
Summary: Integration of Legacy Grid Systems with Emerging
Grid Standards 1

A. Grimshaw, W. Kang, D. Merrill, M. Morgan

Department of Computer Science, University of Virginia

1. Introduction

The Open Grid Services Architecture (OGSATM)
addresses the need for standardization of diverse grid
services by defining a set of core capabilities and
behaviors needed by loosely coupled, service-oriented
Grid architectures. These OGSA standards and
interfaces are based on ubiquitous, platform-neutral,
technologies like SOAP, XML, and Web Services.

We expect that over time there will be many
“native” implementations of OGSA services. At the
same time, a number of grid systems already exist such
as Globus [3], Legion [4], EGEE , NAREGI [5], and
Unicore [2] that expose similar functionalities. Rather
than rush to build native OGSA implementations, we
believe many projects will choose to build OGSA-
compliant proxies to allow for OGSA interoperability.
This would facilitate the composition of islands of
internally-proprietary grids that are connected by
OGSA interfaces and mechanisms. Proxies will
mediate and translate between standard OGSA service
abstractions and legacy services and capabilities.

In the following sections, this summary briefly
describes our OGSA proxy implementation that inter-
connects legacy Legion grids with grids that support
the emerging OGSA specifications. Specifically we
have constructed proxy services that support OGSA-
ByteIO [6], WS-Directory[7], and WS-Naming[8].

2. Background

2.1 Relevant OGSA specifications. The Web
Services Resource Framework (WSRF) is a group of
cross-cutting specifications that grid service
implementations can employ to facilitate some of the
simpler, more mundane pieces of functionality (i.e.,
lifetime management, state and meta-data management
and inspection, grouping, and notification).

1 Parts of this summary have been excerpted from Grimshaw, A.S.,
et al, Integration of Legacy Grid Systems with Emerging Grid
Standards, UVA CS TR CS-2006-07, 2006

The WS-Addressing specification gives a standard

way of indicating or addressing stateful web service
resources. At the heart of the WS-Addressing
specification is the EndpointReferenceType (EPR)
data-structure. WS-Naming supplements the WS-
Addressing specification by providing for the ability to
compare and rebind EPRs.

The OGSA-ByteIO specification defines a service
interface for reading and writing sequences of bytes. It
provides the means for treating data resources as
POSIX-like files (e.g., reading, writing, truncating,
seeking, etc.).

WS-Directory is a specification for lightweight
directory resources that map string names to
addressable entities that are identified by WS-
Addressing EPRs. These directory resources can be
composed hierarchically to describe and manage a
namespace of grid/web resources (e.g., a grid file
system namespace).

2.2 Legion. Legion is a distributed system in which
entities (files, processors, storage devices, networks,
users, etc.) are modeled as communicating objects.
Every Legion object instance is defined and managed
by its class object. Class objects are managers and
policy makers and have system-level responsibility for
creating new instances, instance lifetimes, and supply-
ing bindings (network address data) for instances to
client objects.

Legion objects are identified by a three-level
naming scheme. Each object is assigned an object
address: a mutable list of network addresses. Because
they are not static, objects are also assigned (at
creation) static, globally unique, location-independent
names called Legion Object IDentifiers (LOIDs).

To facilitate “human-friendly” organization of
Legion objects, Legion supports a hierarchical
directory service, context space, which lets users assign
arbitrary Unix-like string paths to objects. Context
space is composed of context objects, each of which
provides a mapping of strings to LOIDs (which may
identify other context objects).

3371-4244-0307-3/06/$20.00 ©2006 IEEE.

Legion provides objects called Basicfiles that
model Unix files. Available operations include those to
read/write blocks of data, append blocks of data,
truncate files, or to obtain information about the file.

3. Implementation

To achieve interoperability, the proxy
implementations explicitly solve two different
problems: name mapping (translating from Legion
LOIDs to WS-Addressing EndpointReferenceTypes
and vice-versa) and interface-translation (translating
the methods, parameters, and data structures involved
in order to achieve functional congruence).

