . . , i(p,sn). The relative costs and benefits of the
results are then compared in selected dimensions, e.g., design

University of Virginia, Technical Report # CS-2009-11.

flexibility, coordination overhead, performance, reusability,
etc. Research in this area has provided insights and technol-
ogy enabling designers to reason about properties of designs
in isolation from application details, and to select appropri-
ate design forms for many systems. It has led to styles of
great importance, including design patterns [2], the REST
style [1], and so forth.

The problem that we address in this paper is that, while
we already have a theory of architectural styles, and of spec-
ifications as application descriptions abstracted from archi-
tecture, and while we understand that we should seek to sep-
arate applications and architectural style, we do not have an
adequate theory or technologies for truly making this sep-
aration, or for combining formal application and style de-
scriptions to yield system-specific architectures. We have
not yet reached a point where mechanically we can treat
architecture as an independent variable.

This paper makes four basic contributions in this area.
First, we formulate this problem and make the case it is
worth addressing. Second, we present a vocabulary and
graphical notation that support reasonably precise discus-
sion of issues in this space. Third, we show that our ideas
can be realized in a concrete, computationally effective form.
We have developed an approach for combining formal appli-
cation descriptions with architectural style descriptions to
synthesize architectural descriptions. Fourth, we present an
assessment of the viability of our approach by using it to
replicate earlier architectural studies from the literature. We
show our formally and automatically derived architectural
descriptions to be consistent with results derived previously,
informally and manually.

The rest of this paper is organized as follows. Section 2
presents our approach in theory. Section 3 shows that the
theory can be automated. Section 4 hypothesizes that our
automated approach produces results that are consistent
with previously informal results, and presents experimental
data in support of this claim. Section 5 shows that compar-
ing our work with related efforts has the potential to improve
both. Section 6 concludes.

2. THEORY
This paper makes explicit and elaborates the notion that

an architectural map is what combines an application de-
scription, p, with a style description, s, to produce an archi-
tectural description i(p,s), for application p in style s.

i : ArchDesc = archMap(p : AppDesc, s : ArchStyle)



This map is the principal object of our study. Putting
it at the center begins to balance attention to architectural
styles, with attention to how style choices combine with ap-
plication descriptions to yield architectures. Knowledge of
this mapping is crucial to expertise in software design. Given
an application description in some style, the experienced de-
signer knows both what architectural style to pick, and how
to map an application description of the given kind to an
architectural description in the chosen style.

Clearly map is a complicated object. In some sense it
embodies all our knowledge about how to realize different
kinds of systems in different architectural styles. We need a
way to study it in pieces.

One contribution of this work is an approach to doing this:
We decompose map by treating it as a function polymorphic
in both application style and architectural style. We then
investigate map for specific pairs of styles. We thus make ex-
plicit a notion of application style. Application descriptions
come in many forms, e.g., composition of functions, or state
machine. Different architectural maps are, in practice, used
to deal with these different styles of application description.
We break up map into a large set of such style-pair-specific
maps.

We make our idea more precise as a dispatching relation,
disp. Given an application style, t, and an architectural
style, s, we view disp as indexing, or dispatching to, a t-
s-specific map, disp(t, s) = map(t,s), that in turn takes an
application description, pt in style t, and an architectural
style description, s, and that yields an architectural descrip-
tion, i(pt,s), in style s, that refines pt. Decomposing map
into style-specific pieces enables us to build up a theory and
automated style-specific tools in an incremental fashion.

Our theory and language for discourse in this area in-
cludes the following basic constructs: a set, ArchStyle of
architectural styles; a set of ArchDesc, of architectural de-
scriptions; a binary relation, conforms, on the cross product,
that encodes the conformance (or not) of an architectural
description, i, to an architectural style, s; a set AppStyl of
application styles, a set, AppDesc, of application descrip-
tions; an analogous binary relation, conforms encoding the
conformance or not of a given application description, p, to
a given application style, t; and a relation, refines, encoding
the notion that an application-specific architectural descrip-
tion, i, refines, or implements, the application description, p.
Finally, we have map, which takes as inputs an application
description, pt in style t, and an architectural style, s, and
that, via the sub-map, m(s,t), produces an architectural de-
scription, i(pt,s), such that refines(i, p) and conforms(i, s).
The following equation and Figure 1 illustrate these ideas.

map(pt, s) = disp(t, s)(pt) = map(t,s)(pt) = i(pt,s)

With these terms in hand, we can now say more precisely
what we mean by the phrase, architecture as an independent
variable. For a given application description, pt, in style t,
we should be able to select among architectural maps com-
patible with t for different architectural styles, s1, . . . , sn. If
each map is implemented by an automated tool, then we
can quickly produce architectures in different styles for the
given application by just applying the different maps.

Figure 2 illustrates for a simple case: an application pcf ,
written in a composition of functions (cf) style, is mapped
to architectural descriptions, i(pcf ,oo) and i(pcf ,pf), in two

t : AppStyle

pt : AppDesc disp(t, s) s : ArchStyle

map(t,s)(pt)

i(pt,s) : ArchDesc

conforms

refines
conforms

in

out

in

apply

Figure 1: Key relations in a commutative diagram.

styles: object-oriented (oo) and pipe-and-filter (pf). Having
architecture as an independent variables means that we can
freely choose architectural styles, and even change our de-
cisions as conditions evolve. In the next section we present
early prototype technology that suggests that this idea is in
fact viable.

pcf

i(pcf ,oo) i(pcf ,pf)

map(cf,oo)(pcf ) map(cf,pf)(pcf )

Figure 2: Architecture as an independent variable.

3. PROTOTYPE
In this section we show that our ideas can be reduced to

practice. We can implement tools that support architec-
ture as an independent variable. There are many possible
approaches to implementing tools that compute architec-
tural maps. Here we describe one approach, in which we
use Jackson’s Alloy specification language [5] to represent
application descriptions, architectural style descriptions, ar-
chitecture maps, and computed architectural descriptions.

We chose Alloy for this study for two reasons. First, its
ability to compute solutions that satisfy complex sets of con-
straints is useful as an automation mechanism. Second, and
more importantly, it allows us to use published architectural
style specifications written in Alloy as inputs [6, 12]. Reusing
published models is not only convenient, but is an impor-
tant part of our approach to validating our ideas: It shows
them to be consistent with contemporary formal accounts of
architectural style.

We view the technology that we describe here as an early
demonstration prototype only. We do not believe Alloy will
ultimately prove to be the best, or at least the only, technol-
ogy for reducing our ideas to useful tools. The novel concept
in this work encompasses any technology that takes separate
application and architectural style descriptions, broadly con-
strued, and that automatically computes, or otherwise ma-
nipulates, corresponding architectural descriptions of sys-
tems with the required refinement and conformance proper-
ties.



3.1 Application Description
We illustrate our approach with a simple example, draw-

ing on a widely known but previously informal case study
from the literature: the mapping of a description of Par-
nas’s KWIC application to an architectural description in
the pipe-and-filter style [8, 10]. In terms of application style,
we describe KWIC as a composition of functions, a structure
implicit in Parnas’s original paper [8]: ”The KWIC [Key
Word in Context] index system accepts an ordered set of
lines, . . . . Any line may be circularly shifted by repeatedly
removing the first word and appending it at the end of the
line. The KWIC index system outputs a listing of all circular
shifts of all lines in alphabetical order.”

KWIC(text) = (output ◦ sort ◦ shift ◦ input)(text).

For purposes of demonstrating the feasibility of reducing
our approach to practice, we represent this composition of
functions as a sequence of function objects in Alloy. To be
specific, we specify this sequence in Alloy, and run the Alloy
Analyzer to produce it as a solution. Figure 3, illustrates
the result produced by Alloy: the application description
consumed by our implementation of the architecture map.
We elide the simple Alloy specification of this sequence of
functions from this paper.

Figure 3: Alloy representation of application descrip-
tion for KWIC in composition-of-functions style.

We have not yet attached semantic specifications to the
constituent functions, or to the KWIC function as a whole;
but we hypothesize that it is feasible to do so and that such
specifications could be carried through our maps into the re-
sulting architectural descriptions, to provide semantic guid-
ance to programmers. We identify this idea as an opportu-
nity for future research and development.

3.2 Architectural Map
In this subsection we continue our explanation of how

our ideas can be reduced to practice by exhibiting an Al-
loy implementation of architectural map, map(cf,pf) taking
Alloy-encoded application descriptions in the composition-
of-functions (cf) style, and producing architecture descrip-
tions in the pipe-and-filter (pf) style.

A pipe-and-filter architecture describes a system as a col-
lection of components, filters, and connectors, pipes. A filter
consumes data from an upstream pipe connected to an in-
put port, transforms it in some way, and passes the results
to a downstream pipe connected to an output port. Filters
operate concurrently. Pipes connect filters to other filters.

We exploit existing Alloy formalization of such styles. Fig-
ure 4 outlines the pipe-and-filter style description, which in
turn extends Wong’s component-and-connector meta-model

of architectural style in Alloy [12]. The style description
defines eight signatures: Input, Output, Source, Sink, Data-
Source, DataSink, Filter and Pipe. In details elided from
this paper, Filter is specified as having Input and Output
ports. Pipe, a kind of Connector, has two roles: source
is the input role of a pipe; sink is the output role. Data-
Source, DataSink model data sources and sinks, respectively,
in pipe-and filter descriptions.

abstract sig Input extends Port {}

abstract sig Output extends Port {}

abstract sig Source extends Role {}{...}

abstract sig Sink extends Role {}{...}

abstract sig DataSource extends Component{}{...}

abstract sig DataSink extends Component{}{...}

abstract sig Filter extends Component{}{...}

abstract sig Pipe extends Connector{}{...}

Figure 4: Pipe-and-filter style (elided) in Alloy.