3.1. Name-translation. The name-translation solution
is two-fold. The first issue is how to empower OGSA
clients to refer to Legion objects. This is done by
minting an EPR whose address field identifies the URI
for the Legion inbound proxy and whose abstract name
field is assigned the Legion LOID of the target Legion
object.

The second issue is how to enable Legion clients to
refer to OGSA resources. This is accomplished by
architecting the outbound proxy to be the “class” of all
external WSRF resources. Because Legion classes are
responsible for object creation, management, and
binding, the outbound (relative to Legion) proxy can
maintain the EPRs of all external WSRF resources for
which it has minted LOIDs. When a Legion client
requests an object address for one of these LOIDs, the
outbound proxy simply returns its own binding (since it
will act as the communication proxy for all outgoing
requests). Hence the outbound proxy implements the
interface of a Legion class as well as the set of target
object types for which it can proxy.

3.2. Interface-translation. The interface-translation
problem must be addressed individually for each type
of service interface that requires interoperability.

In the case of I/O functionality, the translation
between Byte-IO and Legion BasicFiles was very
straightforward. The interface abstractions were nearly
identical in functionality, thus requiring only syntactic
translation (converting method names, parameter
ordering, and marshalling functionally-equivalent data
structures).

Namespace interoperability, however, was
complicated by object and resource references that
might be nested within returned data. For example,
inbound proxies must mint EPRs for any Legion LOID
object references returned during Context lookup().
Similarly, outbound proxies must create LOIDs and

maintain LOID–EPR mappings for any EPR resource
references returned during WS-Directory lookup().

Another challenge was achieving interoperability for
the “cross-cutting” interfaces: specifically the Legion
object-mandatory methods (concerning attributes,
interfaces, access-control, etc.) and WSRF (concerning
resource-properties, lifetimes, etc.). Interface
mismatch prevents a complete mapping of
functionality, requiring the proxies to “fill in holes” by
providing reasonable responses itself rather than
proxying the request to the target.

4. Results and conclusions

We created a testbed consisting of a Legion grid and
a lightweight WS-based filesystem grid (composed of
of WS-Directory and OGSA-ByteIO resources using
the WSRF.Net runtime). We were able to “mount” the
respective namespaces into each other and to
demonstrate both transparent namespace
interoperability (i.e., clients performing “ls”, “cd”,
“pwd” operations) and I/O interoperability (i.e., clients
performing “cat” and overwrite operations). It was
determined that proxy overhead was minimal in
comparison to the latency imposed by the native OGSA
and Legion implementations. In future work, we plan
to better address scalability as well as investigate
security-related interoperability. We conclude that, at
least in the short run, OGSA service definitions can
provide new interoperability value to legacy grid
implementations via reasonable proxy construction.

5. References

[1] Foster, I., et al. The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration. 2002.
[2] Snelling, D., Unicore and the Open Grid Services Architecture,
in Grid Computing: Making The Global Infrastructure a Reality, F.
Berman, A.J.G. Hey, and G. Fox, Editors. 2003, John Wiley. p. 701-
712.
[3] Foster, I. and C. Kesselman, Globus: A Metacomputing
Infrastructure Toolkit. International Journal of Supercomputing
Applications, 1997. 11(2): p. 115-128.
[4] Grimshaw, A.S., The Legion Vision of a Worldwide Virtual
Computer. Communications of the ACM, 1997. 40(1): p. 39-45.
[5] NAREGI, NAREGI English Home Page. 2006.
Box, D., et al., Web Services Addressing (WS-Addressing). 2004,
W3C.
[6] Morgan, M. ByteIO Specification 1.0. 2005 [cited; Available
from: https://forge.gridforum.org/projects/byteio-wg/document/draft-
byteio-rec-doc-v1-1/en/4.
[7] Morgan, M. WS-Directory Specification - Draft. 2005 [cited;
Available from: https://forge.gridforum.org/projects/ogsa-naming-
wg/document/draft-wsdir-rec-doc-v1/en/1.
[8] GGF, WS-Naming Specification. 10 August 2005, Global Grid
Forum, GFD-WS-Naming WG,
http://forge.gridforum.org/projects/ws-naming-wg.

338