An architectural style description of this kind specifies the
co-domain of an architecture map. To represent a map, it-
self, such as map(cf,pf), we extend the style description with
mapping predicates. These predicates take application de-
scriptions as parameters (such as the KWIC structure illus-
tated above), and define relationships required to hold be-
tween them and computed architectural descriptions. Given
an application description, and a map, Alloy computes cor-
responding architectural descriptions. Alloy guarantees that
all computed descriptions conform to the given architectural
style. Our predicates are responsible for ensuring that com-
puted architectural descriptions refine given application de-
scriptions. Our ideas are thereby reduced to practice. While
noting that architectural styles include semantic constraints,
here we only consider structural refinements. In practice it
will be important to represent and refine semantics as well.
We do plan to develop this observation in future work.

Figure 5 presents handleFunctions, the parameterized pred-
icate that represents map(cf,pf). It accepts application de-
scriptions in the composition-of-functions style and produces
pipe-and-filter architecture description. It specifies that for
each function in the composition of functions there is a com-
ponent in the architectural description that handles it. The
Output port of filter is connected to the Source role of a
downstream pipe, the Sink role of which is attached to the
Input port of subsequent filter. DataSource and DataSink
are specified as we described previously. The handleFunc-
tions predicate additionally uses scope-PnF parameterized
predicate to ensure the correct Alloy scope for the System.

3.3 Architecture Description
We use the Alloy Analyzer to compute architecture de-

scriptions, represented as satisfying solutions to the con-
straints of a map given an application description. Figure 6
illustrates the computed result for our KWIC example. The
diagram is accurate for the result that Alloy computed, but
we have edited it to omit some details for readability (ports
of filters, and roles of pipes, for example). In this diagram,
DataSource, a specific type of Filter, handles the input func-
tion. Its output port is connected to Pipe0. Filter1 handles
the CS function. Its input and output ports are connected
to Pipe0 and Pipe1, respectively. Similarly, the other filters
handle alph and output functions.



pred handleFunctions[cons:seq Function]{

all f:Function | one x: Component |

x.handle = f

one DSource:DataSource, DSink:DataSink|

DSource.handle = cons.first

&& DSink.handle = cons.last

one s:System | all f:Filter|

one apipe:Pipe| one nFilter:Component|

one r1:Source| one r2:Sink |

one p1:Output| one p2:Input|

{(f.handle.next!=none) &&

(f.handle.~next!=none)} =>{

nFilter.handle = f.handle.next

&& r1 in apipe.roles && r2 in apipe.roles

&& p1 in f.ports && p2 in nFilter.ports

&& r1->p1 in s.attachments

&& r2->p2 in s.attachments

}

scope_PnF[1, #cons]

}

Figure 5: map(cf,pf) represented in Alloy.

Figure 6: The map of composition-of-functions of
KWIC into the PF style

We chose the example that we have presented this sec-
tion for two reasons. First, it helps us explain, without
undue complexity, how we have reduced our ideas to prac-
tice. We presented a software tool for taking any appli-
cation described as a composition of functions to a corre-
sponding pipe-and-filter architecture. Second, it illustrates
our approach to experimental testing of our overall hypoth-
esis: Our theory supports a formal, automated ap-
proach to deriving architectural descriptions from
application descriptions and architectural style de-
scriptions. It provides for a computationally effective
separation of application and architecture concerns.
We test this idea by exhibiting maps for a range of architec-
tural and application styles and asking whether the results
are consistent with the informally and manually produced
results in the literature. The data of this section appear to
support the hypothesis.

Comp. Fun. State-Driven
Pipe-And-Filter KWIC, LL
Object-Oriented KWIC, LL KWIC
Implicit Invocation KWIC, LL

Figure 7: Experiments performed to date.

4. EVALUATION
In this section, we report and interpret data from early ex-

perimental testing of our approach and hypothesis. Figure 7
summarizes our results. We have developed two application
description styles, composition-of-functions (CF) and state-
driven behavior (SD), and three architectural styles, pipe-
and-filter (PF), object-oriented (OO), and implicit invoca-
tion (II). The pipe-and-filter and implicit invocation style
definitions are in the published literature. Not finding an
such an object-oriented style definition, we crafted a one
based on Wong’s meta-model.

Each non-empty cell corresponds to an architecture map
that we have implemented for the application and archi-
tecture styles given on the axes. The entries in the table
indicate the case studies from the literature to which we
have applied our maps, to test the consistency of our results
with the informal, manually derived results in the litera-
ture. We have applied our work to two case studies: KWIC,
long used in studying architectural styles and their prop-
erties; and the Lunar Lander (LL) case study of Taylor et
al. Overall we have thus performed seven experiments to
date. We described the (CF,PF,KWIC) in the preced-
ing section. We elide discussion of (CF,PF,LL) because
it does not add anything new. For reasons of space, we
also elide (CF, II,KWIC). The following four subsections
thus report on the execution and results of four experiments:
(CF,OO,KWIC), (SD,OO,KWIC), (CF, II, LL), and
(CF,OO,LL). In each case we cite the study that we are
recapitulating in a formal, automated fashion.

4.1 Experiment: CF, OO, KWIC
This experiment attempted to reproduce previous infor-

mal studies by Parnas [8] and later studies by Shaw and
Garlan [10]. We map a CF description of KWIC to an ar-
chitectural description in the OO style. We have already
presented our simple CF description of KWIC. The rest of
this subsection defines our OO architectural style, discusses
our architectural map, map(cf,oo), and presents and analyzes
results of applying it to our KWIC application described in
the CF style.

One of the most common architecture styles is object-
oriented. Figure 8 presents part of our Alloy model of a
constrained OO style. The specification defines three Alloy
signatures: Interface, Implementation, and Object. An Ob-
ject has an interface, an implementation, and a set of other
interfaces on which the object depends. Elided predicates
state that no object may depend upon the implementation
of any other Object (in our constrained formalization of this
style). The implementation of one Object may depend on
the Interfaces of other Objects, except that (as we define the
style here) no object may depend on its own interface.

We next define a parameterized predicate for mapping any
composition of functions to an OO architecture. It takes a
sequence of functions (representing a composition of func-
tions), and constrains the architectural descriptions to have



abstract sig Interface{}

abstract sig Implementation{}

abstract sig Object extends Component{

interface: one Interface,

implementation: one Implementation,

depends: set Interface,

}{

!(interface in depends)

}

. . .

Figure 8: OO style described in Alloy.

pred handleFunctions(cons: seq Function){

scope_OO[1, #cons]

all o:Object| (o.handle.~next!=none)

=>o.depends = o.handle.~next.~handle.interface

else o.depends = none

}

Figure 9: Part of our CF-OO map predicate.

the intended structure. The sequence of functions is mapped
to a corresponding set of objects, each responsible for im-
plementing the function to which it corresponds, and where
each object depends only on the interface of the object re-
sponsible for the preceding function.

Figure 10 depicts the results of mapping the KWICcf

application description to an OO architecture description.
This diagram was computed automatically by Alloy but
edited to remove inessential details. The results are consis-
tent with Shaw and Garlan [10]. The resulting architectural
descriptions consists of four objects. Each one handles a
function of KWIC. Object3 handles the input function. Ob-
ject2 handles the circular shift (CF) function and depends
on the (input) Interface of Object3. Object0 implements the
output function. This object depends on the Interface of
Object1 , which handles the alphabetization (alph) function.

Clearly a designer would have to invent additional details
to produce a more satisfactory architectural description. For
example, our tool did not compute object interfaces, but
rather only constrained how objects interact through them.
Richer application descriptions, including semantics, would
create opportunities for richer architecture maps. This issue
is important to our future work.

4.2 Experiment: SD, OO, KWIC
This experiment addresses the work of Garlan, Kaiser &

Notkin [4], who explored, among other things, how changing
the KWIC application from batch-sequential to interactive
might demand corresponding changes in architectural style.
We note that change can be seen as involving, at a more ab-
stract level, a change in the style of application description,
and that this change is what really drives the need for a new
architectural style.

We employ state-driven behavior as a style for interactive
application description. The rest of this subsection intro-
duces this style of description, an architectural map from
this application style to the OO architectural style, and the
results of applying this map to a description of an interactive
version of KWIC.

Our interactive-KWIC system accepts a line of input at
a time and outputs an alphabetized list of the current col-
lection of lines. We modeled interactive-KWIC as a state-
driven system, where each state represents one of the be-
havioral modes of the system (inputting, sorting, etc), and
where transitions represent sequencing among modes. To do
this in Alloy we use its polymorphic linear ordering module.
This helps us to organize the states in a linear fashion, which
is all we need in this case. Figure 11 presents our description
of an interactive version of KWIC in the state-driven style.
(We wrote an Alloy specification, which the Alloy Analyzer
solved to produce this structure.)

The initial state of the interactive-KWIC is Wait, in which
the system waits to receive a command. There are transi-
tions from the Wait state to the Add, Delete, Print and Exit
states (and back) driven by interactive commands. The line
buffer is updated in the Add and Delete states. As the line
buffer is altered, the circular shifter is invoked to create the
shifts accordingly. It uses the shared shift lines buffer to hold
the shifted lines. The Alphabetizer state has also access to
the shift lines buffer. It is triggered by the completion of
the shifter activities to sort lines in the buffer. The Alpha-
betized lines buffer is used to hold the alphabetized shifts.
Finally, the Print state displays the latest buffer.

Figure 12 depicts the computed interactive-KWIC archi-
tecture description, in object-oriented style, that we com-
puted. For clarity of presentation, we again omit details.
The System here consists of a collection components. There
is an object to handle each of the shared data objects, namely
LineBuffer, ShiftedLines and AlphLines as well as the Inter-
activeKWIC.

Our mapping function uses the State pattern [2]. This
pattern is useful when an object can be in one of several
states, with different behaviors in each state. The pattern
implements states as classes that are instantiated as an ob-
ject enters each state. Operations invoked on the object are
delegated to those instances, which have their own methods
for the operations. In the same way, as can be seen from the
diagram, each state is assigned to an object to be handled.

Every Object has an Interface and Implementation (elided
from the Figure). Each of the state Object depends on the
Interface of the Object handling the associated shared data
object. As a case in point, Object4 handles the Alphabet-
izer state, having an access to ShiftedLines and AlphLines.
Object4 thus depends on the Interfaces of Object10 and Ob-
ject9, which handle the two shared data objects, respectively.

4.3 Experiment: CF, II, Lunar Lander
in Chapter 4 of their text[11], Taylor, Medvidovic, and

Dashofy illustrate the structuring of a lunar lander applica-
tion in a range of architectural styles. We describe the Lunar
Lander system formally (albeit abstractly) based on their in-
formal description. The application is decomposed into the
three basic functions: Get User Data, Spacecraft and Dis-
play. We have represented this application in a composition-
of-functions style. From this simple model we have produced
an architecture description for the pipe-and-filter style con-
sistent with the textbook. Here we discuss only its mapping
to architectural descriptions in the object-oriented and im-
plicit invocation styles.

In some cases it is helpful to model one architectural style
as inheriting rules from another. An implicit invocation ob-
ject (IIObject) is thus an Object that provides both a col-



Figure 10: The map of the composition of functions of KWIC into the OO style

Figure 11: Interactive-KWIC described in state-driven style.

abstract sig Publish extends Role {}

abstract sig Subscribe extends Role {}

abstract sig PublishEvent extends Port {}{...}

abstract sig SubscribeEvent extends Port {}{...}

abstract sig IIObject extends Object{}{...}

abstract sig EventBus extends Connector {}{...}

Figure 13: part of II style described in Alloy

lection of interfaces (as with Object) and a set of events.
Procedures may also be called in the usual way. So, an
IIObject extends the definition of an Object. It can, in ad-
dition, register some of its procedures with events of the
system; so those procedures will be invoked when the events
are announced. Figure 13 (eliding details) makes these ideas
precise in six signatures: Publish, Subscribe, PublishEvent,
SubscribeEvent, IIObject and EventBus. IIObject has Pub-
lishEvent and SubscribeEvent as its ports. EventBus is a
special kind of Connector and has two roles, i.e. Publish
and Subscribe.

Figure 14 presents predicates that define our architectural
map. The handleIIFunctions parameterized predicate en-
sures a correct architectural structure. It takes a sequence
(representing a composition) of functions. It uses three other
predicates: scope-OO, handleIIObjects and handleEvents.
The former predicate sets the Alloy scope of the System.
handleIIObjects specifies the ports of each IIObject based on
its role as a Publisher and/or Subscriber. The handleEvents
predicate states that for each publisher IIObject, its Publi-
shEvent port is attached to the publish role of an EventBus.
The subscribeEvent port of a relevant subscriber, on the
other hand, is attached to the subscribe role of that Event-
Bus.

According to the informal description of the lunar lander,
the Spacecraft component maintains the state of the space-
craft (its altitude, fuel level, velocity, and throttle setting).
After calculating the altitude, fuel level and velocity, it emits
those values to the event bus. Receipt of events providing
the spacecraft’s altitude, fuel and velocity cause the Display
component to update based on those values. The GetData
component obtains new burn data settings from the user;



Figure 12: The map of state-driven KWIC into the OO style

when this happens the component emits a notification of
this new value onto the event bus. Upon receipt of this
notification the Spacecraft component updates its internal
model of the spacecraft and emits the updated state back to
the bus.

Figure 15 presents the architectural description of the Sys-
tem, generated by Alloy. To simplify the diagram, we omit
some details, such as interface and implementation of ob-
jects as well as the roles of EventBus elements. The archi-
tectural description has three IIObjects. The LunarLander
element, inferred from the input specification, represents the
function set of the Lunar Lander System. GetData, Space-
craft and Display constitute LunarLander. Each IIObject
handles a function. As a case in point, IIObject2 handles
GetData and publishes a notification of new value through
PublishEvent0 that should be connected to EventBus0. On
the other hand, IIObject1, handles Spacecraft , subscribes to
input events through SubscribeEvent0, and will be implicitly
invoked. This allows it to update the state of the spacecraft.
This in turn causes Display to be invoked implicitly so that
it refreshes its display based on new data.

4.4 Experiment: CF, OO, Lunar Lander
Mapping our composition-of-function description of the

Lunar Lander to the OO architectural style yields the ar-
chitectural description depicted in Figure 16. As an aside,
we note that Taylor et al., indicate that the application de-
scription of the lunar lander that the use in discussing the

OO architectural style is not exactly the same as the one
illustrated in the OO style section of the book.

According to Figure 16, generated again by Alloy, the Sys-
tem comprises three components. LunarLander along with
the system’s functions, namely GetData, Spacecraft and Dis-
play, can be seen at the right side of the diagram. Each
Object has its Interface and Implementation. Their con-
nections are mentioned by labeled arcs. Object2 handles
GetData function. Object1, on the other hand, depends on
the Interface of Object2 and handles the Spacecraft func-
tion. The last function of Lunar Lander is Display which is
handled by Object0 depending on the Interface of Object1.

4.5 Discussion
Our experiments show that architectural maps can be im-

plemented in a computationally effective manner. We have
used this technology to recapitulate studies of architectural
style and choice from the research literature. The results of
our formal and automated computations are consistent with
the informally and manually produced results documented
in the literature. By simply swapping between implemen-
tations of architectural maps, we are able to produce dif-
ference architectural descriptions for a given system from
a high-level application description. Although we have not
yet attempted experiments beyond those replicating stud-
ies from the literature, we are encouraged. Our early work
appears to support the idea that being able to treat archi-
tecture as an independent variable is a plausible aspiration.



pred handleIIObjects(){

all o:IIObject|

{(o.handle.next!=none) &&

(o.handle.~next!=none)} =>

{ one SubscribeEvent & o.ports

one PublishEvent & o.ports}

else {(o.handle.next=none) } =>

{ one SubscribeEvent & o.ports

no PublishEvent & o.ports}

else {(o.handle.~next=none) } =>

{ no SubscribeEvent & o.ports

one PublishEvent & o.ports}

}

pred handleEvents(){

all o:IIObject|

{(o.handle.next!=none) &&

(o.handle.~next!=none)} =>

{ some s:System| one e:EventBus |

one sRole:Subscribe| one pRole:Publish|

one sPort:SubscribeEvent| one pPort:PublishEvent|

sRole in e.roles && pRole in e.roles

&& pRole-> pPort in s.attachments

&& sRole-> sPort in s.attachments

&& sPort in o.handle.next.~handle.ports

&& pPort in o.ports

}}

pred handleIIFunctions(cons: seq Function){

scope_OO[1,#cons]

handleIIObjects[]

handleEvents[]

}

Figure 14: Selected Alloy predicates for the II style.

5. RELATED WORK
The work we present here is related to many other research

efforts. In this paper, we discuss two especially close connec-
tions: to model-driven architectures [7] for program synthesis
from abstract models, and to recent work of Garlan et al. [3]
on the evolution of programs in terms of architectural style.

5.1 Model-Driven Architecture
The term model-driven architecture (MDA), refers to the

architecture of a kind of programming system that support
mapping of high-level, platform-independent application de-
scriptions to executable code specialized to run on specific,
often distributed and highly constrained, hardware-software
platforms. The MDA architecture is rooted in a mapping
that takes a platform-independent model, p, and a platform
definition model, s, to a platform-specific model, i. That is,
i : PSM = map(p : PIM, s : PDM).

The analogy with our approach is clear in this equation.
Compare it with our mapping equation: i : ArchDesc =
map(p : AppDesc, s : ArchStyle). We can understand both
the key similarities and the key differences between our work
and MDA by comparing and contrasting these relations.

The key similarity is of course that both approaches map
high-level descriptions of applications, by way of choices of
some target domain (platforms in MDA work, and archi-
tectural descriptions in our work) to detailed descriptions

Figure 15: The Lunar Lander in the II style.

Figure 16: Lunar Lander in the OO style.

in the given target space. In particular, both methods take
high-level, target-independent application descriptions as in-
puts: PDM-independent models in the MDA context, and
architectural style-independent application descriptions in
our work.

The key differences between MDA work and our own are
also clear. First, our target domain is one of architectural de-
scriptions, whereas the target domain for MDA work is that
of executable program representations (PSMs). PSM’s are
often Java or C++ programs, for example. Second, MDA
mappings are parameterized by descriptions of computing
platforms as targets for code generation, placing MDA work
broadly in the tradition of retargetable compilers for high-
level languages. Our maps, by contrast, are parameterized
by formal architectural style descriptions. In a sense, abus-
ing terminology, what we propose could be seen an an MDA
for generating, from high-level application descriptions, not
programs for given platforms but architectural descriptions
of programs in given architectural styles.

In this context we identify two areas for future work.
First, we plan to explore the hypothesis that research in
PIM languages can inform our own work on formal appli-
cation descriptions. Perhaps we can literally share some
kinds of application models.

Second, it seems clear that the MDA’s can perhaps be
described overall in terms of our diagram in Figure 1, in-
cluding, in particular, notions of PIM styles, analogous to
application styles. Furthermore, we might explore the anal-
ogy between PSM’s and architectural style descriptions.

The incongruity in the analogy is that PSM’s describe
platform instances while architectural styles, in a manner of
speaking, seem to define types of architecture descriptions.
Perhaps both MDA and our own work can be helped by
completing the picture on both sides. First, we can see an



t : SrcSty q : TrgSty

pt : SrcDsc disp(t, s) s : TrgDsc

map(t,s)(pt)

i(pt,s) : SysDsc

conforms conforms

refines
conforms

in

out

in

apply

Figure 17: Diagram of common structure.

architectural style description, such as OO, an an instance
of a broader class, architectural style, that explicitly cap-
tures, at a meta-level, what we mean by the term style.
Such a meta-model is in fact present even in this work, as
Wong’s Alloy architectural style meta-model, which intro-
duces terms such as component and connector. In either
case, what we’re doing is introducing a higher-level abstrac-
tion and a new conformance relation.

Similarly, on the MDA side, we have a clear notion of plat-
form instance, but lack a notion of platform style, which we
now make explicit. We thus treat each PSM as having some
style. The symmetrization of our diagram in Figure 17 is
graphically nice; it suggests that we can increase reuse by
characterizing the polymorphic nature of our maps in terms
of high level styles on both sides; and it now clearly exhibits
the style-pair-based polymorphism that provides the basis
for the modular implementation and incremental develop-
ment of specialized map functions.

5.2 Incremental Evolution of Architecture Style
The second piece of related work that we discuss is the re-

cent work of Garlan et al. on the evolution of programs with
respect to architectural style. The premise of this work is
that it is sometimes necessary to change a program written
in one architectural style into a related program in another
style. Garlan et al. note that such changes are often hard
to make because they involve substantial disruption to the
existing code base. The approach that they propose is one
involving incremental steps between programs, each step be-
ing effected by the application of a well defined incremental
architectural operator.

We can use the style notation that we have developed in
this paper both to characterize the work of Garlan et al.,
and also to compare and contrast it with our work. Thus,
Garlan et al. start with an architectural description i(pt,s)
and decompose its transformation into a new system, i(p′t,s′).
We will refer to i(pt,s) as the original system and to i(p′t,s′)
as the final system. Garlan et al. do not explicitly recognize
application descriptions or styles (t and t′), but they do of
course recognize architectural styles (s and s′) as first-class
abstractions. In terms of our notation (in which application
styles are explicit in t and t′) Garlan et al. focus on the
nature of, and on a theory to support automated implemen-
tation of, transitions of the following kind, where a double
arrow indicates an evolutionary transition:

i(pt,s) i(p′t,s′)
∆style((t,s),(t′s′))

The key ideas that remains implicit in Garlan et al., and
which are the central focus of our work, are (1) we are deal-
ing with are one or more architecture-independent applica-
tion descriptions (pt and p′t′), (2) architectural descriptions
(i(pt,s) and i(p′t,s′)) are obtained from such application de-

scriptions by way of architectural maps, and (3) we can and
should make the architectural maps explicit: map(t,s)(pt)
and map(t′,s′)(p

′
t). Beyond just evolutionary transitions be-

tween pairs of architecture descriptions, involving changes
in architectural style, we focus on architectural style as an
independent variable in design. The following tree depicts a
choice between architectural styles implicit in kinds of evo-
lutionary transitions that Garlan et al. discuss.

pt

i(pt,s) i(pt,s′)

map(t,s)(pt) map(t,s′)(pt)

Of course a fundamental motivation for our work is an
identical concern with the difficulty of selecting and chang-
ing decisions about architectural style. We are thus fully
”on board” with the notion that one will sometimes wish
to change the architectural style of a system. Success in
making architectural style an independent variable would,
in practice, ease such transitions by allowing for the auto-
mated regeneration of a system from a given application
description: as a kind of architectural retargeting. Adding
a double arrow to our diagram illustrates this idea:

pt

map(t,s)(pt) map(t,s′)(pt)

i(pt,s) i(pt,s′)

∆map((t,s),(t,s′))

The potential synthesis of our work with work in the style
of Garlan et al. is now clear. We need only re-draw the
diagram to show Garlan’s (incremental) re-architecting op-
erator, applied to one architectural description, as equivalent
in effect to changing our architectural map.

pt

map(t,s)(pt) map(t,s′)(pt)

i(pt,s) i(pt,s′)
∆style((t,s),(t,s′))

The difference between these diagrams is not trivial. The
diagram of our idea suggests that, at least with the appli-
cation style fixed, one can simply substitute one choice of
architectural map for another. This is what it would mean
to treat architecture as an independent variable. The Gar-
lan et al. diagram, by contrast, suggests that one must op-
erate on the actual architectural descriptions themselves to



achieve the same effect. Of course the latter is indeed what
we do today, and so having a theory to describe it is very
helpful, while the previous diagram represents an aspiration
for a fundamentally better approach.

As a last note in this section, we observe that the preced-
ing diagram does not capture the exact evolutionary scenario
of Garlan et al. They assumed that some change in the ap-
plication, pt, and perhaps in its description style, t, drove
the need for a change in architectural style. What the dia-
gram above depicts is a fundamental change in architectural
style independent of any change in either the meaning of the
application, p, or in the application style, t, in which that
meaning is described.

The notation that we have described makes these separate
dimensions of evolution explicit, and thus provides what ap-
pears to be a useful and interesting new category-theoretic-
like, graphical language for describing a wide variety of soft-
ware change scenarios, involving changes in important inde-
pendent dimensions: application style, architectural style,
application content, and, indeed, mapping strategies.

Here then is a diagram capturing the scenario of Garlan
et al. expressed in our terms and related to our concept.
A change in the application, p, and perhaps (we assume)
even in the application style, t, is driving the need to re-
architect the system, taking it from i(pt,s) to i(p′t,s′). The
change also includes a transition from architectural style s
to s′. Garlan decomposes the bottom path into intermediate
system states. Without depicting this decomposition, we use
a dashed double arrow to represent the idea that, with the
kind of automation we envision and have demonstrated in
a prototype form, the amount of manual work at this level
might be substantially reduced or even eliminated.

pt p′t′

i(pt,s) i(p′
t′ ,s

′)

∆app

map(t,s)(pt) map(t′,s′)(p
′
t)

∆map

∆arch

6. CONCLUSION
In summary, the principal contributions of this work are

in four areas. First, we identified the treatment of archi-
tecture as an independent variable as a key problem area
and goal for software engineering. Second, we presented a
conceptual architecture to make this idea precise, including
a category-theory-like graphical notation showing how the
key concepts relate to each other. Third, we demonstrated
the feasibility of automated computation of architectural de-
scriptions with an executable prototype developed in Alloy,
exploiting previously peer-reviewed, formal definitions of ar-
chitectural styles as inputs. Fourth, we presented data that
appear to support our hypotheses, and the proposition that
these ideas are perhaps worth pursuing further.

We identify three key goals for future work. The first is
to further develop what at present are clearly rudimentary
application description styles. Extending such descriptions
to include richer semantics, and then refining these seman-
tics through mappings down to architectural descriptions
appears to be quite important. Second, we are consider-
ing exploring the extension of our work to include subse-

quent mappings from architectural descriptions to code. Ul-
timately we want not only to map high-level descriptions to
code, but for these maps to be invertible, so that we can ab-
stract high-level descriptions from code, prior to remapping
back to code with a new architecture. Finally, at an appro-
priate point, we intend to undertake experimental tests of
the viability of these ideas for realistic system design, im-
plementation, and architectural evolution.

7. ACKNOWLEDGMENTS
We thank Professor David Garlan of Carnegie Mellon Uni-

versity for helpful discussion of this work, especially on the
relationship between the ideas in this paper and his recent
work on how systems evolve from one style to another. This
work was supported by a grant from the National Science
Foundation.

8. REFERENCES
[1] R. T. Fielding and R. N. Taylor. Principled design of

the modern web architecture. In Proceedings of the
22nd international conference on Software
engineering, pages 407—416, Limerick, Ireland, 2000.

[2] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[3] D. Garlan, J. M. Barnes, radley Schmerl, and
O. Celiku. Evolution styles: Foundations and tool
support for software architecture evolution. In Joint
8th Working International Conference on Software
Architecture and 3rd European Conference on Software
Architecture, Cambridge, UK, Sept. 2009.

[4] D. Garlan, G. Kaiser, and D. Notkin. Using tool
abstraction to compose systems. Computer,
25(6):30—38, June 1992.

[5] D. Jackson. Alloy: a lightweight object modelling
notation. ACM Transactions on Software Engineering
and Methodology (TOSEM), 11(2):256—290, 2002.

[6] J. S. Kim and D. Garlan. Analyzing architectural
styles with alloy. In In Workshop on the Role of
Software Architecture for Testing and Analysis 2006
(ROSATEA 2006), Portland, ME, USA, July 2006.

[7] OMG. Unïıň ↪Aed modeling language.
http://www.omg.org/mda/.

[8] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Communications
of the ACM, 15:1053—1058, 1972.

[9] D. E. Perry and A. L. Wolf. Foundations for the study
of software architecture. ACM SIGSOFT Software
Engineering Notes, 17(4):40—52, 1992.

[10] M. Shaw and D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall,
1996.

[11] R. N. Taylor, N. Medvidovic, and E. Dashofy.
Software Architecture: Foundations, Theory, and
Practice. Wiley, 2009.

[12] S. Wong, J. Sun, I. Warren, and J. Sun. A scalable
approach to multi-style architectural modeling and
verification. In Proceedings of the 13th IEEE
International Conference on on Engineering of
Complex Computer Systems, pages 25—34. IEEE
Computer Society, 2008.


